EIGENVALUES FOR MAXWELL'S EQUATIONS WITH DISSIPATIVE BOUNDARY CONDITIONS

FERRUCCIO COLOMBINI, VESSELIN PETKOV[†] AND JEFFREY RAUCH

ABSTRACT. Let $V(t) = e^{tG_b}$, $t \ge 0$, be the semigroup generated by Maxwell's equations in an exterior domain $\Omega \subset \mathbb{R}^3$ with dissipative boundary condition $E_{tan} - \gamma(x)(\nu \land B_{tan}) = 0, \gamma(x) > 0, \forall x \in \Gamma = \partial \Omega$. We prove that if $\gamma(x)$ is nowhere equal to 1, then for every $0 < \epsilon \ll 1$ and every $N \in \mathbb{N}$ the eigenvalues of G_b lie in the region $\Lambda_{\epsilon} \cup \mathcal{R}_N$, where $\Lambda_{\epsilon} = \{z \in \mathbb{C} : |\operatorname{Re} z| \le C_{\epsilon}(|\operatorname{Im} z|^{\frac{1}{2}+\epsilon} + 1), \operatorname{Re} z < 0\}, \mathcal{R}_N = \{z \in \mathbb{C} : |\operatorname{Im} z| \le C_N(|\operatorname{Re} z| + 1)^{-N}, \operatorname{Re} z < 0\}.$

1. INTRODUCTION

Suppose that $K \subset \{x \in \mathbb{R}^3 : |x| \leq a\}$ is an open connected domain and $\Omega := \mathbb{R}^3 \setminus \overline{K}$ is an open connected domain with C^{∞} smooth boundary Γ . Consider the boundary problem

$$\partial_t E = \operatorname{curl} B, \qquad \partial_t B = -\operatorname{curl} E \quad \text{in} \quad \mathbb{R}_t^+ \times \Omega,$$

$$E_{tan} - \gamma(x)(\nu \wedge B_{tan}) = 0 \quad \text{on} \quad \mathbb{R}_t^+ \times \Gamma,$$

$$E(0, x) = e_0(x), \qquad B(0, x) = b_0(x).$$

(1.1)

with initial data $f = (e_0, b_0) \in (L^2(\Omega))^6 = \mathcal{H}$. Here $\nu(x)$ denotes the unit outward normal to $\partial\Omega$ at $x \in \Gamma$ pointing into Ω , \langle , \rangle denotes the scalar product in \mathbb{C}^3 , $u_{tan} := u - \langle u, \nu \rangle \nu$, and $\gamma(x) \in C^{\infty}(\Gamma)$ satisfies $\gamma(x) > 0$ for all $x \in \Gamma$. The solution of the problem (1.1) is given by a contraction semigroup $(E, B) = V(t)f = e^{tG_b}f$, $t \geq 0$, where the generator G_b has domain $D(G_b)$ that is the closure in the graph norm of functions $u = (v, w) \in (C^{\infty}_{(0)}(\mathbb{R}^3))^3 \times (C^{\infty}_{(0)}(\mathbb{R}^3))^3$ satisfying the boundary condition $v_{tan} - \gamma(\nu \wedge w_{tan}) = 0$ on Γ .

In an earlier paper [2] we proved that the spectrum of G_b in Re z < 0 consists of isolated eigenvalues with finite multiplicity. If $G_b f = \lambda f$ with Re $\lambda < 0$, the solution $u(t,x) = V(t)f = e^{\lambda t}f(x)$ of (1.1) has exponentially decreasing global energy. Such solutions are called **asymptotically disappearing** and they are invisible for inverse scattering problems. It was proved [2] that if there is at least one eigenvalue λ of G_b with Re $\lambda < 0$, then the wave operators W_{\pm} are not complete, that is Ran $W_{-} \neq \text{Ran } W_{+}$. Hence we cannot define the scattering operator S related to the Cauchy problem for the Maxwell system and (1.1) by the product $W_{+}^{-1}W_{-}$. For the perfect conductor boundary conditions for Maxwell's equations, the energy is conserved in time and the unperturbed and perturbed problems are associated to unitary groups. The corresponding scattering operator $S(z) : (L^2(\mathbb{S}^2))^2 \to (L^2(\mathbb{S}^2))^2$ satisfies the identity

$$S^{-1}(z) = S^*(\bar{z}), \quad z \in \mathbb{C}$$

$$(1.2)$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 35P20, Secondary 47A40, 35Q61.

 $^{^\}dagger$ The author was partially supported by the ANR project Nosevol BS01019 01 .

FIGURE 1. Eigenvalues of G_b

if S(z) is invertible at z. The scattering operator S(z) defined in [4] is such that S(z) and $S^*(z)$ are analytic in the "physical" half plane $\{z \in \mathbb{C} : \operatorname{Im} z < 0\}$ and the above relation for conservative boundary conditions implies that S(z) is invertible for $\operatorname{Im} z > 0$. For dissipative boundary conditions the relation (1.2) in general is not true and $S(z_0)$ may have a non trivial kernel for some $z_0, \operatorname{Im} z_0 > 0$. Lax and Phillips [4] proved that this implies that iz_0 is an eigenvalue of G_b . The analysis of the location of the eigenvalues of G_b is important for the location of the points where the kernel of S(z) is not trivial.

The main result of this paper is the following

Theorem 1.1. Assume that for all $x \in \Gamma$, $\gamma(x) \neq 1$. Then for every $0 < \epsilon \ll 1$ and every $N \in \mathbb{N}$ there are constants $C_{\epsilon} > 0$ and $C_N > 0$ such that the eigenvalues of G_b lie in the region $\Lambda_{\epsilon} \cup \mathcal{R}_N$, where

$$\Lambda_{\epsilon} = \{ z \in \mathbb{C} : |\operatorname{Re} z| \le C_{\epsilon} (|\operatorname{Im} z|^{1/2+\epsilon} + 1), \operatorname{Re} z < 0 \}, \mathcal{R}_{N} = \{ z \in \mathbb{C} : |\operatorname{Im} z| \le C_{N} (|\operatorname{Re} z| + 1)^{-N}, \operatorname{Re} z < 0 \}.$$

Example 1.2. For Maxwell's equations, $K = \{|x| \le 1\}$, and $0 < \gamma = \text{constant}$, the generator G_b has real eigenvalues (see [1]) and these eigenvalues are stable under small perturbations of the boundary and the boundary conditions (see [2]).

If $\operatorname{Re} \lambda < 0$ and $G_b(E, B) = \lambda(E, B) \neq 0$, then

 $\lambda E = \operatorname{curl} B \qquad \text{on} \quad \Omega,$ $\lambda B = -\operatorname{curl} E \qquad \text{on} \quad \Omega,$ $\operatorname{div} E = \operatorname{div} B = 0, \qquad \text{on} \quad \Omega,$ $E_{tan} - \gamma(\nu \wedge B_{tan}) = 0 \quad \text{on} \quad \Gamma.$ (1.3)

This implies that u := (E, B) satisfies

$$\Delta u - \lambda^2 u = 0, \qquad \text{on} \quad \Omega.$$

FIGURE 2. Contours $Z_1, Z_2, Z_3, \delta = 1/2 - \epsilon$

The eigenvalues of G_b are symmetric with respect to the real axis, so it is sufficient to examine the location of the eigenvalues whose imaginary part is nonnegative. The mapping $z \mapsto z^2$ maps the positive quadrant $\{z \in \mathbb{C} : \operatorname{Re} z > 0, \operatorname{Im} z > 0\}$ bijectively to the upper half space. Denote by \sqrt{z} the inverse map. The part of the spectral domain $\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda < 0, \operatorname{Im} \lambda > 0\}$ is mapped by $\lambda = \mathbf{i}\sqrt{z}$ to the upper half plane $\{z \in \mathbb{C} : \operatorname{Im} z > 0\}$. In $\{z \in \mathbb{C} : \operatorname{Im} z \ge 0\}$ introduce the sets

$$Z_1 := \{ z \in \mathbb{C} : \operatorname{Re} z = 1, \quad h^{\delta} \leq \operatorname{Im} z \leq 1 \}, \quad 0 < h \ll 1, \quad 0 < \delta < 1/2, \\ Z_2 := \{ z \in \mathbb{C} : \operatorname{Re} z = -1, \quad 0 \leq \operatorname{Im} z \leq 1 \}, \\ Z_3 := \{ z \in \mathbb{C} : |\operatorname{Re} z| \leq 1, \quad \operatorname{Im} z = 1 \}.$$

Set $\lambda = i\sqrt{z}/h$, $z \in Z_1 \cup Z_2 \cup Z_3$. To study the eigenvalues λ , $|\lambda| > R_0$, it is sufficient to consider $0 < h \ll 1$. As z runs over the blue rectangle in Figure 2, with $0 < h \ll 1$, λ sweeps out the large values in the intersection of left and upper half planes. The values of $z \in Z_2$ near the lower left hand corner, z = -1, of the blue rectangle go the spectral values near the negative real axis. The spectral analysis near these values in Z_2 for dissipative Maxwell's equations does not have clear analogue with the spectral problems for the wave equation with dissipative boundary conditions. In fact, for the wave equation if $0 < \gamma(x) < 1$, $\forall x \in \Gamma$, the eigenvalues of the generator of the corresponding semigroup are located in the domain Λ_{ϵ} (see Section 3, [6] and [5]). For Maxwell's equations the eigenvalues of G_b lie in the domain $\Lambda_{\epsilon} \cup \mathcal{R}_N$ and for $0 < \gamma(x) < 1$ and $\gamma(x) > 1$ we have the same location.

Equation (1.3) implies that on Ω each eigenfunction u = (E, B) of G_b satisfies

$$\sqrt{z}E = \frac{h}{\mathbf{i}}\operatorname{curl} B, \qquad \sqrt{z}B = -\frac{h}{\mathbf{i}}\operatorname{curl} E, \qquad (1.4)$$

and therefore $(-h^2\Delta - z)E = (-h^2\Delta - z)B = 0$. For eigenfunctions $(E, B) \neq 0$, we derive a pseudodifferential system on the boundary involving $E_{tan} = E - \langle E, \nu \rangle \nu$ and $E_{nor} = \langle E, \nu \rangle$. A semi-classical analysis shows that for $z \in Z_1 \cup Z_3$ this system implies that for h small enough we have $E|_{\Gamma} = 0$ which yields E = B = 0. By scaling one concludes that the eigenvalues $\lambda = \frac{i\sqrt{z}}{h}$ of G_b lie in the region $\Lambda_{\epsilon} \cup \mathcal{M}$, where

$$\mathcal{M} = \{ z \in \mathbb{C} : |\arg z - \pi| \le \pi/4, |z| \ge R_0 > 0, \operatorname{Re} z < 0 \}.$$

The strategy for the analysis of the case $z \in Z_1 \cup Z_3$ is similar to that exploited in [7] and [6]. In these papers the semi-classical Dirichlet-to-Neumann map $\mathcal{N}(z,h)$ plays a crucial role and the problem is reduced to the proof that some h-pseudodifferential operators is elliptic in a suitable class. For the Maxwell system the pseudodifferential equation on the boundary is more complicated. Using the equation div E = 0, yields a pseudodifferential system for E_{tan} and E_{nor} . We show that if $(E, B) \neq 0$ is an eigenfunction of G_b , then $\|E_{nor}\|_{H_h^1(\Gamma)}$ is bounded by $Ch\|E_{tan}\|_{H_h^1(\Gamma)}$. The term involving E_{nor} then plays the role of a negligible perturbation in the pseudodifferential system on the boundary and this reduces the analysis to one involving only E_{tan} . The system concerning E_{tan} has a diagonal leading term and we may apply the same arguments as those of [6] to conclude that $E_{tan} = 0$ and hence $E_{nor} = 0$.

The analysis of the case $z \in Z_2$ is more difficult since the principal symbol gof the pseudodifferential system for E_{tan} need not be elliptic at some points (see Section 3). Even where g is elliptic, if $|\operatorname{Im} z| \leq h^{1/2}$ it is difficult to estimate the norm of the difference $Op_h(g)Op_h(g^{-1}) - I$. To show that the eigenvalues of G_b lying in \mathcal{M} are in fact confined to the region \mathcal{R}_N for every $N \in \mathbb{N}$, we analyze the real part of the following scalar product in $L^2(\Gamma)$

$$Q(E_0) := \operatorname{Re}\langle (\mathcal{N}(z,h) - \sqrt{z\gamma})E_0, E_0 \rangle_{L^2(\Gamma)}, \qquad E_0 := E|_{\Gamma}$$

We follow the approach in [7], [6] based on a Taylor expansion of $Q(E_0)$ at z = -1and the fact that for z = -1 we have $Q(E_0) = \mathcal{O}(h^N), \forall N \in \mathbb{N}$.

2. Pseudodifferential equation on the boundary

Introduce geodesic normal coordinates $(y_1, y') \in \mathbb{R}^3$ on a neighborhood of a point $x_0 \in \Gamma$ as follows. For a point x, y'(x) is the closest point in Γ and $y_1 = \text{dist}(x, \Gamma)$. Define $\nu(x)$ to be the unit normal in the direction of increasing y_1 to the surface $y_1 = \text{constant through } x$. Thus $\nu(x)$ is an extension of the unit normal vector to a unit vector field. The boundary Γ is mapped to $y_1 = 0$ and

$$x = \alpha(y_1, y') = \beta(y') + y_1 \nu(y').$$

We have

$$\frac{\partial}{\partial x_k} = \nu_k(y')\frac{\partial}{\partial y_1} + \sum_{j=2}^3 \frac{\partial y_j}{\partial x_k}\frac{\partial}{\partial y_j}, \qquad k = 1, 2, 3.$$

Moreover,

$$\sum_{k=1}^{3} \nu_k(y') \frac{\partial y_j}{\partial x_k}(y_1, y') = \langle \nu, \frac{\partial y_i}{\partial x} \rangle = 0, \qquad j = 1, 2, 3, \text{ and}$$
$$\sum_{k=1}^{3} \nu_k(x) \partial_{x_k} f(x) = \partial_{y_1}(f(\alpha(y_1, y'))).$$

Since $\|\nu(x)\| = 1$, $\langle \nu, \partial_{x_j} \nu \rangle = 0$, j = 1, 2, 3.

A straight forward computation yields

$$\begin{split} \nu(x) \wedge \frac{h}{\mathbf{i}} \operatorname{curl} u(x) &= \mathbf{i} h \partial_{\nu} u_{tan} + \left(\langle D_{x_1} u, \nu \rangle, \langle D_{x_2} u, \nu \rangle, \langle D_{x_3} u, \nu \rangle \right) \Big|_{tan} \\ &= \mathbf{i} h \partial_{\nu} u_{tan} + \left(\operatorname{grad}_h \langle u, \nu \rangle \right) \Big|_{tan} - \mathbf{i} h \langle g_0(u_{tan}), \qquad x \in \Gamma, \end{split}$$

where

$$D_{x_j} = -\mathbf{i}h\partial_{x_j}, \qquad j = 1, 2, 3, \quad \text{grad}_h f = \{D_{x_j}f\}_{j=1,2,3}, \\g_0(u_{tan}) = \{\langle u_{tan}, \partial_{x_j}\nu \rangle\}_{j=1,2,3}.$$

Setting $E_{nor} = \langle E, \nu \rangle$, from (1.3) one deduces

$$\nu \wedge B = -\frac{1}{\sqrt{z}}\nu \wedge \frac{h}{\mathbf{i}}\operatorname{curl} E = \frac{1}{\sqrt{z}}D_{\nu}E_{tan} - \frac{1}{\sqrt{z}}\Big[\Big(\operatorname{grad}_{h}E_{nor}\Big)\Big|_{tan} - \mathbf{i}hg_{0}(E_{tan})\Big],$$

where $D_{\nu} = -\mathbf{i}h\partial_{\nu}$ and the boundary condition in (1.3) becomes

$$\left(D_{\nu} - \frac{1}{\gamma}\sqrt{z}\right)E_{tan} - \left(\operatorname{grad}_{h}E_{nor}\right)\Big|_{tan} + \mathbf{i}hg_{0}(E_{tan}) = 0, \qquad x \in \Gamma.$$
(2.1)

Next

$$\operatorname{grad}_{h}f(x)|_{tan} = \left\{ \sum_{j=2}^{3} \frac{\partial y_{j}}{\partial_{x_{k}}} D_{y_{j}}f(\alpha(y_{1},y')) \right\}_{k=1,2,3}$$

and for $u = (u_1, u_2, u_3) \in \mathbb{C}^3$,

$$\frac{h}{\mathbf{i}}\operatorname{div} u(\alpha(y_1, y')) = \langle D_{y_1} u(\alpha(y_1, y')), \nu(y') \rangle + \sum_{k=1}^3 \sum_{j=2}^3 \frac{\partial y_j}{\partial x_k} D_{y_j} u_k(\alpha(y_1, y')) \\ = D_{y_1} \Big(u_{nor}(t, y') \Big) + \sum_{j=2}^3 D_{y_j} \Big\langle u_{tan}(\alpha(y_1, y')), \frac{\partial y_j}{\partial x} \Big\rangle + h \langle u_{tan}, Z \rangle,$$

where $\langle u(\alpha(y_1, y')), \nu(y') \rangle := u_{nor}(y_1, y')$ and Z depends on the second derivatives of y_j , j = 2.3. Apply the operator $D_{y_1} - \frac{\sqrt{z}}{\gamma(y')}$ to div $E(\alpha(y_1, y')) = 0$ to find

$$(D_{y_1}^2 - \frac{\sqrt{z}}{\gamma(y')}D_{y_1})E_{nor}(y_1, y') + \sum_{j=2}^3 D_{y_j} \left\langle (D_{y_1} - \frac{\sqrt{z}}{\gamma(y')})E_{tan}(\alpha(y_1, y')), \frac{\partial y_j}{\partial x} \right\rangle$$
$$= h \left\langle (D_{y_1} - \frac{\sqrt{z}}{\gamma})E_{tan}, Z \right\rangle + h \left\langle E_{tan}, Z_1 \right\rangle,$$

where $\gamma(y') := \gamma(\beta(y')).$

Taking the trace $y_1 = 0$ and applying the boundary condition (2.1), yields

$$\left(D_{y_{1}}^{2} + \sum_{j,\mu=2}^{3} \sum_{k=1}^{3} \frac{\partial y_{j}}{\partial x_{k}} \frac{\partial y_{\mu}}{\partial x_{k}} D_{y_{j},y_{\mu}}^{2}\right) E_{nor}(0,y') - \frac{\sqrt{z}}{\gamma(y')} D_{y_{1}} E_{nor}(0,y') \\
= h \left\langle \left(\operatorname{grad}_{h} E_{nor} \right) \Big|_{tan}(0,y'), Z \right\rangle + h Q_{1}(E_{tan}(0,y')), \quad (2.2)$$

with

$$\|Q_1(E_{tan}(0,y'))\|_{L^2(\mathbb{R}^2)} \le C_2 \|E_{tan}(0,y')\|_{H^1_h(\mathbb{R}^2)}.$$

Here $H_h^s(\Gamma)$, $s \in \mathbb{R}$, denotes the semi-classical Sobolev spaces with norm $\|\langle h\partial_x \rangle^s u\|_{L^2(\Gamma)}$, $\langle h\partial_x \rangle = (1 + \|h\partial_x\|^2)^{1/2}$. In the exposition below we use the spaces $(L^2(\Gamma))^3$ and $(H_h^s(\Gamma))^3$ of vector-valued functions but we will omit this in the notations writing simply $L^2(\Gamma)$ and $H_h^s(\Gamma)$.

The operator $-h^2\Delta_x - z$ in the coordinates (y_1, y') has the form $\mathcal{P}(z,h) = D_{y_1}^2 + r(y, D_{y'}) + hq_1(y, D_y) + h^2\tilde{q} - z$ with $r(y,\eta') = \langle R(y)\eta',\eta'\rangle, q_1(y,\eta) = \langle q_1(y),\eta\rangle$. Here

$$R(y) = \left\{ \sum_{k=1}^{3} \frac{\partial y_j}{\partial x_k} \frac{\partial y_\mu}{\partial x_k} \right\}_{j,\mu=2}^{3} = \left\{ \left\langle \frac{\partial y_j}{\partial x}, \frac{\partial y_\mu}{\partial x} \right\rangle \right\}_{j,\mu=2}^{3}$$

is a symmetric (2×2) matrix and $r(0, y', \eta') = r_0(y', \eta')$, where $r_0(y', \eta')$ is the principal symbol of the Laplace-Beltrami operator $-h^2 \Delta_{\Gamma}$ on Γ equipped with the Riemannian metric induced by the Euclidean one in \mathbb{R}^3 . We have

$$\left(\mathcal{P}(z,h)E_{nor}\right)(0,y') = \langle \mathcal{P}(z,h)E,\nu\rangle(0,y') + hQ_2(E(0,y')),\right)$$

where

$$\|Q_2(E(0,y'))\|_{L^2(\mathbb{R}^2)} \leq C_2 \|E(0,y')\|_{H^1_h(\mathbb{R}^2)}$$

Since $\mathcal{P}(z,h)E = 0$, this lets us replace the terms with all second derivatives of E_{nor} in (2.4) by $zE_{nor}(0,y')$ modulo terms having a factor h and containing first order derivatives of E_{nor} . This follows from the form of the matrix R(y) given above. After a multiplication by $-\frac{\gamma(y')}{\sqrt{z}}$ the equation (2.2) yields

$$(D_{y_1} - \gamma(y')\sqrt{z})E_{nor}(0,y') = hQ_3(E(0,y')), \qquad (2.3)$$

where $Q_3(E(0, y'))$ has the same properties as $Q_2(E(0, y'))$.

Let $\psi(x) \in C_0^{\infty}(\mathbb{R}^3)$ be a cut-off function with support in small neighborhood of $x_0 \in \Gamma$. Replace E, B by $E_{\psi} = E\psi$, $B_{\psi} = B\psi$. The above analysis works for E_{ψ} and B_{ψ} with lower order terms depending on ψ . We obtain

$$\langle (D_{\nu} - \gamma(x)\sqrt{z})E|_{\Gamma}\psi(x),\nu(x)\rangle = h Q_{3,\psi}(E|_{\Gamma}).$$

Taking a partition of unity in a neighborhood of Γ , yields

$$\langle (D_{\nu} - \gamma(x)\sqrt{z})E|_{\Gamma}, \nu \rangle = hQ_4(E|_{\Gamma}), \qquad ||Q_4(E|_{\Gamma})||_{L^2(\Gamma)} \le C||E|_{\Gamma}||_{H^1_h(\Gamma)}.$$
 (2.4)

For $z \in Z_1 \cup Z_2 \cup Z_3$ let $\rho(x', \xi', z) = \sqrt{z - r_0(x', \xi')} \in C^{\infty}(T^*\Gamma)$ be the root of the equation

$$\rho^2 + r_0(x',\xi') - z = 0$$

with $\operatorname{Im} \rho(x', \xi', z) > 0$. For large $|\xi'|$,

$$\rho(x',\xi',z) \sim |\xi'|, \quad \text{Im}\,\rho(x',\xi',z) \sim |\xi'|,$$

while for bounded $|\xi'|$,

$$\operatorname{Im} \rho(x',\xi',z) \geq \frac{h^{\delta}}{C}.$$

We recall some basic facts about *h*-pseudodifferential operators that the reader can find in [3]. Let X be a C^{∞} smooth compact manifold without boundary with dimension $d \geq 2$. Let (x,ξ) be the coordinates in $T^*(X)$ and let $a(x,\xi,h) \in$ $C^{\infty}(T^*(X))$. Given $m \in \mathbb{R}, l \in \mathbb{R}, \delta > 0$ and a function c(h) > 0, one denotes by $S^{l,m}_{\delta}(c(h))$ the set of symbols so that

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}a(x,\xi,h)| \le C_{\alpha,\beta}(c(h))^{l-\delta(|\alpha|+|\beta|)}(1+|\xi|)^{m-|\beta|}, \,\forall \alpha, \forall \beta, \quad (x,\xi) \in T^*(X).$$

If c(h) = 1, we denote $S_{\delta}^{l,m}(c(h))$ simply by $S_{\delta}^{l,m}$. Symbols restricted to a domain where $|\xi| \leq C$ will be denoted by $a \in S_{\delta}^{l}(c(h))$. The *h*-pseudodifferential operator

with symbol $a(x,\xi,h)$ acts by

$$(Op_h(a)f)(x) := (2\pi h)^{-d+1} \int_{T^*X} e^{-\mathbf{i}\langle x-y,\xi\rangle/h} a(x,\xi,h)f(y) dy d\xi.$$

For matrix valued symbols we use the same definition. This means that every element of a matrix symbol is in the class $S^{l,m}_{\delta}(c(h))$. Now suppose that $a(x,\xi,h)$ satisfies the estimates

$$|\partial_x^{\alpha} a(x,\xi,h)| \le c_0(h) h^{-|\alpha|/2}, \qquad (x,\xi) \in T^*(X)$$
(2.5)

for $|\alpha| \leq d-1$, where $c_0(h) > 0$ is a parameter. Then there exists a constant C > 0independent of h such that

$$\|Op_h(a)\|_{L^2(X)\to L^2(X)} \leq C c_0(h).$$
(2.6)

For $0 \leq \delta < 1/2$ products of h-pseudodifferential operators are well behaved. If $a \in S_{\delta}^{l_1,m_1}, b \in S_{\delta}^{l_2,m_2}$ and $s \in \mathbb{R}$, then

$$\|Op_h(a)Op_h(b) - Op_h(ab)\|_{H^s(X) \to H^{s-m_1-m_2+1}(X)} \le Ch^{-l_1-l_2-2\delta+1}.$$
 (2.7)

Let $u \in \mathbb{C}^3$ be the solution of the Dirichlet problem

$$(-h^2\Delta - z)u = 0$$
 on Ω , $u = F$ on Γ . (2.8)

Introduce the semi-classical Dirichlet-to-Neumann map

$$\mathcal{N}(z,h): H_h^s(\Gamma) \ni F \longrightarrow D_{\nu} u|_{\Gamma} \in H_h^{s-1}(\Gamma).$$

G. Vodev [7] established for bounded domains $K \subset \mathbb{R}^d, d \geq 2$, with C^{∞} boundary the following approximation of the interior Dirichlet-to-Neumann map $\mathcal{N}_{int}(z,h)$ related to (2.8), where the equation $(-h^2\Delta - z)u = 0$ is satisfied in K.

Theorem 2.1 ([7]). For every $0 < \epsilon \ll 1$ there exists $0 < h_0(\epsilon) \ll 1$ such that for $z \in Z_{1,\epsilon} := \{ z \in Z_1, |\operatorname{Im} z| \ge h^{\frac{1}{2}-\epsilon} \}$ and $0 < h \le h_0(\epsilon)$ we have

$$\|\mathcal{N}_{int}(z,h)(F) - Op_h(\rho + hb)F\|_{H_h^1(\Gamma)} \le \frac{Ch}{\sqrt{|\operatorname{Im} z|}} \|F\|_{L^2(\Gamma)},$$
(2.9)

where $b \in S_{0,1}^0(\Gamma)$ does not depend on h and z. Moreover, (2.9) holds for $z \in Z_2 \cup Z_3$ with $|\operatorname{Im} z|$ replaced by 1.

With small modifications (2.9) holds for the Dirichlet-to-Neumann map $\mathcal{N}(z,h)$ related to (2.8) (see [6]). Applying (2.9) with $\mathcal{N}(z,h)$ and $F = E_0 = E|_{\Gamma}$, we obtain

$$\left\| \langle \mathcal{N}(z,h)E_0,\nu \rangle - \langle Op_h(\rho)E_0,\nu \rangle \right\|_{L^2(\Gamma)} \le \frac{Ch}{\sqrt{|\operatorname{Im} z|}} \|E_0\|_{L^2(\Gamma)}.$$
 (2.10)

Therefore (2.4) yields

$$\left\| \langle Op_h(\rho) - \gamma \sqrt{z} \rangle E_0, \nu \rangle - h Q_4(E_0) \right\|_{L^2(\Gamma)} \le \frac{Ch}{\sqrt{|\operatorname{Im} z|}} \| E_0 \|_{L^2(\Gamma)}.$$
(2.11)

The commutator $[Op_h(\rho), \nu(x)]$ is a pseudodifferential operator with symbol in $hS_{\delta}^{0,0}$ and so

$$\|[Op_h(\rho),\nu_k(x)]E_{nor}\|_{H^j_h(\Gamma)} \leq C_2 h^{1-\delta} \|E_{nor}\|_{H^j_h(\Gamma)}, \quad k=1,2,3, \quad j=0,1.$$

The last estimate combined with (2.11) implies

$$\left\| (Op_h(\rho) - \gamma \sqrt{z}) E_{nor} - hQ_4(E_0) \right\|_{L^2(\Gamma)} \le C_3 \left(\frac{h}{|\operatorname{Im} z|} + h^{1-\delta} \right) \|E_0\|_{L^2(\Gamma)}.$$
 (2.12)

3. Eigenvalues-free regions

For $z \in Z_{1,\epsilon}$ we have $\rho \in S_{\delta}^{0,1}$ with $0 < \delta = 1/2 - \epsilon < 1/2$, while for $z \in Z_2 \cup Z_3$ we have $\rho \in S_0^{0,1}$ (see [7]). Since Γ is connected one has either $\gamma(x) > 1$ or $0 < \gamma(z) < 1$. We present the analysis in the case where $0 < \gamma(x) < 1$, $\forall x \in \Gamma$. The case $1 < \gamma(x)$ is reduced to this case at the end of the section. Clearly, there exists $\epsilon_0 > 0$ such that

$$\epsilon_0 \le \gamma(x) \le 1 - \epsilon_0, \quad \forall x \in \Gamma.$$

Combing (2.4) and (2.9), yields

$$\|\langle (Op_h(\rho) - \gamma(x)\sqrt{z})E_0, \nu(x)\rangle\|_{H^1_h(\Gamma)} \le C \frac{h}{\sqrt{|\operatorname{Im} z|}} \|E_0\|_{L^2(\Gamma)} + C_1 h \|E_0\|_{H^1_h(\Gamma)},$$

where for $z \in Z_2 \cup Z_3$ we can replace $|\operatorname{Im} z|$ by 1. This estimate for E_0 and the estimate for the commutator $[Op_h(\rho), \nu_k(x)]$ imply

$$\|(Op_h(\rho) - \gamma(x)\sqrt{z})E_{nor}\|_{H^1_h(\Gamma)} \le \frac{C_3 h}{\sqrt{|\operatorname{Im} z|}} \|E_0\|_{L^2(\Gamma)} + C_4 h^{1-\delta} \|E_0\|_{H^1_h(\Gamma)}.$$
 (3.1)

Let (x',ξ') be coordinates on $T^*(\Gamma)$. Consider the symbol

$$c(x',\xi',z):=\ \rho(x',\xi',z)\ -\ \gamma(x')\sqrt{z},\qquad x'\in\Gamma.$$

Following the analysis in Section 3, [6], we know that c is elliptic in the case $0 < \gamma(x') < 1$ and if $z \in Z_1$ we have $c \in S_{\delta}^{0,1}$, $|\operatorname{Im} z| c^{-1} \in S_{\delta}^{0,-1}$, while if $z \in Z_2 \cup Z_3$ one gets $c \in S_0^{0,1}$, $c^{-1} \in S_0^{0,-1}$. This implies

$$\|Op_h(c^{-1})Op_h(c)E_{nor}\|_{H^1_h(\Gamma)} \leq \frac{C}{|\operatorname{Im} z|}\|Op_h(c)E_{nor}\|_{L^2(\Gamma)}.$$

On the other hand, according to Section 7 in [3], the symbol of the operator $Op_h(c^{-1})Op_h(c) - I$ is given by

$$\sum_{j=1}^{N} \frac{(ih)^{j}}{j!} \sum_{|\alpha|=j} D_{\xi'}^{\alpha}(c^{-1})(x',\xi') D_{y'}^{\alpha}c(y',\eta') \Big|_{x'=y',\xi'=\eta'} + \tilde{b}_{N}(x',\xi')$$
$$:= b_{N}(x',\xi') + \tilde{b}_{N}(x',\xi'),$$

where

$$|\partial_{x'}^{\alpha} \tilde{b}_N(x',\xi')| \leq C_{\alpha} h^{N(1-2\delta)-s_d-|\alpha|/2}.$$

Taking into account the estimates for c^{-1} and c, and applying (2.5), and (2.6) yields

$$\left| \left(Op_h(c^{-1}) Op_h(c) - I \right) E_{nor} \right\|_{H^j_h(\Gamma)} \le C_5 \frac{h}{|\operatorname{Im} z|^2} \| E_{nor} \|_{H^j_h(\Gamma)}, \quad j = 0, 1$$

Repeating the argument in Section 3 in [6] concerning the case $0 < \gamma(x') < 1$, for $z \in \mathbb{Z}_1$ and $0 < \delta < 1/2$, one finds

$$\|E_{nor}\|_{H_{h}^{1}(\Gamma)} \leq \left\| \left(Op_{h}(c^{-1})Op_{h}(c) - I \right) E_{nor} \right\|_{H_{h}^{1}(\Gamma)}$$

$$\leq C_{6}h^{1-2\delta} \|E_{0}\|_{L^{2}(\Gamma)} + C_{5}h^{1-2\delta} \|E_{nor}\|_{H_{h}^{1}(\Gamma)} + C_{7}h^{1-\delta} \|E_{0}\|_{H_{h}^{1}(\Gamma)}.$$

$$(3.2)$$

Clearly,

$$||E_0||_{H_h^k(\Gamma)} \le ||E_{tan}||_{H_h^k(\Gamma)} + B_k ||E_{nor}||_{H_h^k(\Gamma)}, \qquad k \in \mathbb{N}$$

with B_k independent of h. Hence we can absorb the terms involving the norms of E_{nor} in the right hand side of (3.2) choosing h small enough, and we get

$$\|E_{nor}\|_{H^{1}_{h}(\Gamma)} \le Ch^{1-2\delta} \|E_{tan}\|_{H^{1}_{h}(\Gamma)}.$$
(3.3)

The analysis of the case $z \in Z_2 \cup Z_3$ is simpler since in the estimates above we have no coefficient $|\operatorname{Im} z|^{-1}$ and we obtain the same result with a factor h on the right hand side of (3.3).

With a similar argument it is easy to show that

$$||E_{nor}||_{L^{2}(\Gamma)} \leq C' h^{1-2\delta} ||E_{tan}||_{L^{2}(\Gamma)}.$$
(3.4)

In fact from (2.11) one obtains

$$\left\| Op_h(c^{-1}) \left[(Op_h(\rho) - \gamma \sqrt{z}) E_{nor} - hQ_4(E_0) \right] \right\|_{L^2(\Gamma)} \le C_8(\frac{h}{\sqrt{|\operatorname{Im} z|}} + h^{1-\delta}) \|E_0\|_{L^2(\Gamma)}$$

and

 $||Op_h(c^{-1})Q_4(E_0)||_{L^2(\Gamma)} \le C_9 ||E_0||_{L^2(\Gamma)}.$

Combining these estimates with the estimate of $\|Op_h(c^{-1})Op_h(c) - I\|_{L^2(\Gamma) \to L^2(\Gamma)}$ yields (3.4).

Going back to the equation (2.1), we have

$$\left(D_{\nu} - \frac{1}{\gamma}\sqrt{z}\right)E = \left(D_{\nu} - \gamma\sqrt{z}\right)E_{nor}\nu - \left(\frac{1}{\gamma} - \gamma\right)\sqrt{z}E_{nor}\nu + \mathbf{i}hg_{0}(E_{tan}) + \left(\operatorname{grad}_{h}(E_{nor})\right)\Big|_{\operatorname{tan}}, \quad x \in \Gamma.$$
(3.5)

Notice that for the first term on the right hand side of (3.5) we can apply the equality (2.4), while for E_{nor} and $\left(\operatorname{grad}_{h}(E_{nor})\right)\Big|_{\operatorname{tan}}$ we have a control by the estimate (3.3). Consequently, setting $E_{0} = E|_{\Gamma}$, the right hand side of (3.5) is bounded by $Ch\|E_{0}\|_{H^{1}_{h}(\Gamma)}$. Next

$$1 < \frac{1}{1-\epsilon_0} \le \frac{1}{\gamma(x)} \le \frac{1}{\epsilon_0}, \quad \forall x \in \Gamma.$$

This corresponds to the case (B) examined in Section 4 of [6]. The approximation of the operator $\mathcal{N}(z, h)$ given by (2.9) yields the estimate

$$\|(Op_h(\rho) - \frac{1}{\gamma}\sqrt{z})E_0\|_{L^2(\Gamma)} \leq C \frac{h}{\sqrt{|\operatorname{Im} z|}} \|E_0\|_{L^2(\Gamma)}.$$
(3.6)

For $z \in Z_1 \cup Z_3$ the symbol

$$d(x',\xi',z) := \rho(x',\xi',z) - \frac{1}{\gamma(x')}\sqrt{z}$$

is elliptic (see Section 4, [6]) and from (3.6) we obtain $E_0 = 0$ for h small enough. This implies E = B = 0.

Now recall that we have

$$\operatorname{Re} \lambda = -\frac{\operatorname{Im} \sqrt{z}}{h}, \ \operatorname{Im} \lambda = \frac{\operatorname{Re} \sqrt{z}}{h}.$$

Suppose that $z \in Z_1$. Then

$$|\operatorname{Re} \lambda| \ge C(h^{-1})^{1-\delta}, |\operatorname{Im} \lambda| \le C_1 h^{-1} \le C_2 |\operatorname{Re} \lambda|^{\frac{1}{1-\delta}}$$

So if

 $|\operatorname{Re} \lambda| \ge C_3 |\operatorname{Im} \lambda|^{1-\delta}, \operatorname{Re} \lambda \le -C_4 < 0,$

there are no eigenvalues $\lambda = \frac{i\sqrt{z}}{h}$ of G_b . In the same way we handle the case $z \in Z_3$ and we conclude that if $z \in Z_1 \cup Z_3$ for every $\epsilon > 0$ the eigenvalues $\lambda = \frac{i\sqrt{z}}{h}$ of G_b lie in the domain $\Lambda_{\epsilon} \cup \mathcal{M}$, where

$$\mathcal{M} = \{ z \in \mathbb{C} : |\arg z - \pi| \le \pi/4, |z| \ge R_0 > 0, \operatorname{Re} z < 0 \},\$$

 Λ_ϵ being the domain introduced in Theorem 1.1. Of course, if we consider the domain

$$Z_{3,\delta_0} = \{ z \in \mathbb{C} : |\operatorname{Re} z| \le 1, \ \operatorname{Im} z = \delta_0 > 0 \},$$

instead of Z_3 , we obtain an eigenvalue-free region with \mathcal{M} replaced by

$$\mathcal{M}_{\delta_0} = \{ z \in \mathbb{C} : |\arg z - \pi| \le \operatorname{arctg} \delta_0, |z| \ge R_0(\delta_0) > 0, \operatorname{Re} z < 0 \}.$$

The investigation of the case $z \in Z_2$ is more complicated since the symbol d may vanish for Im z = 0 and $(x'_0, \xi'_0) \in T^*(\Gamma)$ satisfying the equation

$$\sqrt{1 + r_0(x'_0, \xi'_0)} - \frac{1}{\gamma(x'_0)} = 0.$$

To cover this case and to prove that the eigenvalues $\lambda = \frac{i\sqrt{z}}{h}$ with $z \in Z_2$ are confined in the domain \mathcal{R}_N , $\forall N \in \mathbb{N}$, we follow the arguments in [7] and [6]. For $z \in Z_2$ we introduce an operator T(z, h) that yields a better approximation of $\mathcal{N}(z, h)$. In fact, T(z, h) is defined by the construction of the semi-classical parametrix in Section 3, [7] for the problem (2.8) with $F = E_0$. We refer to [7] for the precise definition of T(z, h) and more details. For our exposition we need the next proposition. Since $(\Delta - z)E = 0$, as in [7], we obtain

Proposition 3.1. For $z \in Z_2$ and every $N \in \mathbb{N}$ we have the estimate

$$\|\mathcal{N}(z,h)E_0 - T(z,h)E_0\|_{H^1_h(\Gamma)} \le C_N h^{-s_0} h^N \|E_0\|_{L^2(\Gamma)}$$
(3.7)

with constants $C_N, s_0 > 0$, independent of E_0, h and z, and s_0 independent of N.

Consider the system

$$\begin{cases} \left(D_{\nu} - \frac{1}{\gamma}\sqrt{z}\right)E_{tan} - \left(\operatorname{grad}_{h}E_{nor}\right)\Big|_{tan} + \mathbf{i}hg_{0}(E_{tan}) = 0, \quad x \in \Gamma, \\ \operatorname{div}_{h}E_{tan} + \operatorname{div}_{h}\left(E_{nor}\nu\right) = 0, \quad x \in \Gamma, \end{cases}$$
(3.8)

where div $_{h}F = \sum_{k=1}^{3} D_{x_{k}}F_{k}$.

Take the scalar product $\langle , \rangle_{L^2(\Gamma)}$ in $L^2(\Gamma)$ of the first equation of (3.8) and E_{tan} . Applying Green formula, it easy to see that

$$-\operatorname{Re}\langle\operatorname{grad}_{h}E_{nor}\Big|_{tan}, E_{tan}\rangle_{L^{2}(\Gamma)} = -\operatorname{Re}\langle\operatorname{div}_{h}E_{tan}, E_{nor}\rangle_{L^{2}(\Gamma)}.$$
(3.9)

We claim that

$$\operatorname{Im}\langle g_0(E_{tan}), E_{tan} \rangle_{L^2(\Gamma)} = 0.$$
(3.10)

Let $E_{tan} = (w_1, w_2, w_3)$. Then

$$\langle g_0(E_{tan}), E_{tan} \rangle_{\mathbb{C}^3} = \sum_{k,j=1}^3 w_k \frac{\partial \nu_k}{\partial_{x_j}} \overline{w_j} = \frac{1}{q} \sum_{k,j=1}^3 w_k \frac{\partial V_k}{\partial_{x_j}} \overline{w_j} = \frac{1}{q} \langle Sw, w \rangle_{\mathbb{C}^3},$$

where $S := \{\frac{\partial V_k}{\partial x_j}\}_{k,j=1}^3$ with $V(x) = q(x)\nu(x), q(x) > 0$ because $\sum_{k=1}^3 (\partial_{x_j} q) w_k \nu_k = 0$. Thus if the boundary is given locally by $x_3 = G(x_1, x_2)$, we choose $V(x) = (-\partial_{x_1}G, -\partial_{x_2}G, 1)$ and it is obvious that S is symmetric. Therefore $\operatorname{Im}\langle Sw, w \rangle_{\mathbb{C}^3} = 0$ and this proves the claim. Hence (3.10) implies

$$\operatorname{Re}[\mathbf{i}h\langle g_0(E_{tan}), E_{tan}\rangle_{L^2(\Gamma)}] = 0.$$
(3.11)

From the $L^2(\Gamma)$ scalar product of the second equation in (3.8) with E_{nor} , we obtain

$$\operatorname{Re}\langle \operatorname{div}_{h} E_{tan}, E_{nor} \rangle_{L^{2}(\Gamma)} + \operatorname{Re}\langle D_{\nu} E_{nor}, E_{nor} \rangle_{L^{2}(\Gamma)} = 0.$$
(3.12)

In fact,

$$\operatorname{div}_{h}(E_{nor}\nu) = D_{\nu}E_{nor} - \mathbf{i}hE_{nor}\operatorname{div}\nu$$

and $\operatorname{Im}\left(\operatorname{div}\nu|E_{nor}|^2\right) = 0.$

Taking together (3.9), (3.11) and (3.12), we conclude that

$$\operatorname{Re}\left[\langle (D_{\nu} - \frac{\sqrt{z}}{\gamma})E_{tan}, E_{tan} \rangle_{L^{2}(\Gamma)} + \langle D_{\nu}E_{nor}\nu, E_{nor}\nu \rangle_{L^{2}(\Gamma)}\right]$$
$$= \operatorname{Re}\left\langle D_{\nu}E, E\right\rangle_{L^{2}(\Gamma)} - \operatorname{Re}\left\langle \frac{\sqrt{z}}{\gamma}E_{tan}, E_{tan} \rangle_{L^{2}(\Gamma)} = 0.$$

Here we have used the fact that

$$\langle D_{\nu}E_{tan}, E_{nor}\nu\rangle_{\mathbb{C}^3} = D_{\nu}\Big(\langle E_{tan}, E_{nor}\nu\rangle_{\mathbb{C}^3}\Big) = 0.$$

Applying Proposition 3.1 with $E|_{\Gamma} = E_0$, yields

$$\left|\operatorname{Re}\left\langle T(z,h)E_{0},E_{0}\right\rangle_{L^{2}(\Gamma)}-\operatorname{Re}\left\langle \frac{\sqrt{z}}{\gamma}E_{tan},E_{tan}\right\rangle_{L^{2}(\Gamma)}\right|\leq C_{N}h^{-s_{0}}h^{N}\|E_{0}\|_{L^{2}(\Gamma)}.$$
(3.13)

For z = -1, as in Lemma 3.9 in [7] and Lemma 4.1 in [6], we have

$$|\operatorname{Re}\langle T(-1,h)E_0, E_0\rangle_{L^2(\Gamma)}| \le C_N h^{-s_0+N} ||E_0||^2_{L^2(\Gamma)} = 0.$$

Consequently, by using Taylor formula for the real-valued function

$$\operatorname{Re}\left[\left\langle T(z,h)E_{0},E_{0}\right\rangle_{L^{2}(\Gamma)}-\left\langle \frac{\sqrt{z}}{\gamma}E_{tan},E_{tan}\right\rangle_{L^{2}(\Gamma)}\right]$$

we get for every $N \in \mathbb{N}$ the estimate

$$\left| \operatorname{Im} \left[\left\langle \left(\frac{\partial T}{\partial z}(z_t, h) \right) E_0, E_0 \right\rangle_{L^2(\Gamma)} - \left\langle \frac{\gamma_1}{2\sqrt{z_t}} E_{tan}, E_{tan} \right\rangle_{L^2(\Gamma)} \right] \right| \\ \leq C_N \frac{h^{-s_0 + N}}{|\operatorname{Im} z|} \| E_0 \|_{L^2(\Gamma)}^2, \tag{3.14}$$

where $z_t = -1 + it \operatorname{Im} z, \ 0 < t < 1$.

According to Lemma 3.9 in [7], in (3.14) we can replace $\frac{\partial T}{\partial z}(z_t, h)$ by $Op_h(\frac{\partial \rho}{\partial z}(z_t))$ and this yields an error term bounded by $Ch \|E_0\|_{H_h^{-1}(\Gamma)}^2$. On the other hand,

$$\begin{split} \left| \left\langle Op_h(\frac{\partial \rho}{\partial z}(z_t)) E_{tan}, E_{nor}\nu \right\rangle_{L^2(\Gamma)} + \left\langle Op_h(\frac{\partial \rho}{\partial z}(z_t)) E_{nor}, E_{tan}\nu \right\rangle_{L^2(\Gamma)} \right| \\ \leq Ch \|E_0\|_{L^2(\Gamma)}^2 \end{split}$$

since the estimate (3.4) holds for $z \in Z_2$ and $\frac{\partial \rho}{\partial z}(z_t) \in S_0^{0,-1}$.

Thus the problem is reduced to a lower bound of

$$\begin{aligned} J &:= \left| \mathrm{Im} \Big[\langle \Big(Op_h(\frac{\partial \rho}{\partial z}(z_t)) - \frac{\gamma_1}{2\sqrt{z}} \Big) E_{tan}, E_{tan} \rangle_{L^2(\Gamma)} + \langle Op_h(\frac{\partial \rho}{\partial z}(z_t)) E_{nor}\nu, E_{nor}\nu \rangle_{L^2(\Gamma)} \Big] \Big| \\ &\geq \left| \mathrm{Im} \langle \Big(Op_h(\frac{\partial \rho}{\partial z}(z_t)) - \frac{\gamma_1}{2\sqrt{z}} \Big) E_{tan}, E_{tan} \rangle_{L^2(\Gamma)} \Big| - C_1 \| E_{nor} \|_{L^2(\Gamma)}^2. \end{aligned} \right.$$

Since $\gamma_1(x) > 1$, $\forall x \in \Gamma$, applying the analysis of Section 4 in [6] for the scalar product involving E_{tan} , one deduces

$$\left| \operatorname{Im} \left\langle \left(Op_h(\frac{\partial \rho}{\partial z}(z_t)) - \frac{\gamma_1}{2\sqrt{z}} \right) E_{tan}, E_{tan} \right\rangle_{L^2(\Gamma)} \right| \ge \eta_1 \| E_{tan} \|_{L^2(\Gamma)}^2, \quad \eta_1 > 0.$$

By using once more the estimate (3.4), for h small enough we obtain

$$J \ge \eta_1 \Big(\|E_{tan}\|_{L^2(\Gamma)}^2 + \|E_{nor}\|_{L^2(\Gamma)}^2 \Big) - B_0 h \|E_{tan}\|_{L^2(\Gamma)}^2 \ge \eta_2 \|E_0\|_{L^2(\Gamma)}^2, \quad 0 < \eta_2 < \eta_1$$

Consequently, (3.14) yields

$$(\eta_2 - B_1 h) \|E_0\|_{L^2(\Gamma)}^2 \le C_N \frac{h^{-s_0 + N}}{|\operatorname{Im} z|} \|E_0\|_{L^2(\Gamma)}^2$$

and for small h we conclude that for $z \in Z_2$ the eigenvalues $\lambda = \frac{i\sqrt{z}}{h}$ of G_b lie in the region \mathcal{R}_N . This completes the analysis of the case $0 < \gamma(x) < 1, \forall x \in \Gamma$.

To study the case $\gamma(x) > 1$, $\forall x \in \Gamma$, we write the boundary condition in (1.1) as

$$\frac{1}{\gamma(x)}(\nu \wedge E_{tan}) - (\nu \wedge (\nu \wedge B_{tan})) = \frac{1}{\gamma(x)}(\nu \wedge E_{tan}) + B_{tan} = 0.$$

Next

$$\nu \wedge E = \frac{1}{\sqrt{z}}\nu \wedge \frac{h}{\mathbf{i}} \operatorname{curl} B = -\frac{1}{\sqrt{z}}D_{\nu}B_{tan} + \frac{1}{\sqrt{z}} \Big[\left(\operatorname{grad}_{h}B_{nor} \right) \Big|_{tan} - \mathbf{i}hg_{0}(B_{tan}) \Big]$$

and one obtains

$$\left(D_{\nu} - \gamma(x)\sqrt{z}\right)B_{tan} - \left(\operatorname{grad}_{h}B_{nor}\right)\Big|_{tan} + \mathbf{i}hg_{0}(B_{tan}) = 0, \ x \in \Gamma$$
(3.15)

which is the same as (2.1) with E_{tan} , E_{nor} replaced respectively by B_{tan} , B_{nor} and $\frac{1}{\gamma(x)}$ replaced by $\gamma(x) > 1$. We apply the operator $D_{y_1} - \gamma \sqrt{z}$ to the equation div B = 0 and repeat without any change the above analysis concerning E_{tan} , E_{nor} . Thus the proof of Theorem 1.1 is complete.

Remark 3.2. The result of Theorem 1.1 holds for obstacles $K = \bigcup_{j=1}^{J} K_j$, where $K_j, j = 1, ..., J$ are open connected domains with C^{∞} boundary and $K_i \cap K_j = \emptyset, i \neq j$. Let $\Gamma_j = \partial K_j, j = 1, ..., J$. In this case we may have $\gamma(x) < 1$ for some obstacles Γ_j and $\gamma(x) > 1$ for other ones. The proof extends with only minor modifications. The construction of the semi-classical parametrix in [7] is local and for the Dirichlet-to-Neumann map $\mathcal{N}_j(z, h)$ related to Γ_j we get the estimate

$$\|\mathcal{N}_{j}(z,h)(F) - Op_{h}(\rho + hb)F\|_{H^{1}_{h}(\Gamma_{j})} \leq \frac{Ch}{\sqrt{|\operatorname{Im} z|}} \|F\|_{L^{2}(\Gamma_{j})}.$$

The boundary condition in (1.1) is local and we can reduce the analysis to a fixed obstacle K_j . If $(E, B) \neq 0$ is an eigenfunction of G_b , our argument implies $E_{tan} = 0$ for $x \in \Gamma_j$ if $0 < \gamma(x) < 1$ on Γ_j and $B_{tan} = 0$ for $x \in \Gamma_j$ in the case $\gamma(x) > 1$ on Γ_j . By the boundary condition we get $E_{tan} = 0$ on Γ and this yields E = B = 0

12

since the Maxwell system with boundary condition $E_{tan} = 0$ has no eigenvalues in $\{z \in \mathbb{C} : \text{Re } z < 0\}.$

Acknowledgments. Thanks are due to Georgi Vodev for many useful discussions and remarks concerning the previous version of the paper.

References

- F. Colombini, V. Petkov and J. Rauch, Incoming and disappearing solutions of Maxwell's equations, Proc. AMS, 139 (2011), 2163-2173.
- [2] F. Colombini, V. Petkov and J. Rauch, Spectral problems for non elliptic symmetric systems with dissipative boundary conditions, J. Funct. Anal. 267 (2014), 1637-1661.
- [3] M. Dimassi and J. Sjöstrand, Spectral asymptotics in semi-classical limits, London Mathematical Society, Lecture Notes Series, 268, Cambridge University Press, 1999.
- [4] P. Lax and R. Phillips, Scattering theory for dissipative systems, J. Funct. Anal. 14 (1973), 172-235.
- [5] A. Majda, The location of the spectrum for the dissipative acoustic operator, Indiana Univ. Math. J. 25 (1976), 973-987.
- [6] V. Petkov, Location of the eigenvalues of the wave equation with dissipative boundary conditions, Preprint 2015 (arXiv: math.AP. 1504.06408v2).
- [7] G. Vodev, Transmission eigenvalue-free regions. Commun. Math. Phys. 336 (2015), 1141-1166.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PISA, ITALIA *E-mail address*: colombini@dm.unipi.it

Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France

E-mail address: petkov@math.u-bordeaux1.fr

Department of Mathematics, University of Michigan, USA $E\text{-}mail \ address: rauch@umich.edu$