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Abstract

We address the problem of computing in the groug’sforsion rational points of the
jacobian variety of algebraic curves over finite fields, veithiew toward computing modular
representations.
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1 Introduction

Let F, be a finite field of characteristicandA? C P? the affine and projective planes ovéy
andC c P? a plane projective absolutely irreducible reduced curver &y and X its smooth
projective model and/ the jacobian variety o&’. Let g be the genus alt andd the degree of
C.

We assume that we are given the numerator of the zeta funatitre function fieldF,(X).
So we know the characteristic polynomial of the FrobeniugoemorphismF, of 7. This is a
monic degre€g polynomialy (X) with integer coefficients.

Let ¢ # p be a prime integer and let = ¢* be a power of. We look for anice generating
setfor the group7[¢*](F,) of ¢*-torsion points in7 (F,). By nicewe mean that the generating
set(g;)1<i<; should induce a decomposition gfi¢*|(F,) as a direct produd[,.,., < g; > of
cyclic subgroups with non-decreasing orders. o

Given such a generating set and Bpaendomorphism of7, we also want to describe the
action of this endomorphism fi[¢*](F,) by anl x I integer matrix.

In sectior B we recall how to compute in the Picard groiff,). Sectiorl# gives a naive
algorithm for picking random elements in this group. Pasrare useful when looking for re-
lations between divisor classes. So we recall how to compaiténgs in sectiofil5. Sectidin 6
is concerned with characteristic subspaces for the acfiéimabenius inside thé>-torsion of
J (F,). In sectioriy we look for a convenient surjection frgfiFF,) onto its¢*-torsion subgroup.
We use the Kummer exact sequence and the structure of thgemeyated by the Frobenius en-
domorphism. In sectiod 8 we give an algorithm that, on inpdégreel plane projective curve
overF,, plus some information on its singularities, and the zetaction of its function field,
returns a nice generating set for the groug'eforsion points inside/ (F,) in probabilistic poly-
nomial time inlog ¢, d and/*. Section§ and10 are devoted to two families of modularesirv
We give a nice plane model for such curves. The general ditgosi presented in secti@h 8 are
then applied to these modular curves in secfidn 11 in ordeotopute explicitly the modular
representation modulbassociated with the discriminant modular form (leveind weightl 2).
This modulo/ representatiof; is seen as a subgroup of ordéiinside the/-torsion of J,(¢) /Q.



The idea is to compute the reduction modulaf the group schemg, as a subgroup of, (¢)/F,,
for many small primeg. One then lifts using the Chinese Remainder Theorem. Thiema
connection with Edixhoven’s program for computing coeéfits of modular forms. My contri-
bution to this program is sketched in sectidn 2. $eél[10, Th¢ core of Edixhoven’s program
is that if one knowd/;, one can efficiently compute the Ramanujan functiof?) modulo/ for

a large primeP. If we have enough primes we can deduce the actual valuer¢P).

The last three sections present variants of the main afgoind auxiliary results. Sectibnl12
presents a simpler variant of the method of sedfidn 11, shaaiticularly useful when the action
of the p-Frobenius orl/;, modulop is semisimple non-scalar. In the non-semisimple case, this
simpler method may only produce a non-trivial subspacel@igi modulop. Sectior_I# proves
that this semisimplicity condition holds quite often indeas expected. As a consequence, one
may compute the representatibhassociated with the discriminant form for at least half fsay
the primes/, using this simplified algorithm. This suffices for the puspaf computing the
Ramanujan function(P) at a large primé” since we may afford to skip half the auxiliary primes
¢. On the other hand, if one wishes to compute a representatbaiulo/ for a given/, then one
should be ready to face (at least theoretically) the casenwbesmall primep is semisimple for
¢. In that situation, the simplified algorithm would only giaenon-trivial subspace df, modulo
p for many prime.

SectiorIB addresses the problem of computinfjom all the knowledge we have collected
concerning/; mod p for many small prime®. It requires a sort of interpolation theorem in the
context of polynomials with integer coefficients. The gaatid recover a polynomidP(X') once
given a collection of non-trivial factors d?(X') mod p for many primeg. This helps recovering
V¢/Q once given a subspace in its reduction modufor enough small primeg.

Altogether, this proves that the simplified algorithm, desphe possibility of many non-
semisimple primeg, suffices to comput&,/Q for all .

Remark 1 The symbo0 in this article stands for a positive effective absolutestant. So any
statement containing this symbol becomes true if the symlbeplaced in every occurrence by
some large enough real number.

Remark 2 By an algorithm in this paper we usually mean a probabilifitias Vegas) algorithm.
This is an algorithm that succeeds with probabilitys. When it fails, it gives no answer. In some
places we shall give deterministic algorithms or probagti (Monte-Carlo) algorithms, but this
will be stated explicitly. A Monte-Carlo algorithm gives areect answer with probability> %
But it may give an incorrect answer with probability % A Monte-Carlo algorithm can be
turned into a Las Vegas one, provided we can efficiently ctieckorrectness of the result. One
reason for using probabilistic Turing machines is that innmalaces it will be necessary (or
at least wiser) to decompose a divisor as a sum of places.iJ k& case in particular for the
conductor of some plane curve. Another more intrinsicatbbgbilistic algorithm in this paper
is the one that searches for generators of the Picard group.



2 Context: the inverse Jacobi problem

The initial motivation for this work is a discussion | had i@ with Bas Edixhoven about his
program aiming at polynomial time computation of coeffitgeof modular forms.

He asked how one can compute (e.g.) the decomposition figlteafimension two modulo
¢ Galois representatiol;, associated to the discriminant modular fotm This amounts to
computing the field of moduli of some very spediatyclic coverings ofX; (¢).

| had some experience in explicit computation of coveringiag numerical techniques and
got the impression that a purely algebraic approach wotullddfgolve such a problem. This is
becausé/;,, however small it is, is lost in the middle of the féttorsion of J;(¢). And the latter
is a huge dimension zero variety (its number of geometringsas exponential ir).

The second time | discussed this question with Edixhovdmedame clear that we had two
options. We might comput, inside the complex torus of; (¢) and evaluate a theta function at
some pointz in V,. Edixhoven convinced me that this approach was unlikelyutxsed since
the number of terms to be considered in the expansion of #ta fnction would be exponential
in ¢, even for a poor accuracy. Another possibility was to sdiseihverse Jacobi problem for
and find a divisotD = P, + --- + P, — gO in the class associated toin the Picard group of
X1(¢). Then one would pick a functiofi on X, (¢) and evaluatg'(z) = f(P;) + --- + f(P,)
for example.

Solving the inverse Jacobi problem seemed easy. Indeedowie pick any divisorD? =
PP+ -+ Pf — gO of the above form orX, (¢) and compute its image’ by the Jacobi map.
Then one would move slowly from® to = inside the complex torug; (¢)(C). At each step the
corresponding divisor would be computed from the previaus wsing Newton’s method.

Although the Jacobi map is birational, it is not quite an isophism however. It has a
singular locus and it was not clear how one could avoid thitaite in the journey from® to .

It was decided that | would think about how to solve this peoblwhile Edixhoven would
prove good bounds on the height of the algebraic nunit{ar) coming out of the algorithm.
Edixhoven first proved the analogous bound in the functidd iase. Then, Bas Edixhoven and
Robin de Jong, using Arakelov theory and results by MerkLij pr J. Jorgenson and J. Kramer
in [19], proved the bound for the height 6% z).

On my side, | was trying to avoid the singular locus. | beliévat in general, the problem
of avoiding the singular locus might very well be NP-comeletindeed, if the curve under
consideration is very close to the boundary of the modulcep#he problem takes a discrete
aspect: the curve has long tubes and sometimes one may hie@de to push one point through
one tube or the other one. In case one makes the wrong deasiermay be lost for ever. The
problem can be phrased in a more mathematical way: if theedar{close to) a Mumford curve,
solving the inverse Jacobi problem assumes one can soldsitrete counterpart for it: solving
the Jacobi problem for a finite graph; namely the intersedi@aph of the curve. See [7] theorem
Theorem 2.1 and the following remark for a statement of thabfem, that | suspect is very hard
when the genus of the graph tends to infinity.

Of course one may expect that(¢) keeps far enough from the boundary of its moduli space
when/ tends to infinity. However, | was not able to give a proof tiet above ideas do succeed
in solving the inverse Jacobi problem, even for these curviead to build on a rather different
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idea and proved iri [8] that faK(¢) at least, solving the inverse Jacobi problem is deternnist
polynomial time in/ and the required precision.

The first version ofl[8] was ready in January 2004. Extendnigresult to any modular curve
is just a technical problem, but | confess | was tired witthtecalities and | stopped there with
the complex method.

Starting in August 2003 | decided to look forpaadic analogue of this complex method:
looking for ap-adic approximation instead of a complex one. After sometduasn | realized
that computing modulo several small primesnd then lifting using the Chinese remainder
would lead to a simpler algorithm. This text gathers the ltesaf this research. The methods
presented here are the discrete counterpart of the oriefs i@ essence of theordh 2 is that the
discrete method presented in this paper applies to modutees X, (¢). This is exactly what is
needed for the purpose of computing the Ramanujan function.

The complex approach is more tedious but leads to deterigialgorithms. The main reason
is that the set of complex points in the jacobian is a conmktcipological space. The modujo
approach that we present here seems intrinsically prabtibibecause one has to find generators
of Picard groups of curves over finite fields.

| should also say that the complex approach was not abandomezl Johan Bosman started
in June 2004 his PhD with Edixhoven on this topic and he sudsxén explicitly computing
someV, using the complex method. See [3]. He built on the Newton @ggr to solving the
inverse Jacobi problem, as sketched above. This showshhairtgular locus of the Jacobi map
is not so disturbing after all, at least in practice.

Several sections in this text have been included in Edixhsweport [11]. Many thanks are
due to Bas Edixhoven and Robin de Jong for useful discusssoiggiestions, and comments.

Many thanks also to John Cremona and the anonymous refaresafting in detail this long
manuscript and for their useful comments.

3 Basic algorithms for plane curves

We recall elementary results about computing in the Picaodmof an algebraic curve over a
finite field. Seell1l6, 33].

3.1 Finite fields

We should first explain how finite fields are represented. TdselieldF, is given by an irre-
ducible polynomialf (X') with degreex and coefficients i, wherep is the characteristic and
q = p*. SoF,isF,[X]/f(X). An extension off', is given similarly by an irreducible polyno-
mial in IF,[X]. Polynomial factoring irff,[X] is probabilistic polynomial time ifog ¢ and the
degree of the polynomial to be factored.

3.2 Plane projective curves and their smooth model

We now explain how curves are supposed to be representeis jeiper.



To start with, a projective plane curveoverF, is given by a degreé homogeneous poly-
nomial £(X,Y, Z) in the three variables(, Y and Z, with coefficients inF,. The curveC
is assumed to be absolutely irreducible and reduced. PBwiat on C' we mean a geometric
point (an element o’ (F,)). Any FF,-point onC can be represented by its affine or projective
coordinates.

Let X be a smooth model af. There is a desingularization map — C. If P € X(F,) is
a geometric point o’ above a singular poirff on C', we say that’ is asingular branch

The conductor¢ is an effective divisor ot with even coefficients. Some authors call it
the adjunction divisor. Its support is made of all singulaarizhes. The conductor expresses the
local behaviour of the mapg’ — C. Seel[29, IV.1],[15]. We havédeg(€) = 25 where/ is the
difference between the arithmetic gerﬁééw of C' and the geometric genysof X'. Since
0 < W, the support off contains at mosiw geometric points in¥'(F,). So the
field of definition of any singular branch ot is an extension af , with degree< W A
modern reference for singularities of plane curveslis [5] @specially section 5.8.

The smooth modek’ of C' is not given as a projective variety. Indeed, we shall onlgdcha
nice local description o’ above every singularity af’. This means we need a list of all singular
points onC, and a list (a labelling) of all points i’ (F,) lying above every singularity of' (the
singular branches), and a uniformizing parameter at ewerly branch. We also need the Laurent
series expansions of affine plane coordinates in terms tiedle uniformizing parameters.

More precisely, let? € X (F,) be a geometric point above a singular padytand letv be
the corresponding valuation. The field of definition Bfis an extension field» of F, with
degree< =92 | et 4 andy be affine coordinates that vanish at the singular psioh C.
We need a local parameteat P> and expansions = -, ) axt* andy = 37, bt" with
coefficients inF p.

Because these expansions are not finite, we just assume gi@nean oracle that on input
a positive integern returns the first: terms in all these expansions.

This is what we mean when we say the smooth madded given.

We may also assume that we are given the conduttoir C' as a combination of singular
branches with even coefficients. The following algorithrii$work if the conductor is replaced
by any divisor® that is greater than the conductor and has polynomial degrée Such a
divisor can be found easily: the singular branchestoare supposed to be known already, and
the multiplicities are bounded above ByA4=2,

There are many families of curves for which such a smooth inzatebe given as a Turing
machine that answers in probabilistic polynomial time ia #izelog ¢ of the field and the de-
greed of C' and the number of requested significant terms in the parametrizationsrajidar
branches. This is the case for curves with ordinary muliggmts for example. We shall show
in section$P and10 that this is also the case for two niceliigsf modular curves.

3.3 Divisors, forms, and functions

SmoothF,-points onC are represented by their affine or projective coordinateselling for
the branches above singular points is given in the desonjptiX'. So we know how to represent



divisors onX'.
For any integeh > 0 we set

Sh = HO(]P)Q/an OIP’Q/]Fq (h))

theF,-linear space of degrédehomogeneous polynomials i, Y, andZ. It is a vector space
of dimension”* "2 qver[r,. A basis for it is made of all monomials of the fori*y*Z¢
with a,b,¢c € Nanda + b + ¢ = h.

We denote by

Hy, = HY(X/F,, Oxr,(h))

the space of forms of degréeon X'. HereOyx r, (h) is the pullback 0Op: i (h) to X'

Let W be a degreé form onP? having non-zero pullback/y on X. Let H = (W) be
the divisor of this restriction. The map+— WLX is a bijection fromH° (X /F,, Oxr,(h)) to the
linear space(H ).

If Aisa divisor onX¥ we noteH,(—A) the subspace of forms iH;, with divisor> A. The
dimension ofH,,(—¢) is at leastih + 1 — g — deg () and is equal to this number when it exceeds
g — 1. This is the case ik > d. The dimension of{,(—¢) is greater thaiyg if h > 2d.

The image of the restriction map: S, — H,, containsH,(—¢) according to Noether’s
residue theorem [15, Theorem 7].

We setSe = Sog andHe = Haog(—€), andHe = p~'(He) C Sc and K¢ = Ker(p) C He.
Sowe havé) — Ko — Ho — He — 0.

To find linear equations fal~ C S we consider a generic homogeneous féfaX, Y, 7) =
Y atbre—2d €ap XY Z¢ of degree2d in X, Y andZ. For every branct above a singular point
S € C (assuming for example that has non-zerdZ-coordinate) we replace iff(3, %, 1) the
affine coordinates = % andy = % by their expansions as series in the local parametet
this branch. We ask the resulting seriegjrto have valuation at least the multiplicity 6fin the
conductorg. Every singular branch thus produces linear equationssin,tf).. The collection of
all such equations defines the subspHAge

A basis for the subspadé. C Ho C S consists of allX*Y*Z¢E(X,Y, Z) with a+b+c =
d. We fix a supplementary spadé- to K- in Hs and assimilaté{. to it.

Given a homogeneous form in three variables one can comgsutivisor onX’ using re-
sultants and the given expansions of affine coordinatesnmstef the local parameters at every
singular branch. A function is given as a quotient of two ferm

3.4 The Brill-Noether algorithm

Linear spaces of forms computed in the previous paragrdptv ais to compute in the group
J(F,) of F,-points in the jacobian af’. We fix an effectivel', -divisor w with degreey on X
This w will serve as an origin: a point € J(F,) is represented by a divisot — w in the
corresponding linear equivalence class, whéiie an effectivel,-divisor with degregy. Given
another poing € J (F,) by a similar divisorB —w, we can compute the spatg,(—C—A— B)
which is non-trivial and pick a non-zero forifa in it. The divisor off, is(f;) = A+ B+C+ R
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whereR is an effective divisor with degregl*> — 2g — 2. The linear spacéfs;(—¢€ — R — w)
has dimension at least We pick a non-zero fornf, in it. It has divisor(f;) =€+ R+w + D
whereD is effective with degreg. And D — w is linearly equivalenttoA — w + B — w.

In order to invert the class of A — w we pick a non-zero fornf; in Hayg(—€ — 2w). The
divisor of f; is (f1) = 2w + € + R whereR is an effective divisor with degre&i*> — 2g — 2.
The linear spacé{,;(—¢ — R — A) has dimension at lea$t We pick a non-zero fornf; in it.

It has divisor(f,) = € + R + A + B whereB is effective with degreg. And B — w is linearly
equivalentto— (A — w).

This algorithm works just as well if we replageby some® > ¢ having polynomial degree

ind.

Lemma 1 (Arithmetic operations in the jacobian) Let C/IF, be a degreel plane projective
absolutely irreducible reduced curve. Lgbe the geometric genus 6f. Assume we are given
the smooth modet of C' and alF,-divisor with degregy on X', denotedv. We assume is given
as a difference between two effective divisors with dedreaaded by a polynomial i Thisw
serves as an origin. Arithmetic operations in the Picardugr®ic’ (X' /F,) can be performed in
time polynomial inlog ¢ andd. This includes addition, substraction and comparison efsdir
classes.

If wis not effective, we use lemnia 2 below to compute a non-zarotion f in £(w) and
we writew’ = (f) + w. This is an effective divisor with degree We replacev by w’ and finish
as in the paragraph before lemhia 1 O

We now recall the principle of the Brill-Noether algorithrarfcomputing complete linear
series. Functions ifi,(X) are represented as quotients of forms.

Lemma 2 (Brill-Noether) There exists an algorithm that on input a degreplane projective
absolutely irreducible reduced curvg/IF, and the smooth modét of C' and two effectivér,-

divisors A and B on X', computes a basis faf(A — B) in time polynomial ind andlog ¢ and

the degrees oft and B.

We assumeeg(A) > deg(B), otherwiseL(A — B) = 0. Leta be the degree ofl. We leth
be the smallest integer such that 2d andhd + g+ 1 > a+ (d — 1)(d — 2).

So the spacé{,(—¢ — A) is non-zero. It is contained in the image of the restricticapm
p : S, — H;, so that we can represent it as a subspacs,ofWe pick a non-zero fornf in
Hn(—€ — A) and compute its divisqf) = € + A+ D.

The spacé+,(—¢ — B — D) is contained in the image of the restriction mapS, — H,,
so that we can represent it as a subspac®, oiVe compute formsy, 72, ..., 7% IN Sy such that
their images by provide a basis fot{,(—¢ — B — D). A basis for£(A — B) is made of the
functions?, ”—JE ka Again this algorithm works just as well if we repla¢dy some® > &
having polynomial degree id. O

We deduce an explicit moving lemma for divisors.

Lemma 3 (Moving divisor lemma l) There exists an algorithm that on input a degteplane
projective absolutely irreducible reduced cuglF, and the smooth moddl of C' and a degree
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zeroF,-divisor D = D* — D~ and an effective divisoA with degree< ¢ on X computes a
divisor E = Et — E~ linearly equivalent taD and disjoint toA in time polynomial ind and
log ¢ and the degrees db*, and A. Further the degree ab* and £~ can be taken to b& 2¢d.

Let O be anlF,-rational divisor ont’ such thatl < deg(O) < d and disjoint toA. We may
takeO to be a well chosen fiber of some plane coordinate functioA’ oWe compute the linear
spacel = L(D*— D~ +2¢0). The subset of functiongin £ such tha{ /) + Dt — D~ + 2¢O
is not disjoint toA is contained in a union of at modtg(A) < ¢ hyperplanes. We conclude
invoking lemmd} below. O

There remains to state and prove the

Lemma 4 (Solving inequalities) Let ¢ be a prime power/ > 2 andn > 1 two integers and let
Hy, ...,H, be hyperplanes insidé = IFZ each given by a linear equation. Assume q. There

exists a deterministic algorithm that finds a vectotin= V' — |, ..., Hi in time polynomial
inlog ¢, d andn. -

This is proved by lowering the dimensiah Ford = 2 we pick any affine linel in V' not
containing the origin. We observe that there are at lpastpoints inUNL = L—J, ., .,, LNHj.
We enumerate points ih until we find one which is not in an¥d,.. This requires at most + 1
trials.

Assume nowl is bigger thar2. Hyperplanes irl” are parametrized by the projective space
P(V) whereV is the dual of’. We enumerate points (V) until we find a hyperplané
distinct from everyH,. We compute a basis fdk and an equation for everff, N K in this
basis. This way, we have lowered the dimensior by a

We can strengthen a bit the moving divisor algorithm by remgvhe condition thatd has
degree< ¢. Indeed, in case this condition is not met, we ealhe smallest integer such that
q* > deg(A) and we set? = o + 1. We apply lemmal3 after base change to the field wfith
elements and find a divisdr,,. We calle, the norm ofE, from F,. to F,. It is equivalent to
aD. We similarly construct a divisat that is equivalent tga + 1)D. We return the divisor
E = e — e,. We observe that we can take< 1 + log, deg(A) so the degree of the positive
part £+ of E'is < 6gd(log,(deg(A)) + 1).

Lemma 5 (Moving divisor lemma Il) There exists an algorithm that on input a degreglane
projective absolutely irreducible curnv@/F, and the smooth modél of C' and a degree zero
[F,-divisor D = D* — D~ and an effective divisad on X computes a divisoE = E* — E~
linearly equivalent taD and disjoint toA in time polynomial ind andlog ¢ and the degrees of
D7, and A. Further the degree oE™ and E~ can be taken to b& 6gd(log,(deg(A)) + 1).

4 A first approach to picking random divisors
Given a finite fieldF, and a plane projective absolutely irreducible reducededreverF, with

projective smooth modeY’, we call 7 the jacobian oft and we consider two related problems:
picking a random element iif (IF,,) with (close to) uniform distribution and finding a genergtin
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set for (a large subgroup off (F,). Let g be the genus of’. We assume we are given a degree
1 divisorO = Ot — O~ whereO* andO~ are effective[F,-rational and have degree bounded
by an absolute constant timegs

We know from [26, Theorem 2] that the grolic’(X' /F,) is generated by the classps—
deg(p)O] wherep runs over the set of prime divisors of degreel + 2log,(4g — 2). For the
convenience of the reader we quote this result as a lemma.

Lemma 6 (Mdiller, Stein, Thiel) Let K be an algebraic function field of one variable o\&y.
Let N > 0 be an integer. Ley be the genus oK. Lety : Div(K) — C* be a character of
finite order which is non-trivial when restricted fiv°. Assume that(8) = 1 for every prime
divisor® of degree< N. Then

N < 2log,(4g9 — 2).

If ¢ < 447, the number of prime divisors of degreel + 2log,(4g — 2) is bounded by ¢°.
So we can compute easily a small generating set/idf,).

In the rest of this section, we will assume that the sgizé the field is greater than or equal
to 4¢*. This condition ensures the existence @ arational point.

Picking efficiently and provably random elementsfigF,) with uniform distribution seems
difficult to us. We first give here an algorithm for efficienttgnstructing random divisors with
a distribution that is far from uniform but still sufficierd tonstruct a generating set for a large
subgroup of7 (F,). Once given generators, picking random elements becomels easier.

Let r be the smallest prime integer bigger thédn 2g — 2 andd. We observe- is less than
max(4g — 4, 2d, 60).

The setP(r, q) of F,-places with degree on X" has cardinality

#X (Fyr) — #X(Fy)

#P(r,q) = . .
So
(1— 10—2)% < #P(r,q) < (1+ 10—2)‘1%.

Indeed|#X (F,) — ¢" — 1] < 2gq2 and|#X (F,) — ¢ — 1| < 2gq2.
So|#P(r,q) — £| < 2¢5 < 8¢5 and8rg= < r23-3 < 1072 sincer > 31.
Since we are given a degreeplane modelC' for the curveX’, we have a degreé map
r : X — P Sinced < r, the functionz mapsP(r,q) to the setd(r,q) of monic prime
polynomials of degree over[F,. The cardinality ot/(r, q) is qr—‘q o)
(1 -10% < < L.

-
The fibers of the map : P(r, q) — U(r, ¢) have cardinality betweehandd.
We can pick a random elementiif{r, ¢) with uniform distribution in the following way: we
pick a random monic polynomial of degreeavith coefficients ink,, with uniform distribution.
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We check whether it is irreducible. If it is, we output it. @tlwvise we start again. This is
polynomial time inr andlog q.

Given a random element i (r, ¢) with uniform distribution, we can compute the fiber of
x : P(r,q) — U(r,q) above it and, provided this fiber is non-empty, pick a randéement in
it with uniform distribution. If the fiber is empty, we pick ather element id{(r, ¢) until we
find a non-empty fiber. At least one in evety (0.99)~! fibers is non-empty. We thus define a
distributiony onP(r, ¢) and prove the following.

Lemma 7 (A very rough measure) There is a unique measureon P(r, ¢) such that all non-
empty fibers of the map: P(r,q) — U(r, q) have the same measure, and all points in a given
fiber have the same measure. There exists a probabilistarigthgn that picks a random element
in P(r, q) with distributiony in time polynomial inf andlog g. For every subseX of P(r, q) the
measurg:(Z) is related to the uniform measutgtZ— by

47 d4-7
L — A ——
o e A )

Now letD(r, ¢) be the set of effectivi,-divisors with degree on X'. Since we have assumed
q > 4¢* we know thatX has at least ong,-rational point. Let be a degree effective divisor
onX /F,. We associate to evetyin D(r, q) the class otv— Q2 in J (IF,,). This defines a surjection
J. : D(r,q) — J(F,) with all its fibers having cardinality:P"—9(F,).

So the seD(r, ¢) has cardinalit)ﬂ%#j(m).

So
1

qr—g+1

1-1
q

1 1
#P(r,q) < #D(r,q) < "¢ ¢(1+—)%.
(r;q) (r.q) ( \/C_]>
Sinceq > 4¢? we have#D(r, q) < 2eq".
Assumed is a finite group and> an epimorphism of groups : 7 (F,) — G. We look for
some divisorA € D(r, q) such that)(J,(A)) # 0 € G. Since all the fibers of o J, have the
same cardinality, the fiber abovehas at mos;% elements. So the number of prime divisors

A € P(r,q) such thaty(J.(A)) is not0 is at leasy” (%” — 7). We assumetG is at leasti 27,
Then at least half of the divisors i(r, ¢) are not mapped ontoby ¢ o J,.. The u-measure of
the subset consisting of these elements is at Igast

So if we pick a random in P(r, ¢) with u-measure as in lemnid 7, the probability of success

is at leasty;. If we make2d trials, the probability of successis 1 — exp(—1) > 3.

Lemma 8 (Finding non-zero classes)here exists a probabilistic (Monte-Carlo) algorithm that
takes as input

1. a degreel and geometric genugplane projective absolutely irreducible reduced cuéve
overF,, such thay > 442,

2. the smooth mode¥ of C,
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3. adegreg effective divisow, as origin,

4. an epimorphisny : Pic’(X/F,) — G (that need not be computable) such that the cardi-
nality of G is at leastmax(48g, 24d, 720),

and outputs a sequencef elements iPic’ (X /F,) such that at least one of them is not in the
kernel ofy) with probability > % The algorithm is polynomial time ihandlog q.

As a special case we take = Gy, = J(F,) andy = v, the identity. Applying lemma
we find a sequence of elementsJi(FF,) out of which one at least is non-zero (with high
probability). We take, to be quotient of 7 by the subgroup generated by these elements and
1y the quotient map. Applying the lemma again we constructt@rasequence of elements
in J(FF,) out of which one at least is not i&x, (with high probability). We go on like that
and produce a sequence of subgroupd'{ir,) that increase with constant probability until the
index in7 (F,) becomes smaller thanax(48g, 24d, 720). Note that every step in this method is
probabilistic: it succeeds with some probability, that beamrmade very high (exponentially close
to 1) while keeping a polynomial overall complexity.

Lemma 9 (Finding an almost generating set)There exists a probabilistic (Monte-Carlo) al-
gorithm that takes as input

1. a degreel and geometric genugplane projective absolutely irreducible reduced cuéve
overF,, such thay > 442,

2. the smooth mode¥ of C,

3. adegreg effective divisow, as origin,

and outputs a sequence of elementBidf (X' /F,) that generate a subgroup of index at most

max(48g, 24d, 720)
with probability > % The algorithm is polynomial time ihandlog q.

Note that we do not catch the whole grodpF,) of rational points but a subgroug with
index at most = max(48¢, 24d, 720). This is a small but annoying gap. In the sequel we shall
try to compute the-torsion of the groupy (F,) of rational points. Because of the small gap in
the above lemma, we may miss sof®rsion points if/ is smaller than. However, letk be an
integer such that” > .. And letx be a point of ordef in 7 (F,). Assume there exists a point
in 7 (F,) such that: = ¢*~'y. The group< y > generated by and the group4 have non-trivial
intersection because the product of their orders is biguar the order of7 (IF,). Thereforex
belongs taA.

Our strategy for computing (F,)[¢] will be to find a minimal field extensioR,, of F, such
that all points in7 (F,)[¢] are divisible by*~! in 7 (Fg). We then shall apply the above lemma
to 7 (Fg). To finish with, we shall have to comput&F,) as a subgroup of (Fg). To this end,
we shall use the Weil pairing.
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5 Pairings

Letn be a prime tg integer and7 a jacobian variety oveF,. The Weil pairing relates the full
n-torsion subgrougy (F,) [n] with itself. It can be defined using Kummer theory and is geime
in nature. The Tate-Lichtenbaum-Frey-Riick pairing is encwhomological and relates the
torsion 7 (F,)[n] in the group ofF,-rational points and the quotiedt(F,)/nJ (F,). In this
section, we quickly review the definitions and algorithmiogerties of these pairings, following
work by Weil, Lang, Menezes, Okamoto, Vanstone, Frey anckRu

We first recall the definition of Weil pairing following [20].et £ be an algebraically closed
field with characteristip. For every abelian varietyl over k, we denote by7,(A), the group
of 0-cycles with degreé and bysS : Z,(A), — A the summation map, that associates to every
0-cycle of degre® the corresponding sum iA.

Let V andWW be two projective non-singular irreducible and reducedeti@s overk, and let
a:V — Aandp : W — B be the canonical maps into their Albanese varieties. [Ldte a
correspondence ovi x W. Letn > 2 be a prime tg integer. Leta (resp. b) be a0-cycle of
degreed onV (resp.W) and leta = S(«(a)) (resp.b = S(5(b))) be the associated point it
(resp.B). Assumena = nb = 0. The Weil pairinge,, p(a, b) is defined in[[2D, VI§4, Theorem
10]. Itis ann-th root of unity ink. It depends linearly i, b andD.

AssumeV = W = X is a smooth projective irreducible and reduced curve @vand
A =B = Jisitsjacobianand = 5 = f : X — J is the Jacobi map (once an origin ah
has been chosen). If we taketo be the diagonal oA x X we define a pairing,, p(a, b) that
will be denoteck,,(a, b) or e, v(a,b). It does not depend on the origin for the Jacobi map. It is
non-degenerate.

The jacobian? is principally polarized. We have an isomorphism 7 — 7 between7

and its dual/. If o is an endomorphism : 7 — 7, we denote byu its transposéx : J — J.
If D is a divisor on7 that is algebraically equivalent to zero, the image’hyof the linear
equivalence class db is the linear equivalence class of the inverse imagg D). Seel[20, V,
§1]. The Rosati dual ofv is defined to ber* = A~! o ‘a0 \. The mapw — «o* is an involution,
anda* is the adjoint ofn for the Weil pairing

en,x(a, a(b)) = en x(a’(a),b) 1)
according tol[2D, VI §2, Proposition 6].
If )V is another smooth projective irreducible and reduced coxes £ and K its jacobian
and¢ : X — ) anon-constant map with degréegand¢* : K — 7 the associated map between
jacobians, then fox andb of order dividingn in K one has,, x(¢*(a), ¢*(b)) = e, y(a, b)?.

The Frey-Ruck pairing can be constructed from the Lichéemi version of Tate’s pairing
[22] as was shown in_[14]. Let be a power ofp. Let againn > 2 be an integer prime tp
and X a smooth projective absolutely irreducible reduced cumar B,. Let g be the genus of
X. We assume: dividesq — 1. Let J be the jacobian oft. The Frey-Ruck pairing, },, :
J(Fy)[n] x T (Fy)/nT (F,) — F;/(F;)™ is defined as follows. We take a class of order dividing
nin J(F,). Such a class can be represented b¥ adivisor D with degred). We take a class in
J(F,) and pick a degree zeiif,-divisor £ in this class, that we assume to be disjoinftoThe
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pairing evaluated at the class@s] and [E] mod n is {[D], [E] mod n}, = f(E) mod (F})"
wheref is any function with divisor.D. This is a non-degenerate pairing.

We now explain how one can compute the Weil pairing, follaywvork by Menezes, Okamo-
to, Vanstone, Frey and Ruck. The Tate-Lichtenbaum-FriggkRairing can be computed simi-
larly.

As usual, we assume we are given a degrpkane model for X'. Assumar andb have dis-
joint support (otherwise we may replagdy some linearly equivalent divisor using the explicit
moving lemmd13.) We compute a functigrwith divisor na. We similarly compute a function
o with divisornb. Thene,(a,b) = L& This algorithm is polynomial in the degreeof C' and
the ordem of the divisors, prowded ti1e initial divisorsandb are given as differences between
effective divisors with polynomial degree ih

Using an idea that appears in a paper by Menezes, Okamotcesrstioviel|24] in the context
of elliptic curves, and in]14] for general curves, one carkethis algorithm polynomial itog n
in the following way. We writex = a, = aj — a, Wherea/ anda, are effective divisors. Let
be the function computed in the above simple minded algoritne hag¢) = naj —na, . We
want to express as a product of small degree functions. We use a variant béxg®nentiation.
Using lemmd1B we compute a diviser = aj — a; and a functionp; such thata, is disjoint
to b and(¢;) = a; — 2a, and such that the degreesagf anda; are< 6gd(log,(deg(b)) + 1).
We go on and compute, fdr > 1 an integer, a divisos, = a — a, and a functionp, such
that ay, is disjoint tob and (¢) = ax — 2a;_; and such that the degrees @f and a, are
< 6gd(log,(deg(b)) + 1). We write the base expansion of, = >°, €,2* with ¢, € {0,1}. We
compute the functiod with divisor ), e,a;. We claim that the functiom can be written as a
product of they,, for k < log, n, andV¥ with suitable integer exponents boundedin absolute
value. Indeed we writg, = ¢1, 1o = d20?, iz = p3p3¢1 and so on. We havgu,) = a, — 2*a
andVU ][, p, “* has divisoma so is thep we were looking for.

Lemma 10 (Computing the Weil pairing) There exists an algorithm that on input an integer
n > 2 prime toq and a degreel absolutely irreducible reduced plane projective cutvever

[F, and its smooth modeY and twoF,-divisors onX’, denoteth = a* —a~ andb = b* — b~
with degree0, and order dividingn in the jacobian, computes the Weil pairiag(a, b) in time
polynomial ind, log ¢, log n and the degrees @f", a—, b, b~, the positive and negative parts of
aandb.

Lemma 11 (Computation of Tate-Lichtenbaum-Frey-Rick pairings) There exists an algo-
rithm that on input an integen > 2 dividing ¢ — 1 and a degreel absolutely irreducible
reduced plane projective curv€ overF, and its smooth modet” and twol,-divisors onk’,
denoteda = a™ — a~ andb = bt — b, with degreed, and such that the class afhas order
dividingn > 2 in the jacobian, computes the Tate-Lichtenbaum-FragkRpairing{a, b},, in
time polynomial ind, log ¢, logn and the degrees aft, a—, b™, b~, the positive and negative
parts ofa andb.
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6 Divisible groups

Let F, be a finite field with characteristi¢c and letX’ be a projective smooth absolutely irre-
ducible reduced algebraic curve ovgy. Let g be the genus oft’ and let/ # p be a prime
integer. We assume > 1. Let 7 be the jacobian oft’ and letEnd (.7 /F,) be the ring of endo-
morphisms of7 overF,. Let F|, be the Frobenius endomorphism. In this section we study the
action of F,, on ¢*-torsion points of 7. We first consider the whol&-torsion group. We then
restrict to some well chosen subgroups where this actioroige mmenable.

Let x(X) be the characteristic polynomial éf, ¢ End(7/F,). The Rosati dual td, is
q/F,. LetO = Z[X]/x(X) andO, = Z,[X]/x(X). We setp, = X mod x(X) € O. Mapping
v, onto F, defines an epimorphism from the ridyontoZ[F,]. In order to control the degree of
the field of definition of’*-torsion points we shall bound the orderfin (O /*O)*.

We sett; = (0/tO)* = (F,[X]/x(X))*. Let the prime factorization of (X ) mod ¢ be
[T, x:(X)% with deg(x;) = fi. The order of4, is [, ¢“~1/i(¢/i — 1). Let~ be the smallest
integer such that” is bigger than or equal tdg. Then the exponent of the grodf divides
Ay = OTL,(¢ —1). We setB; = [[,(¢/i — 1) andC, = 7. There is a unique polynomial

M, (X) € Z[X] with degree< 2¢g such tha@ = M(p,) € O.

Now for every positive integek, the element, belongs to the unit grouda;, = (O/¢*0)*
of the quotient algebr®//*O = 7Z[X]/(¢*, x(X)). The prime factorization of (X ) mod ¢
is lifted modulo¢* as ], Z;(X) with =; monic anddeg(Z;) = e;f;, and the order ot is
[, ¢/~ ¢/ — 1). The exponent of the latter group dividds = A;¢*~!. So we setB; =
By = [[,(¢/i — 1) andCy, = C k=1 = ¢*=177. There is a unique polynomial/,(X) € Z[X]

A
with degree< deg(x) such that“"q;j1 = M (p,) € O.

For every integetV > 2 we can computé/, (X ) mod N from x(X) in probabilistic poly-
nomial time inlog q, log ¢, log N, k, g: we first factory(.X') mod ¢ then compute thg; and the
e; and f;. We computeX “+ modulo(x(X), /*N) using fast exponentiation. We removeand
divide by ¢*.

Lemma 12 (Frobenius and/-torsion) Letk be a positive integer anfl# p a prime. Lety(X)

be the characteristic polynomial of the Frobenitisof 7 /IF,. Lete; and f; be the multiplicities
and inertiae in the prime decompositionpfX ) mod ¢. Let~ be the smallest integer such that
(7 is bigger than or equal t@g. LetB = [[,(¢/ —1). LetCy = ¢ and A, = BCy.
The ¢*-torsion in J splits completely over the degreb, extension off,. There is a degree
< 2g polynomial M (X) € Z[X] such thatF;* = 1 + (*M,(F,). For every integetN one
can compute such &/,.(X) mod N from x(X) in probabilistic polynomial time ifog ¢, log ¢,
log N, k, g.

In order to state sharper results it is convenient to intcedtdivisible subgroups inside the
¢>-torsion of a jacobiafy/, that may or may not correspond to subvarieties. We now seddo
define such subgroups and control their rationality progert

Lemma 13 (Divisible group) LetII : J[¢>°] — J[¢*°] be a group homomorphism whose restric-
tion to its imageG is a bijection. Multiplication by is then a surjection fronfs to itself. We
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denote byG[¢*] the/*-torsion inG. There is an integew such thatG[¢*] is a freeZ/¢*Z module
of rankw for everyk. We assume thdl commutes with the Frobenius endomorphism We
then sayG is the divisible group associated with From Tate’s theoreni [30]1 is induced by
some endomorphism Ind(7 /F,) ®z Z, and we can definE* the Rosati dual of] and denote
by G* = Im(II*) the associated divisible group, that we call the adjointof

Remark 3 The dualG* does not only depend da. It may depend ofil also.
Remark 4 We may equivalently defin& as the dual ofI for the Weil pairing. See formul&l(1).

We now give an example of divisible group. LEtX ) = F;(X) andG(X) = G1(X) be two
monic coprime polynomials iff,[X] such thaty(X) = F;(X)G1(X) mod ¢. From Bezout's
theorem we have two polynomial$; (X) and K (X) in F,[X] such thatF} H; + G1K; = 1
anddeg(H;) < deg(G;) anddeg(K;) < deg(Fy). From Hensel's lemma, for every positive
integerk there exist four polynomialsy (X), Gi(X), Hy(X) and K (X) in (Z/(*Z)[X] such
that £, andG), are monic and((X) = Fj(X)Gx(X) mod ¢* and F}H, + G K, = 1 mod ¢*
anddeg(Hy) < deg(Gy) anddeg(Ky) < deg(Fy) and F; = F,mod ¢, G; = Gy mod ¢,
H, = Hymod ¢, K; = K, mod{. The sequence&y ), (Gk)r, (Hy)r, (Kx)r CcOnverge in
ZK[X] to Fy, Gy, Hy, K.

If we substituteF, for X in FyH, we obtain a mapl; : J[¢*°] — J[¢>°] and similarly, if
we substituteF, for X in GoK, we obtain a maplx. It is clear thafil?. = 11z andIl? = Tlg
andIlz + IIg = 1 andllpll; = 0. We callGr = Im(I1r) andG¢ = Im(Ilg) the associated
supplementary-divisible groups.

Definition 1 (Characteristic subspaces)For every non-trivial monic factof'(.X ) of y(X') mod
¢ such that the cofactotr = x/F mod ¢ is prime toF’, we writexy = FyG, the corresponding
factorization inZ,[ X|. The(-divisible groupG is called theF-torsion in 7 [¢>°] and is denoted
Je>, Fy). Itis the characteristic subspace Bf associated with the factar. If ' = (X —1)¢is
the largest power oK — 1 dividing x (X') mod ¢ we abbreviatéG x ;). = G;. If ' = (X —¢)°
then we write similaryG x_q) = G, = G7.

We now compute fields of definitions for torsion points insgieh divisible groups. The
action of , on the/*-torsionGr[¢*] = J[¢*, ;] inside G factors through the smaller ring
Ou/ (05, Fo(,)) = Z4[X]/ (0%, Fyy). We deduce the following.

Lemma 14 (Frobenius andFy-torsion) Let k£ be a positive integer and # p a prime. Let
x(X) be the characteristic polynomial of the Frobenifisof 7. Lety = FG mod ¢ with F'
andG monic coprime. Let; and f; be the multiplicities and inertiae in the prime decompaositi
of F(X) mod ¢. Let~ be the smallest integer such thatis bigger than or equal t@g. Let
B(F) = [[;(¢/i = 1). LetCy(F) = ¢*~1*7 and A (F) = B(F)Cy(F). Thel*-torsion inGp
splits completely over the degrelg (F') extension oF,. There is a degree: deg(F") polynomial
My(X) € Z,[X] such thallp F;*") = T + ¢*T1 M, (F,). For every powetN of £, one can
compute such ai/,(X) moduloN from x(X) and F'(X) in probabilistic polynomial time in
log q,logt,log N, k, g.
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If we take for F' the largest power ok — 1 dividing x(X) mod ¢ in the above lemma, we
can takeB(F) = 1 s0 A, (F) is an/ power< 2g/*.

If we take for F' the largest power oK — ¢ dividing x(X) mod ¢ in the above lemma, we
haveB(F) = ¢ — 1 S0 A,(F) is < 2g(¢ — 1)¢*,

So the characteristic spaces associated with the eigexs/aland ¢ split completely over
small degree extensions Bf.

7 The Kummer map

Let X be a smooth projective absolutely irreducible reducedeomerF, of genusy and.7 the
jacobian ofX. Letn > 2 be an integer dividing — 1. We assumg > 1. In this section, we
construct a convenient surjection froff(F,) to 7 (F,)[n].

If Pisin J(F,) we take some? € J(F,) such thathR = P and form thel-cocycle
(R — R), in HY(F,, J[n]). Using the Weil pairing we deduce an element

O (e (°R—R,0)),

Hom(J[n](F,), H' (,)) = Hom(J [n] (E,), Hom(Gal(F, ), 1,)).

The map that send® mod nJ (F,) to O — (e, (R — R,0)), is injective because the
Frey-Rick pairing is non-degenerate. We observeltat(Gal(F,), i) is isomorphic tou,:
giving an homomorphism fror@ral(F,) to u, is equivalent to giving the image of the Frobenius
generatorF,. We obtain a bijectior?;, , from 7 (F,)/nJ (F,) to the dualHom(7 [n|(F,), itn)
of J[n|(F,) that we call theTate map It mapsP ontod — ¢,("*R — R,0O). If J[n| splits
completely oveif, we setk, ,(P) = "R — R and define a bijectiok’,, , : J(F,)/nJ (F,) —
Jn|(F,) = J[n] that we call thekummer map

Definition 2 (The Kummer map) LetJ /F, be a jacobian and: > 2 an integer. Assumg[n]
splits completely oveF,. For P in J(IF,) we choose any in 7 (IF,) such thain R = P and we
setK, ,(P) = "“R — R. This defines a bijection

Koy T /nT(F,) — Tn|(F,) = Tn].

We now assume that = ¢* is a power of some prime integér# p. We also make the
(strong!) assumption that[n] splits completely ovelF,,. We want to compute the Kummer map
K, , explicitly. Let P be anF,-rational pointin7. Let R be such thabR = P. SinceF, — 1
kills J[n], there is ar¥ ,-endomorphism of 7 such that", — 1 = nx. We note that belongs to
Z|F,| ®,Q = Q[F,] and therefore commutes wiff}. We havex(P) = (F,—1)(R) = K,, ,(P)
andx(P) isF,-rational.

Computing the Kummer map will be seen to be very useful bugquires that7[n| splits
completely ovelf,. In general, we shall have to base change to some extenskn of
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Let x(X) be the characteristic polynomial &f, and letB = [],(¢/¢ — 1) where thef; are
the degrees of prime divisors g X)) (mod ¢). Let¢” be the smallest power dfthat is bigger
than or equal t@g. Let C, = 0t~ and A, = BC,. Set@Q = ¢**. From lemmd_IR2 there is
a polynomial)M,(X) such thatF, = 1 + ¢(*M,(F,). So, for P anFq-rational point in7 and
R such thatmR = P, the Kummer mag¥,, o applied toP is M (F,)(P) = (Fp — 1)(R) =
K, o(P) and this is ar¥ ,-rational point.

Lemma 15 (Computing the Kummer map) Let 7 /F, be a jacobian. Le > 1 be its dimen-
sion. Let/ # p be a prime integer and. = ¢* a power of(. Letx(X) be the characteristic
polynomial ofF, and letB = [,(¢/: — 1) where thef; are the degrees of prime divisorspfX)
(mod /). Let£” be the smallest power dfthat is bigger than or equal t@g. LetC), = ¢ F-1
and A, = BC,. SetQ = ¢** and observe that divides — 1 because7 [n] splits completely
overF,. There exists an endomorphisire Z[F,| of J such thatwx = F; — 1 and for every
[Fo-rational point P and anyR withnR = P one hass(P) = (Fp — 1)(R) = K, o(P). This
endomorphism: induces a bijection betweefi(Fg)/nJ (Fg) and 7 [n](Fg) = Jn]. Given
x(X) and a positive integeN one can compute mod NN as a polynomial ir¢;, with coefficients
in Z/NZ in probabilistic polynomial time iy, log ¢, log ¢, k, log N .

This lemma is not of much use in practice because theffiglts too big. On the other hand,
we may not be interested in the wholetorsion in .7 but just a small piece in it, namely the
n-torsion of a given divisible group.

So let? # p be a prime integer an@ an/-divisible group in7[¢(>°] andIl = I1? : J[(>] —

G a projection onto it. Letr = ¢* and letQ be a power of; such thatG[n] splits completely
overFg. Let P be anF-rational point inG. Let R € G(F,) be such thahR = P. We set
Kgn0(P) = "R — R and define an isomorphism

Keng : G(Fg)/nG(Fq) — G(Fg)[n] = Gn].

In order to make this construction explicit, we now assuna tilere exists some € Z[F]
such thatll(Fy — 1 — nk) = 0. LemmalI# provides us with such@and such a: when
G = J[¢*, Fy] is some characteristic subspace.

We now can compute this new Kummer mép ,, . Let P be anlF-rational point inG. Let
R € G be suchthat R = P. From(Fg — 1 — nk)II(R) = 0 = (Fp — 1 — nk)(R) we deduce
that K ,,.o(P) = x(P). Hence the

Lemma 16 (The Kummer map for a divisible group) Let 7 /F, be a jacobian. Ley be its
dimension. Let # p be a prime integer andk = ¢* a power of¢. We assume > 1. Let
x(X) be the characteristic polynomial @,. Assumey(X) = F(X)G(X) mod ¢ with F" and
G monic coprime polynomials ifi,[X]| and letGx be the associateddivisible group. Let
B = (¢ — 1)[L,(¢* — 1) where thef; are the degrees of prime divisors 61X) (mod /).
Let 7 be the smallest power dfthat is bigger than or equal t@g. LetC, = ¢¢*~'*7 and
A, = BCy. SetQ = ¢*. From lemmdI4 there exists an endomorphisma Z,[F,] such
that [1(nx — Fp + 1) = 0 and for everyF-rational point P € Gy and anyR € G with
nR = P one has:(P) = (Fp — 1)(R) = K¢ no(P). This endomorphism induces a bijection
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betweerGp(Fg)/nGr(Fg) andGrn|(Fg) = Gr[n]. Giveny(X) and F'(X) and a powerN
of ¢, one can compute mod N as a polynomial inF;, with coefficients irZ /NZ in probabilistic
polynomial time iry, log ¢, log q, k, log N.

8 Linearization of torsion classes

Let C be a degred plane projective absolutely irreducible reduced cutveverF, with geo-
metric genugy > 1, and assume we are given the smooth madelf C. We also assume we
are given a degrekedivisorO = O — O~ whereO+ andO~ are effectiveF-rational and have
degree bounded by an absolute constant times

Let J be the jacobian oft. We assumé # p is a prime integer that divideg 7 (F,). Let
n = (* be a power of. We want to describg/ (F,)[¢*] by generators and relations.

If =1, x9, ..., z; are elements in a finite commutative gratipve letR be the kernel of the
map¢ : Z' — G defined by¢(ay,- -+ ,a;) = >, a;z;. We callR thelattice of relationsbetween
thex;.

We first give a very general and rough algorithm for computglgtions in any finite com-
mutative group.

Lemma 17 (Finding relations in blackbox groups) Let G be a finite and commutative group
and letxy, xo, ...,z be elements id:. A basis for the lattice of relations between thecan be
computed at the expense3di#G operations (or comparisons) i@d'.

We first compute and store all the multiples:qf So we list0, x1, 2z, ... until we find the
first multiplee; z; that is equal to zero. This gives us the relatign= (e1,0,...,0) € R. This
first step requires at most= #G operations inG ando comparisons.

We then compute successive multiplescefuntil we find the first onesz, thatis inL; =
{0,21,..., (e — 1)x1}. This gives us a second relation The couplgry, ;) is a basis for the
lattice of relations between, andz,. Using this lattice, we compute the lit of elements in
the group generated hy andxz,. This second step requires at mdstoperations and;e; < o
comparisons.

We then compute successive multiples:otintil we find the first onesxzs that is inLs. This
gives us a third relation;. The triple(ry, 2, 73) is a basis for the lattice of relations betwegn
o andxs. Using this lattice, we compute the list of elements in the group generatedy
o andzs. This third step requires at mat operations and comparisons. And we go on like
this. O

This is far from efficient unless the group is very small.

We come back to the computation of generators and relatams (F, ) [¢*].

Let B = ¢ — 1. Let (" be the smallest power dfthat is bigger than or equal &y and let
Ap = BOTRL We setQ);, = ¢+,

If we take for F' a power ofX — 1 in definition[1 and lemmBAZ16 we obtain two surjective
mapsHl : j(FQk)[goo] — Gl(FQk) andKthQk : Gl(FQk) — Gy [gk]

If we now take forF" a power ofX — ¢ in definitionl and lemmiaZl6 we obtain two surjective
mapsll, : J(Fo,)[l™] — G,(Fq,) andKg, 4 o, : G4(Fo,) — G4[¢"].
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There exists a unit in End (7 /F,) ®z Z, such that the Rosati dufll; of I1, is

I} = wll,.

ThereforeG, = G} and the restriction of the Weil pairing @, [¢*] x G, [¢*] is non-degenerate.

If Qr > 4¢?, we use lemm@l9 to produce a sequence..., v; of elements in7(Fg,)
that generate (with high probability) a subgroup of indexnatst: = max(48g, 24d, 720). If
Qr < 4¢* we use lemmEl6 to produce a sequenge. ., of elements in7 (Fy, ) that generate
it.

Let NV be the largest divisor 6f.7 (F, ) which is prime tov.

We seto; = Kg, o o, (ILi(N7;)) andB; = Kg, i+ g, (ITg(N7:)).

The groupA, generated by the, has index at mostin G,[¢*]. The groupB;. generated by
the 5; has index at mostin G,[¢*].

Let ¢° be smallest power of that is bigger than and assumé& > 6. Then.4, contains
G [0F9).

We now explain how to compute the lattice of relations betwgigen elements,, ...,p; in
G, [(*]. We denote byR this lattice. Recall the restriction of the Weil pairing@ [¢*] x G, [¢*]
is a non-degenerate pairing

eo : G%] x G [0%] — pupn.

We fix an isomorphism between the group (F,) = ux(Fg,) of £*-th roots of unity and
Z/¢*7. Having chosen the preimage bfmod ¢*, computing this isomorphism is a problem
calleddiscrete logarithm We can compute this discrete logarithm by exhaustive beatrthe
expense of) (/%) operations inF,. There exist more efficient algorithms, but we don't need
them for our complexity estimates.

We regard the matriXe,(5;, p;)) as a matrix with/ rows, J columns and coefficients in
Z/¢*7. This matrix defines a morphism frody to (Z/(*7Z)! whose kernel is a lattic®’ that
containsR. The index ofR in R’ is at most.. IndeedR’/R is isomorphic to the orthogonal
complement of3;, in < py,...,p; >C G[¢*]. So it has ordeK .. We then compute a basis
of R’. This boils down to computing the kernel of dnx (J + I) integer matrix with entries
bounded by*. This can be done by putting this matrix in Hermite normahfdseel[6, 2.4.3]).
The complexity is polynomial id, J andk log ¢. Seel[1V7],[I6, 2.4.3] and [31].

Once given a basis 6®’, the sublatticeR can be computed using lemiind 17 at the expense
of < 3.J. operations.

We apply this method to the generatdrg); of A,. Once given the lattic® of relations
between they; it is a matter of linear algebra to find a bafs, . . . , b,) for A, [*~°] = G, [¢*7].
The latter group is a rank free module oveZ/(*~°Z and is acted on by theFrobeniusF,.

For everyb; we can compute the lattice of relations betwée(b,), by, b, . .., b, and deduce the
matrix of £, with respect to the basi$,, . . ., b,,). From this matrix we deduce a nice generating
set for the kernel of, — 1 in G, [¢*~9]. This kernel is7[¢*~°](FF,). We deduce the following.

Theorem 1 There is a probabilistic Monte-Carlo algorithm that on irtpu
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1. a degreel and geometric genugplane projective absolutely irreducible reduced cuéve
overF,,

2. the smooth mode¥ of C,

3. adegreel divisorO = Ot — O~ whereO* and O~ are effectiveF,-rational and have
degree bounded by a constant times

4. a prime/ different from the characteristic of F, and a powem = ¢* of /,

5. the zeta function ot’;

outputs a seyy, ..., gw of divisor classes in the Picard group &f/F,, such that the” torsion
Pic(X /IF,)[¢*] is the direct product of the: g; >, and the orders of thg; form a non-decreasing
sequence. Every clags is given by a divisoG; — ¢O in the class, wheré&-; is a degreey
effectivelF -divisor on.X.

The algorithm runs in probabilistic polynomial time ify g, log ¢ and ¢*. It outputs the
correct answer with probability % Otherwise, it may return either nothing or a strict subgpou
of Pic(X /FF,)[¢*].

If one is given a degree ze®y-divisor D = D+ — D~ of order dividing¢*, one can compute
the coordinates of the class 6fin the basigg;)1<;<w in polynomial time ind, log ¢, ¢* and the
degree ofD*. These coordinates are integerssuch thaty *, .., z;9; = [D].

9 An example: modular curves

In this section we consider a family of modular curves for ebhwe can easily provide and
study a plane model. Lét> 5 be a prime. We sef, = [%1 andm, = Z*Tl We denote by
Xy = X (2)1(¢) the moduli of elliptic curves with fulR-torsion plus one non-trivial-torsion
point. We first describe a homogeneous singular plane m@ddr this curve. We enumerate
the geometric points oA, above every singularity af, and compute the conductéy using the
Tate elliptic curve.

Let A be an indeterminate and form the Legendre elliptic curvé wiuationy? = z(z —
1)(x — \). Call Z;(\, z) the ¢-division polynomial of this curve. It is a polynomial i@[\][z]
with degree2d, = 51 in .

As a polynomial inz we have

T\ x)= Y azg—k(N)a"

0<k<2d,

whereaq(\) has degreé in A so that we normalise by setting(\) = /.

Let F be a splitting field of7,(\, ) overQ(\). A suitable twist of the Legendre curve has a
point of order/ defined overF (and the full two torsion also). This proves th&tcontains the
function fieldQ(X,). Comparison of the degrees &f/Q(\) andQ(AX;)/Q(\) shows that the
two fieldsF andQ(X,) are equal and the polynomi@l is irreducible inQ(\)[z].

21



We can compute thed, roots of7;(\, z) in the fieldQ{{\~'}} of Puiseux series in—. We
set

J= j()‘) = 28();\2(/\)\_+)1)

sothatj ! =278\ 2 £ A3 =2\ =5 P + ...,
We introduce Tate’g-parameter, defined implicitly by

=2A2(1 = A 3243 )

1
j == 744+ 196884q + - - -
q

so that

q = jU4744572 4+ 750420573 +
1 1 29 13
= — A2 AT At T
256" 256" 812" 4096

We setr = 2/ + % andy’ = y and find the reduced Weierstrass equation for the Legendre
curve

gr s XA, Q=20+ DHERA-1)
3 27
We want to compare the latter curve and the Tate curve withtemu
"2 "3 E4(Q) " EG(Q)
T T
whereE,(q) = 1+ 240q + - - - andEg(q) = 1 — 504q + -
The quotlen% is a quadratic differential on the curVé(z) with divisor —2(0)—2(1)
in the A coordinate. Examination of the leading terms of its expamshows that

dg\*>  4(N2 = A +1)(dN)?
E(?) BRIV

and similarly

dg\° 4 =2)(A+1)(2\ — 1)(dN)?
5 (%) = NI — )

We deduce the isomorphismh = 22" andy’ = +3y” with

qd\ 16

Set(, = exp(%F). Fora andb mtegers suchthateither=0andl <a < Slorl <p < &2
and0 <a </¢—1wesetw = Qqe in the expansion

d
7 =2X(\ —1) (—q) :—4/\+2+Z>\ +i/\ + -
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1 wq" nqg"
I
= — ——2

nez n>1
and find
W, = =+ Cat + O(¢F)
a,b 12 l
if b#0,andz) , = 5 + (1 )2 + O(q).
So
1 2b+41
Tap = 72" + ;A = 42T ANTE O

if b# 0 andzeo = = <a>2)‘ + O(1).

Thez,,, are the roots of;(\, z) in the fieldQ{{\*}} of Puiseux series.
We deduce that fon < k < &l the polynomialak(k) has degree at mogt Further

aci() = 21 (=N T +0O(VT). Fork > £1 the polynomial, (\) has degree: k and< d,.

The coefficients in all the series expansmns above af&{{n ¢, 2%]. The coefficients of
To(\, z) are inZ[4]. InfactTy(\, z) is in Z[\, 2] but this is not needed here.

Since7, € Q[A, z] is absolutely irreducible, the equati@i( ), ) = 0 defines a plane abso-
lutely irreducible affine curvé,. Let C, C P? be the projective plane curve made of the zeroes
of the homogeneous polynom@(g}, )Y()dee

For every geometric poinP on X, such that\(P) ¢ {0, 1, o0}, the functionA — A\(P) is
a uniformizing parameter a. Furtherz(P) is finite andP is the only geometric point of,
above the poinfA(P),z(P)) of C,. So the only possible singularities 6f lie on one of the
three lines with equations = 0,Y = 0andA — Y = 0.

The points at infinity are given by the degr&é form

23—1(_”"%1\4%){% +"'+£XZTA — X (—4A — (¢ + ¢ —2)X).

-1
0<a<==

We callX,, = [1, 0, 0] the unique singular point at infinity and for everg b < 4—71 we call
0 the point above:,, on X, associated with the orbit

{%,b; L1, >$é—1,b}

for the local monodromy group. We call,, , the point on; corresponding to the expansion
Zq0. The ramification index of the covering map X, — X (2)is{ ato., andl atji, .. Since

¢ — 2b and/ are coprime, there exist two integetsand 3, such thaty, (¢ — 2b) — 5,/ = 1 and

1 <ay<{—1andl < B < (¢ — 1. The monomiak®*\=% € Q(X,) is a local parameter
atos . Of course \~7 is also a local parameter at this point, and it is much moreeoient,
although it is not inQ(A,).
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The morphismy : X, — X (¢) corresponding to forgetting thetorsion structure is Galois
with group S; generated by the two transpositions..) and 7o) defined in homogeneous
coordinates by

T(0,00) : A, X)Y] — [V, X, A

and

Ton : [AXY] =Y —AY - X, Y]

We observe that these act an, P2 andC, in a way compatible with the map¥, — C,
andCy, C P%. We setXy = 7(000)(Za0) = [0,0,1] andy = 791)(20) = [1,1,1]. We set
00,6 = T(0,00)(Toop) ANAo1 , = T0.1)(00p), tho,a = T(o,oo)(Moo,a) andy o = 7(0,1)(10,a)-

The genus ofY; is g, = @ = (my — 1)%. The arithmetic genus @, is g, = (m? +m, —
1)(2m?2 + 2m, — 1). We now compute the conductor 6f. Locally at>., the curveC, consists

of m, branches (one for each pomny, ;) that are cusps with equations

l b
{ — _92(=8b Z i 4.
A A

The conductor of this latter cuspds, , times(¢ — 1)(2b — 1) which is the next integer to the
last gap of the additive semigroup generated land2b. The conductor of the full singularity
Yo IS NOW given by Gorenstein’s formula 15, Theorem 2] and is

Z {b(4m3 + 4my — 1) — 2my — (2mye + 1)6*} - 000 p.
1<b<my
The full conductor, is the sum of this plus the two corresponding terms to the agpfic
singularitiesy, andX;. The degreeleg(¢,) of &, is 2m,(2m} + 4m; — 2m, — 1). So we set
§ = my(2m3 + 4m? — 2m, — 1) and we check thaf, = g, + 4.
Now letp ¢ {2,3,¢} be a prime. LeC, be the (complete, algebraically closed) fieldpef
adics andF,, its residue field. We embe@ in C,, and also inC. In particular¢, = exp(%*) and

2¢ are well defined ag-adic numbers. We observe that in the calculations abovepelfficients

belong toZ[;, ¢, 2¢]. More precisely, the curves, and X, are defined over[s]. We write

Comodp = C)/F, = C, Rz ] [, for the reduction ofC; modulop, and define similarly
Xy mod p. We write similarlyo, , mod p andji., , mod p.

We deduce the following.

Lemma 18 (Computing C, and resolving its singularities) There exists a deterministic algo-
rithm that given a primé > 5 and a primep ¢ {2, 3, ¢} and a finite fieldF, with characteristic

p such that(, mod p and2¢ mod p belong tolF,, computes the equatidf(\, ) modulop and
the expansions of alt,;, as series iM\7 with coefficients irF,, in time polynomial irY, log ¢
and the required\ 7 -adic accuracy.
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10 Another family of modular curves

In this section we consider another family of modular curf@swvhich we can easily provide
and study a plane model. This family will be useful in the océdtion of modular representations
as sketched in the next section. leet- 5 be a prime. This time we set, = X;(5() the
moduli of elliptic curves with one point of ordér. The genus oft; is g, = (> — 4¢ + 4. We
first describe a homogeneous singular plane maddbr this curve. We then enumerate the
geometric points ort; above every singularity of, and provide series expansions for affine
coordinates at every such branch. Finally, fog {2, 3,5, ¢} a prime integer, we recall how to
compute the zeta function of the function fi@gl X;). All this will be useful in sectioIl1 where
we apply theorerfil1 to the curve.

Let b be an indeterminate and form the elliptic curkgin Tate normal form with equation
y*+(1-b)xy—by = x3—bx?. The pointP = (0, 0) has ordeb and its multiples are P = (b, b?),
3P = (b,0), 4P = (0,b). The multiplication by’ isogeny induces a degré&rational function
onz-coordinatesr — Af\fl((?) where\/ (z) is a monic degre€” polynomial inQ(b)[x]. Recursion
formulae for division polynomial (see [12] section 3.6) e a quick algorithm for computing
this polynomial, and also show that the coefficients acydalin Z[b]. If ¢ is congruent tat1
modulo5 then/P = +P andx dividesN (z). OtherwiseN (z) is divisible byz — b.

Call 7;(b, z) the quotient of\/(x) by = or x — b, accordingly. This is a monic polynomial in
Zb)[z] with degree’> — 1 in z. As a polynomial inc we have

T(b,x)= > ap_i_(b)z*

0<k<e2-1

whereqy(A\) = 1. We calld be the total degree df,.
As in the previous section, we check thats irreducible inQ(b) [z] andQ(X,) is the splitting
field of 7, overQ(b). LetC, C P? be the projective curve made of the zeroes of the homogeneous
polynomialZ,(£, )Y,
We set
(b* — 1253 + 140* + 120+ 1)3

J =)= B2 — 116 — 1)

Let /5 € C be the positive square root 6fand let(; = exp(%Z). Lets = 11+T5¢5 ands
be the two roots 0b? — 110 — 1. The forgetful mapX,(5¢) — X,(5) is unramified except at
b € {0,00,s,5}. Forevery pointP? on X, such thab(P) ¢ {0, s, 5, 00}, the functionb — b(P) is
a uniformizing parameter at.

LetU be the affine open set with equatiBB (B2 — 11BY +Y?) # 0. Every point onC, N\U
is smooth and all points o&;, above points irC;, — U/ are cusps in the modular sense (i.e. the
modular invariant at these points is infinite).

In order to desingulariz€’, at a given cusp, we shall construct an isomorphism betwezn th
Tateg-curve and the completion df, at this cusp. We calll ., Ay, A, A; the points onX;(5)
corresponding to the values, 0, s ands of b. We first study the situation locally at... A local
parameteri$—!and; ! = b=> + 2566 + . ...

We introduce Tate'g-parameter, defined implicitly by
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1
j ==+ 744 + 196884q + - - -
q

SO

g = j 4744572 475042053 + - -
b2+ 2506 4 ...
and we fix an embedding of the local field 4t inside the field of Puiseux seri€3{{q}} by
settingb=! = g5 — 5g5 + -+ - .
We setr’ = 36z + 3(b* — 6b + 1) andy’ = 108(2y + (1 — b)z — b) and find the reduced
Weierstrass equation

y? = 2" — 27(b* — 126° 4 14b? + 12b + 1)’ + 54(b* + 1)(b* — 186> + 746 + 18b + 1).

We want to compare the latter curve and the Tate curve withtezu
y//2 "3 _ E4<q) "

. E6(Q)
-7 s 0 T 6

whereE,(q) = 1+ 240q + --- andEs(q) = 1 — 504¢ + - - -. See[[18, Theorem 10.1.6].
From the classical (seg 28, Proposition 7.1]) identities

d‘ 2
<ﬂ) = j(j — 1728)E,

dq
-\ 3
(%) = —j*(j — 1728)Eq
we deduce
(ﬂb)2 _ P22 — 11b — 1)2E,
dgq 25(b* — 1203 + 1402 + 12b+ 1)
and

dq b2+ 1)(b* — 18b3 + 740> + 180+ 1)
We deduce the isomorphism = 722" andy’ = ~3y” with

(@)3 _ B3(b? — 11b — 1)3 Fq
125(

2 _ ~ 36b(b* — 11b — 1)dg
7 5qdb
The pointP has(z, y) coordinates equal t@®, 0). So

1 1

Since on the Tate curve we have
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1 wq" nqg"
" E—— 1 _9 2

nez n>1

we deduce thatv(P) = ¢timod < ¢ >. We may take either sign in the exponent because
we may choose any of the two isomorphisms correspondingtb@repossible values foy.
We decide thatv(P) = q%mod < q >. Set(, = exp(%). For o and g3 integers such that

0<a,f<l—1wesetw = g‘gq%q% in the expansior{2) and find

1
Thp= 15+t (1+0(g))

1 o tB_2 1
Tap =7 TG a T (14 0(e))
if &2 <pg<e—1.
Since
Tag = (Va3 —3(b* —6b+1))/36
andy? = 36b2 — 216b — 396 + O(b~!) = 36¢5 + 144¢5 + 144 + - - - we deduce that

Tap+1=Cqi 3 3(1+0(¢%))
if 0 <p <! and

f\lH

Ta+ 1= 7 F 5 (14 0(g%))
if 2 <pg<e—1.

In particular, the degree @ (b, x) inbis < 2(¢? — 1).

For0 < a < fand0 < 8 < ¢ we setd = 5a mod ¢ and3 = 55+ 2 mod . If 3 is non-zero,
the local monodromy group permutes cyclically theotsz, 5 for 0 < a < £. We callo, 5 the
corresponding branch oti;. On the other hand, if = %2 mod ¢ thenS = 0 mod ¢ and every
L2 mod ¢ is fixed by the local monodromy group. We observe tlf}a% mod ¢ 1S €itherb or 0
and is not a root of,(b, ). Fora a non-zero residue modulp we denote by., 5 the branch
on &, corresponding 10, =2 1yod ¢-

So we haveé—1 unramified points ok, aboveA., and/—1 ramified points with ramification
index/.

The coefficients in all the series expansions above &@fg4n ¢,]. The coefficients of; (b, x)
are inZ. From the discussion above we deduce the following.

Lemma 19 (Computing C,; and resolving its singularities, 1) There exists a deterministic al-
gorithm that given a primé > 7 and a primep ¢ {2,3,5, ¢} and a finite fieldF, with char-
acteristicp such that(, mod p belongs ta¥,, computes the equatidf (b, ) modulop and the
expansions of alt, 3 as series irh~—¢ with coefficients irF,, in time polynomial ir?, log ¢ and
the requiredle-adic accuracy.
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In appendid’A we give a few lines of GP-PARI code (s€e [1]) tahpute these expansions.

We now study the singular points abo¥g. A local parameter atl, isb andj—! = —b° +
250%+. .. soqg = —b°+250%+. .. and we fix an embedding of the local fieldAt insideC{{q} }
by settingb = —q% + 5q§ +.... Fromy? = 36 — 216q% + ... we deduce that the coordinate
2" (P) of the5-torsion pointP is 2" (P) = - +¢5 +0(q3) so the parameter at P can be taken
to bew(P) = q%mod < ¢ > this time. Fora andg integers such that < o, 3 < ¢ — 1 we set

8 1 . . ..

w = (f'q7 g5 in the expansiori{2) and we finish as above.

Now, a local parameter at, is b — s andj~ = (1 — L) (h — ) + O((b — 5)?) S0

g = (3 —L5) (b~ s)+ O((b - s)?) and we fix an embedding of the local field 4t inside

C{{q}} by settingb — s = 1254555, 1 O(¢?). We deduce that the coordinaté(P) of the
5-torsion pointP is z”(P) = &5 + oz + O(q) wherew = exp(4E) = (3 so the parameter
at P can be taken to be(P) = (?mod < ¢ > this time.

Altogether we have proved the following.

Lemma 20 (Computing C, and resolving its singularities, 1) There exists a deterministic al-
gorithm that given a primé > 7 and a primep ¢ {2, 3,5, ¢} and a finite fieldF, with charac-
teristic p such that(, mod p and(; mod p belong toF,, computes the equatidf (b, z) modulo
p and expansions (with coefficientslp) at every singular branch af in time polynomial ir?,
log ¢ and the required number of significant terms in the exparssion

In order to apply theorei 1 to the cund, we shall also need the following result due to
Manin, Shokurov, Merel and Cremoria [23] 25,9, 13].

Lemma 21 (Manin, Shokurov, Merel, Cremona) For ¢ a prime andp ¢ {5, /} another prime,
the zeta function ot (mod p) can be computed in deterministic polynomial timé andp.

We first compute the action of the Hecke operdfpron the space of Manin symbols for
the congruence group, (5¢) associated witli,. Then, from the Eichler-Shimura identify, =
F,+p <p > /F, we deduce the characteristic polynomial of the Frobehjus a

In appendiB we give a few lines of Magma code (sée [2]) thatmate the zeta function of
X;(50)/F,.

11 Computing the Ramanujan subspace ovel,

This section explains the connection between the methogs ¢iere and Edixhoven’s program
for computing coefficients of modular forms. Recall the débn of the Ramanujan arithmetic
7 function, related to the sum expansion of the discriminannf

Alg)=q][(1 =" =D 7lk)d".

k>1 k>1

We callT C End(J,(¢)/Q) the algebra of endomorphisms &f(¢) generated by the Hecke
operatord/;, for all integersn > 2. Following Edixhoven[[11, Definition 10.9] we state the
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Definition 3 (The Ramanujan ideal) Assume > 13 is a prime. We denote by the maximal
ideal inT generated by and theT,, — 7(n). The subspacé, (¢)[m] of the/-torsion of J;(¢) cut
out by allT,, — 7(n) is called the Ramanujan subspace @nd denoted’;.

This V, is a2-dimensional vector space ovigr and forp # ¢ the characteristic polynomial
of the Frobenius endomorphisf) on itis X? — 7(p) X + p*' mod ¢.

In this section, we address the problem of computmtprsion divisors on modular curves
over some extension fielf, of ¥, for p # ¢. The definition fieldF, for such divisors can be
predicted from the characteristic polynomial/gf on V;,. So the strategy is to pick randa-
points in thel-torsion of the jacobiad; (¢) and to project them ont®, using Hecke operators.

In sectionID we have defined the modular cuitye= X, (5¢) and the degre@4 covering
¢ X — Xq(0) of Xq(¢). We preferX, to X, (¢) because we are able to construct a natural and
convenient plane model for it. The covering map X, — X;(¢) corresponds to forgetting the
5-torsion structure. It induces two morphisiys: J,(¢) — J, and¢, : J, — J1(¢) such that
the composite map.. o ¢* is multiplication by24 in .J;(¢). We write¢, o ¢* = [24]. Thus the
curve X, provides a convenient computational model for the group epoints of the jacobian
of X ().

We denote byd, c J, the image ofv = ¢* o ¢,. This is a subvariety off, isogenous to
J1(¢). The restriction ofv to A, is multiplication by24. The maps)* and ¢, induce Galois
equivariant bijections between tiiétorsion subgroupd; (¢)[N] and.A,[N] for every integet\V
which is prime tc6.

We callWW, ¢ A, C J, the image of the Ramanujan subspacesbyWe choose an integer
k such that4k is congruent tal modulo?, and setl}, = [k] o ¢* o T,, o ¢, for everyn. We
notice thatl}, o ¢* = ¢* o T}, on J;(¢)[¢]. This way, the map* : .J;({) — 7, induces a Galois
equivariant bijection of Hecke modules betweén/)[¢] and A,[¢], andW, = ¢*(V,) is the
subspace in4,[/] cut out by allT}, — 7(n). SoW, will also be called the Ramanujan subspace
at ¢ whenever there is no risk of confusion. We notice t#até,, T,,, and7, can be seen as
correspondences as well as morphisms between jacobiahs/eastate the following.

Lemma 22 (Computing the Hecke action)Let/ andp be primes such that ¢ {2, 3,5, ¢}. Let

n > 2 be an integer. Leg be a power op and letD be an effectivé,-divisor of degreeleg(D)
on X, (mod p). The divisorsp* o ¢.(D) and¢* o T,, o ¢.(D) can be computed in polynomial
time in/, deg(D), n andlog g.

If n is prime to/, we define the Hecke operatd¥n,n) as an element in the ring of corre-
spondences o (¢) tensored byQ. See 21, VII,52 ]. From [21, VII, §2, Theorem 2.1] we
haveT, = (T,)" andT,; = T,:1T, — nT,:—T(n,n) if n is prime andn # ¢. And of course
T, T, = T, if ny andny are coprime. So it suffices to explain how to compgiitand also
T,, andT'(n,n) for n prime andn # /.

Let x = (F,u) be a point onY;(¢) C X;(¢) representing an elliptic curv& with one
(-torsion pointu. Let n be an integer. The Hecke operaffy mapsz onto the sum of all
(Er,I(u)), wherel : E — Ej runs over the set of all isogenies of degreom £ such that
I(u) still has order(. If n is prime to/, the Hecke operatdf'(n,n) mapsz onto -5 times

29



(E,nu). So we can compute the action of these Hecke correspondengasintsz = (£, u)
using Vélu’s formulae[32].

There remains to treat the case of cusps. Weogglr 1 < 5 < 5 andys for1 < a < 52
the cusps orX; () images byp of theo_ ; and .. 5. TO every cusp one can associate a set of
Tate curves witlf-torsion point (one Tate curve for every branch at this cusp)

For example the Tate curves@j are the Tate curve§*/q with (-torsion pointw = Q*q%
where the star runs over the set of all residues moduldere are branches at each such cusp.
Similarly, the Tate curves at; are the Tate curve§*/q with (-torsion pointw = (. One
single branch here: no ramification.
Forn prime andn # ¢ we have

Tn(ag) =05+ no,;
and
T(ta) = nia + pna,
wherena in fi,,; (resp.nj in 0,5) should be understood as a clas$A¢Z)* /{1, —1}.
Similarly
Ti(og) =05+ 20 Z Ha

=1
I<a<==

and
Ty(pa) = Cpa-

And of course, ifn is prime to¢, thenT'(n, n)(05) = -50,5 andT (n,n)(ka) = 1z bina-

All together, one can compute the effectiof on cusps for alh. For the sake of complete-
ness, we also give the action of the diamond operator- on cusps. Ifn is prime to/ then
<n> (05) = 0,5 and<n> (ua) = pna-

O

We can now state the following.

Theorem 2 There is a probabilistic (Las Vegas) algorithm that on inpuprime¢ > 13 and

a primep > 7 such that! # p, computes the Ramanujan subspde = ¢*(1;) inside the
(-torsion of the jacobian o, /F,. The answer is given as a list 6f degreey, effective divisors
on X, the first one being the origia. The algorithm runs in probabilistic polynomial time jn
and/.

LemmalZD gives us a plane model f&f (mod p) and a resolution of its singularities. From
lemmalZl we obtain the zeta function®f (mod p). The characteristic polynomial df, on
the Ramanujan spadé is X? — 7(p) X + p'! mod ¢. So we compute(p) (mod ¢) using the
expansion of the discriminant form. We deduce some smallgméeld of decompositioR, for

Ve (mod p). We then apply theoref 1 and obtain a basis forttarsion in the Picard group of
Xy /F,. The same theorem allows us to compute the matrix of the ead@ismy = ¢* o ¢, in
this basis. We deduce a basis for the imaljg(F,) of v. Using theoreril1 again, we now write
down the matrices of the Hecke operattsin this basis for alls < ¢2. It is then a matter of

30



linear algebra to compute a basis for the intersection okéneels of allT;, — 7(n) in A[¢](F,).
The algorithm is Las Vegas rather than Monte-Carlo becawsean check the result, the group
W, having known cardinality?. 0

Remark 5 In the above theorem, one may impose an origiather than letting the algorithm
choose it. For example, following work by Edixhoven(inl [1&ct®n 12], one may choose as
origin a well designed linear combination of the cusps. Suthdapted choice of the origin may
ensure that thé®>—1 divisors representing the non-zero classedinare unique in characteristic
zero and thus remain unique moduidor all but finitely many primesg.

12 The semisimple non-scalar case

In this section we present a simplified algorithm for compgithe Ramanujan subspagemod-
ulo p, that applies when the Frobenius action on it is semisimpéereon-scalar or equivalently
when(p)? — 4p*! is not divisible by/. The main idea is to associate a divisible group With

For every integen > 2 we call A, (X) € Z[X] the characteristic polynomial @f, acting on
weight2 modular forms for"; (¢). We factor

An(X) = By (X)(X —7(n))™

in F,[X] with B,,(X) monic andB,,(7(n)) # 0 € F,. For every integek > 1 this polynomial
factorization lifts moduld* as

An(X) = Bup(X)Cpp(X)  (mod £F).

We callTly, : J,(¢)[¢*] — J,(¢)[¢%] the composite map of aB,, .(T;,) for all integersn such
that2 < n < (2. We observe thalll,, coincides withll, on J,(¢)[¢*]. So we have defined a
mapll : J;(€)[¢>°] — Jy(0)[¢=].

We have the following.

Lemma 23 (The Ramanujan modules)For £ > 1 an integer, we denote lfy, the subgroup of
J1(¢)[¢¥] consisting of elements killed by some powemofLet G be the union of aliG,. The
group Gy, is the imagdl,(J;(¢)[¢*]) of the ¢*-torsion byIl,. It is killed bym?*9(X1() and the
restriction ofI1, to G, is a bijection. FurthelG,,,[¢*] = G, = (Gy,1. The(Z/(*Z)-module
Gy, is free. We call it the Ramanujan module.

We show that for every integer > 2, the restriction ofB,, »(7,,) to G, is a bijection. It
suffices to show injectivity. AssumB,, ,(7;,) restricted taGy, is not injective. There is a non-
zero (-torsion elementP in its kernel. ThisP is killed by (7,, — 7(n))™ (mod ¢) for some
integerm. It is also killed byB,,(7,,) (mod ¢). Since these two polynomials are coprinteis
zero, contradiction.

Solly, is an automorphism @&,.. In particularG,, C T1,(J; (€)[¢¥]). We sefl;, = T1,.(J; (¢)[¢¥])
and we prove the converse inclusibnc G,. For every integen betweer2 and/?, the restric-
tion of 7}, to I; is killed by (X — 7(n))*". Since the Hecke algebra is generated by tHgsend
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is commutative, its image iRnd(I;) is triangulisablﬂ and consists of matrices with a single
eigenvalue. We deduce that for every integéhe restriction off;, to I; has a single eigenvalue
(namely7(n) (mod ¢)). Because the dimension bf as alF,-vector space i< 2¢g(X;(¢)) we
deduce that; is killed by m?9(X1(9) SoI, = G, is killed by m?9(X1(9)),

For every integen betweer2 and/?, the restriction off;, to I,.[¢] is killed by C,, ,.(X) which
is congruent td X — 7(n))** modulol. Sol,[/] is killed by (T,, — 7(n))** and bym?(X1(9) So
any morphism i) kills T, [¢*] = I;.. Sol is killed by m?%9(X1() andl, = G.

It is clear that’G,,; C Gy. Conversely ifP = I1,(Q) andQ is ¢*-torsion then let? such
that/R = @ andS = Tl 1 (R). ThenSisinl;; = Gy anddsS = 1, (Q) = I (Q) = P.
S0(Gyy1 = Gy. FromGy,[¢*] = (G}, we deduce tha,, is a free(Z/¢(*17Z)-module. O

We now study the Galois action on this divisible group. hef ¢ be a prime. We regard
J1(¢) as a variety over the finite fiell,,. The Ramanujan modul@ = J;(¢)[m*] is then arv-
divisible group inside/, (¢)[¢>°] in the sense of definitidn 3. According to the Eichler-Shianu
identity Fp2 —T,F, +p < p >= 0. The diamond operatot p>¢c T has a unique eigenvalue
on Gy, namelyp'® (mod ¢). SinceF, commutes withT, the algebra generated fyand F,, is
triangulisabléin GL(G, ®, F,). So any eigenvalue df, onG; is killed by X2 — 7(p) X + p*!
(mod ¢). Letn be an integer that kills the roots of the polynomi&d — 7(p) X + p'! (mod ¢)
in F;. For example one may take= (> — 1. As an endomorphism @, one hag! = Id +n
wheren is nilpotent. Since the dimension &f, is < 2¢(X;(¢)) < ¢* one has:” = 0 and
Fgé2 = Id. SoG; splits completely OVEF 22_1). AS & consequence splits completely over
the extension of degreé® — 1)¢*+1 of .

Lemma 24 (Galois action on the Ramanujan module)if p # (¢ is a prime, then the Ramanu-
jan moduleG = J;(¢)[m*] is a divisible group inside/, (¢)[¢>|(F,). Letn be an integer that
kills the roots ofX2 — 7(p) X + p'! in F;. For example; = (2 — 1. The/*-torsionG,, = G[¢¥]

insideG splits completely over the extension of degyéfe™ of IF,.

For computational convenience we may preter= X, (5¢) to X;(¢). If this is the case, we
embedG inside the jacobiaiy/, of X, using the map*. For the sake of simplicity we present
the calculations below in the context 6f(¢) although they take place insidg.

The knowledge of a non-zero elementp sometimes suffices to construct a basisdF,,):

Lemma 25 (The inert case)AssumeX? — 7(p) X + p™' (mod /) is irreducible. Letk > 1 be
an integer and; = p“ a power ofp. Given a non zero element i (F,), one can compute a
basis ofV;(F,) in polynomial time irog ¢, ¢ and k.

Indeed, letP € G4(F,) be non-zero. We replade by /P until we find a non-zero element
in G,(FF,). Given such & we can test whether it belongs ¥ by computing(7;, — 7(n))z for
all 2 < n < 2. If we only obtain zeroes this shows is in V,. Otherwise we replac® by

Lf K is a field and/ a K -vector space, we writ€ (V') for the algebra of linear maps frobato itself. LetA be
a subset ofZ(V'). We say thatd is triangulisable if there exists a ba#iof V' such that the matrix of every element
in A with respect td3 is upper triangular.

32



some non-zer¢7;, — 7(n))P and test again. This process stops aftgrX, (¢)) steps at most,

and produces a non-zero eleméhin V;(F,). SinceF, has no eigenvector iri(F,), the couple
(P, F,(P)) is a basis oV,(F,). 0

So assuming that(p)?—4p*! is not a square moduly we have a simpler method to construct
a basis for the Ramanujan modifemodulop:

We sety = p~D¢, We haveG(F,) D G, = Gy(F,). SetN, = #.J,(¢)(F,) = M,L, where
M, is prime tol. This N, can be computed using Manin symbols as in lerhnda 21 |.et (*.
The image of/, (¢)(F,) by the morphism) = II,, o [M,] containsG.(F,) and is in fact equal to
G(F,). We check#G(F,) > #G, > (*. So at least one of the elementsj(¢)(F,) given by
lemmd® has a non-zero image Hyor ¢ large enough. We apply lemrhal 25 to this element and
find a basis for the Ramanujan module at

We now assume the polynomial? — 7(p)X + p'' mod ¢ has two distinct roote mod ¢
andb mod ¢. So(F, — a)¥X1O)(F, — b)29Xa@) kills G,. SinceG, = G,[¢] we deduce that
(F, — a)?kO)(F, — b)2ka(Xa ) Kills Gy,

This leads us to the following definition.

Definition 4 (Split Ramanujan modules) AssumeX? — 7(p)X + p*! mod ¢ has two distinct
rootsa mod ¢ andb mod ¢ wherea andb are integers. Letn, be the ideal inl[F,] generated
by ¢, all T,, — 7(n) and F,, — a. LetV,, = J;(¢)[m,] C V, be the eigenspace associated with
For k£ > 1 an integer, we denote kiy;. , the subgroup of/; (¢)[¢*] consisting of elements killed
by some power afi,. LetIl, , the composition ofl, and (£, — b)?*9*1() We denote b,
the union of allGy, ,.

We have the following.

Lemma 26 (Properties of split Ramanujan modules)For every integek > 1, the groupGy, ,
is the imagdl,. . (/;(¢)[¢*]) of thel*-torsion byll, . Itis killed bym2rX1(9) and the restriction
of IT,. , to G, is a bijection. Sdz, = J;(¢)[m:°] C G is a divisible group. Let) be an integer

thatkillsa in IF; (e.9.n = £ — 1). ThenGy, splits overF +:.
The lemma below is the counterpart to lemimh 25 in the splitsealar case.

Lemma 27 (The split non-scalar case)AssumeX? — 7(p)X + p*' (mod ¢) has two distinct
rootsa (mod ¢) andb (mod £). Letk > 1 be an integer ang = p¢ a power ofp. Given a non
zero element itz ,(F, ), one can compute a generatordf, in polynomial time irlog ¢, ¢ and

k.

So if 7(p)? — 4p'! is a non-zero square modulave also have a simple method to construct
a basis for the Ramanujan moddfemodulop:

We leta (mod ¢) andb (mod ¢) be the two roots ofX? — 7(p)X + p'* (mod ). Take
q = p~ . We haveG,(F,) D G, = G3,(F,) we setN, = #.J,(¢)(F,) = M,L, with M,
prime to/. Let L, = ¢* andy = I1,,, o [M,]. The image of/,(¢)(F,) by ¢ containsG; ,(F,)
and is in fact equal t&, (F,). We check#G,(F,) > #G;, > (3. So at least one of the elements
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in J;(¢)(F,) given by lemm&ld has a non-zero imageibjor ¢ large enough. We apply lemma
[Z4 to this element and find a generatoi®f,. A similar calculation produces a generatoiiof.
These two eigenvectors form a basis@imodulop.

All this is enough to compute the Ramanujan ideal when thbémrus action on it is semisim-
ple non-scalar i.e whehis prime tor(p)? — 4p'l.

Remark 6 The main simplification in this variant is that we do not needampute pairings. In
practice, one would just take a random degree Z&ralivisor on.X; (¢), multiply it by the prime
to ¢ part of #.J; (¢)(F,) and apply a fewB,, .(7},) to it. This should usually suffice.

Remark 7 If ¢ dividest(p)? — 4p'!, the method described in this section is no longer sufficient
but one can easily show that it provides at least one non-glement inl/, modulop.

13 Computing the Ramanujan subspace ovep)

Once one has computed the Ramanujan spateside./; (¢) (or ratherlV, inside .7, the jacobian

of X,) modulop for many small prime®, one can try to compute this space over the rationals.
This calculation is described in detail inJ11, Section 1I8]this section we sketch a variant of
the method presented in]11, Section 13]. We then explainthmmmethod should be modified to
fit with the simplified method presented in sectioh 12. Thiglkeus to a sort of generalization of
the Chinese Remainder Theorem that is more adapted to thextof polynomials with integer
coefficients.

The complexity analysis of the methods presented in thisserely on results in Arakelov
theory that have been proven by Bas Edixhoven and Robin dg dsimg results by Merkl in[11]
or J. Jorgenson and J. Kramer Inl[19]. In fact, the complexitglysis of the variant described
here requires a bit more than what has been already giveéd]jn The necessary bounds to the
proof of this variant will appear in Peter Bruin’s PhD thef@iks

We use the model oveéf[- ] for X, = X,(5¢) that is described in sectidn]10. We start by

30¢
fixing aQ-rational cuspD on &,. This will be the origin of the Jacobi map.

Let = be a point in7,(Q). We denote by(x) the smallest intege such that there exists
an effective divisorD of degreek such thatD — kO belongs to the class representedabin
the Picard group. We call(z) the stability of z. For all but finitely many primep and for any
placep of Q(z) abovep, one can definé,(x) the stability ofz modulop: the smallest integet
such that there exists an effective dividorof degreek such thatD — kO belongs to the class
represented by mod p in the Picard group aft; mod p. We definel,(z) to be the minimum of
all 6,(z) for all placesp abovep. We note that, (x) < 6,(z) < (x) whenevel,(x) is defined.
Clearlyd,(z) is defined and equal #(x) for all large enough primes.

A consequence of the results by Bas Edixhoven and Robin dg datended by Peter Bruin
in his forthcoming PhD thesis, sée[11, 4], is that, for astdalf the primes smaller thaf, the
following holds:6,(z) is defined and equal #(z) for all = in ;. Notice that)(z) = 6(y) if =
andy are Galois conjugate.
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Now letx be a non-zero point ifi’,. We can compute modulo placeg abovep, for many
small (e.g. polynomial irf) primesp such that,(x) = 6(x). We only use primes such that
6,(x) = 0(x) for everyx in W,.

There is a unique effective divis@? = P, + - - - + Fy(,) such thatD — §(x)O is mapped onto
x by the Jacobi map. This divisor remains unique modulo alptheesy in question. Further, no
P; specializes t@) modulo any suclp. So we choose a functiofon A, having no pole except
atO. We define e.gF (z) = f(P1) + -+ f(Pow))-

We form the polynomial

Pi(X) = II (X = F(y))-

yew, With o(y)=k

This polynomial has coefficients i@. For the above primgswe have

Py(X) mod p = 11 (X — F(y)).
yeW, mod p WIth 6, (y)=k

We setP(X) = [],.,Px(X). If the Galois action oriV, — {0} is transitive thenP(X)
is likely to be irreducible and equal to the unique non-&iv#,(X). To be quite rigorous one
should say some more about the choicg o6eel[1l, Section 22].

If a reasonablég (e.g. the divisor off isn(O — O') where(’ is another rational cusp and
is the order ofO — O’ in the jacobian) is chosen then Peter Bruin, improving orxkalen, de
Jong, and Merkl, proves inl[4] that the logarithmic height4fX') is bounded by a polynomial
in /.

If we know W, modulop then we can comput&(X) modulop and, provided we have
taken enough such primgswe deduce(X) using Chinese remainder theorem and the bounds
proved by Edixhoven, de Jong, Merkl and Bruin.

However, if we use the simplified algorithm presented inisedf2 we shall only obtain
P(X) modulop for thosep such that’ does not divider(p)? — 4p'!. If ¢ dividesT(p)? — 4p™
then we may only obtain a non-trivial factor 8{ X' ) mod p. This factor has degrefe- 1 in fact.

This leads us to the following problem:

Let P(X) be a degred > 2 irreducibléd polynomial with integer coefficients.

Let H be an upper bound for theive heighbf P(X): any coefficient ofP liesin[-H, H].

Let I be a positive integer and for every integérom 1 to / assume we are given an integer
N; > 2 and a degree; monicpolynomialA;(X) in Z[X] wherel < a; < d. Assume théV; are
pairwise coprime.

Question: assuming(X) mod N; is a multiple of 4;(X) mod N; for everyi, can we re-
coverP(X), and isP(X) the unique polynomial fulfilling all these conditions ?

We start with the following.

Lemma 28 (Resultant and intersections)Let P and ) be two non-constant polynomials with
integer coefficients and trivial gEd Let N > 2 be an integer. IfP mod N and(@ mod N are

2irreducible means here irreducible in the riAgX|.
3the gcd here is the gcd in the ridg X].
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both multiples of the same degrée> 1 monic polynomiald mod N, then the resultant o
andQ is divisible byN?.

This easily follows from the resultant being given as a deteant. a
Let P, be the additive group of integer coefficient polynomialshwdiegree< d. Let p; :
Ps — Z[X]/(A;, N;) be the reduction map modulo the idédl;, N;).
The product map

p=11 ri:Pa— [] ZIX)/(Ai Ny)
1<i<I 1<i<I
is surjective (Chinese remainder). Its kernel is therefolaticeR with indexo© = [, ..., V"
in Py = Z41, o
If P, andP, are two coprime non-constant polynomials with degreéand respective naive
heightsK, and K, then their resultant is bounded above(By)! K¢ K4, If further P, P, € R
then, according to lemmal8, = [ [,,.,; N;" divides the resultant aP; and .

Lemma 29 (Heights and intersections)Let (V;),<;<; be pairwise coprime integers. Lét be
an irreducible polynomial with integer coefficients and g/ > 2 and naive height bounded by
H. Let( be a polynomial with integer coefficients and degreé and naive height bounded by
K. Assume that for evenyfrom 1 to N the polynomials” mod N; and@ mod N; are multiples
of the same monic polynomidl(X) mod N; with degreez; wherel < a; < d. Assume further
that

IT o > (2d)E K"

1<i<]

ThenQ is a multiple ofP.

We observe that thé? norm of P is < H+/d + 1. Also, if Q hasL? norm< H+/d + 1 then
its coefficients arec H+v/d + 1. Therefore if

o= ] N> (2d)(d+1):H*
1<i<I
the polynomialP is the shortest vector in the lattiGe for the L? norm.
Applying the LLL algorithm to the lattic&k we find ({6, Theorem 2.6.2]) a vector in it with
L? norm< 2@, Taking this latter value fof{ we see that if

d2(d+1)

T N > (et g =5

then the vector output by the LLL algorithm is a multiple/of

Lemma 30 (Interpolation and lattices) Letd > 2 be an integer. Lef be a positive integer and
for everyi from 1 to I let N; > 2 be an integer and4;(X) a monic polynomial with integer
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coefficients and degree wherel < a; < d. We assume the coefficientsAp(X) lie in the
interval [0, N;[.

We assume there exists an irreducible polynoriaX’) with degreel and integer coefficients
and naive height H such thatP(X') mod N; is a multiple ofA4;(X) mod N; for all .

We assume th&; are pairwise coprime and

1<:<I

ThenP(X) is the unique polynomial fulfilling all these conditions aihdan be computed
from the(V;, A;(X)) by a deterministic Turing machine in time polynomialinlog H and I,
and thelog N;.

Note that the dependency drandlog NN; is harmless because one may remove some infor-
mation if there is too much of it. We can always do with sofrendlog N; that are polynomial
in d andlog H.

This lemma shows that we can compute (lift) the Ramanujanuteddl, using the simplified
algorithm of sectiofi 12, even if the action of the Frobeniys an 17, is not semisimple for any
auxiliary primep.

14 Are there many semi simple pairg?, p) ?

We have seen in secti@nl12 that the computatiol,ahodulop becomes simpler whenever the
two primesp and/ satisfy the condition thatis prime tor(p)? — 4p'!. If this is the case, we say
that the pair/, p) is good (otherwise it is bad).

In the situation of section13 we are given a fixed prifraad we look for primeg such that
(¢,p) is good. We need these prime$o be bounded by a polynomial ih And there should be
enough of them that we can find them by random search.

This leads us to the following definition.

Definition 5 (What bad and good means in this section)We say that a paif/, p) of prime in-
tegers is bad i dividesr(p)? — 4p'l. Otherwise it is good. Let > 1 be a real. We say that a
given prime/ is c-bad if (¢, p) is bad for at least half the primags< ¢¢. Otherwise it is.-good.

In this section we give an elementary unconditional proaf there are enough good primes
(. Leta, 3,y andd be four positive constants such that for every intéger 2 the k-th primep,,
satisfiesnk log k < pr < fklog k and for every reak > 2 the arithmetic functionr(x) giving
the number of primes. z satisfiesyz(logz) ™! < 7(z) < dz(logz)~ .

Work by Tchebitchef allows = % andé = % Work by Rosseri|27] shows that = 1 is
fine. Rosser also proved that < k(log k + loglog k) for k > 6. So we can tak@ = 2.17 for
example. | thank Guillaume Hanrot for pointing out theserefces to me.

Let X > 3 be an integer. LeL be theX-th prime integer. Lef'(c, X) be the set of pairs of
primes(¢, p) with ¢ < L andp < ¢¢. We set/; = p; = 2, {5 = ps = 3, ...the successive prime
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integers. LetP be the largest prime& L¢ and letY be the integer such th& = py,.. One has
L < pXlog X andP < °X¢(log X)¢andY < P.

Sincer(p)? — 4p'! has at moslog, (4p'!) prime divisors, there are at mast2 + 11 log, P)
bad pairs and this ist 51¢3°X*(log X )¢*! providedX > 3. We want to bound from above the
number of bad < L. The worst case is when the smalléstre bad. Assume all primés< /,
are bad. The number of bad pairs is then at least

1 vy k¢(log k)¢ ya© 1
- ey > 1 > k¢(log k)¢
2 Z () = 2 Z cloga+clogk + cloglogk — 4c Z (log k)

1<k<z 3 <k<z 3 <k<z
o — o —

c c+1 c
’ya xc—}—l . é > /yO[ l,c-i—l
de(c+1) a — 8c(c+1)

providedz > 6/a. Assume at least half of the primés< L are bad. Then the number of bad
pairs is at leasf /% (X/2)°"! providedX > 12/a. So

and this is at least

c

Yo c+1 cvye c+1
—(X/2 < 51eB°X(log X

SO

25 ‘ 2 —1

We calla the right-hand side in the above inequality. We Bet X1 and we havqog—z <
(c+ 1)a=1. Sincelog Z < v/Z we haveZ < (c + 1)2a=1 andX < (c + 1)%ctDg2,

Lemma 31 Let «, 3, v and § be the four constants introduced before definifibn 5 abowat. L

c > 1 be a real number. Assumg is an integer bigger thas162c*(c + 1)(¢+2) (%)QCT?.
Then at least half among the first primes are:-good.

Lemma 32 (Effective bound for the density of good primeg) Letc > 1 be a real number.
AssumeX is an integer bigger thag?*+>c*(c + 1)%“+2), Then at least half among th€ first
primes arec-good.

A A GP-PARI code for Puiseux expansions at singular branches
of modular curves

Below are a few lines of GP-PARI code (sék [1]) that computeettpansions of,, s as series in

b~ with coefficients in a finite field containing a primitiveth root of unity. We use the methods

and notation given in sectignll0, before the statement ofrlafd.
Our code computes theseries for the modular functighas
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J(a) = 1728E3(q) (B3 (q) — Eg(a)) ™

where
n3qn
Ei(q)=1+240)
o1 -4
and ;
n°q"
Fe(q) =1 —504 .
)= 1501 Y

The expansions for the, s are then obtained through standard operations on series lik
product, sum, reversion, composition.

{ser(aa,bb,prec,ell,p,z,b,jc,E4,E6,D,jq,qc,gc,w,X)=

ell=7;

p=953;

z=Mod(431,p);

b=1/c;

jc=(b"4-12 *b"3+14 *b"2+12 *b+1)"3/b"5/(b"2-11 *pb-1);
E4=sum(n=1,prec, n"3  *qg'n/(1-q"n)) * 240+1+0(q prec);
E6=sum(n=1,prec, -n"5 *Qq n/(1-g"n)) * 504+1+0(q " prec);
D=(E4"3-E672)/1728;

jq=E4"3/D;

gc=subst(serreverse(1/jq),q,1/jc+O(c"prec));

gc= -36 *b*(b"2-11 =*b-1) *deriv(qc) *(-c"2)/5/qc;

w=z"aa * Q"(2+5 = bb);

xabs=Mod(1,p) =*(1/12

+sum(n=1,prec,

w«Q7(5 *xell *n)/(1-w *Q7(5 *ell *n))"2+0(Q° (5 =*ell =*prec)))
+w/(1-w)"2

+sum(n=1,prec,

Q°(5 *ell *n)/w/(1-(w)(-1) *Q"(5 *xell *n))"2+O(Q"°(5 =+ell =*prec)))
-2 *sum(n=1,prec,

n*Q°(5 xell *n)/(1-Q°(5 =*ell *n))+O(Q° (5 =+ell *prec)) ));
cQ=subst(serreverse((gc/c™5)"(1/5) *C),c,Q"ell);
bQ=1/cQ;

gQ=subst(gc,c,cQ);

XabQ=(gQ* xabs-3 *(bQ"2-6 *bQ+1) )/36;
QC=subst(serreverse(1/((bQ * Q"ell)"(1/ell)/Q)),Q,0);
XabC=subst(XabQ,Q,QC);

}
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B A Magma code that computes the zeta function of modular
curves

Below are a few lines written in the Magma language (5ee [Ejey compute the characteristic
polynomial of the Frobenius of; (5¢) /F, using the methods given in the proof of lemna 21.

ZZ:=IntegerRing();

:=11;

N:=5*11;

QN:=CyclotomicField(EulerPhi(N));

R1<T>:=PolynomialRing(QN,1);

R2<T,U>:=PolynomialRing(QN,2);

G := DirichletGroup(N,QN);

chars := Elements(G);

gen4:=chars[2];

genlO:=chars[5];

Genus(Gammal(N));

charsmc:=[gen4,gend4"2,gen4d"4, gen4 *genl0,gend™2 =*genlO,
genl0,gen4 »genl0°2,gend2 xgenl0°2,genl0"2 , gen4d *genl0’5,
gen4d"2 *genl0°5,gen1075];

p:=101;

PT:= R2 ! 1;

W:=1;

g:=1;

for eps in charsmc do

M := ModularForms([eps],2);

P:= R2 ! Evaluate(HeckePolynomial(CuspidalSubspace(M), p),T);
g:=Degree(P,T);

W =  Evaluate(P,[ T+Evaluate(eps,p) *p/T, 1]) =*Tg;
PT:=PT=*W,

end for;

PT = R2 ! PT;

k:=2;
PTk:= Resultant(PT, T'k-U,T);
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