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1. Introduction

The classical torsion conjecture for abelian varieties over number fields can be stated as follows.

Conjecture 1.1. Let d ≥ 0 be an integer then:
- (Weak form): Given a number field k, there exists an integer N := N(k, d) ≥ 0 such that for

any d-dimensional abelian variety A over k, one has:

A(k)tors ⊂ A[N ].

- (Strong form): Given an integer δ ≥ 1, there exists an integer N := N(δ, d) ≥ 0 such that for
any number field k of degree ≤ δ and any d-dimensional abelian variety A over k, one has:

A(k)tors ⊂ A[N ].

Completing a body of works initiated by B. Mazur in the mid-1970’s [Ma77], L. Merel achieved
a proof of the d = 1 case of the strong torsion conjecture in the mid-1990’s [Me96]. But the d > 1
case remains widely open though recent results of the authors show that the strong torsion conjecture
for the p-primary part of the torsion holds for d-dimensional abelian varieties parametrized by curves
[CT09].

The aim of this note is to give a proof of the following statement, which, in particular, shows that
the torsion conjecture for abelian varieties is equivalent to the torsion conjecture for jacobian varieties.

Theorem 1.2. Let d > 0 be an integer. Then there exists an integer g(d) > 0 satisfying the following
property: For any infinite field k and any d-dimensional principally polarized abelian variety A over
k there exists a smooth, geometrically connected curve C ↪→ A of genus gC ≤ g(d) that induces a
smooth surjective homomorphism with connected kernel JC|k → A and a closed immersion A → JC|k
of abelian varieties.

More precisely, one may take C ↪→ A of genus gC = g(d) with:

g(d) = 1 + 6d(d− 1)!
d(d− 1)

2
.

Note that if A is an arbitrary (i.e., a not necessarily principally polarized) d-dimensional abelian
variety over k then, by Zarhin’s trick, (A × A∨)4 is an 8d-dimensional principally polarized abelian
variety over k. In particular, to prove the torsion conjecture for d-dimensional abelian varieties, it is
enough to prove it for g(8d)-dimensional jacobian varieties.

Roughly speaking, the curve C in the statement of theorem 1.2 is constructed by cutting d−1 times
A by “nice” hyperplanes. For the proof of the crucial fact that C can be chosen to have genus bounded
only in terms of d, we give two different approaches in section 2 and section 3 respectively. The first
approach given in section 2 is very elementary and relies on a certain explicit genus computation.
More precisely, in subsection 2.1, we show that given a smooth, geometrically connected projective
variety X over an infinite field k and a fixed embedding X ↪→ Pnk , the curves obtained by cutting
X by “nice” hyperplanes all have the same Hilbert polynomial, which depends only on the Hilbert
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polynomial of X. We then compute in subsection 2.2 effectively the Hilbert polynomial of the resulting
curves. The second approach given in section 3 is more conceptual and relies on the theory of Hilbert
schemes. More precisely, in subsection 3.1 we show that given a scheme S and a closed subscheme
X ↪→ PnS smooth, geometrically connected and (purely) of relative dimension d > 0 over S there exists
a surjective smooth morphism π : U → S of finite type and a universal curve q : C ↪→ X ×S U → U
such that any curve constructed in Xs by cutting d− 1 times Xs by “nice” hyperplanes arises as the
fiber of q at some h ∈ Us (see proposition 3.1 for the precise statement). In subsection 3.2, we discuss
the representability of the Hilbert functor. In subsection 3.3, we combine these results to recover the
desired boundedness of the genus. Eventually, in section 4, we conclude the proof of theorem 1.2 by
resorting to a weak version of Lefschetz theorem and a duality argument.

Remark 1.3. (1) If k is a finite field, one may still show that for any (positive-dimensional)
abelian variety A over k there exists a smooth, geometrically connected curve C ↪→ A for which
the assertions of theorem 1.2 hold. Indeed, one has only to replace the classical hyperplane
Bertini theorem by more recent hypersurface Bertini theorems due to O. Gabber [G01, Cor.
1.6] and B. Poonen [P04, Thm. 1.1] and note that lemma 4.1 also works for hypersurfaces.
However, the genus of the curve constructed by this method is uncontrolled in Gabber’s method
and depends on the poles of the zeta functions of the successive sections in Poonen’s method.
So it is difficult to obtain a bound of the genus independent of the finite base field as in theorem
1.2.

(2) If the characteristic of k is 0, our proof of theorem 1.2 is entirely elementary and classical.
On the other hand, if the characteristic of k is positive, this argument only shows that the
morphism JC|k → A is surjective with connected kernel and the morphism A → JC|k is finite
with kernel having connected Cartier dual. To get the full statement in positive characteristic,
we resort to [G01, Prop. 2.4], which may be less elementary.

(3) The problem of how to realize abelian varieties as quotients of jacobian varieties is classical
and the first proof of the fact that this can always be done (over an algebraically closed field)
seems to go back to [M52]. Other references include [Mi86] and the already mentioned [G01].

We end this section by the following lemma, which is used in both of the two approaches.

Lemma 1.4. Let k be a field and A a d-dimensional abelian variety over k equipped with a polarization
λ : A → A∨ of degree δ2 (δ > 0). Let L denote the invertible sheaf (idA, λ)∗(PA) on A, where PA
is the normalized Poincaré sheaf on A ×k A∨, so that φL = 2λ [MF82, Chap.6, §2, Prop. 6.10], and
that OA(1) := L⊗3 is very ample relatively to A→ k [Mu70, III, §17] and induces a closed immersion
A ↪→ Pnk . Then the Hilbert polynomial P (T ) of A with respect to this embedding is given by:

P (T ) = 6dδT d.

In particular, P (T ) depends only on (d, δ).

Proof. This is stated in [MF82, Chap.7, §2] with a hint of proof. More explicitly, from the Riemann-
Roch theorem [Mu70, III, §16], one has:

χ(OA(n))2 = deg(φL⊗3n) = deg(3nφL) = deg(6nλ) = (6n)2ddeg(λ),

whence χ(OA(n)) = 6dδnd and P (T ) = 6dδT d. �

2. First approach — Genus computation

2.1. General case. Let k be an infinite field and let X0 ↪→ Pnk be a smooth, projective and geometri-
cally connected variety of dimension d > 0 over k. If d− 1 > 0, it follows from Bertini’s theorem [J83,
I, Th. 6.10 and Th. 7.1] that there exists a hyperplane H1 ↪→ Pnk such that X1 := X0 ×Pnk H1 is a
smooth, geometrically connected k-variety of dimension d−1. Iterating the process, one can construct
a smooth geometrically connected k-variety Xi of dimension d− i inductively for 0 ≤ i ≤ d− 1. More
precisely, one set Xi := Xi−1 ×Pnk Hi = X0 ×Pnk H1 ×Pnk · · · ×Pnk Hi. Also, let OXi(1) denote the very
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ample invertible sheaf relatively to k induced by the projective embedding Xi ↪→ Pnk . Then, one has
the short exact sequences of OXi-modules:

0→ OXi(−1)→ OXi → OXi+1 → 0.

Hence, tensoring by OXi(n):

0→ OXi(n− 1)→ OXi(n)→ OXi+1(n)→ 0,

from which it follows that Pi+1(T ) = Pi(T )− Pi(T − 1), where Pi(T ) denotes the Hilbert polynomial
of Xi. A straightforward inductive computation then yields:

Pi(T ) =
∑

0≤k≤i

(
i

k

)
(−1)kP0(T − k).

And, in particular, one can compute the genus g(Xd−1) of Xd−1:

g(Xd−1) = dimk(H1(Xd−1,OXd−1
)) = 1−

∑
0≤k≤d−1

(
d− 1
k

)
(−1)kP0(−k).

Remark 2.1. (Comparison with Castelnuovo’s bound) By construction, the curves Xd−1 obtained by
cutting out X by d− 1 hyperplanes all have the same degree as X - say a. From Castelnuovo’s bound
[ACGH85, p. 116], this implies that the genus of Xd−1 is bounded from above by a constant

π(a, n) =
q(q − 1)

2
(n− 1) + qr,

where q and r denote the quotient and remainder of the euclidean division of a−1 by n−1 respectively.

2.2. The case of polarized abelian varieties. We would like to apply the preceding computation
to a d-dimensional abelian variety X0 = A over k equipped with a degree δ2 polarization λ : A→ A∨

(δ > 0). So, as in lemma 1.4, let L be the invertible sheaf on A such that φL = 2λ, hence OA(1) := L⊗3

is very ample relatively to A → k and induces a closed immersion A ↪→ Pnk . Now, by lemma 1.4, the
Hilbert polynomial P0(T ) with respect to this embedding is given by: P0(T ) = 6dδT d. As a result:

g(Xd−1) = 1 + 6dδ(−1)d−1
∑

0≤k≤d−1

(
d− 1
k

)
(−1)kkd.

It remains to compute:

u(d) :=
∑

0≤k≤d−1

(
d− 1
k

)
(−1)kkd.

For this, set u0(x) = (1 − x)d−1 and ui(x) = xu′i−1(x), i ≥ 1. Then straightforward inductive
computations show that, on the one hand:

ui(x) =
∑

1≤k≤d−1

(
d− 1
k

)
(−1)kkixk, i ≥ 1,

and that, on the other hand:

ui(x) =
∑

1≤k≤i
ai,kx

ku
(k)
0 (x), i ≥ 1,

with a1,1 = 1 and

ai,k =

 ai−1,i−1, k = i,
kai−1,k + ai−1,k−1, 2 ≤ k ≤ i− 1,
ai−1,1, k = 1.

In particular, ai,i = ai−1,i−1 = · · · = a1,1 = 1, ai,1 = ai−1,1 = · · · = a1,1 = 1, and

ai,i−1 = (i− 1) + ai−1,i−2 = · · · = (i− 1) + (i− 2) + · · ·+ 2 + a2,1 =
i(i− 1)

2
.
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So, as u(k)
0 (x) = (−1)k (d−1)!

(d−k−1)!(1− x)d−k−1, one eventually gets:

u(d) = ud(1) = ad,d−1u
(d−1)
0 (1) = (−1)d−1(d− 1)!

d(d− 1)
2

and:

g(Xd−1) = 1 + 6dδ(d− 1)!
d(d− 1)

2
.

Remark 2.2. (Comparison with Castelnuovo’s bound - continued) In our situation, X0 = A is
embedded with degree d!(6dδ) into Pn, where n = 6dδ − 1. As Xd−1 is obtained by cutting X0 out
by generic hyperplane sections, the degree of Xd−1 is, again, a = d!(6dδ). In particular, for d→ +∞,
Castelnuovo’s bound is asymptotically equivalent to

1
2

(d!)26dδ

whereas our bound is asymptotically equivalent to
1
2
d!d6dδ.

(The authors are grateful to the referee for mentioning the connection of their work with Castelnuovo’s
bound.)

3. Second approach — Universal curve

3.1. Existence. Let S be a scheme and let X ↪→ PnS be a closed subscheme smooth, geometrically
connected and (purely) of relative dimension d > 0 over S. Let GS(n) ' PnS → S denote the
Grassmannian of projective linear subschemes of codimension 1 in PnS and H ↪→ PnGS(n) the universal
hyperplane. Set

Gd−1
S (n) := GS(n)×S · · · ×S GS(n)︸ ︷︷ ︸

d−1

π→ S,

and write pi : Gd−1
S (n)→ GS(n) for the natural ith projection (i = 1, . . . , d− 1).

Proposition 3.1. (Universal curve) There exist an open subscheme U ⊂ Gd−1
S (n) such that π : U → S

remains surjective and a smooth, geometrically connected projective curve C ⊂ X ×S U ⊂ PnU over
U with the following ‘universal property’: for any h = (H1, . . . ,Hd−1) ∈ Gd−1

S (n), the scheme Ih :=
(Xs)k(h) ×Pn

k(h)
H1 ×Pn

k(h)
· · · ×Pn

k(h)
Hd−1, where s := π(h) ∈ S, is a smooth, geometrically connected

curve over k(h) if and only if h ∈ U . Moreover, one has Ih = Ch ⊂ Pnk(h) for any h ∈ U .

Proof. Since the problem is local on S, one may reduce to the case where S is affine. Then, since X
is of finite presentation over S, it follows from the standard argument (cf. [EGA4-3, Prop. (8.9.1)(i)])
that one may reduce to the case where S is noetherian. Consider the closed subscheme

C0 := π∗X ×Pn
Gd−1
S

(n)
p∗1H×Pn

Gd−1
S

(n)
· · · ×Pn

Gd−1
S

(n)
p∗d−1H ⊂ Pn

Gd−1
S (n)

obtained as the (scheme-theoretic) intersection of π∗X = X ×S Gd−1
S (n) and d − 1 hyperplanes

p∗1H, . . . , p∗d−1H in Pn
Gd−1
S (n)

. Note that one may also write:

Pn
Gd−1
S (n)

= PnGS(n) ×PnS · · · ×PnS PnGS(n)︸ ︷︷ ︸
d−1

and correspondingly:
p∗iH = PnGS(n) ×PnS · · · ×PnS Hi ×PnS · · · ×PnS PnGS(n),

hence one gets:
C0 = X ×PnS H×PnS · · · ×PnS H︸ ︷︷ ︸

d−1
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(that is, for any (x, h = (H1, . . . ,Hd−1)) ∈ X ×S Gd−1
S (n), (x, h) ∈ C0 if and only if x ∈ H1 ×Pn

k(h)

· · · ×Pn
k(h)

Hd−1). We will use the following notation:

C0
� � //

&&MMMMMMMMMMMMM

q0

**
X ×S Gd−1

S (n)
pr2 //

pr1

��
�

Gd−1
S (n)

π

��
X // S

By construction, q0 : C0 → Gd−1
S (n) is projective (as a closed immersion composed with the base

change of a projective morphism) with geometrically connected fibers of dimension ≥ 1 ([J83, I, Th.
7.1]).

From the semicontinuity of dimension, the subset:

U1 := {h ∈ Gd−1
S (n) | dim(q−1

0 (h)) = 1}

is open in Gd−1
S (n). Write q1 : C1 → U1 for the base change of q0 : C0 → Gd−1

S (n) via the open
immersion U1 ↪→ Gd−1

S (n). Then q1 : C1 → U1 remains projective over U1 hence closed. Define the
following loci:

Csmooth1 := {c ∈ C1 | q1 : C1 → U1 is smooth at c}

Creg1 := {c ∈ C1 | C1,q1(c) → spec(k(q1(c))) is smooth (that is, C
1,q1(c)

is regular)}

and set U := U1 \ q1(C1 \ Csmooth1 ), U ′ := U1 \ q1(C1 \ Creg1 ). Then

- U is open in U1 (since Csmooth1 is open in C1 and q1 : C1 → U1 is closed);
- U ⊂ U ′;
- π(U ′) = S ([J83, I, Th. 6.10] ).

Write q : C → U for the base change of q1 : C1 → U1 via the open immersion U ↪→ U1. It only
remains to prove that π : U → S is surjective and that C ↪→ PnU satisfies the announced universal
property. This will follow from the claim below which, in particular, shows that U = U ′:

Claim. Csmooth1 = Creg1 .

Indeed, this follows from the following claim:

Claim. q1 : C1 → U1 is flat.

To prove the latter claim, let x ∈ C1 and set h = q1(x). Let A (resp. B, resp. B) be the local
ring of U1 at h (resp. of XU1 at x, resp. of C1 at x), and k the residue field of A (i.e., k = k(h)). It
follows from the reduction step at the beginning of the proof that A, B and B are noetherian. Let
fi ∈ B be the image in B of a local defining equation of the hyperplane (p∗iH)U1 ⊂ PnU1

. Then one
has B = B/(f1, . . . , fd−1). Now, one has to prove that B is flat as an A-module. For this, it suffices
to show that g1, . . . , gd−1 is a regular sequence of B ⊗A k, where gi is the image of fi in B ⊗A k, by
[EGA4-1, Chap. 0IV, Prop. (15.1.16), c)⇒b)]. But this latter fact follows from [EGA4-1, Chap. 0IV,
Cor. (16.5.6), b)⇒a)]. (The second author would like to thank S. Yasuda very much for the useful
discussion on this proof.) �

3.2. Representability of the Hilbert functor. Let Sets and Schop denote the category of sets
and the opposite category of locally noetherian schemes, respectively. From [FGA] that for any N ≥ 0
and P ∈ Q[T ] the Hilbert functor HilbN,P : Schop → Sets defined by

HilbN,P (X) =
{
Y ⊂ PNX closed subscheme | Y → X is flat and has Hilbert polynomial P

}
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is representable by a projective Z-scheme HilbN,P → Z; we will denote by YN,P ⊂ PNHilbN,P the
universal object over it.

Now, set Pd,δ(T ) := 6dδT d ∈ Q[T ] and m := 6dδ − 1. Define the functor Ad,δ : Schop → Sets by

Ad,δ(X) =

(A π→ X,λ, φ) |
A

π→ X is an abelian scheme of dimension d;
λ : A→ A∨ is a polarization of degree δ2;
φ : P(π∗(L∆(λ)⊗3))→̃PmX is a linearization.


Here L∆(λ) stands for the invertible sheaf (idA, λ)∗(PA) on A, where PA is the normalized Poincaré
sheaf on A ×X A∨. Set Y (1)

m,Pd,δ
:= Ym,Pd,δ ×Hilbm,Pd,δ Ym,Pd,δ

pr2→ Ym,Pd,δ , which is naturally equipped

with the diagonal section ε : Ym,Pd,δ → Y
(1)
m,Pd,δ

. Then (Y (1)
m,Pd,δ

↪→ PmYm,Pd,δ , ε)→ Y
(1)
m,Pd,δ

is the universal
family for closed subschemes of PmX flat over X with Hilbert polynomial Pd,δ and 1 section. Thus, by
definition of Ad,δ : Schop → Sets, one has a natural functor morphism

Φ : Ad,δ → Hom(−, Y (1)
m,Pd,δ

).

Then, applying steps (I), (II), (V) and (VI) of the proof of [MF82, Prop. 7.3] (where level structures
are also considered), one can show:

Claim. There exists a locally closed subscheme Ad,δ ⊂ Y
(1)
m,Pd,δ

such that Φ induces a functor isomor-
phism

Ad,δ →̃ Hom(−, Ad,δ) ⊂ Hom(−, Y (1)
m,Pd,δ

).

In other words, Ad,δ represents Ad,δ.

3.3. Boundedness of the genus. We combine the results of subsections 3.1 and 3.2 to prove that
there exists an integer g(d) > 0 such that for any d-dimensional principally polarized abelian variety
A over an infinite field, any curve C ↪→ A constructed as in subsection 2.2 has genus gC ≤ g(d).

As Y (1)
m,Pd,1

is projective over Z, it is noetherian and, consequently, Ad,1 is as well. Let (A π→ Ad,1, λ, φ)

denote the universal family over Ad,1 and A ↪→ P(π∗(L∆(λ)⊗3))
φ

→̃ PmAd,1 the closed immersion induced

by λ and φ. Now, proposition 3.1 applied to A ⊂ PmAd,1 yields an open subscheme U ⊂ Gd−1
Ad,1

(m) and
a universal (projective, smooth, geometrically connected) curve q : C → U . As U is noetherian, it has
only finitely many connected components. Thus, only finitely many values appear as the genus of a
fiber of q : C → U . Let g(d) be the maximum of such values.

Any d-dimensional abelian variety A π→ spec(k) over a field k with a principal polarization λ : A→̃A∨
can be equipped with a linearization φ : P(π∗(L∆(λ)⊗3))→̃Pmk defined over k, which corresponds to
a k-rational point a of Ad,1. Further, a choice of d − 1 “nice” hyperplanes H1, . . . ,Hd−1 corresponds
to a k-rational point b of the fiber Ua (which is a nonempty open subscheme of Gd−1

k (m)) and the
resulting curve C ↪→ A is identified with the fiber Cb at b of q : C → U . Thus, gC ≤ g(d).

4. End of the proof

Recall first the following classical result [SGA1, Chap. X, Lem. 2.10]:

Lemma 4.1. Let k be an algebraically closed field, and X a normal, irreducible scheme proper over k.
Let g : X → Pnk be a morphism such that g(X) has dimension ≥ 2. Then, for any hyperplane H ⊂ Pnk ,
the scheme X ×Pnk H is connected and the natural homomorphism

π1(X ×Pnk H)→ π1(X)

of étale fundamental groups induced by the first projection X ×Pnk H → X is surjective.
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From now on, fix an integer d ≥ 2 (as the d = 1 case is trivial), an infinite field k and a d-dimensional
abelian variety A over k equipped with a principal polarization λ : A→̃A∨. As in subsection 2.2 let L
be the invertible sheaf on A defining 2λ and A ↪→ Pnk the closed immersion induced by L⊗3.

Then, for any hyperplane H1 ↪→ Pnk such that A ∩ H1 is a smooth, geometrically connected k-
variety of dimension d− 1 it follows from lemma 4.1, that the closed immersion A ∩H1 ↪→ A induces
a surjective homomorphism π1(A ∩H1) � π1(A) over Γk. Iterating d− 1 times the process, one can
construct a smooth geometrically connected k-curve C := A ×Pnk H1 ×Pnk · · · ×Pnk Hd−1 such that the
closed immersion C ↪→ A induces a surjective homomorphism of fundamental groups π1(C) � π1(A)
over the absolute Galois group Γk of k or, in other words, a surjective homomorphism of short exact
sequences:

(1) 1 // π1(Ck) //

����

π1(C) //

����

Γk // 1

1 // π1(Ak) // π1(A) // Γk // 1

Since π1(Ak) = T (A) (the full Tate module) is abelian, the homomorphism π1(Ck)→ π1(Ak) kills the
commutator subgroup π1(Ck)

′ ⊂ π1(Ck) and one gets:

(2) 1 // π1(Ck)
ab //

����

π1(C)(ab) //

����

Γk // 1

1 // π1(Ak) // π1(A) // Γk // 1,

where π1(C)(ab) denotes the quotient π1(C)/π1(Ck)
′. Further, the homomorphism π1(Ck)

ab → π1(Ak)
is identified with the natural homomorphism T (J) → T (A) of full Tate modules induced by the
albanese morphism J → A associated with C ↪→ A, where J = JC|k denotes the jacobian variety of C
over k.

Since the morphism J → A induces a surjection T (J) � T (A) of full Tate modules, it is surjective
with connected kernel. Indeed, let K, I and C denote the kernel, the image and the cokernel of J → A,
respectively. Note that I and C are abelian varieties, while K may not in general. The exact sequence

0→ I → A→ C → 0

of abelian varieties induces an exact sequence

0→ T (I)→ T (A)→ T (C)→ 0

of full Tate modules. Since the image of T (J) in T (A) is contained in T (I) ⊂ T (A), one must have
T (C) = 0, hence C = 0, i.e., J → A is surjective. Next, let K0 denote the connected component at 0
of K, and K0,red the reduced closed subscheme associated with K0. Then K0,red ⊂ K0 ⊂ K ⊂ J are
closed subgroup schemes; Ket := K/K0 is finite and étale; K loc := K0/K0,red is finite and connected;
and K0,red is an abelian variety. Now, by using the snake lemma, one gets the exact sequence

0→ T (K0,red)→ T (J)→ T (A)→ Ket(k)→ 0,

from which one gets Ket(k) = 0, hence Ket = 0, and K = K0 is connected.
Next, the dual morphism A∨(= A)→ J∨(= J) is finite with kernel having connected Cartier dual.

Indeed, set Ã := J/K0,red. Then one gets the following two exact sequences:

0→ K0,red → J → Ã→ 0,

0→ Kloc → Ã→ A→ 0.
The dual morphism A∨ → J∨ factors as A∨ → Ã∨ → J∨. Here, the kernel of the dual isogeny
A∨ → Ã∨ is identified with the Cartier dual of the kernel Kloc of the morphism Ã→ A, and the dual
morphism Ã∨ → J∨ is a closed immersion. Indeed, for the former fact, see, e.g., [Mu70, III, §15,
Th. 1]. For the latter fact, write K1 and I1 for the kernel and the image of the morphism Ã∨ → J∨,
respectively. From Poincaré’s complete reducibility theorem, there exists an abelian subvariety A′ ⊂ J



8 ANNA CADORET AND AKIO TAMAGAWA

such that the composite of A′ ↪→ J � Ã is an isogeny. Thus, the kernel K1 is contained in the kernel
of the dual isogeny Ã∨ → (A′)∨, hence is finite. Since the dual morphism Ã∨ → J∨ factors as
Ã∨ → I1 → J∨, the original morphism J → Ã factors as J(= J∨∨)→ (I1)∨ → Ã(= Ã∨∨). Here, the
morphism (I1)∨ → Ã is an isogeny whose kernel is identified with the Cartier dual (K1)D of K1. This,
together with the surjectivity of J → Ã, implies that the morphism J → (I1)∨ must be also surjective.
Now, the surjections J � (I1)∨ � Ã yield an epimorphism from the kernel K0,red of J � Ã to the
kernel (K1)D of (I1)∨ � Ã. As K0,red is an abelian variety (hence divisible) and (K1)D is finite, this
implies that (K1)D = 0, hence K1 = 0, as desired. Combining these facts, one sees that the kernel of
A∨ → J∨ coincides with the Cartier dual of the (finite, connected) group scheme Kloc.

Now, if the characteristic of k is 0, the surjectivity of the morphism J → A automatically implies
the smoothness (cf. [Co02, Lem. 2.1]), and the connectedness of the Cartier dual of the kernel of the
morphism A → J automatically implies the triviality. Thus, the proof is completed in characteristic
0.

On the other hand, if the characteristic of k is positive, the assertion that the morphism J → A is
smooth with connected kernel follows from [G01, Prop. 2.4(iii)]. Namely, notations being as above,
one has K = K0,red and A = Ã. Thus, it follows from the above argument that the morphism A→ J
is a closed immersion. (See also [G01, Cor. 2.5].)
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Marie 1960–1961 (SGA 1), Lecture Notes in Mathematics 224, Springer-Verlag, 1971.

[H77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, 1977.
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