Exercice 1 On pose $f_k(t) := \frac{ke^{-t}}{1+kt}$; c'est une suite croissante $f_{k+1}-f_k=\frac{e^{-t}}{(1+kt)(1+(k+1)t)}>0.$ On peut donc appliquer Beppo Lévi :

$$\lim_{k \to \infty} \int_0^1 f_k(t) dt = \int_0^1 \lim_{k \to \infty} f_k(t) dt.$$

Mais

$$\forall t \in]0,1], \lim_{k \to \infty} f_k(t) = \lim_{k \to \infty} \frac{ke^{-t}}{1+kt} = \frac{e^{-t}}{t}$$

$$\operatorname{car} t > 0 \text{ et comme } \int_0^1 \frac{e^{-t}}{t} dt \ge \int_0^1 \frac{e^{-1}}{t} dt = \infty \text{ on en d\'eduit}$$

$$\lim_{k \to \infty} \int_0^1 \frac{ke^{-t}}{1+kt} dt = \infty.$$
Exercice 2

a) Comme la fonction $\frac{1}{x^{\alpha}}$ est décroissante sur $[0,\infty[$, on a $\forall x \in]k, \ k+1], \ \frac{1}{(k+1)^{\alpha}} \le \frac{1}{x^{\alpha}} \Longrightarrow \sum_{k>1} \frac{1}{(k+1)^{\alpha}} \mathbb{1}_{]k, \ k+1]}(x) \le \frac{1}{x^{\alpha}}.$

Comme $\alpha > 1$, la fonction $\frac{1}{r^{\alpha}}$ est intégrable sur $[n, \infty[, n > 0 \text{ d'où intégrant}]$

$$\int_{n}^{\infty} \sum_{k>1} \frac{1}{(k+1)^{\alpha}} \mathbb{1}_{k, k+1}(x) \, dx \le \int_{n}^{\infty} \frac{dx}{x^{\alpha}} = \frac{1}{(\alpha - 1)n^{\alpha - 1}}.$$

Mais la série, à termes positifs, donne

$$\int_{n}^{\infty} \sum_{k>1} \frac{1}{(k+1)^{\alpha}} \mathbb{I}_{]k, \ k+1]}(x) \, dx = \sum_{k>n} \frac{1}{(k+1)^{\alpha}} = \sum_{k>n+1} \frac{1}{k^{\alpha}},$$

d'où

$$\sum_{k \ge n+1} \frac{1}{k^{\alpha}} \le \frac{1}{(\alpha - 1)n^{\alpha - 1}}.$$

b) Comme $t \longrightarrow t^{\alpha}$ est une fonction mesurable sur $[0, \infty[$ muni de la tribu borélienne, f^{α} est mesurable comme composée de fonctions mesurables, donc $\left(\frac{f}{k}\right)^{\alpha}$ aussi, et une série de fonctions mesurables positives est mesurable donc la fonction $F:=\sum_{k\in\mathbb{N}^*}(\frac{f}{k})^\alpha\chi_{\{f\leq k\}}$

$$F := \sum_{k \in \mathbb{N}^*} \left(\frac{f}{k}\right)^{\alpha} \chi_{\{f \le k\}}$$

est mesurable.

Si $f(x) \in]n, n+1], n \ge 2$ alors

$$F(x) = \sum_{k \ge n} \left(\frac{f}{k}\right)^{\alpha} \le f(x)^{\alpha} \sum_{k \ge n} \frac{1}{k^{\alpha}} \le f(x)C(\frac{f(x)}{n-1})^{\alpha-1} \le C\left(\frac{n+1}{n-1}\right)^{\alpha-1} f(x) \le 2^{\alpha-1}Cf(x).$$

Si $f(x) \le 2 \dots$ D'où $F \le Kf$.

c) On intègre l'inégalité précédente et la série étant à termes positifs, Beppo Lévi permet d'échanger sigma et intégrale (comme en TD) :

$$\infty > K \int_{\Omega} f \, d\mu \ge \int_{\Omega} F \, d\mu = \int_{\Omega} \sum_{k \in \mathbb{N}^*} \left(\frac{f}{k}\right)^{\alpha} \chi_{\{f \le k\}} \, d\mu = \sum_{k \in \mathbb{N}^*} \frac{1}{k^{\alpha}} \int_{\{f \le k\}} f^{\alpha} \, d\mu.$$

Exercice 3

a) Déjà vu en TD :

On pose $B_k := \bigcup_{l>k} A_l$, alors $B_k \setminus \bigcap_{k \in \mathbb{N}^*} B_k = \overline{\lim} A_l$ et :

$$\mu(B_k) = \mu\left(\bigcup_{l>k} A_l\right) \le \sum_{l>k} \mu(A_l) \longrightarrow 0, \ k \longrightarrow \infty,$$

car la série de terme général $\mu(A_l)$ est convergente. Comme $\mu(A_1) \leq \sum_{l>1} \mu(A_l) < \infty$ car la série est

convergente, la continuité monotone séquentielle de μ donne

$$\mu(\overline{\lim} A_l) = \lim \mu(B_k) = 0.$$

b) Dire que $f_k(\omega)$ tend vers 0 signifie

$$\forall \epsilon > 0, \ \exists N, \ \forall n \ge N, \ f_k(\omega) < \epsilon.$$

Donc nions cette proposition, $f_k(\omega)$ ne tend pas vers 0 signifie

$$\exists \epsilon > 0, \ \forall N, \ \exists k \geq N, \ f_k(\omega) \geq \epsilon.$$

Ainsi si $f_k(\omega)$ ne tend pas vers 0, il existe $\epsilon > 0$, qui dépend éventuellement de k et une infinité de k tels que $f_k(\omega) \geq \epsilon$.

Posons $\forall n \in \mathbb{N}^*$, $A_k(n) := \{\omega \in \Omega, f_k(\omega) \geq 1/n\}$, alors dire que la suite $f_k(\omega)$ ne tend pas vers 0 signifie $\exists n \ t.q. \ \omega \in A_k(n)$ pour une infinité de k, donc

$$\exists n \in \mathbb{N}^* \ t.q. \ \omega \in \overline{\lim}_{k \to \infty} A_k(n) =: B_n.$$

 $\exists n \in \mathbb{N}^* \ t.q. \ \omega \in \overline{\lim_{k \to \infty}} \ A_k(n) =: B_n.$ Mais $\mu(B_n) = 0$ par hypothèse; notons $B := \{\omega \in \Omega \ t.q. \ f_k(\omega) \not\rightarrow 0\}$ on a ainsi :

$$B = \bigcup_{n \ge 1} B_n \Longrightarrow \mu(B) = \mu\left(\bigcup_{n \ge 1} B_n\right) \le \sum_{n \ge 1} \mu(B_n) = 0.$$

Autre preuve :

Notons $B := \{ \underline{\omega} \in \Omega \ t.q. \ f_k(\omega) \nrightarrow 0 \}$. Si $\omega \in B$ alors $\overline{\lim} f_k(\omega) > 0$, donc si on pose $B_n := \{ \omega \in B \}$ $\Omega \ t.q. \ \overline{\lim} f_k(\omega) > \frac{1}{n} \}, \text{ on a}$

$$B = \bigcup_{n \ge 1} B_n.$$

D'autre part on a vu (TD) que $B_n = \overline{\lim} \{f_k > \frac{1}{n}\}$ donc, utilisant l'hypothèse et le **a**), on a que $\mu(B_n) = 0$, et donc $\mu(B) = 0$.

c) On veut montrer que, pour $f \in \mathcal{L}^1(\mu)$ on a :

(*)
$$\forall \epsilon > 0, \ \exists \delta(\epsilon) > 0 \ t.q. \ \forall A \in \mathcal{A}, \ \mu(A) \leq \delta \Longrightarrow \int_A f \ d\mu \leq \epsilon.$$

Si (*) est faux cela signifie

$$(**) \exists \epsilon > 0, \ \forall \delta > 0, \ \exists A \in \mathcal{A} \ t.q. \ \mu(A) \leq \delta \ et \ \int_{A} f \ d\mu > \epsilon.$$

Prenons $\delta = 1/n^2$ et posons A_n tel que $\mu(A_n) \leq \frac{1}{n^2}$ et $\int_A f d\mu > \epsilon$.

Comme
$$\sum_{n\geq 1} \mu(A_n) \leq \sum_{n\geq 1} \frac{1}{n^2} < \infty$$
, on a que $\mu(\overline{\lim} A_n) = 0$ par le **a**).

Mais avec $B_k := \bigcup A_n$ on a que $B_k \setminus B := \overline{\lim} A_n$ donc

$$\int_{B_n} f \, d\mu \ge \int_{A_n} f \, d\mu > \epsilon,$$

et, comme
$$f$$
 est positive, $d\nu = f d\mu$ est une mesure sur \mathcal{A} , et on a
$$\nu(B) = \lim_{k \to \infty} \nu(B_k) = \lim_{k \to \infty} \int_{B_k} f d\mu > \epsilon.$$

Mais $\nu(B) = \int_B f \, d\mu = 0$ car $\mu(B) = 0$ donc contradiction. **d)** Soit f intégrable sur $[0, \infty[$ et posons

$$\forall x \in [0, \infty[, \ g(x) := \int_0^x f(t) \, dt.$$

On veut montrer que g est uniformément continue, i.e.

$$\forall \epsilon > 0, \ \exists \delta, \ |x - y| < \delta \Longrightarrow |g(x) - g(y)| < \epsilon.$$

$$|g(x) - g(y)| = \left| \int_0^x f(t) dt - \int_0^y f(t) dt \right| = \left| \int_y^x f(t) dt \right|.$$

Mais

$$\left| \int_{u}^{x} f(t) dt \right| \le \int_{u}^{x} |f(t)| dt.$$

Appliquons ce qui précède avec
$$d\mu := dt$$
, $|f|$, $A =]y, x[$ et donc $\forall \epsilon > 0$, $\exists \delta > 0$ $t.q.$ $\mu(A) = \int_y^x dt = |x - y| < \epsilon \Longrightarrow \int_y^x |f(t)| \ dt < \delta \Longrightarrow |g(x) - g(y)| < \delta$,

et la conclusion.