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Decisional Decoding Hypothesis with parameter t. Let 0 < R1 < R2 < 1.
There is no polynomial-time decoding algorithm A such that: Given k, n such that
R1 6 k/n 6 R2, given a random code C defined by a uniform random generating k×n
matrix (or a uniform random parity-check (n− k)× n matrix), and a vector which is
either
(i) a uniformly random vector u

(ii) c + e where c ∈ C is a uniformly random codeword and e a uniformly random
vector of weight t, independent of c.

A decides between (i) and (ii) with a non-negligible advantage over random choice.

We remark that we may replace the probability distribution for choosing C by the
uniform distribution over all codes of dimension k. To obtain it choose a random
generating matrix, and if it is not full-rank discard it and choose again. Since the
probability of a k×n random matrix being singular is at most 1/2n−k, the two proba-
bility distributions (uniform k×n random generating matrix and uniform random code
of dimension k) are computationally indistinguishable. Note also that the uniform dis-
tribution over all codes of dimension k may be obtained by choosing an (n − k) × n
parity-check matrix with uniform distribution, discarding it and sampling it again if
ever it is not full-rank.

Alekhnovich’s first cryptosystem

We set the parameter t to be o(n1/2). Let A be a random k × n matrix and let ε
be a random vector in Fn2 of weight t. Let H be the (k + 1) × n matrix obtained by
appending to A an additional row consisting of the vector

y = xA+ ε

where x is a uniform vector in Fk2 independent of ε. In other words, y is the sum of the
error vector ε and a random codeword of the code generated by the matrix A. Let C
be the code with parity-check matrix H. The public key is a generating matrix for the
code C. In this cryptosystem the message space consists of a single bit M = {0, 1}.
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Encryption. To encrypt 0, output

C(0) = c+ e

where c is a random codeword of C and e is a random vector of weight t. To encrypt 1,
output

C(1) = u

where u is a uniform random vector of Fn2 .

Decryption. The secret key is the vector ε. To decrypt the encrypted bit C(m),
m ∈ {0, 1}, compute

b = 〈ε,C(m)〉

and declare b to be the decrypted plaintext. We have that

〈ε,C(0)〉 = 〈ε, c+ e〉 = 〈ε, c〉+ 〈ε, e〉
= 〈ε, e〉

because ε, being a row of the parity-check matrix H, is orthogonal to all codewords
of C. Since we have imposed on both ε and e to be of weight t = o(

√
n), the

probability that 〈ε, e〉 = 0 is close to 1. Besides, since C(1) is a random vector, we
have that when m = 1, decryption succeeds with probability exactly 1/2. To obtain
a reliable cryptosystem, use an error-correcting code, e.g. encrypt the secret bit m
several times.

Security reduction. Suppose there exists a decryption algorithmD that extractsm
from C(m) given only knowledge of the code C (and not ε). Then this algorithm should
work without any noticeable difference if the code C is replaced by a random code
C ′ defined by a uniform random parity-check matrix H′, i.e. if the vector y = x + ε
used in defining the last row of H is uniformly random, equivalently if ε is taken
to be uniformly random rather than random of weight t. If there were a noticeable
difference, this would yield a way of distinguishing whether y is uniformly random
or at distance t from the random code generated by the matrix A, contradicting the
decisional decoding hypothesis of parameter t.

Suppose therefore that we are now using the encryption scheme with the random code
C ′ rather than the original code C. Again, the decryption algorithm D should work
just as well when the error vector e used to encrypt the message m = 0 is replaced by
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a uniform random vector. Otherwise we again have a distinguisher between a uniform
random vector and a vector of the form c+ e where e is of weight t and c is a random
codeword of the random code C ′. Again this would contradict the decisional decoding
hypothesis. But we now have an absurd result, which is that the decryption algorithm
D should somehow be able to decrypt in the situation when the encryption of both
0 and 1 are uniform random vectors of Fn2 , which clearly cannot be achieved with a
success probability different from 1/2.

Alekhnovich’s second cryptosystem

Let A be a uniform random n/2 × n matrix, let X be a uniform random n × n/2
matrix, and let E be a random n× n matrix, chosen uniformly among matrices such
that every row of E is of weight t. Set M = XA + E. Every row of M is therefore
obtained by adding a random vector of weight t to a random codeword of the code
generated by the rows of the matrix A. We add the requirement that M is invertible:
if this is not the case we throw away the matrix M and choose another one in the
same way until we obtain an invertible matrix M.

Let C0 be an error-correcting code of length n that comes with a polynomial-time
decoding algorithm that almost always decodes correctly codewords that have been
submitted to a binary symmetric channel of transition probability p = t2/n. We should
have dimC0 > n/2, for example suppose dimC0 = 9n/10.

Let φ : Fn2 → Fn2 be the linear map defined by the matrix M, i.e. for a column vector
x, φ(x) = Mx. Let C1 = φ−1(C0), i.e. C1 = {x ∈ Fn2 , φ(x) ∈ C0}. Denote by C2

the code for which A is a parity-check matrix. Finally, define the code C = C1 ∩ C2.
Let G be a generating matrix for this code. The matrix G is the public key of the
cryptosystem. Let k = dimC. Without loss of generality we can suppose k is even
and set k = 2m. The message (cleartext) space is M = Fm2 .

Encryption. To encrypt a message m ∈ Fm2 , append to it a random m-bit vector r
to create x ∈ Fk2. The ciphertext is:

C(m) = xG+ e

where e is a random vector of weight t in Fn2 .

Decryption. The secret key is the matrix E. To decrypt, start by computing the
vector y, such that yT = EC(m)T. We note that C(m) = c + e where c = xG is
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a codeword of C. Since C is a subcode of C2, all rows of A are orthogonal to all
codewords of C, so that AcT = 0. Therefore

yT = E(c+ e)T = EcT + EeT

= XAcT + EcT + EeT

= McT + EeT

= cT0 + EeT

where cT0 = McT. But since c ∈ C ⊂ C1 and φ(C1) = C0, we have c0 ∈ C0. Also,
since every row Ei, 1 6 i 6 n, of E has weight t, we have that 〈Ei, e〉 = 1 with
probability at most p = t2/n. Therefore, applying the decoding algorithm for C0 to y
will yield c0 with a vanishing probability of error. To finish decryption,

solve the linear system xG = φ(c0), (i.e. xG(MT)−1 = c0) and throw away the last
m bits of x to recover m. The matrix G(MT)−1 can be chosen in systematic form to
avoid solving the linear system. This implies that MT or simply G(MT)−1 is known
to the decryption algorithm, but these quantities could just as well be public, we will
see that they do not help cryptanalysis.

Security reduction. Suppose there is a decryption algorithm D that decrypts with-
out the secret key E. Then we first argue, as for the first cryptosystem, that the de-
cryption algorithm must behave in the same way when the matrix M is replaced by a
random uniform full-rank matrix M′. Otherwise, by feeding the decryption algorithm
D with messages encrypted either with the genuine cryptosystem, or by the modified
cryptosystem where M is replaced by M′ and everything else constructed in the same
way, we would have a way of differentiating between pairs of vectors u,v, where u is
uniformly random and v = a + ε, where a is a random sum of rows of A and ε is a
random vector of weight t. This would contradict the decisional decoding hypothesis.

We suppose the decryption algorithm works in the IND-CPA model, this means that
D first chooses two plaintexts m0 and m1, and asks for an encryption of mi: it then
returns i with a probability π such that π−1/2 is non-negligible. We now work towards
a contradiction by showing how to use D to break the decisional decoding hypothesis.

Let V be a uniform random code of length n and dimension m. Suppose z is either
a uniform random vector of length n, or equal to r + e with r a random vector of V
and e a random vector of weight t. We will call upon the deciphering algorithm D to
decide what category z belongs to.
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Let U be another uniform random code of length n and dimensionm. With overwhelm-
ing probability, the codes U and V have trivial intersection and the code C = U ⊕ V
has dimension k = 2m. Randomly extend the code C by adding random vectors so as
to obtain a code C1 of the required dimension (say 9n/10) and similarly extend the
code C by adding random vectors so as to obtain a code C2 of the required dimension
(n/2). By construction C1 and C2 are uniform random codes of the required dimen-
sions and C = C1∩C2. Let G be a generating matrix of C of the form G =

[
GU
GV

]
Let

φ be a random one-to-one linear mapping that maps C0 to C1. Since C1 is a random
linear code of the same dimension as C0, φ is simply a random one-to-one linear map
that we associate to the random matrix M′. The matrix M′ and the codes C, C1,
C2 have the same distribution as in the cryptosystem defined by the matrix M′ and
the condition that none of the codes C,C1, C2 are degenerate, which happens with
overwhelming probability when defining the original cryptosystem.

Now we call upon the algorithm D. Algorithm D gives us the plaintexts m0 and m1,
and we choose i ∈ {0, 1} randomly. We then give algorithm D the ciphertext

miGU + z.

Algorithm D returns its guess ι of the bit i. If ι = i we declare z to be of the form
z = r + e. Otherwise we declare z to be equal to the uniform random vector u. We
see that whenever z is of the form z = r+e, then the ciphertext given to algorithm D

has exactly the form of a valid encryption of mi, hence the non-negligible advantage
in telling apart whether z is uniform or at distance t from a random codeword of V .

Reduction to the search decoding problem

Difficulty of Decoding Hypothesis with parameter t. Let 0 < R1 < R2 < 1.
There is no polynomial-time decoding algorithm A such that:

– Given k, n such that R1 6 k/n 6 R2,

– given a random code C defined by a uniform random generating k × n matrix
(or a uniform random parity-check (n− k)× n matrix),

– and a vector
y = c+ e

where c is a random codeword of C and e is a random vector of weight t, chosen
uniformly and independently of c,
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algorithm A returns c with non-negligible probability.

Theorem 1. If the difficulty of decoding hypothesis with parameter t is satisfied, then
there is no polynomial-time algorithm A that computes 〈r,x〉 with a non-negligible
advantage over random choice (outputting 0 or 1 with probability 1/2) given
• two real numbers R1, R2, with 0 < R1 < R2 < 1,

• a k × n uniform random matrix G with R1 < k/n < R2,

• an instance xG + e of the decoding problem for the code C generated by G,
where x ∈ Fk2 is randomly chosen, and a random vector e of weight t.

• a uniform random vector r of length n,

Before proving Theorem 1 we show how to use it to deduce the full difficulty of decoding
hypothesis from the purely decisional version.

Proposition 2. The difficulty of decoding hypothesis with parameter t implies the
decisional decoding hypothesis with the same parameter t. In other words, if there
exists an algorithm that efficiently tells the difference between a vector at distance
t from the code and a uniform random vector, then there exists an algorithm that
efficiently decodes vectors at distance t from the code.

Proof. Suppose D is an algorithm that breaks the decisional decoding hypothesis and
distinguishes between a vector of the form xG + e, for a random codeword xG of a
the random code generated by the random matrix G. We will construct an algorithm
A that contradicts Theorem 1. Algorithm A will be given as input
• a random matrix G,

• a vector y = xG+ e, e of weight t,

• a random vector r .

Algorithm A will then proceed to evaluate 〈x, r〉. Now let r and s be two uniform
random vectors, in Fk2 and Fn2 respectively. Form the matrix G′ = G+rT s and remark
that G′ is uniform random like G. Remark also that

x(rT s) = 〈x, r〉s

therefore
• either 〈x, r〉 = 0 and xG′ = xG,
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• or 〈x, r〉 = 1 and xG′ = xG+ s.

We now define the code C to be the code generated by the matrix G′. Algorithm
A simply gives the code C (defined by G′) and the vector y to the distinguishing
algorithm D. If algorithm D says ‘uniform’, algorithm A declares 〈x, r〉 = 1. If
algorithm D says ‘y = c+ e’, then algorithm A declares 〈x, r〉 = 0.

Proof of the Goldreich-Levin Theorem

Theorem 1 is a special case of the more general statement:

Theorem 3. Let f be any one-way function from {0, 1}n to {0, 1}m. There is no
polynomial-time algorithm A that given y = f(x) for a uniform random input x, and
an independent uniformly random r ∈ {0, 1}n, computes 〈x, r〉 with a non-negligible
advantage, i.e. outputs b ∈ {0, 1} with P (b = 〈x, r〉) > 1/2+ε, where ε is a polynomial
function of 1/n.

Proof. We suppose A exists and use A to construct an algorithm that computes x
from f(x). First notice that for a fraction at least ε/2 of entries x, algorithm A must
predict 〈x, r〉 correctly from f(x) for a proportion at least 1/2 + ε/2 of choices of r.
We may therefore suppose that x is a fixed (but unknown) entry, for which algorithm
A predicts 〈x, r〉 with an ε positive bias. From now on ε denotes this particular bias,
rather than the average bias of Theorem 3. Since x is now fixed, we also denote by
A(r) algorithm A’s evaluation of 〈x, r〉.
Our goal is to compute the exact values of 〈x, ei〉, i = 1, 2, . . . , n, for ei the canonical
basis of Fn2 . This will give the individual coordinates of x and we will be done. If we
were guaranteed that A always gave the right value 〈x, r〉 for every r (i.e. ε = 1/2),
there would be nothing to prove. We have to deal however with an algorithm that is
often wrong (though less often than it is right).

A key remark is that if A(r) and A(r + ei) are both correct (or both incorrect) we
have 〈x, ei〉 = A(r) +A(r+ ei). To evaluate 〈x, ei〉, we are therefore tempted to take
random values r, compute A(r) +A(r+ ei), and take a majority vote. Unfortunately,
A(r) and A(r+ei), viewed as random variables (over the random choice of r), need not
be independent, and we can only guarantee that A(r)+A(r+ei) coincides with 〈x, ei〉
with probability > 1/2 for a bias ε > 1/4. We need to improve upon this strategy.

We shall use the following technical lemma:
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Lemma 4. Let V be a random subvector space V of Fn2 of dimension k. Let Si = ei+V ,
i = 1, 2, . . . , n. Let η > 0 be a constant. Then if k > log2(n

1+η/ε2), we have that, for
every i,

# {r ∈ Si |A(r) = 〈x, r〉} > |Si|/2 (1)

with probability (over the choice of V ) at least 1− 1/n1+η.

Lemma 4 implies that, when choosing a random subspace V , we have, with probability
at least 1− 1/nη, that (1) holds for all Si = ei + V , i = 1, . . . , n simultaneously.

Let b = (b1, . . . ,bk) be an arbitrary basis of the vector space V and let

γ = (γ1, . . . , γk) ∈ Fk2.

Consider the following function gγ, defined on V :

gγ : V → F2

r =
k∑
i=1

λibi 7→
k∑
i=1

λiγi

in words, gγ guesses the values of 〈x, r〉 on basis elements r = b1 . . .bk, and uses
linearity to extend this guess to the rest of the space V . The result is that, whenever
gγ is right on the whole of the basis b, it is also always right on the whole space V ,
by linearity of the function r 7→ 〈x, r〉. Now we proceed as follows: for all 2k possible
values of γ we evaluate 〈x, ei〉 by computing A(r + ei) + gγ(r) for all r ∈ V and by
setting

〈x, ei〉 =

{
0 if #{r ∈ V | A(r + ei) + gγ(r) = 0} > |V |/2
1 if #{r ∈ V | A(r + ei) + gγ(r) = 1} > |V |/2

When γ = (γ1, . . . , γk) coincides with (〈x,bi〉)i=1..k then gγ(r) = 〈x, r〉 for every r ∈ V ,
and the value

A(r+ ei) + gγ(r)

is a correct guess of 〈x, ei〉 if and only if A is correct on r + ei, which happens for a
majority of r in V by (1). So for this particular choice of γ, we have all the coordinates
〈x, ei〉 with a probability 1−1/nη. Since we can check whether we have the right value
of x by computing f(x), we can stop when we have a satisfying answer for x.

Proof of Lemma 4. To randomly generate the subvector space V , choose k uniform
random independent variables v1,v2, . . . ,vk in Fn2 and declare V to be generated by
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(vi). Note that v1, . . . ,vk are linearly dependent with probability at most 1/2n−k. For
every λ = (λ1, . . . , λk), define vλ =

∑k
i=1 λivi and define the Bernoulli variable Xλ by

Xλ =

{
1 if A(vλ) = 〈x,vλ)
0 otherwise.

The variables vλ are pairwise independent, therefore so are the Xλ, and Chebychov’s
inequality implies therefore that

P

 1

2k

∑
λ∈Fk

2

Xλ 6 1/2

 6
1

ε22k
=

1

n1+η
.

Modern variations

Variations on Alekhnovich’s first cryptosystem

Variation 1. Let A be a random k × n matrix and let ε be a random vector of Fn2
of weight t = o(n1/2). Let s be a uniform random vector in Fk2 and let

y = sA+ ε.

The message (plaintext) space is M = {0, 1} and the matrix A and the vector y make
up the public key.

Encryption. To encrypt m ∈ F2, output

C(m) = (AeT ,m+ 〈e,y〉)

where e is a random t-weight vector of Fn2 .

– Exercice 1.
a) The secret key is s. Figure out how to decrypt by computing 〈eAT , s〉.
b) Prove security.
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Variation 2. Let A be a random k×n matrix and let e be a random t-weight vector
of Fn2 . The message (plaintext) space is M = {0, 1} and the matrix A and the vector
σ = AeT ∈ Fk2 make up the public key. To encrypt m ∈ F2, output

C(m) = (sA+ ε,m+ 〈s, σ〉)

where s is a uniform random vector of Fk2 and ε is a random t-weight vector of Fn2 .

– Exercice 2.
a) Figure out how to decrypt with the secret key e.

b) Prove security.

Variation on Alekhnovich’s second cryptosystem

Let A be a random k × n matrix and let S be a uniform random ` × k matrix. Let
E be an ` × n matrix such that all its rows are randomly and independently chosen
among row vectors of weight t. Define the `× n matrix

Y = SA+ E.

The message (plaintext) space is M = C ⊂ {0, 1}` where C is an error-correcting code
that comes with a polynomial-time algorithm that almost always decodes correctly
codewords that have been submitted to a binary symmetric channel of transition
probability p = t2/n. The matrices A and Y make up the public key. The parameter
` should be chosen so that k + ` < Rn for some constant R < 1.

Encryption. To encrypt m ∈ C, output

C(m) = (AeT ,m+YeT )

where e is a random t-weight vector of Fn2 .

– Exercice 3.
a) Figure out how to decrypt with the secret key S.

b) if we had k + ` > n, how could one decrypt without any secret key ?

c) Prove security.

Argue first that a decryption algorithm that is only given A and Y should also
work with a random Y. Then suppose that one is given a random u× n matrix
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R and a vector z ∈ Fu2 that is promised to be either uniform random or of the
form ReT for a random weight t vector e ∈ Fn2 . Set u = k+ ` and let the first k
rows of R make up a matrix A and the remaining ` rows of R make up a matrix
Y. Create a cryptosystem from A and Y, split the vector z into two parts and
feed the decryption algorithm the relevant cryptogram.
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