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Abstract

We prove two theorems and raise a few questions concerning discrete
logarithms and algebraic groups.

1 Introduction

Je n’aurais jamais pensé que mes pieces dussent s’attirer 'immortalité; mais depuis que quelques
poetes fameux m’ont fait I’honneur de les parodier, ce choix de préférences pourrait bien, dans les
temps a venir, leur faire partager une réputation qu’elles ne devront originairement qu’aux char-
mantes parodies qu’elles auront inspirées. Aussi marquai-je d’avance a mes associés bénévoles,
dans ce nouveau livre, toute la reconnaissance que m’inspire une société aussi flatteuse, en leur
fournissant, dans ce troisieme ouvrage, un vaste champ pour exercer leur Minerve.

Francgois Couperin, Préface au troisiéme livre

This paper, based on two talks given in Bordeaux (Three days in computa-
tional analytic and elementary number theory, may 1998) and Durham (Compu-
tational number theory, july 2000) is devoted to the study of discrete logarithm
in a slightly more general context than usual.

In section 3 we give the weakest conditions we know for the existence of a
proven sub-exponential algorithm computing discrete logarithms in the jacobians
of curves with increasing genera over a fixed field. The first work in that context
is [2] and was repeated in a series of publications all assuming more less implicitly
the curves to have very special geometric properties (e.g. being super-elliptic).
We show this is an inessential property. We replace it by a more arithmetic one
concerning the asymptotic behavior of the size of the jacobian. We believe it has
not been stressed enough that the genus does not suffice to control this size (e.g.
up to a sub-exponential factor). So it is not reasonable to expect discrete loga-
rithm algorithms to exist that would not take this problem into account. I would
like to thank Christophe Betard with whom I had many interesting discussions
on that topic. The algorithm we give relies on no heuristic and therefore gives
a theorem on the (randomized) complexity of discrete logarithms in the Picard
group of curves over a fixed field.
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Conversely, in section 4 we define the category of easy algebraic groups and
study the problem of discrete logarithm in the groups of points of a fixed algebraic
group, rational over increasing finite fields. We show that this category has quite
nice properties.

This leads to very natural questions of algorithmic and geometric nature.

Section 2 sets or recalls a few natural and simple definitions from complexity
theory to ensure the accuracy of the statements in that work.

2 Discrete logarithm problems and their com-
plexity

Since we shall be concerned with the difficulty of computing discrete logarithms
we first give the next

Definition 1 A discrete logarithm problem (G, «, 8) consists of a finite compu-
tational commutative group G, an element o« in G, and an element B in G. A
solution to this problem consists of an integer k such that 8 = ka.

We do not assume the order of the group G to be known. We may slightly
generalize the previous definition with

Definition 2 An extended discrete logarithm problem (G, (0)1<a<a, 5) consists
of a finite computational commutative group G, a family (o,)1<e<a of elements
in G, and an element B in G. A solution to this problem consists of A integers
(ka)i<a<a such that B =, ka0,

Although the extended logarithm problem seems to be more difficult than the
ordinary one, we notice that all known algorithms for the second one straightfully
extend to the first one.

In the sequel we shall concentrate on plain discrete logarithm problem. An
algorithm for solving discrete logarithm will be a randomized algorithm that gives
a solution when it exists but may run indefinitely when there is no solution. Such
an algorithm with known complexity may be used to solve the decision problem
(existence or not of a solution) in a probabilistic way. This means that we may
bound the probability of giving a wrong (negative) answer by an arbitrary small
constant.

Another use of a generalized discrete logarithm random algorithm is to com-
pute the module of relations between elements (ay)1<4<a of a commutative group
G with given cardinality I, that is the kernel R of the map £ in
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This problem is solved, at least in a probabilistic way, by first factoring (with
a sieving method like in [8]) the cardinality I. One then computes the order h; ;
of o; which is a divisor of I. Then, one looks for the smallest divisor hy o of I
such that hgoay is in the subgroup < oy > generated by «;. This is done using
the generalized discrete logarithm algorithm. We find hg o0 + ho10q = 0. We
continue this way and find the Hermite normal form of R.

An application is to compute a generating set for the intersection

HN < aq, ..., 04 >

where # is a subgroup of G, provide we are given the cardinality of G/#H and a
generating set for .

We are interested in the randomized complexity of discrete logarithms. We say
that a family of discrete logarithm problems is easy if there exists a randomized
algorithm that solves these problems in sub-exponential time in the order of the
group G that is in time exp(O(1) log® |G|) for some « in |0, 1[. Basic operations
in the group are assumed to require polynomial time in the logarithm of the size
of the group.

We say that a family of groups is easy if the family of all discrete logarithm
problems involving any of these groups is solved in time exp(O(1)log® |G|) for
some « in |0, 1.

It is a simple consequence of Kraitchik’s index calculus method that the family
of all multiplicative groups of prime finite fields is easy (we can take any o >
1/2). Similarly, the family of all multiplicative groups of finite fields of given
characteristic is easy.

It is shown in [1] that the family of multiplicative groups of all finite fields is
easy under some reasonable though unproven conjectures.

3 Index calculus and Picard groups

In this section we prove the following

Theorem 1 Let (C;)i>1 be a family of curves over F, with genus v, = g(C;)
tending to infinity and assume the number #Jc,(F,) of F,-rational points on the
jacobian of C; is bounded by ¢ tOWT) . The curves C; are given as plane curves
with polynomial degree in the genus. Assume further we are given an F,-rational
point O; on the smooth model of C; for every i. Then there exists an algorithm
that computes discrete logarithms in the groups H; = Jec,(F,) in random sub-

exponential time qo('V? ) for any positive €.

Section 3.1 recalls a few basic facts about the algorithmics of algebraic curves.
We find it necessary since our experience is that the amazing recent development
of this topic tends to hide the existence of quite old and useful results (after all,



the theory of algebraic curves was very much algorithmic in its origins). The
proof for theorem 1 is given in section 3.2.

3.1 Basic algorithms for algebraic curves

In this section we review a few basic facts about the algorithmics of algebraic
curves. We shall represent any curve over I, as a plane curve C with degree
d and genus g and will assume that the degree is bounded polynomially in the
genus. This is just intended to avoid artificial examples like a series of plane
genus zero curves with degree tending to infinity. Computing a smooth model
from the plane model is then done in polynomial time in the genus. For most
purposes, it suffices to have an explicit description of the different places above
any singular point. These places may be given by the Puiseux expansion of one
coordinate in terms of the other.

By a divisor we always mean a divisor on the smooth model of the curve
although the plane model might be more convenient for practical computation.
Similarly, the Picard group and the jacobian J¢ of C always are the ones of the
smooth model.

Computation of the linear space of a divisor A— B where A and B are effective
divisors is then done in time polynomial in the product deg(A) x deg(B) % g.

The enumeration of all prime divisors of degree bounded by a constant c is
done in polynomial time in ¢¢ X g.

Elements in the Picard group of degree 0 are represented by divisors of degree
zero and computation with such divisors relies on reducing divisors that is finding
an equivalent divisor of the form A — gO with A effective which can be done in
polynomial time. Here, a rational origin O is assumed to exist and to be given.

The techniques described above are very classical. See [5] for a classical review
of this folklore and [9] for an updated survey taking into account the progress of
computer algebra.

We now come to the problem of choosing a random element in the Picard
group of C over [F,. We do not assume the size of this group to be known. We
just assume we are given a set B of divisor classes that generate the Picard group.
We assume that the size of B is polynomial in the genus. Let T > 1 be a real
number. We want to choose a random combination of elements in B in such a
way that the corresponding sum in the Picard group is random with Y-almost
uniform probability. This means that every element occurs with probability at
least T~! and at most Y times the inverse of the size of the Picard group G. This
is achieved in the following way. Let d be the size of B and I the size of the
Picard group. We assume d > 2, otherwise the problem is trivial. Let R be the
kernel of the generating map &
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and set p = d4%(d!)?I. From Minkowski theorems [6, I1.6.8,11.6.9,11.7.4] we deduce
that R has a fundamental parallelogram P of radius bounded by p.

Let e =1 — Y71 Let R be an even integer bigger than e 'dp. Let Cy be the
hypercube in R? with center the origin and edge R defined to be the set of points
with integral coordinates in the interval [—R/2, R/2[. It is of course very easy
to pick an element in C'z with random uniform probability. The map £ pushes
the uniform probability on Cg to a probability on the set G which is Y-almost
uniform thus solving the problem of choosing random elements in the Picard
group in polynomial time provide we use the fast exponentiation algorithm. To
prove that this probability is T-uniform we set r = R — p and consider the union

A= U z+ P
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of R-translates of the fundamental parallelogram P that meet C,. We easily
check that C, C A C Cg and |Cgr — A|/|CR| < |Cgr — C;|/|Cgr| < dp/R. We
similarly set s = R + p and

B = U z+P
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the union of R-translates of the fundamental parallelogram P that meet C'r. We
have Cr C B C C; and |B — Cg|/|Cgr| < |Cs — Cg|/|Cr| < dp/R. The result
follows. On the way, we have proven the following useful

Lemma 1 Let R be a sub-lattice of Z¢ with index I and set kg = d?4%(d!)?. Let
R be an even integer bigger than kql. Let a be an element in the quotient group

Z4/R. Then the proportion of points in Cy that are congruent to a modulo R is
in [(1—kel/R)/I,(1 4 kql/R)/I].

In case R is a subgroup of Z¢ of rank smaller than d we have the even simpler

Lemma 2 Let R be a subgroup of Z¢ with infinite index. Let R be an even
positive integer. Let a be an element in the quotient group Z?/R. Then the
proportion of points in Cg that are congruent to a modulo R is bounded by 1/R.

Remark 1 The considerations above apply to the more general situation of a
finite commutative group given by generators (relations are unknown) and allow
to pick random elements with almost uniform probability as soon as an estimate
s given for the size of the group.



3.2 Proof of theorem 1

In order to prove theorem 1 we shall first describe an algorithm and then the
complexity analysis for it.

Let C; be any curve in the family. We denote by I the cardinality of its
Picard group over F,. Since it is not known, we shall replace it by a majoration
of it in all the estimates bellow. A discrete logarithm problem consists of two
effective divisors A and B of degree ;. The solution is an integer k£ such that
[B — v;,0;] = k[A — v;0;] whenever it exists.

We denote by B; the set of divisors on C; of degree lower than or equal to 7,/7,.
We denote by B; the set of divisor classes of the form [D — deg(D)O;] where D
is in B;. One easily checks (using Riemann hypothesis for function fields) that
these divisor classes generate the full Picard group of C; over F,. We say that a
divisor is B;-smooth or just smooth if it is a linear combination of elements in
B;. We denote by d the cardinality of B;. From [12, Corollary V.2.10] we have
d = ¢"V7itOUog%)  The number of effective divisors with degree 2; whose all
prime divisors are in B; is at least

L3 vA;)
d 7
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Indeed, to any unordered family of [%\/f_yzj elements in B; we associate their
product and thus form the expected number of smooth effective divisors. In this
expression, the numerator is ¢2%t9W/7:198%) and the denominator is ¢@(v7:18%) g
we have at least ¢2%tO(/7:198%) effective divisors of degree 2+, that are B;-smooth.
As expected the algorithm goes in several steps.

Step 1 : We first express a = [A — 7,0;] and f = [B — 7,0,] as linear
combinations of elements in B;. To this end, we choose a linear combination of
elements in BB; such that the corresponding sum in the Picard group of C; over [, is
random with 10/9-almost uniform probability (we take random coordinates in Cg
with R = 10dp where p = d4%(d!)%I.) We call D = Dt — ,0; the corresponding
reduced divisor and compute the linear space L(A+ D +~;0;) and pick a random
function ¢ in it. We set

(9)=E-A-D*

where F is an effective divisor of degree 2v;. If F is smooth, we thus get an
expression of & = [A — 7,;0;] as a linear combination of smooth divisor classes.
We repeat the whole process (taking another random element in the jacobian)
until we have found a relation.

We do the same with .

Step 2 : We then look for linear relations between elements in B;. Again we
choose a linear combination of elements in B; such that the corresponding sum in



the Picard group of C; over F, is random with 10/9-almost uniform probability.
We call D = DT —~;0; the corresponding reduced divisor and compute the linear
space L(2v;0; + D) and pick a random function ¢ in it. If (¢) = F — DT — »;0;
with E a B;-smooth effective divisor, we get a linear relation. We repeat the
process until we have found d independent relations.

Step 3 : We now have a lattice 7 C Z? of relations and we compute its
volume K which is a multiple of I bounded by (R + 2v;)%d%. We look for an
integer k such that 8 = ka in Z%/7T. This is done by mere linear algebra. If such
a k exists, we output it and stop. If such a k does not exist, we try to enlarge 7
by looking for extra linear relations. We proceed as in step 2 but this time allow
coefficients in Cg with @ = 10dp’ with p' = d4%(d!)?K . We go on enlarging T
until we find some £.

Remark 2 The above algorithm solves discrete logarithm in random sub-exponen-
tial time which means that if some k exists, it shall be found in random sub-
exponential time. However, if k does not exist, the algorithm will run indefinitely.
This algorithm may also be used to compute the cardinality and the structure of
the Picard group in probabilistic sub-exponential time as explained in section 2.

Remark 3 It may look strange that we use so big coefficients in the linear combi-
nations. This is to ensure the almost uniformity of the probability distributions.
In practice, one may rely on heuristics and take smaller coefficients. The ne-
cessity of translating the divisor by a random element in the jacobian instead of
looking for smooth functions in a fized linear space is also quite theoretical. How-
ever one may suspect that heuristics concerning the density of smooth functions
in a given linear space (like the ones in [2]) turn to be false for some very special
infinite series of curves. By contrast we notice that our algorithm makes no use
of smooth functions (just smooth divisors).

As for the complexity analysis of step 1 of the algorithm, we observe that
this first step consists in taking a random element in the set S with cardinality
Reqi+L of pairs consisting of a point in Cz and a function in the corresponding
linear space. The lucky elements in this set are made of in the following way: take
a B;-smooth divisor E of degree 27;. Then to any point in C'g that is mapped
onto [E — A — 7,0;] by & there corresponds a lucky element in S. The number
of lucky elements is thus at least the number of smooth divisors of degree 2v;
times the minimum number of elements in Cr in a given class modulo R. We
thus have at least 0.9R%q%tO(7:108%) /T lucky elements. Since I = ¢ +O(W7),
the proportion of lucky elements is ¢@(v7i1087%)

For step 2 we have to remove from the subset of lucky elements, those who
lead to relations that are in the sub-lattice generated by the relations we already
found. But this lattice is of infinite index and from lemma 2 we loose at most
1/R of the lucky elements.



For step 3 we again have to remove from the subset of lucky elements, those
who lead to relations that are in the sub-lattice generated by the relations we
already found. This time the lattice 7 has finite index at least two in R but
since we allow coefficients of size () the proportion of lucky elements to remove
is at most 0.5 x 1.1. This finishes the proof of theorem 1. O

Remark 4 If (C;)i>1 is an infinite family of curves that are all coverings of the
projective line of degree bounded by a constant n, then from [3, Th. 3] the class
number is O(q?(glogq)™™") thus the conditions of theorem 1 are met. This is the
case in particular for super-elliptic curves.

If one takes arbitrary curves of increasing genera -; there is no evidence that
they form an easy family of discrete logarithm problems although their jacobians
are quite computational groups as soon as we avoid fancy models. This point
seems to be ignored in the literature where people tend to assume (often implic-
itly) the existence of a map of fixed degree to the projective line. A geometric
condition which is useless and quite stronger than the arithmetic condition we
assume.

4 Easy algebraic groups

Que si 'on te reproche que tu ne parles pas le langage des villageois, et que toi ni ta troupe
ne sentez guere les brebis ni les cheévres, réponds leur, ma bergere, que pour peu qu’ils aient
connaissance de toi, ils sauront que tu n’es pas, ni celles aussi qui te suivent, de ces bergeres
nécessiteuses, qui, pour gagner leur vie, conduisent les troupeaux aux paturages, mais que vous
n’avez toutes pris cette condition que pour vivre plus doucement et sans contrainte. Que si vos
conceptions et paroles étaient véritablement telles que celles des bergers ordinaires, ils auraient
aussi peu de plaisir de vous écouter, que vous auriez beaucoup de honte a les redire.

Honoré d’Urfé, Epitre-Préface de l'auteur a la bergére Astrée

In the previous section we studied the asymptotic complexity of discrete log-
arithms in Picard groups of algebraic curves over a fixed field. In this section,
on the contrary, we study discrete logarithms in the group of points of a fixed
algebraic group over increasing extensions of the base field.

An algebraic group G over F, will be given as a finite collection of disjoint
regular varieties all defined over I, with multiplication and inversion morphisms
also defined over F, (see [10].) In some cases (e.g. jacobian varieties) one may
prefer to work with more natural models. The choice of a model is not decisive
as far as pushing a point from one model to the other one requires a constant
number of operations in the field of definition of that point.

In this paper we only consider commutative algebraic groups.

Definition 3 Let p be a prime and F, the field with ¢ = p* elements. Let G
be a commutative algebraic group over F,. We say that G is an easy algebraic
group over F, if there exists an algorithm that solves discrete logarithm problems
in the groups G, = G(Fu) in sub-exponential random time in the size |Gi| of
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the groups. An operation in the base field I, is assumed to require one unit of
time. So we say that G is easy if and only if there ezists a real v in |0,1[ and a
randomized algorithm that computes discrete logarithms in the groups Gy in time

exp(O(1) log® |Gkl).

We notice that an algebraic group over F, is easy if an only if the family of
groups G(IF,-) for r > 1 is easy.

Remark 5 We may give a more accurate definition and specify a value for «.
For example we may say that a group s v-easy if one can take in the previous
definition o = v + € for any positive €. However, all the proven sub-exponential
algorithm for discrete logarithms and factoring integers correspond to the case
v =1/2. See remark 6.

We start with a few lemmata.

Lemma 3 Let G be a commutative algebraic group over Iy, of dimension d. For
any positive integer r, the size of G(Fy) is equivalent to a constant c times q
when r tends to infinity:

G(Fyr)| = ¢" (c+0(1)).

The cardinality of G(FF,r) is equal to the number of connected components
times the cardinality of Go(IF,r ) where G| is the identity component (recall G/Gy
is assumed to decompose over F,.) The lemma then follows from some weak form
of Weil’s conjectures (for a non complete variety) like in [4, Corollary 5. O

Lemma 4 Let G be a commutative connected algebraic group over a finite field
and let 1 - L — G — A — 1 be the strict eract sequence of connected commu-
tative algebraic groups from Chevalley’s theorem. There exists an isogeny defined
over F, from G to the direct product L x A.

This results from the properties of the Ext functor for algebraic groups ([11,
Proposition VIIL.6] and [11, Théoreme VII.12]), the solvability of commutative lin-
ear groups (Rosenlicht [10]) and the computations for G, and G, ([11, Théoréme
VIL6, Théoréme VIL7)). O

We list natural properties of easy groups in the following

Theorem 2 The following are true.

i@ — If Q@ = q° is a power of ¢ and Fg D F, the corresponding field extension
and G' an algebraic group over F, then G is an easy group over F, if and
only if G ®y, Fg is an easy group over Fy.



1t — Algebraic groups of dimension zero are easy. A group G is easy if and only
if the component of the identity Gy is easy.

11 — Subgroups and direct product of easy groups are easy. An isogenous group
to an easy group is easy.

w — If A, B and C are algebraic groups over I, with a strict ezact sequence

1-A=-B—=>C—1
then B s easy if and only if A and C are.

v — The multiplicative group Gy, and the additive group G, are easy over TF,.
Linear groups are easy. A connected algebraic group is easy if and only if
its mazrimal complete quotient is an easy abelian variety.

vi — Any super-singular elliptic curve is easy over its field of definition.

Points 7, 42 and #i7 are trivial.

If1—+A— B — C —1is a strict exact sequence of commutative algebraic
groups and A and C are easy then B is easy since we can push a discrete logarithm
problem (c, 3) from B to C and find k such that o is in A. Because we know
the order of the group of rational points of C' (from Weil’s conjectures) we may
factor it using a sieving method and compute the smaller positive power of «
lying in A. We thus reduce to a discrete logarithm problem in A. This proves
half of point 7v.

The additive group is trivially easy and also the multiplicative group by the
index calculus method. Linear commutative groups are solvable (Rosenlicht [10])
therefore easy. If 1 - L -+ G — A — 1 is the exact sequence from Chevalley’s
theorem then A is isogenous to a subgroup of G by lemma 4 and is thus easy
if G is. The converse follows from what we just proved of point sv. Therefore
quotients of easy groups are easy. This finishes the proof of point 7v.

Assertion vi is the result in [7]. O

Remark 6 The theorem above remains true if we replace everywhere the word
easy by a-easy (following remark 5) provide a > 1/2. This condition is imposed by
the use of a proven factoring algorithm in proving point iv. One may of course
wonder if there are provable factoring algorithms for a smaller o (see related
question 4 below).

We denote by AG, the category of algebraic groups over F, and AG, the
category of algebraic groups over F,. We denote by EAG, the full sub-category
of AG, consisting of easy algebraic groups over F, and similarly for EAG.

We ask how large are EAG, and EAGy. In view of Chevalley’s theorem [10]
and theorem 2 we may restrict our attention to simple abelian varieties over F,.
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It is remarkable that there has been no result in the sense of enlarging these
categories since the proof by Menezes, Okamoto and Vanstone [7] of statement
vt in theorem 2.

From the properties listed above we can expect the category EAGy to be
characterized by simple geometric ways. This raises the following

Question 1 How big is EAGy?
More accurate questions
Question 2 Are all abelian varieties easy?
Question 3 Are all abelian varieties with zero p-rank easy?

Question 4 Can one prove a theorem like theorem 1 with a sharper estimate for
the running time namely ¢°0%) with a smaller than 1/27
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