UE MAT401

Devoir Surveillé 2, Samedi 13 Mai 2006

Durée: 1 heure 20 mn

Texte en italiques et corrigé (en roman)

Question de cours : Soit $[f_n]_{n\geq 0}$ une série de fonctions toutes définies sur un sous-ensemble D de \mathbb{R} et à valeurs complexes. Que signifie chacune des trois assertions suivantes :

- la série $[f_n]_{n>0}$ converge simplement sur D;
- la série $[f_n]_{n>0}$ converge normalement sur D;
- la série $[f_n]_{n>0}$ converge uniformément sur D ?

Dans quel ordre faut-il prendre ces trois assertions (en les notant, prises précisément dans cet ordre convenable, (1), (2), (3)) de manière à ce que

$$(1) \Longrightarrow (2) \Longrightarrow (3)$$
.

Dire que la série de fonctions $[f_n]_{n\geq 0}$ converge simplement sur D équivaut à dire qu'existe une fonction $S:D\longmapsto \mathbb{C}$ telle que

$$\forall z \in D, \lim_{n \to +\infty} \left(\sum_{k=0}^{n} f_k(z) \right) = S(z).$$

Dire que la série de fonctions $[f_n]_{n\geq 0}$ converge normalement sur D équivaut à dire qu'il existe une série numérique à termes positifs convergente $[w_n]_{n\geq 0}$ telle que

$$\forall n \in \mathbb{N}, \ \forall z \in D, \ |f_n(z)| < w_n.$$

Dire que la série de fonctions $[f_n]_{n\geq 0}$ converge uniformément sur D équivaut à dire qu'existe une fonction $S:D\longmapsto \mathbb{C}$ telle que

$$\lim_{n \to +\infty} \left(\sup_{z \in D} \left| S(z) - \sum_{k=0}^{n} f_k(z) \right| \right) = 0.$$

La convergence normale implique la convergence uniforme (voir le théorème 3.1 du cours) ; la convergence uniforme implique la convergence simple ; l'assertion (1) doit donc être la seconde de la liste, l'assertion (2) la dernière et l'assertion (3) la première.

Exercice 1. On considère la suite de fonctions $(f_n)_{n\geq 0}$ où chaque fonction $f_n: \mathbb{R} \longmapsto [0, +\infty[$ est définie par

$$f_n(t) = n \exp(-(t-n)^2), \ \forall t \in \mathbb{R}.$$

a. Après avoir étudié le sens de variation de la fonction f_n sur \mathbb{R} , montrer que la suite de fonctions $(f_n)_{n\geq 0}$ converge simplement sur \mathbb{R} vers la fonction identiquement nulle. La convergence est-elle uniforme ?

Une étude de variation immédiate nous montre que f_n , dont la dérivée est

$$t \longmapsto -2n(t-n)e^{-(t-n)^2}$$
,

est croissante (car de dérivée positive) sur $]-\infty,n]$ et décroissante (car de dérivée négative) sur $[n,+\infty[$.

Pour $t \in \mathbb{R}$, on a

$$\lim_{n \to +\infty} n \exp(-(t-n)^2) = 0$$

car l'exponentielle $n \longmapsto \exp(-(t-n)^2)$ (à t fixé) impose sa limite aux fonctions puissances (ici $n \longmapsto n$). On a donc convergence de la suite de fonctions $(f_n)_{n>0}$ sur \mathbb{R} vers la fonction identiquement nulle.

Comme

$$\sup_{t \in \mathbf{R}} |f_n(t)| = f_n(n) = n,$$

on a

$$\lim_{n \to +\infty} (\sup_{t \in \mathbf{R}} |f_n(t)|) = +\infty ;$$

il n'y a donc pas convergence uniforme (sur \mathbb{R}) de $(f_n)_{n\geq 0}$ vers la fonction identiquement nulle.

b. Soit R > 0 et $n \ge R$. Montrer que

$$\sup_{[-R,R]} |f_n(t)| = n e^{-(n-R)^2} \quad \text{et} \quad \sup_{[-R,R]} |f'_n(t)| \le 2n(n+R) e^{-(n-R)^2}$$

(on reprendra l'étude faite au \mathbf{a} du sens de variation de la fonction f_n pour obtenir la première égalité).

La fonction f_n est positive croissante sur $]-\infty,n]$, décroissante sur $[n,+\infty[$. Si $n \geq R$, le maximum de $|f_n| = f_n$ sur $]-\infty,R]$ est atteint en t=R (la fonction croît sur cet intervalle) et vaut $f_n(R) = n \exp(-(n-R)^2)$.

On a

$$\forall t \in [-R, R], |f'_n(t)| = 2n|t - n| \exp(-(t - n)^2) \le 2n(R + n) \exp(-(n - R)^2)$$

d'après l'inégalité triangulaire.

c. Montrer que les séries de fonctions $[f_n]_{n\geq 0}$ et $[f'_n]_{n\geq 0}$ sont normalement convergentes sur tout segment [-R,R] avec R>0. En déduire (en citant proprement le résultat du cours auquel vous faites référence) qu'alors la fonction

$$t \longmapsto F(t) := \sum_{n=0}^{\infty} f_n(t)$$

est de classe C^1 sur \mathbb{R} et que l'on a

$$F'(t) = -2\sum_{n=0}^{+\infty} n(t-n)e^{-(t-n)^2}, \ \forall t \in \mathbb{R}.$$

Pour n assez grand, on a

$$\exp(-(n-R)^2) \le \frac{1}{n^3(n+R)}$$

car

$$\lim_{n \to +\infty} \left(n^3 (n+R) \exp(-(n-R)^2) \right) = 0$$

(l'exponentielle, ici tendant vers 0, imposant sa limite aux fonctions puissance). Pour n assez grand, on a donc (utilisant le (a)) pour $n \ge 1$

$$\sup_{t \in [-R,R]} |f_n(t)| \le \frac{n}{n^3(n+R)} \le \frac{1}{n^3}$$

et

$$\sup_{t \in [-R,R]} |f'_n(t)| \le 2 \frac{n(n+R)}{n^3(n+R)} = \frac{2}{n^2}.$$

Le critère de comparaison avec des séries à termes positifs (théorème 1.2 du cours), plus la convergence des séries de Riemann $[1/n^2]_{n\geq 1}$ et $[1/n^3]_{n\geq 1}$, assurent la convergence des deux séries à termes positifs.

$$[\sup_{t \in [-R,R]} |f_n(t)|]_{n \ge 0}$$
 et $[\sup_{t \in [-R,R]} |f_n(t)|]_{n \ge 0}$.

Les deux suites de fonctions $[f_n]_{n\geq 0}$ et $[f'_n]_{n\geq 0}$ sont donc normalement convergentes sur [-R,R] (définition 3.3 du cours).

On applique maintenant le théorème 3.5 du cours : les fonctions f_n , $n \ge 0$ sont toutes C^1 sur \mathbb{R} , donc sur]-R,R[pour tout R>0. La série $[f'_n]_{n\ge 0}$ converge normalement sur]-R,R[tandis que la série $[f_n(0)]_{n\ge 0}$ converge.

La série de fonctions $[f_n]_{n\geq 0}$ est donc convergente sur]-R,R[, la somme F est de classe C^1 sur cet intervalle et de plus

$$\forall t \in]-R, R[, F'(t) = \left(\sum_{n=0}^{\infty} f_n\right)'(t) = \sum_{n=0}^{\infty} f'_n(t)$$
$$= -2\sum_{n=0}^{\infty} n(t-n) \exp(-(t-n)^2).$$

Comme R est arbitraire, cette égalité est vraie sur \mathbb{R} .

Exercice 2.

a. Quel est le rayon de convergence de la série entière $[a_n z^n]_{n>1}$, où

$$a_n = \frac{1}{n}, \ \forall n \ge 1?$$

La règle de d'Alembert nous assure ici que le rayon de convergence vaut

$$R = \frac{1}{\lim_{n \to +\infty} \frac{1/(n+1)}{1/n}} = \lim_{n \to +\infty} \frac{n+1}{n} = 1.$$

b. Justifier les formules

$$\forall t \in]-1,1[, \log(1-t) = -\sum_{n=1}^{\infty} \frac{t^n}{n}$$

$$\forall x \in \mathbb{R}, \log(1-\tanh(x)) = -\sum_{n=1}^{\infty} \frac{(\tanh x)^n}{n},$$

$$(1)$$

 $o\dot{u}$

$$\tanh : x \longmapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

désigne la fonction tangente hyperbolique et log le logarithme népérien.

La fonction tanh réalise une bijection strictement croissante entre l'intervalle]-1,1[et \mathbb{R} (la dérivée est strictement positive et les limites respectives en $-\infty$ et $+\infty$ valent -1 et 1). La seconde formule se déduit donc de la première en posant $t=\tanh x$, ce qui est licite car $\tanh x\in]-1,1[$ d'après la remarque précédente.

La série dérivée de la série entière $[X^n/n]_{n\geq 1}$ est la série géométrique $[X^n]_{n\geq 0}$ dont la somme dans le disque ouvert D(0,1) est la fonction

$$z \in D(0,1) \longmapsto \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$$
.

La fonction

$$t \in]-1,1[\longmapsto \sum_{n>1} \frac{t^n}{n}$$

est donc la primitive (sur]-1,1[) s'annulant en t=0 de la fonction

$$t \in]-1,1[\longmapsto \frac{1}{1-t}.$$

Cette primitive est (on le vérifie immédiatement) la fonction

$$t \in]-1,1[\longrightarrow -\log(1-t),$$

d'où la formule (1) ci-dessus.

c. Justifier par un argument développé en cours (et que l'on rappellera) pourquoi la formule (1) reste valable en t = -1.

Le point z=-1 est un point du bord du disque de convergence de la série entière $[z^n/n]_{n\geq 1}$ où cette série entière converge (le critère des séries alternées s'applique en effet pour assurer la convergence de la série numérique $[(-1)^n/n]_{n\geq 1}$). La règle d'Abel pour les séries entières (proposition 4.1 du cours) assure la convergence uniforme de la série de fonctions $[t^n/n]_{n\geq 1}$ sur le segment [-1,0]; la somme de cette série est donc continue sur ce segment (comme limite uniforme d'une suite de fonctions continues) et coïncide avec la fonction continue

$$t \longmapsto -\log(1-t)$$

sur]-1,0]. Par continuité en t=-1, on a donc

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -\lim_{t \to -1_+} \log(1-t) = -\log 2,$$

ce qui prouve la validité de la formule (1) en t=-1.

d. Prouver la formule

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} = 2\log 2 - 1.$$

En intégrant terme à terme sur [0,t] (avec $t \in]-1,1[$) la série figurant au second membre de (1), ce qui est licite car le rayon de convergence de cette série entière vaut 1, on trouve, pour $t \in]-1,1[$,

$$\forall t \in]-1,1[, \int_0^t \log(1-u) du = -\sum_{n=1}^\infty \frac{t^{n+1}}{n(n+1)}.$$

Or, pour $t \in]-1,1[$,

$$\int_0^t \log(1-u) \, du = -\int_1^{1-t} \log v \, dv = -\left[v(\log v - 1)\right]_1^{1-t}$$
$$= -1 - (1-t)(\log(1-t) - 1).$$

Le critère des séries alternées assure encore la convergence en -1 de la série entière $[z^{n+1}/(n(n+1)]_{n\geq 1}$, série dont la somme sur]-1,1[coïncide avec la fonction

$$t \in]-1, 1[\longrightarrow 1 + (1-t)(\log(1-t) - 1)$$

sur]-1,1[. La règle d'Abel pour les séries entières (proposition 4.1 du cours) s'applique encore à la série $[z^{n+1}/(n(n+1))]_{n\geq 1}$ convergente en -1 et assure la continuité de la somme de cette série sur le segment [-1,0]. On a donc la formule

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)}$$

$$= \lim_{t \to -1_{+}} (1 + (1-t)(\log(1-t) - 1)) = 2\log 2 - 1,$$

ce qui fournit bien la formule voulue.

e. Montrer que la convergence de la série de fonctions (de la variable $x \in \mathbb{R}$)

$$\left[\frac{(\tanh x)^n}{n}\right]_{n\geq 1}$$

est normale sur tout segment du type [-R,R] (R>0) de \mathbb{R} . Est-elle encore normale sur $]-\infty,R]$ lorsque R>0? Est-elle uniforme sur ce dernier intervalle?

La série entière $[z^n/n]_{n\geq 1}$ converge normalement sur tout segment [a,b] avec -1 < a < b < 1 puisque le rayon de convergence vaut 1 et qu'un tel segment se trouve strictement inclus dans le disque ouvert de convergence. L'image de [-R,R] par l'application strictement croissante $x \longmapsto \tanh x$ est un intervalle [a,b] de]-1,1[$(a=\tanh(-R),\ b=\tanh R)$. La convergence normale de la série $[t^n/n]_{n\geq 1}$ sur [a,b] implique donc (juste par changement bijectif de variables : $t=\tanh x$) la convergence normale de la série de fonctions $[(\tanh x)^n/n]_{n\geq 1}$ sur [-R,R].

Si la convergence de la série de fonctions $[(\tanh x)^n/n]_{n\geq 1}$ était normale sur $]-\infty,R]$, celle de la série de fonctions $[t^n/n]_{n\geq 1}$ serait normale sur]-1,b] (car $\tanh(x)$ tend vers -1 si x tend vers $-\infty$). Il existerait donc une série numérique convergente $[w_n]_{n\geq 1}$ telle que

$$\forall n \in \mathbb{N}, \ \forall t \in]-1, b], \ |t^n/n| \leq w_n.$$

Mais on aurait aussi

$$\forall n \in \mathbb{N}, \ 1/n \leq w_n,$$

ce qui contredit (avec le critère de comparaison) la divergence de la série harmonique. La série de fonctions $[(\tanh x)^n/n]_{n\geq 1}$ ne converge donc pas normalement sur $]-\infty,R]$.

En revanche, il existe une fonction continue $S:[-1,b] \to \mathbb{R}$ telle que

$$\lim_{n \to +\infty} \left(\sup_{t \in [-1,b]} \left| S(t) - \sum_{k=1}^{n} \frac{t^k}{k} \right| \right) = 0 \tag{*}$$

(en vertu de la règle d'Abel pour les séries entières, proposition 4.1). Comme, par le changement de variables $t = \tanh x$,

$$\sup_{x \in]-\infty, R]} \left| S(\tanh x) - \sum_{k=1}^{n} \frac{(\tanh x)^{k}}{k} \right| \le \sup_{t \in [-1, b]} \left| S(t) - \sum_{k=1}^{n} \frac{t^{k}}{k} \right|,$$

on déduit bien de la propriété (*) la convergence uniforme de la série de fonctions $[(\tanh x)^n/n]_{n\geq 1}$ sur $]-\infty,R]$; la somme est la fonction

$$x \in]-\infty, R] \longmapsto -\log(1-\tanh x)$$
.