Computing [-isogenies with the p-torsion

Jean-Marc Couveignes*!

Universiteit Utrecht

Abstract. Computing l-isogenies between elliptic curves defined over
a finite field Iy of small characteristic is of some importance for the
computation of the cardinalities of elliptic curves using Schoof-Atkin-
Elkies method. In a previous publication [3] we showed that this could
be achieved in O(I**€) multiplications in I, using formal groups. This
method has been implemented by Lercier and Morain who obtained spec-
tacular results in this direction [7, 8]. Nevertheless, the use of formal
groups seems to be a serious deterent both for man and machine to
perform such a work. More recently Lercier proposed an algorithm spe-
cific for characteristic 2 that has the same assymptotic complexity but
is faster by some significative constant factor. In this paper we propose
a general algorithm which does not use formal groups. Instead we take
advantage of the elementary Galois properties of the p-torsion. This al-
gorithm has the same complexity as the previous ones if we don’t use
fast multiplication techniques. But, contrary to the previous methods,
it allows the use of fast multiplication for polynomials and then turns
out to run in O(I**¢) multiplications in the field F,. Our algorithm has
also the advantage that it is made exclusively of very classical routines
in polynomial and elliptic curve arithmetic. Also one may expect that
the implementation of this method should require less work than the
previous ones thus bringing new people to this kind of calculation.

1 Introduction

The first polynomial time algorithm for the enumeration of points on elliptic
curves defined over finite fields was given by Schoof in [11]. This algorithm
was made efficient by Atkin and Elkies [12, 10, 4, 1, 2]. Elkies improvement
requires the computation of some explicit l-isogeny between two given elliptic
curves known to be l-isogenous. Elkies proposed nice modular equations for this
problem. This is quite efficient as long as ! < p where p is the characteritic. For
the case p < [we proposed in [3] an algorithm based on formal groups. This was
quite successfuly implemented by Lercier and Morain [7, 8]. Recently Lercier [6]
discovered surprising formulae, valid in the case of characteristic 2, that lead to
an algorithm faster than our original one by some constant. This seems to be due
to the apparition of many linear equations in the presentation of the problem.
We don’t know whether this method is likely to be generalized to the case of
arbitrary characteristic. Here we propose a new algorithm for the computation

* Membre de ’Option Recherche du Corps des Ingénieurs de ’Armement

of isogenies in small characteristic that avoids the use of formal groups. It works
in any characteristic and it uses only simple and classical computational routines
such as factoring polynomials over finite fields. Its complexity is better since it
computes an isogeny of degree [in time O(I**¢) operations in F, provide we
use fast multiplication techniques and allow a precomputation which takes time
O(I?*¢) operations in [, and is useful for all isogenies of degree at most {. In
the context of Schoof-Atkin-Elkies’s algorithm this means that we will compute
all the isogenies we need in time O(I**¢) operations in [f, that is assymtotically
negligible compared to the rest of the algorithm.

We assume all along this paper that we are given a finite field I, with ¢ = p°
and two elliptic curves F, and Ej defined over [F, and l-isogenous over [, for [
a prime different from p. We assume that the two curves are non-supersingular.
To make the presentation easier we assume that p > 3. We want to compute
an explicit [-isogeny between those curves. We use the fact that such an isogeny
I must send the p*-torsion of E, onto the p*-torsion of Ej. To make it simple
assume that all the p*-torsion points of E, and Ej are rational over IF,. Let P,
be some p*-torsion point on E,. For any p*-torsion point P; on Ej let us suppose
that I(P,) = P;. Then for any integer 0 < m < p* we have I([m]P,) = [m]P;
and if p* > /2l we completely characterize I. In particular we can check whether
our assumption that I(P,) = Py was correct. If it is not, we try another Pj.

Let us see more in detail how the knowledge of the images of the [m]P, gives
an algebraic description of I. We use the following notation. If a point P has
z-coordinate zp then the z-coordinate of [m]P is denoted by z[,jp or simply
[m]z. Therefore [m]z is a rational fraction in z of degree m?. First it is evident
that two isogenies of degree | that agree on the [m]P,’s are identical. Indeed,
the difference is of degree lower than v/2l because of the triangle inequality and
since it cancels over the p*-torsion and p* > /2l we are done.

Let J(z) = u(z)/v*(z) be the rational fraction such that the image of a point
Py = (24,Ya) by I'is I(Py) = Py = (2, ys) with 2y = J(z4). We have deg(v) =
(I—1)/2 and deg(u) = I. Since we know the z-coordinates of the p*-torsion points
and their images by J, we can find by interpolation a polynomial A(z) of degree
smaller than or equal to (p* — 3)/2 such that A([m]z,) = [m]zy = J([m]z,) for
all m’s. We then have

A(z) = u(z)/v*(z) mod T, 4 ()

where T, (z) is the p*-torsion polynomial of E,.

Then if p* is bigger enough than 4.1 this is enough to compute u(z) and v(z).
Indeed from the above congruence we know that there exists a polynomial B(x)
of degree smaller than or equal to ! — 2 such that

u— Av? = a, kB

Now if we note B(z) = B(1/x)z'~% and A(z) = A(l/;z:)a:pkz_3 and o(z) =
—1 ~ pF—1
v(l/m)mlT and Ty p(2) = T p(l/z)z" 2 we get

)

A B 2F— U 2* -
=T 0@t
Ta,k (U) (6)2Ta,k

and this series identity is enough to compute B and v using continued fractions.
Of course the p*-torsion points are not defined over IF, in general and this
makes the interpolation step a bit more tricky as we shall see in the next section.

2 More detalils

We give here more details on the algorithm and its complexity.

In the rest of this paper we restrict our attention to primitive torsion points.
Therefore p*-torsion will mean the set of all p*~1(p — 1) torsion points of exact
order p*.

2.1 Complexity

We recall that the product, quotient | gcd and inverse modulo of two polynomials
of degree d require O(d?) multiplications in the field if we don’t use any fancy
method. If we use fast multiplication techniques we achieve all these in time
essentially linear.

We will also need to compute the roots of a squarefree splitting polynomial
F(z) of degree d over an extension field K of I, of degree h. This can be done
in time O(hd*) multiplications in K using the algorithm for small characteristic
given in [9] chapter 4, section 3. Note that the constant depends on p.

To find a non trivial factor of F', this algorithm requires the computation of

ged(F(z), S(ﬁJr) —0)

where

and @ is any given generator of the field K over [, and ¢ takes all the values in
[p in turn and 0 < 57 < h — 1. If we compute all these ph geds we are sure to
break F'in at least two pieces. This is because the polynomial is squarefree and
the trace form is non degenerate. In general, taking 5 = 1 is enough.

We start computing S(z) mod F/(X) which requires O(hd?) multiplications in
K. Then for a given 3/ the computation of S(# =) mod F(z) requires O(d?) mul-
tiplications. And the computations of all geds requires O(pd?) multiplications.
Since we do that for all j’s in the worst cases we have O(hd®) mutiplications for
a breaking and therefore O(hd*) for the whole splitting.

2.2 Description of the p*-torsion

The action of the Frobenius @ on the p*-torsion for p* < ¢ is just multiplication
by the trace t. Indeed it is multiplication by some prime to p integer A (otherwise
some power of the Frobenius would have the pf-torsion in its kernel) satisfying
MA—1t) =0 (mod p¥). Also this trace ¢ is the same on any two isogenous
curves.

Therefore the p*-torsion polynomials of E, and Ej each factor over Fy in f
factors of degree d with df = p*~1(p — 1)/2.

Let 1 = my, ma, ..., ms be integers in the interval [1, p*[that form a system
of coset representatives of the subgroup generated by ¢ in (Z/p*Z)*. Then Ty
factors over IF, as

f
Ta,k = H Ua,i
i=1

where the U, ;’s are of degree d and they are named in such a way that if we
call , = 2 mod U, 1(z) one fixed root of U, 1 then [m;]z, is a root of U, ;.

We also call (n;); a set of representatives of the inverses of the m;. It is
crucial that these numbers should not be changed along the algorithm because
they provide a coherent system of isomorphisms between the fields Fy[z]/Uq i(2).
Indeed let us call z,; = [m;]zq. Then let us define A4; ; = [m;][n;](z) mod Uy ;.
Then we have A; j(24:) = Zaj.

Of course, there is a similar factorization of T ; and the rational fraction J
maps the factors of T, j, onto the factors of Tj ;, but we do not know how because
we still ignore the image z; of z, by J.

Although we do not know z; we can at least compute a root v of Tj (z) over
K = F,[2]/Ua1 = Fy(2q). This can be done efficiently by successively factoring
k-polynomials of degree p instead of one of degree p*.

Call o the little Frobenius, i.e. o(u) = u? for u € F,. It is an automorphism
of Iy and o=l =1 We call Ey,1 the curve obtained from £y by conjugating
the coefficients by o='. Let us call ¢ the purely inseparable isogeny from Ej 1
to Ep that maps (z,y) to (2, yf). The dual of ¢ is called V. It is the separable
isogeny of degree p obtained by quotienting Ej by its p-torsion.

Ly

o_lEb
Now if we want to compute a p-torsion point on Ej we start by computing
a p-torsion point on £} ; and then we look for some point on £j which is maped
onto this point by V. If we need pF-torsion points we must start with some
p-torsion point on EFpp_1 = U_HlEb and then compute preimages by all the
successive separable isogenies of degree p.
The cost of this computation is the cost of k splittings of separable polyno-
mials of degree p over an extension of degree d of IF,, i.e. an extension of degree

h = ed of F,. The complexity is therefore O(khp*) multiplications in this field.
We end up with a complexity of O(log(q)!log(!)) multiplications in a field of
degree h. To do this efficiently we must use a fast multiplication algorithm. This
will be efficient since h is typically of size 10°. Then we will have a complexity
of O((log(g)!)**¢) operations in I, the primitive field.

But we can do much better. Indeed, if we use the Hasse function of the
elliptic curve, the computation of the preimage of some point by the V isogeny
boils down to solving an equation of the form zf — z — C' = 0 where C is some
element in F,[x]/Uq 1. For explicit expressions relating the Hasse functions and
the Weierstrass ones see [5, 13]. This is an affine polynomial [9] and can be solved
in O(1?) multiplications in I, as we explain in section 2.4. This is indeed much
more efficient.

We now have the z-coordinate 7 of some p*-torsion point on Ej. In the
following we will assume that v = 23 = J(2,) i.e. we have found the right
torsion point. If this is not true the method of the next section will fail and we
then have to replace v by some multiple of it until it works.

2.3 Interpolation

We here assume that we know some pf-torsion point P, = (z,,y,) on E, and
its image Py = («s,ys) by I. This means that z, = 2 mod U, 1(2) and z; =
A(z) mod Uq 1 () where A is a polynomial of degree d — 1.

Now if « is any root of U, 1 then J(a) = A(w). This is because J is de-
fined over IF,. Therefore the polynomial A(z) we are looking for is congru-
ent to A modulo U, ;. In the same manner we define he polynomial A; as
A; = [mylpA[ni]e mod Uy ; where [n;]p is the rational fraction for the multipli-
cation by n; on Ej and [m;], is the multiplication by m; on E,.

Then we have

A(z) =4; (mod Us,y)

and we finish using chinese remainder theorem.

2.4 Linear polynomials over composite extensions

It is known that linear polynomials are easy to factor, see [9] and this has been
used in [7].

Here, we have a slightly more subtle situation because the field K over which
we want to factor is an extension of I, of degree d let’s say. And ¢ = p°. Since
the polynomial z¥ — z is a linear map over [F, we may compute the matrix
and inverse it over its image in time O((ed)®) operations in [F, but this is too
much for us. Instead, we consider the polynomial map x? — x that is linear over
[F, and inverse the corresponding matrix in time O(d®) multiplications in TF,.
We also inverse the operator zF — z over I, in time O(e?) operations in F,.
In the situation that we consider all this precomputation is done in time O(I?)

multiplications in [F, but we notice that it will be useful for the computations of
any isogeny from F,. Since we have to compute O(!) of them, it is worth.

Now if we have to solve some equation zP — z = C' we start computing the
“trace” ¢ = C'+CP+CP +...4+CP"" of C in the extension F, /T, although C is
not in IF;!. Then we solve 2¢ —z = ¢ using the I;-linearity of the operator x¢ —z,
in time O({?) multiplications in F, because we already inversed this operator.
We then obtain a solution zg to this equation. All solutions are of the form xzg+ A
with A € F,. We then look for some A such that (¢ + A)? —2q — A = C. This
is just solving A» — A = C + 2o — 2§ in F, and C 4 zo — zf is in [, (exercice).
This is done in e? multiplications in F, i.e. nothing.

3 Conclusion

We have given another algorithm for the computation of isogenies in small char-
acteristic. We expect it to be useful to people willing to work efficiently on elliptic
curve using basic routines for finite fields. This new method allows a better use
of fast multiplication techniques. We can first precompute in time O(13*¢) multi-
plications the data that are useful for the computations of all isogenies of degree
smaller than /.

Then each isogeny of degree [requires O({**¢) multiplications in F,.

Aknowledgements. The author wishes to thank R. Lercier and F. Morain
for many enlightening discussions and a long collaboration in this field.

Neither this work nor any other work would have been possible without the
providential and fruitful hospitality of the University of Utrecht.

References

1. A. O. L. Atkin. The number of points on an elliptic curve modulo a prime.
Preprint, 1988.

2. A. O. L. Atkin. The number of points on an elliptic curve modulo a prime (ii).
Preprint, 1992.

3. J.-M. Couveignes. Quelques calculs en théorie des nombres. Université de Bor-
deaux, 1994.

4. N.D. Elkies. Explicit isogenies. 1991.

5. Hiroshi Gunji. The hasse invariant and p-division points of an elliptic curve. Arch.
Math. (Basel), 27:148-158, 1976.

6. R. Lercier. Computing isogenies in characteristic 2. Submitted for publication at
ANTS 2.

7. R. Lercier and F. Morain. Counting points on elliptic curves over Fy» using Cou-
veignes’s algorithm. Research Report LIX/RR/95/09, Ecole Polytechnique-LIX,
September 1995.

8. R. Lercier and F. Morain. Counting the number of points on elliptic curves over
finite fields: strategies and performances. In L.C. Guillou and J.-J. Quisquater,
editors, Advances in cryptology, EUROCRYPT 95, volume 921 of Lecture notes in
computer science, pages 79-94. Springer, 1995.

10.

11.

12.

13.

. R. Lidl and H. Niederreiter. Introduction to finite fields and their applications.

Cambridge University Press, 1986.

Frangois Morain. Calcul du nombre de points sur une courbe elliptique dans un
corps fini : aspects algorithmiques. Submitted for publication of the Actes des
Journées Arithmétiques 1993, March 1994.

R. Schoof. Elliptic curves over finite fields and the computation of square roots
mod p. Math. of Comp., 44:483-494, 1985.

René Schoof. Counting points on elliptic curves over finite fields. to appear in the
Journal de Théorie des nombres de Bordeaux.

J. F. Voloch. Explicit p-descent in characteristic p. Comp. Math., 74:247-258,
1990.

This article was processed using the B'TEX macro package with LLNCS style

