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Abstract

We describe a general method for the study and computation of Hurwitz
spaces of curves of any genus. It is based on a careful combinatorial study
of the associated jacobian. The key tool is an adapted cell decomposition of
the cohomology of a graph (used here for the intersection graphs of special
curves). We illustrate this method in the context of modular curves to
produce modular units. We also give a detailed simple example and show
how the algebraic difficulty of Hurwitz spaces computation can be reduced
to its minimum.

1. Introduction

It is a difficult computational problem, given an n-uple (0;)1<;<n of permutations,
to explicitly describe the corresponding family of covers of P* (Hurwitz space and
sometimes the universal curve). An introduction to these questions together with
many examples can be found in recent monographs like [14, 21, 15]. See the
paper by Kliiners and Malle in this volume for examples of realizations. A nice
(and successful, see [10] for example) approach starts from a degenerate cover
and rebuilds the entire family by deformation. Indeed, if A is a complete discrete
valuation ring with valuation v, uniformizing parameter 7 and field of fractions K
and if C — Spec(A) is the curve we are trying to compute (assuming that two or
more ramification points coalesce modulo 7) then the special fiber C, is a covering
of a nodal genus zero curve and can be described and often efficiently computed
from the o;’s. For each component v of C. we denote by v, the corresponding
valuation, extending v to the field of functions of C. The computation of C from
C. can be achieved in four steps

1 — Define two functions x and y on C;
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2 — For every component v of C, compute v,(z) = a and v,(y) = b and define
X, =z/7* and Y, = y/7°

3 — For each v, using the monodromy (o;);, compute an equation £,(X,,Y,) =0
(mod 7) of the component 7;

4 — Patch (in the sense of [11]) all the £, together using Hensel’s lemma and
find an equation &(z,y) = 0 with coefficients in A for the universal curve.

We have detailed and illustrated this method for genus zero covers in [7]. For
arbitrary genus covers, steps 3 and 4 are unchanged. We need however to intro-
duce new ideas for steps 1 and 2. Indeed, the functions x and y for genus zero
covers can be defined using cross ratios with three branch points and we showed
how the multiplicities ¢ and b could be computed as distance functions in the
graph of C..

The main goal of this paper is to generalize this to curves of arbitrary genus.
We denote by K the algebraic closure of K and by k the residue field of A which
is assumed to be algebraically closed. The generic curve of C is denoted by Ck.
We assume that C is regular and Cx ® K is a smooth curve of genus g. We want
to define functions on C and control their divisor. A method which always works
is to form a divisor D on Ck of degree g, the genus of Cx, with support in the set
of ramification points. We then define z to be a function in £(D) taking value
1 at some extra ramification point P. There remains to compute the valuations
vy(z) for every . This amounts to computing the vertical part of the divisor of
x seen as a function on C. Using intersection theory, the problem boils down to
the following one.

PROBLEM 1: Given a divisor D of degree g on Cy, let E be an effective divisor
of degree g equivalent to D. Such a divisor exists because of the surjectivity of the
map

®:S89CK — Jx (1)

where Jg is the jacobian of Cx (we assume some origin O € Cx(K) has been
given,).

The Zariski closure of D (resp. E) is a divisor on C that we shall denote by D
(resp. E) also. Knowing how D intersects the special fiber C. can we deduce how
FE intersects C. ?

To answer this question we consider the intersection graph associated to the nodal
curve C. In general, we define a graph as in [19]. It is a 5-uple G = (V, F, 0, ¢, p)
where V is a set (the vertices) and F' another set (the oriented edges) and o and
e are two maps from F' to V associating to any oriented edge its origin and its
end and p : F' — F is an involution without fixed points such that oo p =e. If
E C F is a set of representatives for the orbites of p in F' then F' = E U p(F)
and choosing F is just choosing an orientation for any edge.
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Associated to G there is a CW-complex of dimention 1 (sometimes called the
realization of G) which we shall denote by G also since there is no risk of confusion.
In the same spirit, vertices in V" and edges in E are seen as subspaces (cells) of the
realization of G. We notice however that not every graph is a simplicial complex
(there might be several edges between two given vertices). However we define for
every positive integer e the e-th division G, of G to be the graph obtained by
cutting every edge into e pieces and for e > 3 we have a simplicial complex.

See [6] for definitions and classical properties of complexes. For any complex
H one denotes by H* the set of k-dimensional cells and in particular for a graph
G=(V,F,0,e,p) we have G° =V and G! = E = F/p.

To any finite connected graph G we shall associate in section 2 a finite CW-
complex /C which we call the Kirchhoff complex of G whose underlying topological
space is a torus 7" of dimension h where h = dim H;(G, R) is the genus of G, and
with set of vertices K a finite subgroup of the torus. There is also a surjective
continuous “integration” map

v:S"G T

where S"G is the h-th symmetric product of G.

The map v is the combinatorial analogue of the map @ in equation (1). Contrary
to the holomorphic case, there exists a continuous section o that turns o o v into
a retraction. In the simplest non trivial case one has h = 1 and G is made of a
loop with trees rooted at vertices in the loop. The retraction o o v just retracts
each tree onto its root and fixes points in the cycle.

In case G is the intersection graph of the special curve C., the map v is a
sort of combinatorial model of ®. For example, the vertices of I correspond
to connected components of the Néron model of Jx. The Kirchhoff complex is
a purely combinatorial object and can be used to predict how the divisor F
intersects the special fiber using results in [16, 18, 9, 4, 3|. This is the purpose of
section 3.

Apart from its computational interest, a good reason to introduce the Kirchhoff
complex is the uniformization method in [3] (e.g. the homotopy theorem 3.5). It
would be interesting to compare this complex to the ones constructed in [17].

Section 4 is an interlude and an illustration of the efficiency of the method in
the more theoretical context of modular curves. We very easily construct a great
deal of modular units (more than in [12] for example). This section has been
motivated by a conversation with Bas Edhixoven and the observations in [8]. I
thank him for his help. Section 5 extends the methods of sections 2 and 3 in the
context of generalized jacobians. It is a useful generalization since it provides a
connection with the genus zero situation studied in [7]. A more practical reason
to introduce it is that in somes cases (e.g. when there are few or even no rational
sections given) only this more general construction succeeds.

Section 6 treats a detailed simple example.



J.-M. Couveignes: Boundary of Hurwitz spaces and explicit patching 4

Although our method is quite general, one may notice that in the two examples
treated in sections 4 and 6 we develop a little bit more and improve on the general
method. Instead of looking at a single degenerate cover we collect information
at every special cover in the family. In many cases, using the knowledge we
have on differentials, we can construct units on the Hurwitz space in that way,
replacing the patching computation of step 4 by mere interpolation. This makes
the method more efficient but might not be possible for any family of covers.
Since we already illustrated the general patching step in [7], we prefer to give
richer and theoretically more interesting examples here.

2. The Kirchhoff complex of a graph

In this section we construct the Kirchhoff complex K associated to any finite
connected graph G. We denote by V = GY and £ = G! the sets of vertices
and edges (we have chosen an orientation for any edge). The basic idea is to
mimic integration theory on Riemann surfaces. We recall that the genus of G is
h = dim H;(G,R) the dimension of the first homology group.

Let C1(G,R) be the space of 1-chains over R. It’s the free vector space over R
generated by edges of G and it is of dimension |E|. There is a canonical positive
definite pairing (, ) on it such that F is an orthonormal family.

For any closed edge e € E we denote by dy,. the uniform measure of total mass
1 on e and set

dp = Z edfte.

E

The meaning of this expression is that if X is a subset of the topological space
G such that X, = X Ne is a measurable subset of the edge e for every e, then
the measure p(X) is a vector in C1(G,R) defined to be the sum over e € E of
the products pe(Xe) (scalar measure of X,) times the vector e € C1(G,R) :

pX) =D pe(X Nee.

If @ and b are points on G (not necessarily vertices) and « is a continuous path
from a to b (continuous map from [0, 1] to G) we may define

/dﬂ € Cl (g, R)
gl
which only depends on the homology class [y] € Hy(G,{a,b}) (the group of
relative homology) of 7. What this integral should be is rather straightforward.
We give a definition however. Let A and B be closed edges of G such that a € A
and b € B and let o = 0(A) (resp. 5 = o(B)) be the origin of A (resp. B).
Let [o,a] C A be the interval in A bounded by « and a and let v = [«,a]
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be the corresponding cycle in Hy(G, {a, a}). We similarly define v = [, b]. The
boundary 6 ([e, a]) is a —« and similarly 6([3, b]) = b— 8. We define a linear map
A Hi(G,{a,b}) = C1(G) in the following way. For any cycle ¢ € Hy(G, {a,b})
there is an integer k such that d(c) = k(b — a). We set A(c) = ¢+ k(u — v) +
k(ug([B,0])B — pa(|e, a])A). Note that ¢+ k(u —v) is in Hy(G, {a, }) C C1(G).
We define [ dp to be A([]) € Ci(9).
We show an example on figure (1).

Figure 1: An example of integrating along a path

Here the graph has four vertices a, 8, A, 4. The point a is the middle of
[, B] and Bb = %ﬁ)\. The path + is represented by the arrow. We have f7 dp =
1/2[cs 8] + 3/418, N.

If we pick an origin O € V and take U to be the universal covering of G
constructed as the space of pathes from O up to homotopy, we can define a map

65U~ H'G,R) by v ([ du,).
gl
The image of 71(G,0) C U by ¢ is a lattice 7 which is contained in H'(G,Z).
We denote by

0:G—T=H(G,R)/T

the induced map on quotients.

For any positive integer k£ we denote by ¢* : U*¥ — H'(G,R) the sum of ¢ with
itself k times and similarly for ¥,

The map ¢" is invariant under permutation of the terms and thus gives rise to
amap v : S"G — T. The map ¢" is continuous and since both S"G and T are
compact, it is a closed map.

LEMMA 2.1: The maps ¢", ©* and v are surjective.
To prove this we take h loops (7i)1<i<h in G generating the homology H:(G,Z)

(as in [1] page 26) and show that the restriction of ¢" to [];~; is surjective. This
restriction is a continuous map between two tori of the same dimension and is
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non singular (and even unimodular) on the homology. The surjectivity follows
from the following lemma.

LeEMMA 2.2: If T is a torus of dimensionn > 1 and ¢ : T — T is a continuous
map such that ¢, : Hi(T) — Hy(T) is non singular (as an endomorphism of the
free Z-module H{(T)) then ¢ is surjective.

Let fi,...,fa be a basis of the cohomology group H'(T') and g¢i,...,9, a dual basis
of H,(T). The n-th cohomology H™(T) is generated by D = fi A... A f,. Assume
that ¢ is not surjective. By [6, VI.8.5] we deduce that the restriction of D to the
image L of ¢ is zero. This implies that the determinant of [f;(¢.(g;))] is zero and
thus ¢, is singular. O

Being surjective and closed, the map ¢” is an identification map (the natural
topology on T is the quotient one).

We now study the map v more in detail. We start with the

DEFINITION 1: A point x = {x1,...,x} in S*G is said to be stable if and only if
there exist h (closed) edges (e;)1<i<n such that z; € e; and G —U;e; is a connected

tree. Under the same conditions we shall say that (x1,...,xy) € G" is stable. We
denote by J (resp. K) the set of stable points in G" (resp. S"G).

The space S"G is defined to be the quotient of G" by the symmetric group
Sy, and is easily seen to be Hausdorff and compact. Since J is closed in G?, the
restriction to J of the quotient map G" — S"G is closed and an identification
map also. See [6, 1.13] for properties of quotients.

We first prove the following

LEMMA 2.3: J is a subcomplex of G" and K is a quotient complex of J by the
symmetric group Sp.

From its definition it is clear that J is a union of closed cells in G" (which we
shall call stable cells). Further, the boundary of a stable cell is a union of stable
cells. Thus J is a subcomplex of G*.

The group S, is an automorphism group of J. If ¢ is a closed cell of J and o
an element of Sy, such that o(c) = ¢ then o fizes c. Indeed if z = (24, ...,2p) is in
c and o(z) # x then there is a k£ € {1,...,h} such that z,4) # z, and both
and x,(;) belong to the same edge of G. This is incompatible with the stability
of z.

The quotient map J — K is thus a bijection when restricted to an open cell
of J. It thus provides K with a structure of CW-complex and becomes a cellular
map. O

We now study the restriction of the map v to K (which we shall denote by v/
or just v). It is a continuous map (even an identification map). We denote by K
the union of the relative interiors of all cells of maximum dimension in K. We
prove the following
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LEMMA 2.4: The map v 18 surjective and its restriction to K is injective.

By Kirchhoff-Trent theorem, the number of stable cells of dimension A in S"G
is the index of 7 in H'(G,Z) i.e. the volume of T (see [2, I1.3] and [17, 4.5]).
On the other hand, every open stable cell of dimension A is mapped bijectively
by v onto a parallelogram of volume 1 in 7' (because the h corresponding edges
of G form a basis of elementary cocycles in H'(G,Z)). Because the image by ¢"
of non-stable points has zero measure and ¢" is surjective, we deduce that the
(open) h-dimensional stable cells in  map to pairwise disjoint parallelograms
(with volume 1) in 7. So the image of K is dense in T and since K and T are
compact we deduce that v is surjective. O

We now study cells of dimension h— 1 in K and J (we call them stable faces).

LEMMA 2.5: If c is a face in J (resp. K) there exist at most two h-dimensional
(closed) cells in J (resp. K) that contain c (i.e have c as a face).

A face ¢ in K is given by a set of h — 1 edges {e1,...,en_1} and a vertex v
in G such that G — U,e; is a connected graph of genus one and v belongs to the
unique elementary cycle in it. Cells in S*G of dimension A containing ¢ correspond
to edges e in G containing v. To any such e we associate the face built from
{e, €1, ...,en_1}. This face is stable if and only if e belongs to the elementary cycle
¢ of G — U;e; which leaves at most two possibilities. There is a single such face if
and only if ¢ consists of a single self crossing edge. In that later case, the face ¢
is twice the face of the same cell. a

We now proceed to prove that vy is an homeomorphism.

We start with

LEMMA 2.6: The sets v(K) and v(K—K) are complementary subsets of the torus
T=HYG,R)/T.

The union of these two sets is H'(G,R)/T since vk is surjective. Let us now
prove that they are disjoint. Let z € H(G,R)/7 and y € K and z € K — K with
v(r) = v(y) = 2. There is an open cell A of K such that x is in A the closure of A.
There is also an open stable cell B such that y € B. Let A (resp. B) be the image
of A (resp. B) by v. The point z = v(z) is in the closure of A and since z = v(y)
it is in B. Since B is open and v is bijective when restricted to K we deduce
that A = B and A = B. So we have z € A — A and y € A with v(z) = v(y).
This is impossible because v(A) lifts to a fundamental parallelogram for H'(G, Z)
in H(G,R) and cannot contain an inner point congruent to a boundary point
modulo H*(G,Z) (and even less modulo 7). O
We now prove

LEMMA 2.7: The restriction of v to IC — K is injective.
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Let z € H'(G,R) and # € K — K such that z = v(z). For € a small positive
real we define the ball B(z,¢€) as the reduction modulo 7 of a ball in H'(G,R)
with radius € whose center maps to z. There is a positive integer I such that
for any small enough € the intersection B(z,€¢) N v(K) is a union of I connected
components c¢q, Ca,..., ¢y, each the intersection of an open h-dimensional cell in
v(K) having z in its boundary, with the ball B(z, ¢). We denote by dy, ..., d; the
inverse image of ¢y, ..., ¢; by vjx. These are also intersections of stable cells with
a ball having its center in the boundary. For € small enough, the restriction of v
to the closure d; of d; is injective (because it factors through H'(G,R) where it
gives the intersection of a fundamental parallelogram for H'(G,Z) with a small
ball). On the other hand, any point in I above z has to be in the closure of some
d;. So there are finitely many points in C above z and they define a partition of
{1,...,I}. We may assume that x belongs only to dy, d, ..., dy, with 1 < J < I.
The restriction of v to d; defines an h-dimensional cycle k; in B(z,¢€). By lemma
2.5 the sum K = ), ,.;K; has its boundary contained in the boundary S(z,¢)
of B(z,€) because the components coming from faces of parallelograms cancel by
pairs. From [6, IV.6.6] Hy,(B(z,€),S(z,€)) = Z is generated by the orientation
class. This implies that the union Uj<;<;v(d;) = Ui<i<s¢; is either of measure
zero or the whole ball. Since the first possibility is excluded (J is positive) we
deduce that I = J. Thus x is the only point in K above z. O

We deduce the

THEOREM 2.1: The restriction of the integration map v to the set K of stable
points is an homeomorphism that turns KC into a cell decomposition of the torus
T = HY(G,R)/T . The h-dimensional cells in K are the stable h-dimensional cells
in S*"G. They are parallelograms and correspond to spanning trees in G. The set

of vertices of K is the group H'(G,Z)/T.

REMARK 1: We denote by o = ’U|}c(_1) the inverse map of vix. This map solves
the discrete version of the Jacobi inversion problem. It will be an essential tool for
solving problem (1). For practical computations we shall only apply v to vertices
in S"G and o to points in H'(G,Z)/T. We notice that while the computation
of v (the integration map) reduces to linear algebra and can be achieved in time
polynomial in log(|K°|), on the contrary the evaluation of o may require ezhaustive
search and time |G°[". This will not be a problem for us since for the graphs
we shall consider in section 3, this |G°|" is small compared to the difficulty of
computing families of covers. For example it is trivially bounded by [(r + 1)d]?
where d is the degree of the cover and g its genus and r the number of branched
points.

We finish with a natural criterion for stability.

LEMMA 2.8: A point x = {z1,...,m4} in S*G is stable if and only if v is locally
surjective at x (the image of any neighbourhood of x is a neighbourhood of v(zx)).
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Indeed, if z is stable the map v and even vk is locally surjective at z from the
above theorem. If z is not stable, then all A-dimensional cells close to z in S*G
are unstable so their image by v has measure zero. O

The structure of the cell complex K is independent of the choice of the origin
0.

For any integer e > 1 let G, be the e-th division of G obtained by cutting any
edge into e smaller edges of equal length. The associated Kirchhoff cell complex
Ke to G is the e-th division of K (every k-dimensional parallelogram is cut into

ef smaller ones).

DEFINITION 2: A point x € G is said to be rational if fg du is in C1(G,Q) (no
matter the path). The denominator of x is the smallest positive integer D such
that D [ dp € C1(G,Z) or equivalently x € GY) (the set of vertices of Gp). We
denote by G(Q) the set of rational points of G.

A point in T = HY(G,R)/T is said to be rigid if it has a unique preimage by
v. Rigid points are dense in T'.

The complex K and its group K of vertices may be seen as discrete analogues of
the Picard varieties of degree g and 0 for algebraic curves. They actually interact
when dealing with curves over local fields.

We notice that there are many classical cell decompositions of the cohomology
of a graph (see [17]). The one we just described has interesting properties with
respect to the map v. We don’t know if the Kirchhoff complex is always one of
the complexes constructed in [17]. We believe this is not always the case since
the Kirchhoff complex is in some sense “diagonal” with respect to the ones in
[17]. It borrows cells to all these complexes. At least the Kirchhoff complex has
the advantage of beeing unique.

Figure 2: A graph G with genus h = 2

We give an example. The graph we consider is the one on figure (2) coming
from [17, 8]. The associated Kirchhoff complex is given on figure (3). Since it is
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Figure 3: The Kirchhoff complex of G

not easy to write on a torus we represent the periodic complex decomposition of
H'(G,R) associated to it. The letters at vertices give the corresponding stable
point in S?G. We notice that in this particular case, the Kirchhoff complex is one
of the two complexes defined by Oda and Seshadri. Note that {3, 8} and {v,~}
are not stable and map to the vertex {«,d}.

3. The Kirchhoff complex of a curve

Le K be a complete local field with discrete valuation v, ring of integers O, residue
field k and algebraic closure K. The residue field & is assumed to be algebraically
closed. Let Spec(Q) be the spectrum of O and let C — Spec(O) be a curve over
Spec(Q) with generic fiber Cx and special fiber C;. We assume that Cx ®x K
is smooth complete and irreducible of genus g and Cj is a reduced curve with
ordinary double points and all components of C; are smooth. We assume also
that C is regular of finite type. We denote by G the graph of the curve C; whose
vertices correspond to irreducible components and edges to crossings. We assume
there is a section o that intersects C; at a non singular point o,. We call O the
vertex of G corresponding to the component of C;, that crosses 0. We call K, v,...,
the associated complex and maps.

DEeFINITION 3: If L D K is an extension of local fields with ramification index
e then the curve C @o O is not reqular but after blowing up e times at every
crossing, we obtain a regular surface Co, whose intersection graph is the e-th
subdivision of G. The surface Co, s called the regular model of C over L.

Let Px € C(K) be a point on Cx and P its Zariski closure and Py, the intersec-
tion with Cy. Since C is reqular and P is defined over K, the point Py is a smooth
point of Cy by [20, IV.4.3]. We thus can associate to Pg a vertex z(P) € G°.

More generally, if Px € C(K), we can associate to it a point x(P) € G(Q) with
denominator bounded by the index of ramification of K(P)/K.
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We may say that Cp, is the minimal blow up of C over L although it is not
quite the minimal model for C over L since C itself might not be minimal over K.

LEMMA 3.1: Let L be a finite extension of K with residue fieldl D k (we actually
have | = k because k s algebraically closed but we keep the two letters for the
sake of clarity) and D =), e;[P; 1] — (3, €i)[ok]| a divisor of degree 0 with all the
P, € C(L). We denote by 6, € Jx(L) the corresponding point of the jacobian
JK Of CK

If Jo, — Spec(Oy) is the Néron model of Jx @k L then 0, extends to a section
d of Jo, — Spec(OL). The irreducible components of the special fiber J; of Jo,
are parametrized by the vertices of K. where e is the ramification index of L/ K.
The section 0 crosses the component of J; associated to

S ea(P) - (Y e)0 € K2 = H'(G, éZ)/T.

1

This results from sections 9.5 and 9.6 of [5] and especially theorem 4 and lemma
8 in section 9.5 and theorem 1 in section 9.6. O

When computing families of covers, the points P; are chosen to be ramification
points of the covering. The z(P;) are then given by the monodromy of the covering
(see [7]). Now, because the map & in formula (1) is an epimorphism, there exists
a possibly ramified extension M D L and g points Q;p € C(M) for 1 <i < g
such that D is linearly equivalent to ), .. p Qim — g.0ox. We would like to know
how the sections (); intersect the special fiber C; of C»,. Note that since M D L
is possibly ramified, the (); may cross C; at singular points. This is the kind of
phenomenon we would like to avoid. We would even like to compute the z(Q);)
in terms of the z(P;). We define what a generic situation is and give sufficient
conditions for this to hold.

Let L be an extension of K with ramification index e. The set, gg of vertices of
the e-th subdivision of G is in bijection with the set of irreducible components of
C;. For v € G° we denote by 3, the associated component and g, its genus. We
have

g=h+2gv.

DEFINITION 4: Let L be an extension of K with ramification indez e.

Let {Q1,...,Q,} be a family of g points in C(K), globally defined over L (i.e.
they are permuted by Gal(K/L)). We say that the (Qi)i<i<, are L-residually
generic if

1 — none of them cross the special fiber C; at a singular point of it and thus the
z(Q;) are in G2,

2 — for any component (3, of C;, there are at least g, sections crossing B3, at a
smooth point of C; among the Q;,
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3 — if for all v we remowve, from the Q);, g, sections crossing 3, at a smooth point,
there remains a family of h sections which is stable with respect to the graph
G. in the sense of the previous paragraph.

We notice that if the three conditions above are met, then we know where are
the sections @); crossing the special fiber as explained in remark (1) of section 2.
If @ is a function with horizontal divisor

Z eilPir] — Z [Qim] + (9 — Z ei)[ok]

i 1<i<g i

then we can deduce from the genericity property what is the divisor of # on
the surface C — Spec(Op) up to a multiple of the whole special fiber. Indeed,
the vertical part of this divisor is equivalent to the opposite of the horizontal
part. Since the Kirchhoff complex and the map o tell us how the horizontal part
intersects the special fiber, we deduce how the vertical part intersects vertical
divisors. This is enough to determine it up to a multiple of the special fiber. See
[13, 5.2] for an account of these classical things. This last computational step is
just linear algebra and requires no effort.

REMARK 2: Once we know the divisor of 0 we can evaluate the valuation of
0(R1)/0(R2) for two sections R; — Spec(Qy,) provide these sections satisfy the
two supplementary conditions below

4 — The sections Ry and Ry cross the special fiber C; at regular points Ry, and
R2,l7

5 — the points Ry; and Ry, are distinct from any of the P;; and Q;; and oy.

Indeed, in such a situation, the valuation of 0(R,)/60(R2) is the difference be-
tween the multiplicities of 6 along the components of C; crossed by Ry and Rs.

We now state the main result in this section which is a sufficient condition for
the (Q;)1<i<y to be residually generic.

THEOREM 3.1: Let D =), e;[P; 1] — (3, ei)lok] be a divisor of degree zero on
Cr, and let {Q1,...,Q,} be a family of g points in C(K) globally defined over L
and such that D is equivalent to . [Q;] — g[o]. For any component 3, of C; (with
v € G°) we denote by x, the set of intersection points of B, either with the other
components of C; or with the sections P; and o.

A sufficient set of conditions for the (Q;) to be L-residually generic is

6 — for all v € G° and for any divisor F with support in X, and degree lower
than g, we have ¢(F) = 0 where {(F) is the dimension of the linear space
L(F).



J.-M. Couveignes: Boundary of Hurwitz spaces and explicit patching 13

7 — the point

Zeix(Pi)—ngv—i-(g—h—Zei).OelC

is rigid (here the vertices v that appear in the second summation are seen as
points of the space G ).

Assume condition (2) of definition (4) is not fulfilled. Let v be such that the
smooth part of 3, crosses less than g, sections among the ;. Let a be the
multiplicity of 6 along (3, and set © = 6/7% Let O, be the restriction of the
divisor of © to f,. This principal divisor is the difference between an effective
divisor of degree smaller than g, and a divisor with support in ,. This contradicts
condition (6). Thus condition (2) follows from condition (6). Assuming condition
(6) we thus have condition (2) and we call Q1, Q, ..., Qp, the remaining Q’s after
removing g, intersecting every (3,. From condition (7) we deduce that the family
{z(Q1),2(Q2), ..., z(Qn)} is stable since it is the unique point in S*(G) above
Yoer(P) —> g0+ (g—h—>,6).0. So condition (3) holds. Further the
z(P;) arein G2 so >, e;x(P) — >, gov+ (9 —h— Y, €).0 is in HY(G, 1Z) = K.
This implies that the z(Q;) for 1 < i < h are in G°. Since the other z(Q)’s are in
G° condition (1) follows. O

Condition (6) says that special points on £, are as independent as possible.
This will be the case in general. In particular when the genus g, is zero or when
there are enough generic points in x,, condition (6) holds.

Condition (7) is purely combinatorial and can easily be checked.

Conditions (4) and (5) are sometimes easily checked. For example, if the R;
and the P; or @); lie on distinct components of C; or if their fields of definitions
are clearly different (e.g. if the R;; are generic points on C; while the P;; and Q;,
are not).

REMARK 3: Although the family {Qn, ..., Q,} might not be unique, the conclu-
sions of theorem (8.1) apply to all of them.

When computing families of coverings, one can always make the heuristic as-
sumption that the (Q;)1<i<y can be taken to be residually generic and see if the
computation is succesful under this assumption.

4. The case of modular curves

In this section N will be an odd integer. We shall study the modular curves
of level 2N. The curve X (2N) is the Hurwitz space of the following family of
coverings.

Let Ay = (Z/NZ)? x (Z/2Z) be the group of translations and reflections of
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the affine plane modulo N. For w € Z/NZ we denote by a,, the translation by w
and by b,, the map

by : (Z/NZ)* — (Z/NZ)? defined by z — —z + w.

All the reflections b,, are conjugated and the center of Ay is trivial.

We consider Galois G-coverings of P! ramified over four points with mon-
odromy given by four reflections. These coverings are parametrized by quadru-
plets (04, 03,09,01) of reflections such that 04030901 = 1, up to an inner auto-
morphism of Ay.

Such an equivalent class of quadruplets is characterized by the couple (u,v) up
to sign where u and v are the products u = 090, and v = 0309. The couple (u,v)
generates (Z/NZ)?. We thus have |G Lo(N)|/2 isomorphism classes of coverings
with given ordered ramification.

We now compute the action of braids on these quadruplets. We shall represent a
quadruplet by the associated couple +(u, v). We call ¢ » the coloured elementary
braid that twists the first two strands and ¢, 3 the one twisting the second and
third strands.

We know that t1 (04,03, 02, 01) = (04, 03,092, 072°") thus

t12(u,v) = (u,v + 2u)

and similarly

t2,3(u7 U) = (U — 2v, U)'

We notice that braid action preserves the determinant [u,v] of v and v. There-
fore, our Hurwitz space # is the disjoint union of ¢(NN) connected components,
each a covering of Mg, = P! — {0,1,00} of degree |PSLy(N)|.

We shall of course restrict to one such component which we call #H, correspond-
ing to couples +(u,v) with [u,v] = 1. This is nothing but X (2N).

We call n : H — P — {0,1, 00} the Hurwitz map that associates to any point in
# the cross ratio (1, T2, T3, 4] of the ramification locus of the associated cover.

It extends to 7 : H = Y(2N) — P! There is a universal elliptic curve with 2N
torsion

H~—FEon

| e

Mo,4 -~ M0,5

where fibers above 0, 1, co are covers of the special curves Sy, Si¢, Soope
represented below.

We call Sy, &1 and S, the localizations at 0, 1 and oo of /\;10,5 — ./\;10,4.

Ramified points of 17 over 0 correspond to cycles under the action of ¢; 2 and
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S0, S1,e Sco,e

Figure 4: The three basic special curves

thus are parametrized by the ¢(N)1(N)/2 possible values of +u where (N) =
|P(Z/NZ)|. The ramification index is N.

For any u of maximal order in (Z/NZ)? we call p, the associated ramified point
of 77 above 0 and O, the local ring of Y/(2N) at p,. We choose a local parameter
7 at p, such that 7V = [1, T2, T3, 4] the local parameter at 0 € Mo,4- We call
C. — Spec(0,) the localization of E,y at p,. The curve C, is an admissible
G-cover of the curve .

Let us take some b € P*(C) not in P*(R). For every value of 7 in a small real
interval 0, k[, we choose a basis for 7 (P! — {0,7",1,0c},b) depending contin-
uously on 7 and consider the monodromy (o4, 03,09,01) of the corresponding
covering in the family.

We may always assume that oy = b_,, 0o = by, 03 = b, with v such that
[u,v] =1 and 04 = by_y-

The special curve C, , is the limit covering when 7 — 0.

We call a (resp. b) the component of Sy, containing z; and x5 (resp. z3 and
334).

The components of C, . above a (resp. b) are in bijection with the right cosets
of Ay modulo the subgroup generated by o; and o9 (resp. o3 and o4) and the
singular points of C, . correspond to right cosets of < o901 >=< 0403 >.

Forany W € (Z/NZ)?/ < u > we denote by ay (resp. by) the component of C,
above a (resp. b) associated to the coset Ay = {ay, b_w|w € W} =< by, ay > ay
(resp. Bw = {aw, by_w|w € W} =< by, ay > ayp)-

We see that the components ay, and by, follow in this way

I bW+v —aw by aw by, & (2)

where the symbol <+ stands for “crosses”.

We see that C, ¢ is a cycle of 2N genus zero components mapping alternatively
onto a and b.

The curve C, — Spec(Q,) is regular at the intersection of two components
of its special fiber because the order of any cycle of a, is IV, the order of braid
action.

In that case, the intersection graph G is a cycle with 2N vertices and the



J.-M. Couveignes: Boundary of Hurwitz spaces and explicit patching 16

Kirchhoff complex K is just G itself. So the computations of remark (1) of section
2 are transparent.

Each pair {ay,b_y_y} for w € (Z/NZ)?* corresponds to a ramified point &,
(with index 2) over z; on C,. The points &,, are 2N-torsion points and define global
sections &, — Y (2N) of the universal elliptic curve with torsion Eyy — Y(2N).

We notice that according to equation (2), the component of C, that intersects
&y is the [u, w]-th above a left from the component that intersects &.

Take z,y,z,u € (Z/NZ)? such that y,z ¢ {0,z,—z} and let k = [u,z] €
Z/NZ. We see that the divisor [,] + [£_z] — 2[&o] is principal and we take f, to
be a function with this horizontal divisor. Let r = [u,y] and s = [u, 2z]. For any
t € Z/NZ we denote by ||t|| the absolute value of the residue in [—-N/2, N/2].

We want to compute the valuation at p, of the quotient fy(&,)/fz(&;)- To this
end we compute the divisor (f;) of f, seen as a function on C, — Spec(Q,) up
to a multiple of the special fiber C, .

The intersection number of the horizontal part of (f;) with the components of
the special fiber is

e —2 for ay,
e +1 for a, and a_,,

e () everywhere else.

The same intersection indices are obtained with the vertical divisor

Ap=2kao+(2k—1)(bo+by)+(2k—2)(a—y +00)+(26—3) (v +b2y )+ (B_ (b —1)0-+bko)-

Indeed, every component of the special fiber crosses itself with multiplicity
—2 and its two neighbours with multiplicity 1. The coefficients in A are thus
deduced from the matricial identity below (for k = 2).

0 0 0 0 0 0 1 1
(0 0 0 0 0 1 —2\ (1) ( 0\
0 0 0 0 1 -2 1 2 0
0 0 0 1 -2 1 0 3 0
0 0 1 -2 1 0 0 4 =] -2 (3)
0 1 -2 1 0 0 0 3 0
1 -2 1 0 0 0 0 2 0
21 0 0 0 0 0 |\1) 0
\1 0 0 0 0 0 0 ) \ 1 )

Therefore the valuation of f,(&,)/fz(&;) at py is

2min({r[], [|k[]) — 2 min(]|s]], |[%]]).

We call 6, , the function f(&,)/fz(&;) on Y(2N). It’s a unit on X (2N) since
torsion points never coalesce on an elliptic curve.
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There is a changing level map Y (2N) — Y (N) which is Galois with group S;
and corresponds to forgetting the order on the four branch points {x1, x2, z3, x4}
It is ramified with index 2 at all points in 77 1({0, 1, c0}) and it maps these points
onto the cusps of Y (V). The cusps of Y(N) are in bijection with the points in
771(0). We thus shall call 5, the cusps of Y (N).

The functions 6, , are invariant under this Ss action and thus can be seen as
unit functions on X (). To avoid any confusion we call éw,y,z the function 0, , ,
seen as a function on Y'(N).

The valuation of 0, , at p, is min(||[y, u]||, ||[z, u]||) — min(||[z, u]|, ||[z, u]||)-

5. The Kirchhoff complex of a marked graph

In this section we extend the method of sections 1, (2) and (3) replacing ordinary
jacobians by generalized ones. From a theoretical point of view we believe it is
of some interest to define a combinatorial counterpart of generalized jacobians
and thus make a link with naive considerations in [7] about distances in trees. In
practice this generalization is relevant when due to the lack of rational sections
we cannot normalize the functions x and y in the introduction unless we ask
them to take value 1 at a point m of degree greater than 1. This leads us to the
consideration of the generalized jacobian Ji,.

Since the methods in this section are very similar to the ones in sections 1, 2
and 3, we shall just stress the differences. The main difficulty is the construction
of the Kirchhoff complex of a “non-compact” graph. We again mimic classical
integration theory.

We define an infinite thread to be a connected graph whose set of vertices is N
and with one edge from m to m + 1 for any m > 0. A thread of length N is a
finite graph whose set of vertices is [0, N] and with one edge from m to m +1 for
any 0 <m< N —1.

DEFINITION 5: Let G be a finite graph with genus h, vertices in V and edges in
E, n > 2 an integer and X1, Xo, ..., X, a family of (not necessarily distinct)
vertices.

The decorated graph of depth m associated to G and X = (X;);, denoted by ™G,
is the finite graph obtained by branching a thread of length m on G at every X;.

The hung graph associated to G and (X;);, denoted by *°G, is the limit of ™G
when m — oo obtained by branching an infinite thread at every X;.

We denote by XG the compactification of *°G obtained by connecting all the
threads in *°G at a single extra verter w.

We denote by XG the graph obtained by connecting all the threads in ™G at a
single extra vertex w.

Although the topological space XG is not a graph, it makes sense to speak
about edges (these are edges in ®G ) or vertices (vertices in ®G plus w) in it. Let
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Xa

Figure 5: An example of hanging a graph

X A1
Ci(*G,R) =R " be the space of functions from the set ¥G! of edges in XG to
R. This is not a finite dimensional space. For any edge e of XG we denote by d i
the uniform measure of total mass 1 on e and set

dp = Z edpte.

eeXgl

For any positive integer m we call du,, the restriction of du to ™G.

Let H,(*G,R) be the first singular homology group of the topological space XG.
This can be seen as a finite dimensional subspace of C;(*G,R) with dimension
p=h+n—1.Let H'(*G,R) be the space of cocycles (defined to be the dual of
Hy(*G, R)).

If a and b are points on *°G (not necessarily vertices) and v is a continuous
piecewise affine path from a to b we define

/d,UJ € Cl(oog,R)

v

as before and if we pick an origin O € G° and take U to be the universal covering
of ©°G constructed as the space of pathes from O up to homotopy, we can define
a map

¢:U— H'(*G,R) bYVH(/du,)
Y
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which makes sense because L du has finite support. The image of 71 (*G,0) C U

by ¢ is a lattice 7 of dimension A which is contained in H'(¥G,Z). We denote
by

0:°G —-T=HGR)/T

the induced map on quotients.

It is important to notice that H'(*G,R)/T is not compact since the dimension
of HY(*G,R) isp=h+n— 1.

For any positive integer k& we denote by ¢* : U* — H'(*G,R) the sum of ¢
with itself k times and similarly for ¢*.

The map P is invariant under permutation of the terms and thus gives rise to
amap v : SP(*G) - T.

LEMMA 5.1: The maps ¢P, ¢* and v are surjective.

We take XU to be the universal covering of X*G and define for each positive
integer m the map

b : XU — H'(*G,R) by 7 = (/du|m,)-

y
We notice that this map is well defined because dj,, has finite total mass.
The image of 71 (¥G, 0) C XU by ¢ is the direct sum T @ T,, of T and a lattice

7T, of dimension n — 1 and it is contained in H'(¥G,Z). We denote by

Ym:mG = H(GR)/T & Tn

the induced map on quotients. This time H'(*G,R)/T & 7,, is a compact torus.

For any positive integer k we denote by ¢ : XU* — H'(¥G,R) the sum of ¢,,
with itself k times and similarly for ¢F .

The map ¢? is invariant under permutation of the terms and thus gives rise
to a map v, : SP(AG) — H'(*G,R)/T & Tp-

The maps ¢P,, ¢F and v, are surjective. This is proved like in section 3 (a
continuous map between two tori of the same dimension which is non-singular on
the homology is surjective).

Now let y be in H'(¥G,R)/T . For any integer m there is a unique stable point
T € (XG)P such that vy, (2,) =y mod T + Tp.

There exist two integers M and N such that for any m > M the point z,, is
in (YG)? and is independent of m. This limit point is mapped onto y by v. O

DEFINITION 6: A point x = {z1, ..., xp} in SP(*G) is said to be stable if and only
if there exist p (closed) edges (€;)1<i<p 1n ©G such that z; € e; and *G — Use;
15 connected and simply connected. Under the same conditions we shall say that
(@1, .0y Tp) € (¥G)P is stable. We denote by J (resp. K) the set of stable points
in (*°G)P (resp. SP(*G)).
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LEMMA 5.2: A point v = {x1, ..., x,} is stable if and only if v is locally surjective
at x (the image of any neighbourhood of x is a neighbourhood of v(x)).

This results from lemma (2.8) because a point is stable if and only if it is stable
with respect to the map v,, for m big enough. O

THEOREM b5.1: The restriction of the integration map v to the set K of stable
points in SP(*G) is an homeomorphism that turns KC into a locally finite cell de-
composition of the cylinder T = HY(XG,R)/T . The p-dimensional cells in K are
the stable p-dimensional cells in SP(*G). They are parallelograms and correspond
to “spanning trees” in XG. The set of vertices of K is the group H'(*G,Z)/T.

For any integer e > 1 let G, be the e-th division of G obtained by cutting any
edge into e smaller edges of equal length. The associated Kirchhoff cell complex
K. is the e-th division of /.

A point in T is said to be rigid if it has a unique preimage by v. Rigid points
are dense in 7.

Let K, K, k = k, O, v, 7, C be as in section 3. Let n > 2 be an integer
and Y1k, Y2,k, -y Yn,k, 0 Points in Cx(K) with y1, ..., yn, o the corresponding
sections that we assume to cross the special fiber Cp at pairwise distinct smooth
points Y1k, Yok, ---; Ynk, Ok- Let G be the graph of C, and X; = z(y), ...,
X, = z(y,) and O = z(0) the vertices of G associated to the components that
cross yi, ..., Yo and o. We call G, XG, K, v,..., the associated complexes and
maps. We set m = [11] + [2] + ... + [yn] (the “module”). Let C be the model of
Cx = Cx — {1, ..., yn} with special curve C, having infinitely many genus zero
components corresponding to all concentric circles with radius a multiple of 7
around the y;’s. To any point P in Cx(K) one can associate an element z(P) in
*G(Q) and to any divisor one can associate a point of the Kirchhoff complex K
of XG. In the same spirit as in section 3 we thus can solve the following

PROBLEM 2: Giwen a divisor D of degree g +n — 1 on Cx, we assume there
exists an effective divisor E of degree g +n — 1 and m-equivalent to D (it may
not be unique).

The Zariski closure of D (resp. E) is a divisor on C that we shall denote by D
(resp. E) also. Knowing how D intersects the special fiber C. can we deduce how
E intersects C.?

6. A simple computational example

In this section we treat a simple example. We shall again take advantage of several
special fibers at a time. This way we avoid the heavy computations with series like
in [7] and take this opportunity to study a greater variety of degenerate covers.
Although these shortcuts may not be possible for all covers, we believe they have
to be illustrated once.
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We consider degree 3 coverings of P! ramified over four points and with ram-
ification type (3,3,2.1,2.1). These are genus 1 coverings. Once given the four
ramification points 1 = 0, zo = 00, 3 = 1, ©4 = 1 and a basis for the funda-
mental group, the two possible monodromies are

g1 = [1,2,3], g9 = [1,3,2], O3 = [1,2], g4 = [1,2]

and
o1 = [1,2,3], O9 = [1,2,3], 03 = [3, 2], 04 = [1,3]

The (complete) Hurwitz curve H parametrizing these covers is a genus zero
curve. We see 1 as a map from H to P! that associates to any point in H the
cross-ratio of the ramification locus in the corresponding cover. The map 7 is a
degree two map ramified above n = 0 (corresponding to z; = z3) and n = o0
(corresponding to xo = z3).

We call T' € ‘H the unique point above 0, U the unique point above oo and V/,
W the points above 1.

There is a universal curve

H C
|
M0,4 - M0,5

We call A — M, 4 the unique point on C mapped onto x; by ¢. We call B the
unique point above x5 and C (resp. E) the unique ramified point above z3 (resp.
x4). We call D (resp. F') the unique non ramified point above z3 (resp. z4). We
call Cry, Cy, Cy, Cw,, the special curves at the corresponding points.

We draw these special curves on figures 6 and 7 (It must be noted that the
fiber at W we have represented is obtained after base change of degree 3. The
actual fiber would be a quotient of it by a group of order 3. In particular, the
thickness at the only intersection point in Cyy, is 1/3).

The surface C — H is regular except at two points. One intersection point on
each of the special curves Cy, and Cr is not smooth.

Indeed the product oy03 = [1][2, 3] has two cycles of unequal length and the
corresponding nodes on the special fiber Cr ¢ have thickness 1 and 2. Thus one of
them is singular.

We blow up C at these two singular points and obtain new special curves éU,e
and CAT,G.

We consider two functions on C. The first one is just ¢. The second one is
obtained from the holomorphic differential w on the genus one curve H. The
divisor of w is 0. The divisor of the differential d¢ is

dg = 2[A] — 4[B] + [C] + [E]
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Figure 6: The special fibers Cy,c and Cyy,c

C C
D B D A

Figure 7: The special fibers Cy, and Cr,c

Figure 8: The special fibers éy,e and éT,e

thus the function v = d¢/w has the same divisor. We set § = /¢ and check that

(0) = [C] + [E] - [B] — [A].

Since 6 is defined only up to a constant factor we ask that (D) = 1.

Since H has genus 0, we call f the function on H taking values 0 at T', co at
Uand1atW.

Because # has two poles it is of degree two i.e. the field of functions C(f)(C)
of C is a degree two extension of C(f)(#). Similarly, the function ¢ has degree
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3. Thus there is an equation £(#,¢) = 0 of degree 3 in 6 and 2 in ¢ and with
coefficients in C(f).
We write

E(0,9)=ap+a1p+a20+a3p>+asp8+as0+asp?0+ardp?+agh>+agp?02+a10$0%+a114%6°.

Local multiplicities of poles at B imply that a;; = a9 = ag = 0. Indeed the
term a1, ¢*6® is the only term with minimal order (—9) in the equation. It thus
must be zero. And similarly for ag¢?#* which is the only term of order —8 and
agd?0 of order —7.

Then the local multiplicities at A similarly show that ag = a5 = a; = 0 in this
order. Further, the cancellation of d¢ at C implies a4, = 0. Indeed we have

d¢(a1 + 2&3¢ + a49 + CL792 + a1003) = —d9(6l4¢ + 2&79¢ + 3&1002¢)

and since df, d¢, € and ¢ are of order 0, 1, 1 and 0 we deduce that as, = 0.
Thus
E0,9) = ag+ a1 + azd® + a700? + a19pb°.

Let us now call {¢}y the vertical part of the divisor of ¢ at Cy,. Since all
intersection indices are zero we have {¢}y = 0. We find in a similar way {0}y =
(CFE) where (CE) stands for the component carrying C' and E.

Similarly, {¢}w = 0 and {#}w = —2/3(AB).

It makes sense to compute the divisors of # and ¢ restricted to the blown up
fibers CAU,6 and éT,e. We denote by (f)) the extra genus zero component.

Thus {¢}y = —(0) — 2(BCD) and {0}y = 0.

And similarly {¢}7 = (0) + 2(CDA) and {0} = 0.

We observe that ¢(C) and ¢(F) are finite when the curve is regular. Further,
the study of special curves shows that ¢(C) has a pole of order two at T and a
zero of order two at U and is finite at V and W. Similarly, ¢(E) is shown to have
no pole and no zero. We normalize taking ay = 1 and since ¢(C) and ¢(E) are
the two solutions of £(0, ¢) = 0 we deduce that there exist two constants k; and
ko such that

asg = k‘lkgf_2 and a; = —kz — k‘lf_z.

We now study the value of #0* at A. This is nothing but —ay/a;9. Examination
of special fibers shows that this function has a double pole at W and a double
zero at T'. Therefore

aig = k(f —1)°f7
where k3 is a constant.
Similarly we show that 8(F') and ¢(F) are constants ky and ks so

5(k4, ]f5) = 0.
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We deduce that a; = kg + k7f~* + ksf 2 where kg, k; and kg are constants
depending on k,...,ks.

There remains to determine the constants k1, ..., kg. This is done by specializing.
All the constants can be obtained from a single specialization. For example, if we
set f = 0 in &£ and ask that the corresponding cover be ramified above ¢ = 0,
¢ =1, ¢ = co we find that ky = 1 and 4k2 = 27k k2.

If we substitute § = 0 in £ we find that n = f2/k;. Since both f and 7 take
value 1 at W we deduce that k; = 1.

Since point D € C has coordinates (1,7) we now set # = 1 and ¢ = f2in &
and find

/{3 = —ks and k7 = —2]66 and kg = ]{IG.

We deduce that kg = 27/4.
In the end, the equation of the universal curve C is

4¢% — 4p(f2 + 1) +4f2 4+ 27(f — 1)%00% — 27¢03(f — 1)*> = 0.
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