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Abstract

We present a randomized algorithm that on input a finite field K with q elements and a positive
integer d outputs a degree d irreducible polynomial in K[x]. The running time is d1+o(1) ×
(log q)5+o(1) elementary operations. The o(1) in d1+o(1) is a function of d that tends to zero
when d tends to infinity. And the o(1) in (log q)5+o(1) is a function of q that tends to zero when q
tends to infinity. In particular, the complexity is quasi-linear in the degree d.

1 Introduction

This article deals with the following problem: given a prime p, a power q = pw of p, a finite field
K with q elements, and a positive integer d, find a degree d irreducible polynomial in K[x]. We
assume that the finite field K is given as a quotient (Z/pZ)[z]/h(z) where h(z) is a degree w uni-
tary irreducible polynomial in (Z/pZ)[z]. The complexity of algorithms will be evaluated in terms
of the number of necessary elementary operations. Additions, subtractions and comparisons in K re-
quire O(log q) elementary operations. Multiplication and division require (log q) × (log log q)1+o(1)

elementary operations1.
A classical approach to finding irreducible polynomials consists in first choosing a random poly-

nomial of degree d and then testing for its irreducibility. The probability that a polynomial of degree
d be irreducible is ≥ 1/(2d). See Lidl and Niederreiter [11, Ex. 3.26 and 3.27, page 142] and Lemma
4 of Section 7.3 below. In order to check whether a polynomial f(x) is irreducible, we may use
Ben-Or’s irreducibility test [2]. This test has maximal complexity (log q)2+o(1) × d2+o(1) elementary
operations while its average complexity is (log q)2+o(1) × d1+o(1) elementary operations according
to Panario and Richmond [12]. The average complexity of finding an irreducible polynomial with
this method is thus d2+o(1) × (log q)2+o(1) elementary operations. All the known algorithms have a
quadratic factor at least in d. A survey can be found in the work of Shoup [14, section 1.2]. It seems
difficult to improve on these existing methods as long as we use an irreducibility test.

So we are driven to consider very particular polynomials. For example, Adleman and Lenstra [1]
construct irreducible polynomials in this way. Their method is deterministic polynomial time, under
∗Research supported by the “Agence Nationale de la Recherche” through project ALGOL (ANR-07-BLAN-0248) and
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the Riemann Hypothesis. It uses Gauss Periods. In Section 2 we recall how efficient such methods
can be for very special values of the degree d. We reach quasi-linear complexity in d when d = `δ is a
power of a prime divisor ` of p(q − 1). Section 3 explains how to construct a degree d1d2 irreducible
polynomial once given two irreducible polynomials of coprime degrees d1 and d2. We explain in
Sections 4 and 5 how to construct irreducible polynomials using isogenies between elliptic curves.
Thanks to this new construction, we reach quasi-linear complexity in d when d = `δ is a power of a
prime ` and ` does not divide p(q−1). Putting everything together, we obtain a probabilistic algorithm
that finds a degree d irreducible polynomial in K[x] at the expense of d1+o(1)× (log q)5+o(1) elemen-
tary operations, without any restriction on d nor q. Our constructions are summarized in Section 6 and
Theorem 1. In Section 7 we state several useful preliminary results about finite fields, polynomials
and elliptic curves.

Remark: One may wonder if the algorithms and complexity estimates in this paper are still valid
when the base field is not presented as a quotient (Z/pZ)[z]/(h(z)). Assume for example that ele-
ments in K are represented as vectors in (Z/pZ)w. Assume we are given the vector corresponding
to the unit element 1. Assume also we are given a black box or an algorithm that computes multi-
plications and divisions of elements in K. In this situation, before applying the algorithms presented
in this paper, we should first construct an isomorphism between the given K and a quotient ring of
the form (Z/pZ)[z]/(h(z)). To this end, we first look for a generator τ of the (Z/pZ)-algebra K.
We pick a random element τ in K. The probability that τ generates K over Z/pZ is at least 1/2
according to lemma 4 of Section 7.3. We compute the powers τk for 0 6 k 6 w. These are w + 1
vectors of length w. We compute the kernel of the corresponding matrix inMw×(w+1)(Z/pZ). If the
dimension of this kernel is bigger than 1 then τ is not a generator, so we pick a different τ and start
again. If the kernel has dimension 1 we obtain the minimal polynomial h(z) ∈ (Z/pZ)[z] of τ , and
an explicit isomorphism κ from K̃ = (Z/pZ)[z]/(h(z)) onto K. All this requires O(w) operations
in K and O(w3) operations in Z/pZ. Given any degree d irreducible polynomial f̃(x) in K̃[x] we
deduce an irreducible polynomial in K[x] by applying the isomorphism κ to every coefficient in f̃(x).
This requires dw2 operations in Z/pZ. So our algorithms and complexity estimates remain valid in
that case, as long as elementary operations in K can be computed in time (log q)4+o(1) elementary
operations. This includes all the reasonable known models for finite fields, including normal bases
and towers of extensions.

Notation: if K is a field with characteristic p and q is a power of p, we note Φq : K → K the
morphism which raises to the q-th power. If G is an algebraic group over K we note ϕq : G→ G(q)

the Frobenius morphism.

Acknowledgements: we thank K. Kedlaya for pointing his joint work with Umans [9] to us, and
H. Lenstra for explaining to us how to save a log q factor in the complexity using [7].

2 Basic constructions

In this section K is a finite field with q = pw elements and Ω is an algebraic closure of K. For every
positive integer k, we denote by Fpk the unique subfield of Ω with pk elements. We explain how to
quickly construct a degree d irreducible polynomial when d is a prime power `δ and ` divides p(q−1).
All the constructions in this section are known, but deserve to be quickly surveyed. Section 2.1 deals
with the case ` = p. Section 2.2 deals with the case when ` is a prime divisor of (q − 1). Section 2.3
is concerned with the special case ` = 2 and q odd. In Section 2.4 we detail on a simple example how
Gauss periods can be useful in some cases. Although the results in Section 2.4 are not necessary to
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prove Theorem 1, several ideas at work in this section play a decisive role later in the slightly more
advanced context of Section 5.

2.1 Artin-Schreier towers

In this section we are given a p-th power d = pδ and we want to construct a degree d irreducible
polynomial in K[x]. We use a construction of Lenstra and de Smit [6] in that case. If k and l are two

positive integers such that k divides lwe define the polynomial Tl,k(x) = x+xpl+xp2l+· · ·+xp
( k
l
−1)l

.
For every positive integer k we denote by Ak ⊂ Ω the subset consisting of all scalars a ∈ Ω such that
the three following conditions hold true:

1. a generates Fpk over Fp i.e. Fp(a) = Fpk ,

2. a has non-zero absolute trace: T1,k(a) 6= 0,

3. a−1 has non-zero absolute trace: T1,k(a−1) 6= 0.

We set I(X) = Xp−1∑
16i6p−1 X

i . This rational fraction induces an unramified covering

I : Ω− Fp → Ω− {0}.

We check that I−1(Ak) ⊂ Apk for every k ≥ 1. Indeed, if a ∈ Ak and if I(b) = a then b 6= 1
and

1
(1− b)p

− 1
1− b

= bp − b
(b− 1)p+1 = b+ · · ·+ bp−1

bp − 1
= a−1.

So 1/(1− b) is a root of the separable polynomial xp − x = a−1. This polynomial is irreducible
over Fpk [x] because the absolute trace of a−1 is non-zero. So Fp(b) = Fppk . Further b is a root of the
polynomial xp−a(xp−1 + · · ·+x)−1. So the trace Tk,pk(b) of b relative to the extension Fppk/Fpk is
a. As a consequence the absolute trace of b is T1,pk(b) = T1,k(Tk,pk(b)) = T1,k(a) the absolute trace
of a; and it is non-zero. Now b−1 is a root of the reversed polynomial xp + a(xp−1 + · · ·+x)− 1. So
the trace of b−1 relative to the extension Fppk/Fpk is −a. As a consequence the absolute trace of b−1

is the opposite of the absolute trace of a; and it is non-zero.

Since A1 = Fp − {0} we deduce that #Apk ≥ (p − 1)pk. In particular the fiber above 1 of
the iterated rational fraction I(δ) is irreducible over Fp. If w is prime to p then this fiber remains
irreducible over K = Fq. In general, we factor the degree w of Fq/Fp as w = pew′ where w′ is prime
to p. We first look for an element a ∈ Ape ⊂ Fq. Using the remarks above we can find such an a by
solving eArtin-Schreier equations with coefficients in Fq. To this end, we write down the matrix of the
Fp-linear map x 7→ xp−x in the Fp-basis (1, z, . . . , zw−1) of K = (Z/pZ)[z]/(h(z)). We then solve
the e corresponding Fp-linear systems of dimension w. Altogether, finding a requires O(w × log p)
operations in K and O(ew3) operations in Fp. Since w = O(log q) and e = O(logw) = O(log log q)
we end up with a complexity of (log q)4+o(1) elementary operations.

The fiber I−δ(a) is a degree pδ irreducible divisor over Fppe . It remains irreducible over K = Fq.
There remains to compute the annihilating polynomial of this fiber. We compute the iterated rational
fraction Iδ(x) = N(x)

D(x) . Composition of polynomials and power series can be computed in quasi-

linear time i.e. d1+o(1) × (log q)1+o(1) elementary operations, using recent results by Umans and
Kedlaya [15, 9]. See Corollary 2 in Section 7.5 below. An older algorithm due to Brent and Kung has
exponent ω+1

2 + o(1) where ω is the exponent in matrix multiplication. So we can compute N(x) and
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D(x) at the expense of pδ+o(1) × (log q)1+o(1) = d1+o(1) × (log q)1+o(1) elementary operations. The
polynomial f(x) = N(x)− aD(x) is an irreducible degree d polynomial in K[x].

An example: We take p = 2, q = 4, δ = 2 and d = 4. We assume K = F2[z]/(z2 + z + 1). So
e = 1. We know that 1 ∈ A1. We set a = z mod z2 + z + 1 and check that I(a) = 1. So a ∈ A2.
We compute I(I(x)) = x4+x2+1

x3+x and set f(x) = x4 + x2 + 1 − a(x3 + x). This is an irreducible
polynomial in K[x].

2.2 Radicial extensions

In this section ` is a prime dividing q − 1. Let d = `δ for some positive integer δ. In the special case
` = 2 we further ask that `2 = 4 divide q− 1. We want to construct a degree d irreducible polynomial
in K[x]. This is a very classical case. We write q − 1 = `e`′ where `′ is prime to `. We first look for
a generator a of the `-Sylow subgroup of F∗q . To find such a generator, we pick a random element in
F∗q and raise it to the power `′. Call a the result. Check that a`

e−1 6= 1. If this is not the case, start
again. The probability of success is 1− 1/`. The average complexity of finding such an a is O(log q)
operations in Fq. The polynomial f(x) = xd − a is irreducible in Fq[x]. This is well know but we try
to prove it in a way that will be easily adapted to a more general context later.

The `δ+e-torsion Gm[`δ+e] of the multiplicative group Gm is isomorphic to (Z/`δ+eZ,+) and the
Frobenius endomorphism ϕq : Gm → Gm acts on it as multiplication by q. The order of q = 1+ `′`e

in (Z/`e+δZ)∗ is `δ = d. So the Frobenius Φq acts transitively on the roots of f(x).

An example: We take p = 5, q = 5, ` = 2, δ = 3 and d = 8. We check that 4 divides p − 1.
In particular e = 2 and `′ = 1. The class a = 2 mod 5 generates the 2-Sylow subgroup of (Z/5Z)∗.
Indeed 24 = 1 mod 5 and 22 = −1 mod 5. We set f(x) = x8 − 2.

2.3 A special case

In this section we assume that p is odd, ` = 2 and d = 2δ for some positive δ. We need to adapt the
methods of Section 2.2 in that special case because the group of units in Z/dZ that are congruent to
1 modulo ` is no longer cyclic when ` = 2 and δ > 2. We want to construct a degree d irreducible
polynomial in K[x]. This time we assume that 22 does not divide q−1. So q is congruent to 3 modulo
4. We set Q = q2 and observe that 4 divides Q− 1.

We first look for a generator c of FQ over K = Fq. For example we take c a root of the polynomial
y2−r where r is not a square in K. If δ = 1 we are done. Assume now δ ≥ 2. We writeQ−1 = 2e`′
where `′ is prime to 2. We find a generator a of the 2-Sylow subgroup of F∗Q. The polynomial
F (x) = xd/2−a is irreducible in FQ[x]. There remains to derive from F (x) an irreducible polynomial
f(x) of degree d in K[x]. We call ā = Φq(a) = aq the conjugate of a over Fq. We can compute it
at the expense of O(log q) operations in K. It is clear that ā 6= a because the order of a is divisible
by 4 and there is no point of order 4 in Gm(Fq). The polynomial f(x) = (xd/2 − a)(xd/2 + ā) has
coefficients in K. It is irreducible over K. Indeed, any root b of xd/2 − a is also a root of f(x). The
field Fq(b) generated by b over Fq contains a and it has degree d/2 over Fq(a) = FQ because F (x) is
irreducible in FQ[x]. So f(x) is irreducible in K[x].

An example: We take p = 7, q = 7, ` = 2, δ = 3 and d = 8. Since 4 does not divide q − 1 we
set Q = q2 = 49. We factor 49 − 1 = 24 × 3 so e = 4 and `′ = 3. We check that r = 3 mod 7 is
not a square in F7. So we set c = y mod y2 − 3 ∈ F7[y]/(y2 − 3). We set a = (1 + c)3 = 3 − c
and check a16 = 1 and a8 = −1. We set F (x) = x4 − a. We compute ā = a7 = 3 + c. We set
f(x) = (x4 − a)(x4 − ā) = x8 + x4 − 1. This is an irreducible polynomial in F7[x].
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2.4 Gauss periods

In this section we assume ` = 3 and d = 3δ and p = q 6= 3. We assume that 3 does not divide q − 1.
So q is congruent to 2 modulo 3, and we cannot apply the method in Section 2.2. We experiment in
this simple context an idea that will be decisive in Section 5. We base change to a small auxiliary
extension. We set Q = q2 and observe that 3 divides Q − 1. We shall deal with the field FQ with
Q elements. We note that this idea is valid for any prime `, but the degree of the auxiliary extension
FQ/Fq might be quite large (up to `− 1) for a general `. This is the reason why we shall later need to
adapt this construction to the context of Kummer theory of elliptic curve.

We first need to build a computational model for this field. For example we pick a degree 2
irreducible polynomial y2 − r1y + r2 in K[x] and set L = K[y]/(y2 − r1y + r2). We set c =
y mod y2 − r1y + r2. We write Q − 1 = 3e`′ where `′ is prime to 3. We find a generator a of the
3-Sylow subgroup of L∗. The polynomial F (x) = xd − a is irreducible in L[x]. There remains to
derive from F (x) an irreducible polynomial f(x) of degree d in K[x].

Let b = x mod F (x). This is a root of F (x) in L[x]/(F (x)). The later field has q2d elements.
Recall Φq is the application which raises to the q-th power. We have ΦQ = Φ2

q . For any α ∈
L[x]/F ((x)) we set Σ1(α) = α+ Φd

q(α) and Σ2(α) = α× Φd
q(α).

L[x]/(F (x)) ' Fp2d

TTTTTTTTTTTTTTT

K[x]/(f(x)) ' Fpd

L ' Fp2

TTTTTTTTTTTTTTTTT

K ' Fp

Since d is a prime power, at least one among Σ1(b) and Σ2(b) generates an extension of degree
d of Fq. Otherwise Σ1(b) and Σ2(b) would both belong to the unique extension of degree d/3 of K
inside L[x]/F ((x)); and b would then belong to the degree d/3 extension of L inside L[x]/(F (x)), a
contradiction. See also Lemma 1 of Section 7.1.

In other words, there exists a k ∈ {1, 2} such that the polynomial

f(x) =
∏

06l6d−1
(x− Φl

q(Σk(b)))

is irreducible of degree d in K[x] .

Three questions now worry us:

1. How to compute Σk(b) for k ∈ {1, 2} ?
2. How to find the good integer k ?
3. How to compute f(x) starting from F (x) ?

• Question 1 boils down to asking how to compute Φd
q(b). A first method would be to compute

Φd
q(b) as bq

d
at the expense of O(d log q) operations in L[x]/(F (x)). This would require O(log q)×

d2+o(1) operations in K. This is too much for us.
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Instead of that, we should remind of the geometric origin of the polynomial F (x). Indeed, b lies
in Gm[3e+δ]. We write qd = R mod 3e+δ where 0 6 R < 3e+δ 6 Qd. Then Φd

q(b) = bR can be
computed at the expense of O(logR) = O(log q + log d) operations in L[x]/(F (x)). This requires
O(log q)× d1+o(1) operations in K.

• Question 2 can be solved by comparing Σ1(b) and its conjugate by Φ3δ−1
q namely

Φ3δ−1
q (Σ1(b)) = Σ1(Φ3δ−1

q (b)) = Φ3δ−1
q (b) + Φ3δ+3δ−1

q (b).

Each of the two terms in the above sum can be computed as explained in the paragraph above.

• Question 3 is related to the following problem: we are given Σk(b) for k ∈ {1, 2}. We know
that Σk(b) belongs to the degree d extension of K inside L[x]/(F (x)). We want to compute its
minimal polynomial f(x) as a polynomial in K[x] ⊂ L[x]. One can apply a general algorithm for
this task, such as the one given by Kedlaya and Umans [15, 9]. See also Theorem 4 in Section 7.5
below. They show that it is possible to compute this minimal polynomial at the expense of d1+o(1) ×
(logQ)1+o(1) elementary operations. Thus the complexity is quasi-linear in d.

An example: We take p = q = 5, ` = 3, δ = 2, d = 9. So Q = 25, Q − 1 = 3 × 8, e = 1 and
`′ = 8. We check that r = 2 mod 5 is not a square. We set c = y mod y2 − 2 ∈ F5[y]/(y2 − 2).
We compute a = (1 + c)8 = 2 + 3c. We check a3 = 1 and a 6= 1. We set F (x) = x9 − a
and b = x mod F (x). We need to compute the conjugate of b above F59 . This is b59

. Remind b
lies in Gm[27]. So we don’t raise b to the power 59 brutally. We rather compute 59 = 1953125 =
−1 mod 27. So Φ59(b) = 1/b = 2(y + 1)x8 mod (x9 − 2− 3y, y2 − 2, 5). The product Σ2(b) = 1
is not the good candidate. So we compute the characteristic polynomial of Σ1(b) = b+ 1/b and find
f(x) = x9 + x7 + 2x5 + 4x+ 1 ∈ F5[x].

3 Compositum

In this section K is a finite field with q = pw elements and Ω is an algebraic closure of K. For every
positive integer k, we denote by Fpk the unique subfield of Ω with pk elements. We have seen in
Section 2 how to construct an irreducible polynomial of degree d in K[x] when d is a prime power `δ

and ` divides p(q− 1). In Sections 5 and 4 we shall treat the case when d is a prime power `δ and ` is
prime to p(q − 1).

The last problem to be considered is thus the following one: given two irreducible polynomi-
als f1(x) and f2(x) in K[x] with coprime degrees d1 and d2, construct a degree d1d2 irreducible
polynomial.

Let α1 ∈ Ω be a root of f1(x). Let α2 ∈ Ω be a root of f2(x). We first show that α1 + α2
generates an extension of degree d1d2 of Fq. Indeed, let Φ ∈ Gal(Ω/Fq) be an automorphism that
fixes α1 + α2:

Φ(α1 + α2) = α1 + α2 . (1)

One deduces that Φ(α1) − α1 = α2 − Φ(α2) is an element γ of the intersection Fq of Fqd1 and
Fqd2 . The order of Φ acting on Fqd1 divides d1. So Φd1(α1) − α1 = d1γ = 0. We prove in the
same way that d2γ = 0. Since d1 and d2 are coprime we deduce that γ = 0. Thus Φ acts trivially
on Fqd1 = Fq(α1) and on Fqd2 = Fq(α2), therefore also on their compositum Fqd1d2 . So α1 + α2
generates this compositum.

The same argument proves that α1α2 generates Fqd1d2 .
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It is thus enough to compute the minimal polynomial of the sum or the product of α1 and α2. For
this task, one may follow work by Bostan, Flajolet, Salvy and Schost [3], based on algorithms for
symmetric power sums due to Kaltofen and Pan [5] and Schönhage [13]. See also [4]. This yields an
algorithm with a quasi-linear time complexity in d1d2.

4 Isogeny fibers

In this section we show how to construct irreducible polynomials using elliptic curves. Let K be a
field and let Ω be an algebraic closure of K. Let E/K be an elliptic curve given by the Weierstrass
equation

E/K : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 .

We denote by OE = [0 : 1 : 0] the origin of E and by x = X/Z, y = Y/Z the affine coordinates
associated with the projective coordinates [X : Y : Z].

Let E′/K be another elliptic curve in Weierstrass form. We define X ′, Y ′, Z ′, a′1, a′2, a′3, a′4, a′6,
x′, y′, O′ similarly. Let ι/K : E/K → E′/K be a degree d separable isogeny. We assume that d
is a positive odd number and the kernel Ker ι is cyclic. Let T ∈ E(Ω) be a generator of Ker ι. Let
ψι(x) ∈ K[x] be the degree (d− 1)/2 polynomial

ψι(x) =
∏

16k6(d−1)/2
(x− x(kT )) . (2)

There exists a degree d polynomial φι(x) ∈ K[x] and a polynomial ωι(x, y) = ω0(x)+yω1(x) ∈
K[x, y] with degree 1 in y such that the image of the point (x, y) by ι is (x′, y′) where x′ = φι(x)

ψ2
ι (x) and

y′ = ωι(x,y)
ψ3
ι (x) . We call I(x) ∈ K(x) the rational fraction I(x) = φι(x)

ψ2
ι (x) .

Now let A be a K-rational point on E′ such that 2A 6= O′ and let B ∈ E(Ω) be a point on E such
that I(B) = A. We define the polynomial

fι,A(x) = φι(x)− x′(A)ψ2
ι (x) ∈ K[x].

This is a separable polynomial. Its roots are the x(B + kT ) for 0 6 k < d.
The map x : E(Ω)−O → Ω induces a Galois equivariant bijection between the fiber ι−1(A) and

the roots of fι,A(x). In particular, fι,A(x) is irreducible if and only if the fiber ι−1(A) is.
The residue ring of I−1(A) is K[x]/(fι,A(x)) and the class of y in this ring is given by equation:

y = y′(A)ψ3
ι (x)− ω0(x)
ω1(x)

mod fι,A(x). (3)

The two questions that worry us are the following ones.

• Can we compute fι,A(x) quickly, e.g. in quasi-linear time in d ?
• Under which conditions is fι,A(x) irreducible ?

These two questions are successively addressed in Sections 4.1 and 4.2. In Section 4.3 we deduce
a fast algorithm that constructs a degree d irreducible polynomial in K[x] when K is a finite field with
q = pw elements and d = `δ is a power of a prime ` such that ` is prime to p(q − 1) and 4` 6 q

1
4 .

7



4.1 Calculation of the polynomial fι,A(x)

For any geometrical point P ∈ E(Ω), we denote by τP : E → E the translation by P . Let xP be
the function x ◦ τ−P and similarly let yP be the function y ◦ τ−P . If P = kT , we moreover define
xk = xkT and yk = ykT . Recall d is assumed to be odd. In this section we present methods for fast
construction of isogenies. Section 4.1.1 concerns isogenies with split cyclic kernel. We just recall
Vélu’s formulae in that case. Section 4.1.2 recalls how one can take advantage of the decomposition
of an isogeny into several ones with smaller degrees. This is particularly useful when E/K has
complex multiplication and the isogeny in question is the kernel isogeny associated to some power of
an invertible prime ideal in the endomorphism ring of E. This idea is detailed in Section 4.1.3.

4.1.1 Vélu’s isogenies

In this paragraph, we assume that T is a K-rational point and ι is the isogeny given by Vélu’s formulae
[16]: 

x′ = x+
∑

0<k<d
[xk − x(kT )] ,

y′ = y +
∑

0<k<d
[yk − y(kT )] .

(4)

We put some order in Eq. (4). We first express xk in terms of x and y,

xkT × (x− x(kT ))2 = x(kT )x2 + (a3 + 2y(kT ) + a1x(kT )) y
+

(
a4 + a2

1x(kT ) + a1a3 + 2a2x(kT ) + a1y(kT ) + x(kT )2
)
x?

+ a2
3 + a1a3x(kT ) + a3y(kT ) + a4x(kT ) + 2a6. (5)

We deduce that xkT + x−kT − 2x(kT ) is equal to

(6x(kT )2 + (a2
1 + 4a2)x(kT ) + a1a3 + 2a4)x?− 2x(kT )3 + (a1a3 + 2a4)x(kT ) + a2

3 + 4a6

(x− x(kT ))2 . (6)

One computes the rational fraction x′ = φι(x)
ψ2
ι (x) using Eqs. (4) and (6) by gathering the terms

relative to k and −k, with the help of a divide and conquer strategy. Complexity is quasi-linear in d.
A similar calculation gives us the explicit form of y′ = ωι(x,y)

ψ3
ι (x) .

4.1.2 Composition of isogenies

Assume d factors as d1d2. Then the degree d isogeny ι : E → E′ decomposes as ι = ι2 ◦ ι1 where
ι1 : E → F is a degree d1 isogeny and ι2 : F → E2 is a degree d2 isogeny. The kernel of ι1 is
generated by d2T and the kernel of ι2 is generated by ι1(T ). Let I(x) be the degree d rational fraction
associated with ι. Define similarly I1(x) and I2(x). Then I(x) = I2(I1(x)). We may then compute
I(x) in three steps: first compute I1(x), then compute I2(x), and finally compute the composition
I = I2 ◦ I1 using work by Umans and Kedlaya [15, 9]. See Corollary 2 in Section 7.5.

4.1.3 A special simple case

We now assume that K is a finite field with q = pw elements. Let ϕq : E → E be the Frobenius
endomorphism of E and by t its trace. Let O be the quotient ring Z[X]/(X2 − tX + q) and let α
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be the class of X in O. We call ε : O → End(E) the ring monomorphism that sends α onto ϕq.
For every subset S of O we define the kernel of S in E to be the intersection of all the kernels of the
endomorphisms ε(s) for s ∈ S. This is a subgroup scheme of E. We denote it by E[S]. Let ` be a
prime not dividing p(q−1). We assume that ` divides the order q+1− t of E(K). As a consequence
` is coprime to t2 − 4q.

We have
X2 − tX + q = (X − 1)(X − q) mod ` ,

because 1− t+ q is divisible by ` and the product of the roots of X2− tX + q equals q. Furthermore,
the roots 1 mod ` and q mod ` are distinct because ` does not divide q − 1.

Let l = (`, α − 1) be the prime ideal in O above ` and containing α − 1. This is an invertible
ideal. It’s kernel in E is E[`](K) the rational part of the `-torsion of E.

Let m be a positive integer. According to Hensel’s lemma, there exist two integers λm and µm in
[0, `m[ such that λm = 1 mod `, µm = q mod ` and

X2 − tX + q = (X − λm)(X − µm) mod `m.

The ideal lm ofO is generated by `m and α−λm. The kernel of lm in E is a cyclic group of order
`m inside E(Ω). We denote by ιm : E → Em the quotient isogeny by E[lm]. The elliptic curve Em
is defined over K, a finite field with q elements. Let εm : O → End(Em) be the ring homomorphism
that sends α onto the q-Frobenius endomorphism of Em. The two homomorphisms ε and εm are
compatible with the isogeny ιm in the sense that for every s in O one has εm(s) = ιm ◦ ε(s) ◦ ι−1

m .
For every subset S ofO we define the kernel of S in Em to be the intersection of all the kernels of the
endomorphisms εm(s) for s ∈ S. This is a subgroup scheme of Em. We denote it by Em[S].

Using Lemma 2 of Section 7.2 we see that ιm+1 : E → Em+1 decomposes as m+1 ◦ ιm where
m+1 : Em → Em+1 is a degree ` isogeny with kernel Em[l] = Em[`](K).

We denote by Im(x) ∈ K(x) the degree `m rational fraction associated with ιm. We denote by
Jm ∈ K(x) the degree ` rational fraction associated with m. We have 1 = ι1. So I1 = J1 and
Im = Jm ◦ · · · J2 ◦ J1. Every rational fraction Jk can be computed using the method of Paragraph
4.1.1. The composition Im can be computed using the method in Paragraph 4.1.2.

4.2 Irreducibility conditions

We assume that we still are in the situation of Paragraph 4.1.3. We have a finite field K with q
elements. We denote by p its characteristic. We have an elliptic curve E over K. We denote by
ϕq : E → E the Frobenius endomorphism of E and by t its trace. Let ` be a prime not dividing
p(q − 1). In particular ` is odd. We assume that ` divides the order q + 1 − t of E(K). We want
to construct an irreducible polynomial f(x) ∈ K[x] with degree d = `δ. We factor q + 1 − t as
q + 1− t = `e`′ where `′ is prime to `. We use the notation introduced in Paragraph 4.1.3.

There exist two integers λe+δ and µe+δ such that

λe+δ = 1 mod `e , µe+δ = q mod `e ,
X2 − tX + q = (X − λe+δ)(X − µe+δ) mod `e+δ .

We write λe+δ = 1 + `e`′′ with `′′ prime to `. In the sequel we set λ = λe+δ and µ = µe+δ. Let
now

d = (d, α− λ) = (`, α− λ)δ = lδ.

9



This is an invertible ideal. Its kernel E[d] in E is the kernel of the isogeny ιδ : E → Eδ. The `-
Sylow subgroup of Eδ(K) is the kernel of le = (`e, α− 1) in Eδ and it is cyclic. Let A be a generator
of it. Let B ∈ E(Ω) such that ιδ(B) = A. Then B generates the kernel of le+δ = (`e+δ, ϕq − λ) in
E. Especially,

ϕq(B) = λB, (7)

and the order of λ = 1 + `e`′′ in (Z/`e+δZ)∗ is d = `δ. Thus, the Galois orbit of B has cardinality d
and the polynomial fι,A(X) is irreducible.

4.3 Existence conditions

Assume we are given a finite field K with characteristic p and cardinality q and an integer d = `δ such
that ` is prime to p(q − 1). We look for a degree d irreducible polynomial in K[x]. The construction
in Section 4.2 requires an elliptic curve over K such that ` divides the cardinality q + 1− t of E(K).
Is there any such elliptic curve ? How can we find it ?

If ` 6 2√q then there are at least two consecutive integer multiples of ` in the interval [q + 1 −
2√q, q + 1 + 2√q]. At least one of them is not congruent to 1 modulo p. So there exists at least one
elliptic curve with cardinality divisible by the prime `.

We want to bound from below the number of such elliptic curves. We use the results of Lenstra [10]
extended by Howe [7]. >From Theorem 2 and Corollary 1 of Section 7.4 we deduce that the propor-
tion of Weierstrass elliptic curves over a finite field K with q element having order divisible by ` is

1
`−1 up to an error term bounded in absolute value by 8√̀

q . We deduce that if

4` 6 q
1
4 (8)

then this proportion is at least 1
2` .

In that case, we can find such an elliptic curve in the following way: we pick a random Weier-
strass elliptic curve over K. We compute its cardinality using Schoof’s algorithm at the expense of
(log q)5+o(1) elementary operations. If this cardinality is divisible by ` we are done. Otherwise we
try again. The average number of trials is O(`). The expected time to find the needed curve E is
O(`(log q)4+o(1)) operations in K provided condition (8) holds true.

The conclusion of this section is that we have a fast algorithm that constructs a degree d irreducible
polynomial in K[x] when K is a finite field with q = pw elements and d = `δ is a power of a prime `
such that ` is prime to p(q − 1) and 4` 6 q

1
4 .

4.4 An Example

We take p = 7, q = 7 and d = 5. The elliptic curve

E/F7 : y2 = x3 + x+ 4

has got ten F7-rational points. The point T = (6, 4) has order ` = 5. The group generated by T is

〈T 〉 = {OE , (6, 4), (4, 4), (4, 3), (6, 3)} .

The quotient by 〈T 〉 isogenous curve E′ is given by Vélu’s formulae

E′ : y2 = x3 + 3x+ 4.

10



Moreover, Eq. (4) yields

x′ = x+ y + 6x2 + 2x
(x+ 1)2 − 6 + y + 4x2 + 3x+ 5

(x+ 3)2 − 4+

6 y + 4x2 + 3x+ 5
(x+ 3)2 − 4 + 6 y + 6x2 + 2x

(x+ 1)2 − 6 .

Using Eq. (6), we find an expression for x′ in terms of x alone:

x′ = x+ x+ 2
(x+ 1)2 + 1

(x+ 3)2 = x5 + x4 + 2x3 + 5x2 + 4x+ 5
(x+ 3)2 (x+ 1)2 .

There remains to choose a pointA of order 5 inE′(F7), for instanceA = (1, 1), and we finally obtain,

fι,A(x) = x5 + x4 + 2x3 + 5x2 + 4x+ 5− (x+ 3)2 (x+ 1)2 = x5 + x3 + 4x2 + x+ 3 .

5 Base change

In this section K = (Z/pZ)[z]/(h(z)) is a finite field with q = pw elements. We still assume here
that d = `δ is a power of a prime ` where ` is prime to p(q − 1). We look for a degree d irreducible
polynomial in K[x]. However, we no longer assume that 4` 6 q

1
4 .

We adapt the main idea in Section 2.4 to the context of elliptic curves: we base change to a small
auxiliary extension.

Let n be the smallest integer coprime with `(`−1) such thatQ = qn satisfies 4` 6 Q
1
4 . According

to Iwaniec’s result about Jacobsthal’s problem [8] we have n = (log `)2+o(1). Let us remark that d is
then coprime with Q− 1 too.

Using e.g. the methods in Shoup [14] we find a degree n irreducible polynomial g(y) ∈ K[y]. We
set L = K[y]/(g(y)). A basis of this (Z/pZ)-vector space is given by the zjyi for 0 6 i < n and 0 6
j < w. Using the method explained in the introduction we find a generator τ of the (Z/pZ)-algebra
L. We compute also the minimal polynomial h(u) ∈ (Z/pZ)[u] of τ . We set L̃ = (Z/pZ)[u]/(h(u)).
A basis of this (Z/pZ)-vector space is given by the uk for 0 6 k < nw. We compute and store the
matrix of the isomorphism κ : L̃→ L that sends u mod h(u) onto τ . This is a nw × nw matrix with
entries in Z/pZ. We also compute and store the inverse of this matrix. The image K̃ = κ−1(K) of K
by κ−1 is the unique subfield with q elements inside L̃.

The reason for introducing these two different models of the field with qn elements is that, on the
one hand, this field should be constructed as an extension of K because we shall have to descend to K
later on; but on the other hand, the field with qn elements should be also presented as a monogenous
extension of Z/pZ, because all the algorithms described and used so far (an in particular the algo-
rithms due to Umans and Kedlaya) require that the base field be presented as a monogenous extension
of Z/pZ.

One can now apply the construction of Section 4 to L̃ and obtain an irreducible polynomialFι,A(x)
of degree d in L̃[x], in time

(logQ)5+o(1)d1+o(1) = (log q)5+o(1)d1+o(1)

elementary operations.
Remind Fι,A(x) is the minimal polynomial of x(B) where B is a geometric point of order `e+δ 6

4Qd on an elliptic curve E over L̃. We also are given an integer λ such that 0 6 λ < `e+δ and

11



ϕQ(B) = λB. (9)

It remains to derive from Fι,A(x) an irreducible polynomial f(x) of degree d over K.

We set α = x(B) ∈ L̃[x]/(Fι,A(x)). This is a root of Fι,A(x). Recall Φq is the application which
raises to the q-th power. We have ΦQ = Φn

q . The field L̃[x]/(Fι,A(x)) = L̃(α) is an extension of
degree d of L̃. For any integer k between 1 and n, one denotes by Σk(α) the k-th symmetric function
of the conjugates of α over the subfield with qd elements:

α, Φd
q(α), Φ2d

q (α), . . . , Φ(n−1)d
q (α) .

Since d is a prime power, we deduce from Lemma 1 of Section 7.1 that at least one among these
n symmetric functions generates the extension of degree d of K̃. In other words, there exists a k
between 1 and n such that the polynomial

f̃(x) =
∏

06l<d

(x− Φl
q(Σk(α)))

is irreducible of degree d in K̃[x] ⊂ L̃[x] .

Three questions now worry us.

• How to compute Σk(α) and its conjugates ?
• How to find the good integer k ?
• How to compute f̃(x) ∈ K̃[x] starting from Fι,A(x) ∈ L̃[x] ?

5.1 How to compute Σk(α) and its conjugates ?

First, let us note αl = Φl
q(α) for every integer l and let us see how to compute one of these conju-

gates.We first need to compute β = y(B) as an element in the residue ring L̃[x]/(Fι,A(x)). For this,
we use Eq. (3).

Let now l be an integer between 0 and dn − 1. We want to compute αl = Φl
q(α). We write

l = r + ns with 0 6 r < n and 0 6 s < d. Then,

αl = Φl
q(α) = Φr

q(Φs
Q(α)) .

We first compute Φs
Q(α) = x(ϕsQ(B)) = x(λsB) using Eq. (9). To this end, we write λs =

R mod `e+δ where 0 6 R < `e+δ and we multiply the `δ+e-torsion point B ∈ E(L̃[x]/(Fι,A(x)))
by R using fast exponentiation. This is done at the expense of O(logQ + log d) operations in
L̃[x]/(Fι,A(x)).

One then raises Φs
Q(α) to the qr-th power at the expense of at most n log q operations modulo

Fι,A(x). Thus, each conjugate is computed at the expense of

d1+o(1)(log q)2+o(1) .

elementary operations.
To compute all the (Σk(α))0<k6n, one computes the n conjugatesα, Φd

q(α), Φ2d
q (α), . . . , Φ(n−1)d

q (α)
and one forms the corresponding polynomial of degree n. Altogether, the computation of the sym-
metric functions (Σk(α))0<k6n requires

d1+o(1)(log q)2+o(1),

elementary operations.
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5.2 How to find the integer k ?

One seeks an integer k between 1 and n such that Σk(α) generates an extension of degree d of K̃.We

know that there is at least one such integer. So we successively test all the k between 1 and n. As n is
small, this is not a problem. We know that Σk(α) generates the degree d extension of K̃ if and only if

Φ`δ−1
q (Σk(α)) 6= Σk(α) ,

where `δ−1 is the unique maximal divisor of d. This condition is equivalent to

Σk(Φ`δ−1
q (α)) 6= Σk(α),

or

Σk(α`δ−1) 6= Σk(α).

One computes the Σk(α`δ−1)’s in the same way as the Σk(α)’s, following Section 5.1. It is then
easy to compare Σk(α`δ−1) and Σk(α).

One can thus find k in
d1+o(1)(log q)2+o(1)

elementary operations.

5.3 How to compute the characteristic polynomial f(x) ?

We now have an element Σk(α) of L̃[x]/(Fι,A(x)) and we know that it actually belongs to the degree
d extension of K̃. But this is not really visible because Σk(α) is given in the basis 1, x, . . . , xd−1

of L̃[x]/(Fι,A(x)). Still, the characteristic polynomial f̃(x) of Σk(α) has coefficients in K̃ ⊂ L̃.
We compute this characteristic polynomial. We use a general algorithm for this task, such as the
one appearing in recent work by Umans and Kedlaya [15, 9]. See Theorem 4 in Section 7.5. This
algorithm requires d1+o(1)× (logQ)1+o(1) elementary operations. Finally, we apply the isomorphism
κ : L̃ → L to every coefficient in f̃(x) and we find a polynomial f(x) with coefficients in K ⊂ L.
This polynomial is irreducible in K[x].

6 Summary

The following theorem summarizes our work in this paper.

Theorem 1 There exists a probabilistic (Las Vegas) algorithm that on input a finite field K with
characteristic p and cardinality q = pw, and a positive integer d, returns a degree d irreducible
polynomial in K[x]. The algorithm requires d1+o(1) × (log q)5+o(1) elementary operations.

The statement above assumes that the finite field K is given in a reasonable way as explained in
the introduction. The algorithms runs as follows.

We first factor the degree d as d =
∏
i `
δi
i . This requires O(d) elementary operations. Section 3

shows that it suffices to find an irreducible polynomial of degree `δii for every i.
So we may assume that d = `δ is a prime power.
If ` = p we use the construction in Section 2.1.
If ` divides q − 1 we use the construction in Sections 2.2 and 2.3.
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Assume now ` is prime to p(q − 1). We find the smallest integer n such that n is coprime with
`(`− 1) and Q = qn satisfies

4` 6 Q
1
4 .

Using e.g. the methods in Shoup [14] we find a degree n irreducible polynomial g(y) ∈ K[y].
We set L = K[y]/(g(y)). We find a generator τ of the (Z/pZ)-algebra L. We compute the minimal
polynomial h(u) ∈ (Z/pZ)[u] of τ . We set L̃ = (Z/pZ)[u]/(h(u)). We compute and store the matrix
of the isomorphism κ : L̃→ L, and also its inverse.

We pick random elliptic curves over L̃ and compute their cardinalities until we find one with
cardinality divisible by `. Let E be such a curve. Let t be its trace.

We look for a point of order ` in E(L̃). To this end, we pick a random point in E(L̃) and multiply
it by (Q+ 1− t)/`. If the result is non-zero we are done. Otherwise we start again.

Once we have found a point of order ` in E(L̃), we compute the associated degree ` quotient
isogeny E → E1 using Vélu’s formulae in Paragraph 4.1.1.

We iterate the construction above and obtain a chain of δ degree ` isogenies

E → E1 → · · · → Eδ.

We find a generator A of the `-Sylow subgroup of Eδ(L̃). We compute the polynomial fι,A(x) ∈
L̃[x] associated with the isogeny ι : E → Eδ and the point A. To this end, we use the methods given
in Paragraphs 4.1.2 and 4.1.1. This polynomial is irreducible in L̃[x].

We use the method in Section 5 to deduce an irreducible polynomial of degree `δ in K[x].

7 Appendix

In this section we state several known and useful facts about fields, polynomials and elliptic curves.

7.1 Generator of a subextension

Let M be a field and let K be a subfield of M. Assume M = K(α) is a monogenous extension of K.
Let L be a subfield of M containing K. In this section, we use α to construct a generator of L over
K.

The extension M/L is assumed to be cyclic of finite degree d. We also assume that there exists a
strict subfield S of L containing K, such that every strict subfield of L containing K is included in S.

Let (Σk)16k6d be the d symmetric functions of α over L. These are the coefficients of the char-
acteristic polynomial of α, seen as an element in the L-algebra M.

We claim that at least one of these symmetric functions generates L over K.
Otherwise, all these functions would be contained in S. The field S(α) would then be a degree

6 d algebraic extension of S. But S(α) contains K(α) so S(α) is M. So M is a finite extension of
S; and L also since S ⊂ L ⊂M. But the degree of M over L is d; and this is greater than or equal to
the degree of M over S. So L = S. A contradiction.
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We notice that the existence of a unique maximum strict subextension S of L/K is granted if

L/K is finite, Galois and cyclic of degree a prime power.
We deduce the following lemma.

Lemma 1 (Subfield generated by a symmetric function) Let M be a finite field and let K be a sub-
field of M. We assume that the degree of M over K is a prime power. Let α be a generator of M over
K. Let L be a subfield of M containing K. Let d be the degree of M over L. Let (Σk)16k6d be the d
symmetric functions of α above L. Then at least one among these d symmetric functions generates L
over K.

7.2 Some kernel isogenies

Let K be a finite field of characteristic p and cardinality q. Let E be an elliptic curve over K. We
denote by ϕE : E → E the degree q Frobenius endomorphism of E. Let t be the trace of ϕE . Let O
be the quotient ring Z[X]/(X2 − tX + q) and let α be the class of X in O. Let εE : O → End(E)
be the ring homomorphism that maps α onto ϕE . We say that εE is the standard labeling of E.

Let S be a subset of O containing a prime to p integer. We define the kernel of S in E to be the
intersection of the kernels of all endomorphisms εE(s) for s ∈ S. This a finite étale subgroup of E.
So it is characterized by its set of geometric points.

Now let F be another elliptic curve over K and let ι : E → F be an isogeny defined over K. Let
εF : O → End(F ) be the morphism of free Z-modules that sends 1 onto the identity and α onto ϕF .
For any element s in O we have

ι ◦ εE(s) = εF (s) ◦ ι. (10)

Indeed, the identity above is true for s = α because ι is defined over K. It is evidently true also for
s = 1. Therefore it is true for all s in O by linearity.

We deduce from identity (10) that εF is a ring homomorphism, just as εE .

Now let G be a third elliptic curve over K. Let  : F → G be an isogeny defined over K. We
define εG : O → End(G) as before.

Assume ι : E → F is separable with kernel E[S] where S is a subset of O containing a prime to
p integer. Assume  : F → G is separable with kernel F [T ] where T is a subset of O containing a
prime to p integer. Then the kernel of  ◦ ι is E[ST ].

E
ι // F

 // G.
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Indeed, both the kernel of  ◦ ι and E[ST ] are étale; so they are characterized by their geometric
points.

Now let x be a point in the kernel of  ◦ ι. Its image ι(x) by ι lies in the kernel of . Therefore it
is killed by T : for any element t of T one has εF (t)(ι(x)) = 0F . So ι(εE(t)(x)) = 0F and εE(t)(x)
belongs in the kernel of ι. Thus it is killed by S: for any s in S we have εE(s)(εE(t)(x)) = 0E or
equivalently εE(st)(x) = 0. Therefore x lies in E[ST ].

Conversely, let x be a point in E[ST ]. Let t be an element in T . We observe that εE(t)(x) is
killed by S, so it belongs to the kernel of ι. Thus ι(εE(t)(x)) = εF (t)(ι(x)) = 0F . So ι(x) is killed
by T ; therefore it belongs to the kernel of . Thus (ι(x)) = 0G.

Following Waterhouse [17] we say that an isogeny ι : E → F whose kernel takes the form E[S],
is a kernel isogeny.

Lemma 2 (Composition of kernel isogenies) Let K be a finite field with characteristic p. Let E be
an elliptic curve over K. Let t be the trace of the Frobenius endomorphism ofE. LetO be the quotient
ring Z[X]/(X2 − tX + q) and let εE : O → End(E) be the standard labeling. Let S be a subset
of O containing a prime to p integer and let ι : E → F be the quotient by E[S] isogeny. Let T be a
subset of O containing a prime to p integer and let  : F → G be the quotient by F [T ] isogeny.

Then the kernel of  ◦ ι is E[ST ].

7.3 The number of irreducible polynomials

Let K be a finite field with cardinality q and characteristic p. Let d ≥ 2 be an integer. We are
interested in the number of degree d irreducible unitary polynomials in K[x]. We recall and prove a
very classical lower bound [11, Ex. 3.26 and 3.27, page 142].

Let Ω be an algebraic closure of K and let L be the unique degree d extension of K inside Ω. Call
Gd the set of generators of the K-algebra L. This is the set of all α in L such that K(α) = L. Let
Id be the set of degree d unitary irreducible polynomials in K[x]. Let ρ : Gd → Id be the map that
to every generator α associates its minimal polynomial. Every polynomial P (x) in Id has exactly d
preimages by ρ, namely its d roots.

To enumerate the degree d unitary irreducible polynomials, we just count the generators of L
over K. Let α be an element in L. If α does not generate L, then it belongs to a smaller extension
of K inside L. Therefore the complementary set of Gd in L is the union of all strict subfields of L
containing K. These subfields are in correspondence with the strict divisors of d. To any such divisor
D we associate the unique extension of K with degreeD. It has qD elements. The set of strict divisors
of d is a subset of {1, 2, 3, 4, . . . , bd2c}. So the number of elements in L that do not generate it over K
is upper bounded by

q + q2 + q3 + q4 + · · ·+ qb
d
2 c = q

qb
d
2 c − 1
q − 1

6
q

q − 1
(qd/2 − 1).

The cardinality of Gd is thus ≥ qd − q
q−1(qd/2 − 1) and the cardinality of Id is

≥ qd

d
− q

d(q − 1)
(qd/2 − 1).

We deduce the following lemma [11, Ex. 3.26 and 3.27, page 142].
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Lemma 3 Let K be a finite field with q elements. Let d ≥ 2 be an integer. The density of irreducible
polynomials among the degree d unitary polynomials is

≥ 1
d
(1− q

q − 1
(q−

d
2 − q−d)).

Let L be a degree d extension of K. The density of generators of the K-algebra L is ≥ 1 −
q
q−1(q−

d
2 − q−d).

If d ≥ 2 we deduce that the later density is ≥ 1− 1
q−1 = q−2

q−1 . So ≥ 1
2 si q ≥ 3.

If q = 2 and d ≥ 4 then this density is ≥ 1− 2× 2−2 = 1
2 .

If q = 2 and d equals 2 (resp. 3) then this density is 1
2 (resp. 3

4 ).
If d = 1 then this density is 1.
We deduce the following lemma.

Lemma 4 (Density of generators) Let K be a finite field with q elements. Let d ≥ 1 be an integer.
The density of irreducible polynomials among the degree d unitary polynomials is ≥ 1

2d .
Let L be a degree d extension of K. The density of generators in the K-algebra L is ≥ 1

2 .

7.4 Density of elliptic curves with an `-torsion point

Let K be a finite field with q elements and let ` be a prime integer. Lenstra [10] and Howe [7] give
estimates for the density of elliptic curves over K whose number of K-rational points is divisible by
`. In this section, we recall what these authors mean by density and we explain why this density fits
with the uniform density on Weierstrass curves.

We call E(K) the set of K-isomorphism classes of elliptic curves over K. The K-isomorphism
class of a curve E/K is denoted [E]. One defines a measure on the finite set E(K) in the following
way: the measure of a class [E] is the inverse of the group of K-automorphisms of E. So the measure
of a subset S of E(K)

µE(S) =
∑

[E]∈S

1
# AutK(E)

. (11)

Lenstra and Howe prove that the measure of the full set E(K) is q.
Now let W(K) be the set of Weierstrass elliptic curves over K. We denote by µW the uniform

measure on this set: the µW -measure of a subset of W(K) is defined to be its cardinality. This is a
very convenient measure. In order to pick a random Weierstrass curve according to this measure, we
just choose each coefficient a1, a2, a3, a4, a6 at random with the uniform probability in K and we
check that the discriminant is non-zero (if it is zero we start again).

Let γ : W(K) → E(K) be the map that to every curve E associates its isomorphism class [E].
This is a surjection : every elliptic curve over K has a Weierstrass model over K.

Let A(K) be the group of projective transforms of the form

(X : Y : Z) 7→ (u2X + rZ : u3Y + su2X + tZ : Z)

where u ∈ K∗ and r, s, t ∈ K. This group acts on the setW(K) of Weierstrass elliptic curves over
K. Two Weierstrass elliptic curves over K are isomorphic over K if and only if they lay in the same
orbit for the action of A(K). Further the group of K-automorphisms of a Weierstrass elliptic curve is
isomorphic to the stabilizer of E in A(K).
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So the orbit of a Weierstrass curve E/K under the action of A(K) is the fiber γ−1([E]) and the
cardinality of this fiber is the quotient

#A(K)
# AutK(E)

.

Therefore if S is a subset of E(K) and if T is its preimage by γ, then the measures of S and T are
proportional

µW(T ) = #A(K)× µE(S)

where

#A(K) = (q − 1)q3.

In particular, if we want to pick a random K-isomorphism class of elliptic curve according to the
measure µE , it suffices to pick a random Weierstrass elliptic curve according to the uniform measure
µW .

We now can state a special case of the main result in Howe’s paper [7].

Theorem 2 (Howe) Let q be a prime power and let K a field with q elements. Let E(K) be the set
of K-isomorphism classes of elliptic curves over K. Let µE be the measure on this set defined by Eq.
(11). Let ` be a prime integer not dividing q − 1. The isomorphism classes in E(K) of elliptic curves
having a K-rational point of order ` form a subset of density

1
`− 1

plus an error term bounded in absolute value by

4`(`+ 1)
(`− 1)√q

.

We deduce the following corollary.

Corollary 1 (Density of elliptic curves with an `-torsion point) Let q be a prime power and let K
a field with K elements. LetW(K) be the set of Weierstrass elliptic curves over K. Let µW be the
uniform measure on this set. Let ` be a prime integer not dividing q − 1. The density of Weierstrass
curves having a K-rational point of order ` is

1
`− 1

plus an error term bounded in absolute value by

4`(`+ 1)
(`− 1)√q

.
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7.5 Fast composition

The following theorems were recently proven by Umans and Kedlaya [9].

Theorem 3 (Kedlaya and Umans) There exists a deterministic algorithm that on input a finite field
K = (Z/pZ)[y]/(a(y)) with q elements and three polynomials f(x), g(x) and h(x) in K[x] with
degrees bounded by d, outputs the remainder f(g(x)) mod h(x) at the expense of d1+o(1)(log q)1+o(1)

elementary operations.

Theorem 4 (Kedlaya and Umans) There exists a deterministic algorithm that on input a finite field
K = (Z/pZ)[y]/(a(y)) with q elements, a degree d irreducible unitary polynomial f(x) in K[x],
and a degree 6 d− 1 polynomial g(x) in K[x] such that the class γ of g(x) modulo f(x), generates
the K algebra K[x]/(f(x)), outputs the minimal polynomial h(x) ∈ K[x] of γ at the expense of
d1+o(1)(log q)1+o(1) elementary operations2

The following corollary of Theorem 3 is particularly useful.

Corollary 2 There exists a deterministic algorithm that on input a finite field K = (Z/pZ)[y]/(a(y))
with q elements and two rational fractions F (x) and G(x) in K(x) with respective degrees dF and
dG, outputs the composition F (G(x)) = u(x)/v(x) where u(x) and v(x) are coprime polynomials,
at the expense of (dFdG)1+o(1)(log q)1+o(1) elementary operations.

We first notice that the problem is trivial if one of the two fractions has degree 1. Composing F
and G with rational linear fractions we may assume that F (0) = G(0) = 0. We compute the Taylor
expansions at 0 of either fractions and we compose them using the algorithm in Theorem 3. We
recover the numerator u(x) and denominator v(x) of the corresponding fraction using fast extended
Euclid algorithm.
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