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Abstract

We give a method for efficiently computing isomorphisms between tow-
ers of Artin-Schreier extensions over a finite field. We find that isomor-
phisms between towers of degree p™ over a fixed field F; can be computed,
composed and inverted in time essentially linear in p™. The method relies
on an approximation process.

1 Introduction

Let F, be a finite field with ¢ = p¢ elements. Let L, be an extension of degree
p" of IF,, given as a tower

L,>L,1>..D5L DLy=F, (1)

of non-trivial Artin-Schreier extensions each defined by

L1 = Li(2p41) with 2| — 2341 — ap = 0 and ay, € L.

We call n the length of the tower.

Artin-Schreier towers naturally arise in computational algebraic geometry. In
particular, let G = Gal(F,/F,) be the absolute Galois group of F,. Morphisms
between abelian varieties A and B defined over F, induce G-morphisms between
the Tate modules 7;(A) and Ty(B). If £ # p, this correspondence is known to be
bijective, by a theorem of Tate [8]. If £ = p, A simple and 7;(A) is non-zero, then
the correpondance is injective. Assume the p-torsion of A and B is defined over
F,. One can easily show that the definition field Ly of the p*™-torsion of A is an
extension of Ly = F, with degree dividing p*. Similarly the definition field M}, of
the p**!-torsion of B is an extension of My = Ly = F, with degree dividing p*.
Assuming the existence of an isogeny between A and B with prime to p degree,
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the fields Ly and M} are isomorphic. These fields can be constructed by taking
successive preimages of a p-torsion point by separable isogenies of degree p. Thus
they naturally come as Artin-Schreier towers. In the case of non-supersingular
elliptic curves, such isogenies are described in terms of Hasse functions. If we
are looking for an isogeny with a given prime to p degree between A and B, we
can compute it by interpolation at enough p*-torsion points. This reduces to
computing an isomorphism between the Artin-Schreier towers we have on each
side. This method is of special interest for computing the cardinality of ordinary
elliptic curves with the Schoof-Elkies-Atkin algorithm. See [2] where the fastest
known algorithm for this purpose is given, assuming the characteristic p is fixed.
Surveys on these questions are in [6, 4, 3, 5].
We shall prove the following

Theorem 1 An isomorphism between two Artin-Schreier towers L, and M, of
degree p™ over F, = Ly = My can be computed in time O(n®p") multiplications
in I, for fized ¢ and n — oo.

Computational aspects of Artin-Schreier towers have already been studied
by D . G . Cantor in [1]. For any integer u in [0,p"| with p-adic expansion

U = Uy + Usp + ... + u,p" ! he sets x, = 2125?24 . The monomials (Xu)o<u<ph

form a basis X" of the Ly-vector space L. If ag = 1 and a = xpr_1 + ZZI:OQ CuXu
with all the ¢, € F,, we say that the tower in formula 1 is a Cantor tower. One of
the results in [1] is that for any prime p there exists a constant K, such that two
elements in a Cantor tower of length n over I, can be multiplied at the expense of
K,n*p™ operations in F,. The same holds for Cantor towers over a non-necessarily
prime field F,. We shall need this result and the corresponding algorithm. In
order to compute an isomorphism between two Artin-Schreier towers, we shall
first compute isomophisms between each of the two towers and a given Cantor
tower. The expected isomorphism will then be obtained as a composition of
these two isomorphisms. It is the purpose of lemma 1 to state how efficiently
isomorphisms between Artin-Schreier towers can be dealt with.

If a,8 € L, we define the écart d(a, B) to be the logarithm (with base p)
of the degree of the extension F,(« — 5)/F,. The triangle inequality is easily
checked. Note that d is not a distance since d(«, ) = 0 if and only if o — § is in
Fy. On the other hand, d is invariant under translation.

For any two positive integers ¢ and j we define the following polynomials in
F,[X]

®;(X) = X" and p;(X) = X* = X and Tj; = X + X + X7 4+ X7

The polynomial g; is usually called an isogeny [7]. To simplify we set T; = T; ;.
We have the trivial relations



piop; = pjop;and p;oT;; =T, 0 p; = pi; and Tjy o Tj jk = Tijik.

If X C L is an extension of finite fields with cardinalities p’ and p* respec-
tively, we have the following exact sequence of K-vector spaces.

ook so

Assume we are looking for an isomorphism
t: M, — L,
between two Artin-Schreier towers L,, and M, with M, defined by

M”DMn_lD...DMlDM():Fq

and

M1 = My (yr11) and yp,; — yry1 — by = 0 with by € My,

We define ¢, = yi"y5”...y2» similarly to x,. We may assume that an isomor-
phism has already been constructed between L,,_; and M,,_;. In order to extend
it, we have to solve in L, an Artin-Schreier equation.

Consider such an equation

m(Y)=YP-Y = 4. (2)

with g € L,, and Trz, 5, (8) = 0.

This is a linear equation over F,,. The corresponding linear system of dimen-
sion dp™ over F, can be solved with Gauss’s algorithm at the expense of O(d®p®")
operations in [F,. We notice, however, that equation 2 implies

PiY)=Y" -V =B+ +..+ " =T(p) (3)
which is linear over the intermediate field F,;. The corresponding linear system
of dimension dp™/i over F,: can be solved with Gauss’s algorithm at the expense
of O(d®p®" /i) operations in F:. This is better when multiplication is fast in L,
(e.g. when L,, is a Cantor tower).

Equation 3, of course, does not imply equation 2 but if we know a solution =y
to equation 3 and set Y = Z + v in equation 2 we get

p1(Z) =27 —Z =5 —~"+1.

Let § = =77 +7. We have £:(6) = 0i(8) — pi(p1(7)) = 9:(8) — p1(0:i(7)) =
pi(B) — p1(T5(B)) = 0so § € Fi. We also check easily that T;(0) = T3(8) —
pl(TZ(fy)) T:(B) — pi(y) = 0. We conclude that the écart between vy and
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any solution of 2 is at most log,(i/pgcd(d,7)). We say that ¢ is an approximate
solution to equation 2 with accuracy log,(i/pgcd(i, d)).

Since our strategy is to deal with the smallest possible matrices, we shall take
i = dp™'. This way, for § € L, and Trr,/x, (3) = 0, a solution to Y? —Y = f
can be found in three steps

1. compute B = Tyyn-1(f).

n—1
2. find a solution v to y?™ " —Y = B which amounts to solving a linear
system of dimension p over L, _.

3. solve ZP — Z = § where § = f —+? + v isin L,y and Try, ,/p, () = 0.

And the same method is applied recursively to the equation in step 3. After
k steps, we obtain an approximate solution to equation 2 with accuracy n — k.
After n steps, we reduce to an Artin-Schreier equation over the base field F,.

In the rest of this paper, we provide details and a complexity analysis for the
algorithm sketched above.

2 Artin-Schreier towers

We recall a few elementary facts about Artin-Schreier extensions. Let I be a
field of characteristic p, not necessarily finite, and £ = K[X]/(X? — X — a) an
Artin-Schreier extension. Set z = X mod X? — X — «a. Its conjugates are the
x + ¢ with ¢ € [F,. The trace is given by

Trex( Z ur') = —up,_1 when u; € K
0<i<p—1
and the dual basis of (1,z,2?,...,277 ') is (—2?~! + 1, —2P~2, —2P73, .. —x, —1).
In such an Artin-Schreier extension, p-powers are easy to compute. Indeed
7" = (z + Tp(a))". (4)
In particular if K is the field F, with ¢ = p? elements then

.qu = (.’13 + TI‘]Fq /Fyp (Oj))Z

and Trg, /r, () is in IF,. Thus the p x p matrix of the Frobenius automorphism
x — 2% has coefficients in TF,,.

We shall first prove a few complexity estimates concerning basic computations
with isomorphisms bewteen Artin-Schreier towers over finite fields.

We consider an isomorphism ¢ between two towers L,, and M,

t: M, — L,
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The computer representation of ¢ will consist of the images of the y% by ¢ for
0<i1<p—1land1<k<n.

We shall see that this representation is very efficient. For 0 < k£ < n, we
denote by CL(k) the complexity of multiplication in L;. This complexity is given
as a number of multiplications in the base field F,, disregarding additions. We
denote by C¥ (k) the complexity of multiplication in Mj,. Let C,(n) be the cost of
evaluating ¢ at some p in M,. Let C*(n) be the complexity of computing :™(v)
for v in L,,.

We shall first prove the following

Lemma 1 Given an isomorphism v : M, — L, between two Artin-Schreier tow-
ers, we have, with the notation given above

C(n) < pnCx(n), (5)
Cr(n) < 2np®Cl(n) (6)
CM(n) < 4np*CL(n). (7)

We first prove inequality 5. For u € M, let us write p = Zogigpq Wiyt with
pi € Mp_1. Then o(p) = >, o(p)e(yl) and since we have stored the ¢(y?), we
reduce to computing p multiplications in L, and the images ¢(u;). Therefore

Cu(n) < p(C.(n —1) + CL(n))

and the result follows iterating the above inequality and using the easy inequality

Cx(n) > pCi(n—1).

In order to compute the inverse image of v € L,,, we first express v as a linear
combination

v=3 vuls) ®

with v; € L,_; for all . This is achieved at the expense of 2p® multiplications in
L,, using Gauss’s algorithm. From equation 8 we deduce

S = Y

0<i<p—1

We thus reduce to computing the p preimages of the v; € L,,_;.
Therefore

Cr(n) < 2p*CL(n) +pC’(n—1)

and inequality 6 follows.



Inequality 7 follows easily from inequalities 5 and 6.

This shows that if we can multiply efficiently in L,,, the knowledge of + allows
fast multiplication in M,, as well.

The crucial step in our isomorphism computations will be the evaluation of
polynomials 7; ; at numbers ;1 that are not necessarily in F,;. Lemma 2 states
how efficiently one can compute @, (1) = ,u”dpl and Ty, (p) for p € Ly and
0<I<k.

We denote by Cg(l, k) the complexity of computing @4, (1) for p € L. We
denote by C%(l, k) the complexity of computing Ty, (1) for pu € Ly.

In order to compute T, (1) we notice that

Ty =Tgo0Tp40 ... 1-2 0 T gpi-1. (9)

O dpap

Using this formula we obtain

CE(L,k) < p(CE(I—1,k)+CE(l—2,k)+---+CE(1, k) +CE(0,k))

+pd CL (k). (10)

If we now want to compute @, (1) we use formula 4.
Writing p = 3 ;1 1T} We have

depl(“): Z (I)dpl(:ui)q)dpl(‘r?c): Z (del(ui)(xk+pol(ak—1))i (11)

0<i<p—1 0<i<p—1

since zf — x = agx_1.

We first assume that we already computed and stored the T}, (a,) and their
first p powers for all [ and x such that 0 < [ < k < k which is the same as
computing the expansions of polynomials (z + Ty,(ay))" for 0 < i <p—1.

We call Ck(1, k) the complexity of computing @4 (1) for p € Ly under this
assumption. We define Ck(1, k) to be the complexity of computing Tyt () for
i € Ly in the same situation.

From equation 11 we deduce

CL(l,k) <pCk(l,k—1)+p*CL(k —1).

Since C%(1, k) = 0 as soon as [ > k, we obtain

C (1, k) < p(k —1) CX (k).

and from equation 10 and the definition of T,

Ch(l, k) < (V°kl + pd) CL(k) < 2p*kld CE (k). (12)



We now bound the cost C.;,(k) of precomputing all the T, (a,) and their

first p powers for all [ and k such that 0 <[ < k < k.

We first bound CL,;,(k + 1) — Ck,, (k). Indeed if we already know the T, (ay)
and their first p powers for all 0 < [ < k < k, then computing the T, (ay) for
all 0 < [ < k will require less than 2(k + 1)p?k%d CL(k) multiplications (using
formula 12) and computing the powers will take time p(k + 1) CL(k). Therefore

Cinit(k +1) < Cluy(k) + (k + 1) (p + 2p°k%d) CX (k).
We obtain
Ch . (k) < 6p’k*d CL (k).
Lemma 2 For 0 <1 < k and for any p in L, one can compute @, (1) (resp.

Ty (1)) in time C5(1,k) (resp. Ck(l, k) ) with

Ch(l, k)
Cr(l, k)

< plk—1)CL(k) (13)
< 2p%kldCE (k) (14)

using data that only depend on Ly and can be computed once and for all in time

CL..(k) with

init

Crii(k) < 6p*k*d CL (k). (15)

We call C4g(n) the complexity of solving equation 2 in L, for 8 € L, and
Try, /r, (B) = Tap(B) = 0. We shall adopt the three steps strategy described in
the introduction.

We first compute and store the Ty, (a,) for all 0 < I < x < n. This takes
time CE..(n). We call C%¢(n) the complexity of solving equation 2 once all this
precomputation has been done.

In these conditions, step 1 (the computation of B = Ty,n-1(3)) will take time
Ck(n—1,n).

The second step reduces to computing the p x p matrix representing the
L, _s-linear map @gyn-1 : L, — Ly, in the basis (1, 2y, 22, ...,28 '), Using Gauss’s
algorithm, we then find a solution y to the equation pg,n-1(7) = B.

All this is achieved at the expense of pCk(n — 1,n) 4 2p* CL(n — 1) multipli-
cations.

The third step is done in time pCZ(n) 4+ Ckq(n — 1).

We thus have

éﬁs(n) < éﬁs(n -1) +C~%(n —1,n) —i—pC}I;(n —1,n) +2p° Cf(n —1) +pC£(n)



and using lemma 2

éjs(n) < éﬁs(n -1+ 6p2n2dC£(n)
thus

CLo(n) < 12n?p?dCL(n) + Cyus (16)

where Cas = C45(0) is the complexity of solving an Artin-Schreier equation in
the base field IF,.

We now want to compute an isomorphism between two Artin-Schreier towers
of length n over F,

LHDLn_lD...DLlDLOZ]Fq

and
M, > M, 1>..>M D>My=F,

We look for an isomorphism ¢ : M, — L, given by «(y) for 0 < i < p and
0<k<n.

We let the length £ increase from 0 to n. We call Ci,(k) the complexity
of computing an isomorphism from M, to L. We call CL, (k) the complexity
of computing an isomorphism from Mj to Lj assuming the Ty, (a,) have been

computed for all 0 < I < x < k. We want to bound CL (n) — CL (n — 1). Thus
assume we have computed the isomorphism up to length n — 1. In order to go
further we have to solve the Artin-Schreier extension

Y? —Y = i(by_y) (17)

over L,. We first apply ¢ to b,_; in time C,(n — 1). Solving equation 17 takes
time C%g(n). We take ¢(y,) to be one of the solution we found. We then compute
the powers «(y,)¢ for 0 < i < p — 1 which takes time pCL(n).

We thus have

Cir(n) < Cyy(n—1) +Cu(n — 1) + Chg(n) + pCx(n)

and using lemma 1 and inequality 16,

CL(n) < CE(n—1)+ 14np?dCE(n) + Cas .

Summing up we have

CE(n) < 28n*p?dCL(n) + nCys .
and using 15

Cir(n) < 34n®p*dCL(n) +nCas . (18)



Assume now we have a third Artin-Schreier tower N, over F,. We shall
relate the complexity CZ(n) of multiplication in L, and the complexity C¥(n)
of computing an isomorphism from N, to M,. This makes sense in case L, has
been designed to allow fast multiplication (e.g. L, is a Cantor Tower).

We first compute an isomorphism ¢; from M, to L, at the expense of C,(n)
multiplications in IF,.

We then compute an isomorphism iy from N, to M,, at the expense of

CN(n) < 34n*p*dCY (n) + nCas

multiplications in IF,.
Using inequality 18 and inequality 7 we find

Lemma 3 Let L,, M,, N, be three Artin-Schreier towers of lenght n over F, the
field with q = p? elements and let CZ(n) be the complexity of multiplication in L,.
Let Cag be the complexity of solving an Artin-Schreier equation in F,. An isomor-
phism between M, and N, can be found at the expense of CX(n) multiplications
in Fy with

CM(n) < 170p°n*d CL(n) 4+ 2nCas .

If we take L, to be a Cantor tower we have CZ(n) < K, n?p™ where K, only
depends on ¢. Using the Berlekamp factorisation algorithm we have C45 = O(p3d)
and theorem 1 follows.
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