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Abstract

We show how to transport descent obstructions from the category of covers to the cat-
egory of varieties. We deduce examples of curves having Q as field of moduli, that admit
models over every completion of Q, but have no model over Q.
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allées Antonio Machado 31058 Toulouse cédex 9
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1 Introduction
If k is a field, a k-variety is by definition a separated scheme of finite type over Spec(k). A
k-curve is a variety of dimension 1 over k. A k-surface is a variety of dimension 2 over k.

1.1 The main results
In this article, we construct descent obstructions in the category of varieties. For example, we
show the following theorem:

Theorem 1.1 There exists a projective, integral and smooth curve over Q, having Q as field of
moduli, which is defined over all the completions of Q but not over Q itself.

The main idea is to start from a descent obstruction in the category of covers of curves, and to
transport it into various other categories: the category of quasi-projective surfaces, the category
of proper surfaces, and finally the category of smooth curves. This process is summarized by the
following theorem:

Theorem 1.2 Let k be a field of characteristic zero, ka an algebraic closure of k. Let Xk be a
smooth, projective, geometrically integral curve over k and let X denote the base change to ka

of Xk. Let Y be a smooth, projective, integral curve over ka and let ϕ : Y → X be a (possibly
ramified) cover over ka, having k as field of moduli. There exists a smooth, projective, integral
curve over ka having k as field of moduli and having exactly the same fields of definition as the
initial cover ϕ.

Examples of obstructions to descent have been mostly constructed in the categories of G-
covers and covers [CH85, DF94, CG94] and in the category of dynamical systems [Sil95]. A key
technical point is that, in many cases, one can measure these obstructions in terms of the Galois
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cohomology of a finite abelian group. As far as we know, no example of global obstructions was
known for varieties. Mestre gave some examples of local descent obstructions for hyperelliptic
curves in [Mes91]. Dèbes and Emsalem [DE99] give a criterion for a curve to be defined over
its field of moduli. This criterion involves a particular model for the quotient of the curve by
its automorphism group. Dèbes and Emsalem prove that the local-global principle applies to
the descent problem for a curve together with its automorphisms. However they leave open the
question of the local-global principle for a curve (and a variety in general).

Global descent obstructions for covers have been constructed by Ros and Couveignes:

Theorem 1.3 (cf.[CR04], Corollaire 2) There exists a connected ramified Q-cover of P1
Q hav-

ing Q as field of moduli, which is defined over all the completions of Q but which does not admit
any model over Q.

If we apply theorem 1.2 to these obstructions, we prove theorem 1.1.

1.2 Overview of the paper
Let k be a field with characteristic zero. LetXk be a smooth, projective and geometrically integral
curve over k and set X = Xk ×Spec(k) Spec(ka). The starting point of all the constructions, in
the sequel, is a smooth projective and integral curve Y over ka which covers X , i.e. there exists
a non-constant morphism ϕ : Y → X of ka-curves. We would like to construct a variety
having the same moduli and definition properties (the same field of moduli and the same fields
of definition) as ϕ. A first natural idea is to consider the complement X × Y − G(ϕ) of the
graph G(ϕ) of ϕ in the product X × Y . We call it the mark of ϕ. We hope this surface will
have the expected property: same field of moduli and same fields of definition as ϕ. This will be
true in many cases. In order to prove it, we shall associate to ϕ the stack of all its models. We
shall similarly associate to the mark of ϕ the stack of all its models. We then try to construct a
morphism between these two stacks. If this morphism happens to be an equivalence, then we are
done.

In section 2, we recall the definition of the stack and gerbe of “models” of an algebraic
variety over ka (or of a cover of curves over ka). We then explain how a morphism between the
two gerbes of models associated with two objects relates the definition and module properties of
either objects. In the sequel we shall make use of these functorial properties to transport descent
obstructions from a category to another one. It turns out that the key point is to control the group
of automorphisms of the involved objects.

To make this task easier, in section 3, we prove that we can suppose that the base curve X
of our starting cover ϕ, does not have any non trivial ka-automorphism. In other words, we
construct another k-curve X ′k without any non-trivial ka-automorphism and a ka-cover Y ′ →
X ′k ×Spec(k) Spec(ka) having the same field of moduli and the same fields of definition as ϕ.

In section 4, we do suppose thatX does not have any non-trivial automorphism and we prove
that the mark of ϕ has the same field of moduli and the same fields of definition as ϕ.

In section 5, we assume that the field of moduli of the cover ϕ is k and we construct a proper
normal ka-surface having k as field of moduli and the same fields of definition as ϕ. This proper
surface is constructed as a cover of X × Y which is strongly ramified along the graph of ϕ.
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Finally, in section 6, we construct a projective ka-curve, having k as field of moduli, and
having the same fields of definition as the initial cover ϕ. This curve is drawn on the previous
surface. It is obtained by deformation of a stable curve chosen to have the same automorphism
group as the surface.

Notations. If k is a field, we denote by ka its algebraic closure. Let l be a k-extension and let Xl

be a l-variety. We denote by Autl(Xl) or simply Aut(Xl), the group of automorphisms of the
l-variety Xl (i.e. automorphisms over Spec(l)). On the other hand, we denote by Autk(Xl) the
group of automorphisms of the k-scheme Xl (i.e. automorphisms over Spec(k)). For f ∈ l(Xl),
(f)0 denote the divisor of zeros of the function f while (f)∞ denote the divisor of poles of the
function f .

2 Stack of “models”
In this section k is a field of characteristic zero and ka is an algebraic closure of k.

2.1 The conjugate of a variety
Let X be a ka-variety. We denote by π : X → Spec(ka) the structural morphism. Let σ : ka →
ka be a k-isomorphism. We denote σX the ka-variety defined to be X itself with the structural
morphism σπ = Spec(σ)(−1) ◦ π. It is clear that the square below is cartesian. So σπ is the
pullback of π along Spec(σ).

σX
π //

Id

��

Spec(ka)
Spec(σ)(−1)

// Spec(ka)

Spec(σ)

��
X

π // Spec(ka)

With this (slightly abusive) notation one has τ(σ(π)) = τσπ and τ(σ(X)) = τσX . If X is an
affine variety, then σX is obtained from X by letting σ act on the coefficients in the defining
equations of X . One may prefer to write XSpec(σ) rather than σX . This is fine also and we do
have (XSpec(σ))Spec(τ) = XSpec(σ)◦Spec(τ).

2.2 The field of moduli
It is natural to ask if X and σX are isomorphic. They are certainly isomorphic as schemes (and
even equal by definition). But as varieties over ka, they are isomorphic if and only if there exists
an isomorphism φσ that makes the following diagram commute
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X
φσ //

π

��55555555555555555 X

πzzuuuuuuuuuu

Spec(ka)

Spec(σ)(−1)xxqqqqqqqqqqq

Spec(ka)

The above triangle gives rise to a commutative square

X
φσ //

π
��

X

π
��

Spec(ka)
Spec(σ) // Spec(ka)

(1)

The existence of such a square means that the isomorphism Spec(σ) of Spec(ka) lifts to an
isomorphism φσ of X . If there exists such a lift φσ for every σ in the absolute Galois group of k,
then we say that the condition field of moduli is met, or that X has k as field of moduli.

2.3 Fields of definition
Another natural question is, given l ⊂ ka an algebraic extension of k, does there exist an l-variety
πl : Xl → Spec(l) and a cartesian square

Xl
oo

πl
��

X

π

��
Spec(l) oo

Spec(⊂)
Spec(ka)

(2)

where the line downstairs is the spectrum of the inclusion. If such a square exists we say that l
is a field of definition of X . We say that πl : Xl → Spec(l) is a model of π : X → Spec(ka)
over l. One may wonder if it is important to impose the arrow downstairs in the definition above.
The answer is yes in general. The existence of such a cartesian square may depend on the chosen
arrow downstairs. However, if the condition field of moduli is met, then we may compose the
cartesian squares in 1 and 2

Xl
oo

πl
��

X

π

��

X
φσoo

π

��
Spec(l) oo

Spec(⊂)
Spec(ka) Spec(ka)

Spec(σ)oo

and choose the arrow downstairs we prefer.
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Another simple observation: if X has a model πk : Xk → Spec(k) over k then the condition
field of moduli is met. Indeed, we write X as a fiber product X = Xk ×Spec(k) Spec(ka) and we
take for φσ the fiber product IdXk ×Spec(k) Spec(σ) where IdXk : Xk → Xk is the identity on Xk.

One may ask if the converse is true.

2.4 Descent obstructions
Assume the condition field of moduli holds true. Does there exist a model over k ? If the answer
is no, we say that there is a descent obstruction. In case k is a number field, we say that the
obstruction is global if

1. the condition field of moduli holds true,

2. there is no model over k,

3. but for every place v of k there exists a model of X over some extension l ⊂ ka such that
l can be embedded in the completion kv of k at v.

2.5 The fibered category of “models” of a variety
We denote by Et / Spec(k) the category of (finite) étale morphisms over Spec(k). An object U in
this category is a structural morphism Spec(l)→ Spec(k) where k ↪→ l is a finite étale k-algebra.
We define a covering of U to be a surjective family (Ui → U)i of morphisms in Et / Spec(k).
This turns Et / Spec(k) into a site called the étale site on Spec(k). It indeed satisfies the three
axioms of site : the pullback of a covering exists and is a covering; a covering of a covering is a
covering; and the identity is a covering.

Note that in this paper, we use the word covering in the context of sites. We keep the word
cover for a non-constant (separable) morphism between two smooth projective and geometrically
integral curves.

Now given a ka-variety X , we define the fibered category over Et / Spec(k) of its “models”.
So, for any k-algebra l we must say what we mean by a “model” of X over Spec(l). We first
assume that l is a field. We say that an l-variety πl : Xl → Spec(l) is a “model” of X over
Spec(l) if and only if there exists an embedding e : l ↪→ ka of k-algebras and a cartesian square:

Xl
oo

πl
��

X

π

��
Spec(l) oo

Spec(e)
Spec(ka)

We insist that this time we do not fix an embedding of l into ka. In particular, if l is a subfield
of ka containing k, we accept models of X but also models of all its conjugates. So the word
model here is less restrictive than in section 2.3. This is why we write the word model between
quotation marks in that case. Of course, as already noticed, the two notions are equivalent when
the condition field of moduli holds true.
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If l is any finite étale algebra over k, then it is a direct product of finitely many finite field
extensions of k. We define a “model” of X over Spec(l) to be a disjoint union of “models” of X
over every connected component of Spec(l).

Definition 2.1 (The category MX of “models” of X) Let X be a ka-variety. The category of
“models” of X , denoted MX , is the category:

• whose objects are all “models” of X over all finite étale k-algebras,

• and whose morphisms are the cartesian squares

Xl
//

πl
��

Xm

πm
��

Spec(l) //

!!CCCCCCCC
Spec(m)

||yyyyyyyy

Spec(k)

The functor that associates Spec(l) to every “model” over Spec(l) turns MX into a fibered
category over Et / Spec(k); we denote by MX(l) or MX(Spec(l)) the fiber over Spec(l).

In particular, we can pullback a “model” Xl → Spec(l) along any morphism Spec(m) →
Spec(l) over Spec(k). Note that pulling back is not quite innocent since it can turn a model into
its conjugates so to say.

2.6 Descent data
In fact, under mild conditions, the fibered category MX happens to be a stack. In order to see
this, we need to recall a few definitions and elementary results about descent data (see Giraud
[Gir64] or the more accessible notes [Vis04] by Vistoli).

Let S be a site and let X be a fibered category over S. Let U be an object in S and let
U = (Ui → U)i be a covering of U . A descent datum from U to U is a collection of objects
Xi → Ui. For every i and every j we also want a morphism φij : π∗2(Xj) → π∗1(Xi) where π1

and π2 are the two “projections” in the cartesian diagram

Ui ×U Uj

π2
$$HHHHHHHHHH

π1
zzvvvvvvvvvv

Ui

$$IIIIIIIIIII Uj

zzuuuuuuuuuuu

U

We also require that the following compatibility relation holds true for any i, j, and k
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π∗12(φij) ◦ π∗23(φjk) = π∗13(φik) (3)

where the π12, π23, π31 are the partial “projections” in the cube below

Uijk
π12

}}{{{{{{{{

π23 // Ujk

~~}}}}}}}}

��

Uij //

��

Uj

��

Uik
��

π13

}}zzzzzzzz
// Uk

}}||||||||

Ui // U

and Uij = Ui ×U Uj , Uijk = Ui ×U Uj ×U Uk.
A morphism of descent data is a collection of local morphisms that are compatible with the

glueing morphisms on either sides. We thus obtain a category DescX(U , U) for every covering U
of U . We denote by X(U) the fiber of X above U . There is a functor X(U)→ DescX(U , U) that
associates to any object over U the collection of its restrictions over the Ui. These constructions
are functorial. For example, if Y is another fibered category and F : X → Y a cartesian functor,
then F induces a functor from X(U) to Y(U) and a functor from DescX(U , U) to DescY(U , U).
Further, the composite functors X(U) → Y(U) → DescY(U , U) and X(U) → DescX(U , U) →
DescY(U , U) are isomorphic.

A fibered category X over a site S is a stack if and only if all the functors X(U)→ DescX(U , U)
are equivalences of categories.

2.7 When MX is a stack, next a gerbe
If X is a ka-variety then MX is a fibered category over Et / Spec(k) and it makes sense to ask if
it is a stack.

We first notice that if l and m are two finite field extensions of k and if l ⊂ m, then
Spec(m) → Spec(l) is a covering of Spec(l). If further m is a Galois extension of l, then a
descent datum from Spec(m) to Spec(l) is a model πm : Xm → Spec(m) of X over Spec(m)
and, for every σ in Gal(m/l), an automorphism φσ : Xm → Xm of l-scheme, such that the
following diagram commutes

Xm
φσ //

πm
��

Xm

πm
��

Spec(m)
Spec(σ) // Spec(m)

We emphasize the fact that each φσ need not be an automorphism of the m-variety Xm but only
an automorphism of the l-scheme Xm. Let Autl(Xm) denote the set of automorphisms of the
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l-scheme Xm. The compatibility condition (3) states that the map Spec(σ) 7→ φσ must be a
group homomorphism from AutSpec(l)(Spec(m)) into Autl(Xm).

Proposition 2.2 Let X be a variety over ka. If X is affine or projective or if every finite subset
of X(ka) is contained in an affine subvariety, then the fibered category MX is a stack over
Et / Spec(k).

Proof — This is a consequence of Weil’s descent theory. See the initial article of Weil [Wei56]
or Serre’s book [Ser59, Chap V,§4]. �

Recall that a locally non-empty and locally connected stack is called a gerbe. More precisely
a stack X over a site S is a gerbe if and only if

1. For every object U in S there exists a covering (Ui → U)i of U such that the fibers over
the Ui are non-empty,

2. Given two objects X 7→ U and Y 7→ U above U there exists a covering (Ui → U)i such
that for every i the pullbacks X ×U Ui and Y ×U Ui are isomorphic over Ui,

3. For every object U in S the fiber X(U) is a groupoid.

The stack MX of ”models” of a variety X always satisfies conditions one and three, while
the second one holds true if and only if k is the field of moduli of X .

2.8 The stack, next the gerbe, of “models” of a cover of a curves
Since the starting point of our construction is a cover of curves, we need to define the stack of
“model” of a cover of curves. So we adapt the notions presented in the preceding subsections to
this context.

Let Xk be a smooth, projective, geometrically integral curve over k. We set X = Xk×Spec(k)

Spec(ka). Let Y be a smooth projective and integral curve over ka and let ϕ : Y → X be a non-
constant morphism of ka varieties. Since k has zero characteristic, the morphism ϕ is separable.
We say that ϕ is a cover of X . Note that we allow branch points. An isomorphism between two
covers ϕ : Y → X and ψ : Z → X is an isomorphism of ka-varieties i : Y → Z such that
ψ ◦ i = ϕ.

The conjugate of a cover — If σ is a k-automorphism of ka, the conjugate variety σX is
obtained from X by composing the structural morphism on the left with Spec(σ)(−1). The same
is true for Y . So any ka-morphism ϕ betweenX and Y can be seen as a ka morphism σϕ between
σX and σY . Since X is the fiber product of Xk and Spec(ka) over Spec(k), we have a canonical
isomorphism φσ = IdXk ×Spec(k) Spec(σ) between X and σX . The composite map φ(−1)

σ ◦ σϕ is a
morphism of ka-varieties between σY and X . We call it the conjugate of ϕ by σ. We may denote
it σϕ also by abuse of notation.

The field of moduli — We say that the condition field of moduli holds true for ϕ, or that k is
the field of moduli of ϕ, if σϕ is isomorphic to ϕ for every k-automorphism σ of ka.
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Fields of definition, models — If l ⊂ ka is an algebraic extension of k we set Xl =
Xk ×Spec(k) Spec(l). Let Yl be a smooth projective and geometrically connected l-curve. Let
ϕl : Yl → Xl be a non-constant (separable) map. If we lift ϕl along the spectrum of the inclusion
l ⊂ ka we obtain a morphism from Yl ×Spec(l) Spec(ka) onto X = Xl ×Spec(l) Spec(ka). If this
cover is isomorphic to ϕ : Y → X then we say that ϕl is a model of ϕ over l.

So it makes sense to ask if there exist (global) obstructions to descent for covers of curves. It
it proven in [CR04] that this is indeed the case.

The fibered category of “models” of a cover — Given a finite étale k-algebra l we explain
what we mean by a “model” of ϕ over l.

Assume first that l is a finite field extension of k. Set Xl = Xk ×Spec(k) Spec(l). Let Yl be
a smooth projective and geometrically integral curve over Spec(l) and ϕl : Yl → Xl be a non-
constant morphism over Spec(l). We pick any embedding e : l→ ka of k-algebras. The pullback
of Xl along Spec(e) is X (up to unique isomorphism) and we have the following diagram

Yl
ϕl

||yyyyyyyyyyy

���������������������
Yl ×Spec(l) Spec(ka)

}}{{{{{{{{{{{{{{{{{{{{{{{

vvmmmmmmmmmmmmmmmmm
oo

Xk

��

Xl
oo

��

Xoo

��
Spec(k) Spec(l)oo Spec(ka)

Spec(e)oo

We say that ϕl is a “model” of ϕ if the cover

ϕl ×Spec(l) Spec(ka) : Yl ×Spec(l) Spec(ka)→ X

is isomorphic to ϕ.
Again we don’t care about the choice of the embedding e. We just ask that such an embedding

exists.
If l is any finite étale algebra over k, we define a “model” of ϕ over Spec(l) to be a disjoint

union of “models” of ϕ over every connected component of Spec(l). We write Mϕ for the
category of all models of ϕ. This is a fibered category over Et / Spec(k).

The following proposition is a consequence of Weil’s descent theorem:

Proposition 2.3 Let Xk be a smooth, projective, geometrically integral curve over k and set
X = Xk ×Spec(k) Spec(ka). Let Y be a smooth projective and integral curve over ka and let
ϕ : Y → X be a non-constant morphism of ka curves. Then the fibered category Mϕ is a stack
over Et / Spec(k).

Like for varieties, the stack Mf is a gerbe if and only if k is the field of moduli of f .
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2.9 Transporting obstructions
In this subsection by cover of curves, we mean a cover f : Y → X satisfying the hypotheses of
section 2.8.

Let us emphasize the following easy facts from the preceding sections.

Proposition 2.4 Let X be a ka-variety (or a cover a curves) then:

1. the field k is the field of moduli of X if and only if the stack MX is a Gerbe;

2. the field l is a field of definition of X if and only if the fiber MX(l) is not empty.

Let X and Y be two ka-varieties. Using a (cartesian) morphism of stacks from MX to MY ,
we are now able to transport descent obstruction for X to descent obstruction for Y . Recall
a cartesian morphism is a functor of fibered categories that transforms cartesian square into
cartesian squares. So a cartesian morphism F : MX →MY , associates an l-model F(Xl) of Y to
every l-model Xl of X , and commutes with base change.

Proposition 2.5 Let X and Y be either ka-varieties or covers of curves. Suppose that there
exists a morphism F : MX −→MY of stacks.

1. If X has k as field of moduli then Y has k as field of moduli;

2. If l is a field of definition of X then l is also a field of definition of Y .

Moreover, if the first condition holds true and if F is fully faithful then:

3. l is a field of definition of X if and only if l is a field of definition of Y .

In that case, there is a descent obstruction for X if and only if there is one for Y .

Proof — The two first conditions are easy consequences of the preceding result. The third one
can be deduced form the following more general lemma. �

Lemma 2.6 Let X and Y be two gerbes over a site S and let F : X→ Y be a cartesian morphism.
If F is fully faithful then F is essentially surjective.

Proof — Let U be an object in S and Y → U an object in the fiber Y(U). Locally X(U) is
not empty: there exists a covering (Ui → U)i of U and objects Xi ∈ X(Ui) for all i. Set Yi =
X ×U Ui. Locally, Yi and F(Xi) are isomorphic: there exists a covering (Uij → Ui)j such
that Yi ×Ui Uij and F(Xi ×Ui Uij) are isomorphic. Set Xij = Xi ×Ui Uij and Yij = Yi ×Ui Uij .

Note that the collection of objects (Yij → Uij)ij defines a descent datum from (Uij → U)ij
to U ; indeed for every i, j, i′, j′, pulling back identity gives rise to isomorphisms:

Φiji′j′ : Yij ×Uij Uiji′j′ −→ Yi′j′ ×Ui′j′ Uiji′j′

which clearly satisfy the compatibility conditions (3) of §2.6.
Since F is fully faithful, there exist isomorphisms

Ψiji′j′ : Xij ×Uij Uiji′j′ −→ Xi′j′ ×Ui′j′ Uiji′j′

which, in turn, satisfy the compatibility conditions (3) of §2.6. We deduce that there exists X →
U in X(U) such that F(X) = Y . �
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We end this section by an example of morphism between two stacks of “models” of a variety.

Proposition 2.7 Let X be a integral variety over ka having k as field of moduli and let G be a
finite subgroup of Autka(X) which is normal in the group Autk(X). Assume that every orbit
of G is contained in an affine open subset of X . Then there is a morphism from MX to MX/G,
where X/G denotes the quotient variety of X by G.

Let Y ⊂ X/G be the complement of the branch locus ofX → X/G. This an open sub-variety
of X/G and there is a morphism of stacks from MX to MY .

Proof — We first need to define the image of an object. Let l be an extension of k and let Xl be
a “model” of X in MX(l). All the elements of G may not be defined over l, but there exists a
finite Galois extension m of l over which they are. Put Xm = Xl×Spec(l) Spec(m). One can now
consider the quotient of Xm by the group G: let pm : Xm → Xm/G be the canonical projection.

Of course Xl is a model of Xm over l; by section 2.7, there exists a group homomor-
phism σ 7→ φσ from Gal(m/l) to Autl(Xm).

Since G is a normal subgroup of Autk(X), it is, a fortiori, a normal subgroup of Autl(Xm)
and thus, for every g ∈ G and every σ ∈ Gal(m/l), one has φσ ◦ g ◦ φ−1

σ ∈ G. We deduce
that pm ◦ φσ ◦ g = pm ◦ φσ for every g ∈ G. This implies that φσ factorizes into ψσ : Xm/G→
Xm/G. By uniqueness of this factorization, the correspondence σ 7→ ψσ is necessarily a group
homomorphism from Gal(m/l) to Autl(Xm/G); therefore the quotient Xm/G descents to l.

Next, we need to define the image of a morphism. Let Xi → Spec(li), i = 1, 2 two “models”
of X . One can complete a cartesian square involving the Xi’s in the following way:

X1

��

X2

��

oo Xm

��

oo

Spec(l1) Spec(l2)oo Spec(m)oo

where m is a finite Galois extension of k such that all elements of G are defined over m. We
know that there exist isomorphisms Φ1,Φ2 making the following diagrams commute:

Y1

��

Xm/G

��

Φ1oo

Spec(l1) Spec(m)oo

Y2

��

Xm/G

��

Φ2oo

Spec(l2) Spec(m)oo

The image of the starting cartesian square is nothing else than:

Y1

��

Y2

��

Φ1◦Φ−1
2oo

Spec(l1) Spec(l2)oo

This completes the proof of the first statement.
The second statement is true because taking the branch locus commutes with base changes.

�
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3 Cancellation of the automorphism group of the base curve
In this section, k is a field of characteristic zero, ka an algebraic closure of it, l ⊂ ka an algebraic
extension of k. Let Xk be a projective, smooth, geometrically integral curve over k and set
X = Xk ×Spec(k) Spec(ka). We assume we are given a smooth projective and integral curve Y
over ka and a cover ϕ : Y → X having k as field of moduli.

We want to construct other covers having the same field of moduli and the same fields of
definition as ϕ but satisfying additional properties. In particular, we want to show that one can
assume that the base curve X has no non-trivial ka-automorphism.

We first prove that the degree of the cover can be multiplied by any prime integer not dividing
the initial degree.

Proposition 3.1 Let Xk be a smooth, projective, geometrically integral curve over k and set
X = Xk ×Spec(k) Spec(ka). Let Y be a smooth projective and integral curve over ka and
let ϕ : Y → X be a cover over ka of degree d. For every prime p not dividing d, there exists a
smooth projective curve Y ′ over ka and a cover ψ : Y ′ → X of degree pd, having the same field
of moduli and the same fields of definition as ϕ.

Proof — Let f ∈ k(Xk) be a non-constant function whose divisor is simple and does not meet
the ramification locus of ϕ. The equation hp = f defines a degree p extension of k(Xk). We
denote by X ′k the smooth, projective, geometrically integral curve corresponding to this function
field and we set X ′ = X ′k ×Spec(k) Spec(ka). The morphism ν : X ′ → X is a cyclic Galois
cover of degree p. We fix an algebraic closure Ω of ka(X) and embeddings of ka(X ′) and ka(Y )
in Ω. Let Y ′ be the smooth projective ka-curve corresponding to the compositum of ka(Y )
and ka(X ′). Since the field extensions ka(Y ) and ka(X ′) are linearly disjoint over ka(X), the
cover ψ : Y ′ → X has degree pd:

Y ′

ϕ′

~~||||||||
ν′

  AAAAAAAA

ψ

��

X ′

ν
!!BBBBBBBB Y

ϕ
~~}}}}}}}}

X

Let us prove that this construction yields a morphism of stacks F : Mϕ →Mψ.
Let l ⊂ ka be a finite extension of k. SetXl = Xk×Spec(k) Spec(l), X ′l = X ′k×Spec(k) Spec(l)

and consider ϕl : Yl → Xl an l-model of ϕ. In the construction above, one can replace X , X ′, Y
by Xl, X ′l , Yl. The l-curve Y ′l corresponding to the compositum of the two function fields l(X ′l)
and l(Yl) is smooth, projective, geometrically integral (because l is algebraically closed in the
compositum) curve and the l-cover ψl : Y ′l → Xl is an l-model of ψ. We define the morphism F
by putting F(ϕl) = ψl. Since the function f has been chosen in k(X), the functor F maps
cartesian squares to cartesian squares. Thus F is a morphism of stacks. By proposition 2.5, if l is
a field of definition of ϕ then l is a field of definition of ψ and if ϕ has k as field of moduli then
ψ has k as field of moduli.

13



To prove the converse, we use proposition 2.7 in order to construct a morphism the other way
around. Let ν ′ denote the Galois cover Y ′ → Y . We need to show that the group Aut(ν ′) is
normal in Autk(ψ). Let Φ′ ∈ Autk(ψ). It induces maps Φ : Y → Y and Ψ : X → X such that
the following diagram commute:

Y ′
Φ′ //

ν′ ��
ψ

&&

Y ′

ν′��
ψ

xx

Y
ϕ
��

Φ // Y
ϕ
��

X
Ψ //

""DDDDD X

}}zzzzz

Spec(k)

(4)

(horizontal arrows are morphisms of k-schemes). The existence of Ψ is a consequence of the
fact that X is defined over k. The morphism Φ exists because Y

ϕ→ X is the maximal sub-
cover of Y ′

ψ→ X unramified at the support of f . And f is k-rational. Now if Λ ∈ Autka(ν
′),

i.e. ν ′ ◦ Λ = ν ′, then:
ν ′ ◦ Φ′ ◦ Λ = Φ ◦ ν ′ ◦ Λ = Φ ◦ ν ′ = ν ′ ◦ Φ′

so Φ′◦Λ◦Φ′−1 ∈ Autka(ν
′), which was to be proven. In conclusion, we do have a morphism G :

Mψ →Mϕ of stacks and the lemma follows. �

Remark – The functor F : Mϕ → Mψ is not fully faithful because ψ has more
automorphisms than ϕ. This is why, we do not apply point (3) in proposition 2.5
here. We instead construct another functor G : Mψ → Mϕ and we apply points (1)
and (2) in proposition 2.5 to either functors F and G successively. We notice that G
is a left inverse of F.

Next, we show that the base curve can be assumed to have genus greater than 2.

Proposition 3.2 Let Xk be a smooth, projective, geometrically integral curve over k and set
X = Xk ×Spec(k) Spec(ka). Let Y be a smooth projective and integral curve over ka and
let ϕ : Y → X be a cover over ka of degree d. There exists a smooth, projective, geometrically
integral curve X ′k over k of genus greater than 2 and a cover ϕ′ : Y ′ → X ′k ×Spec(k) Spec(ka)
having the same field of moduli and the same fields of definition as ϕ.

Proof — We use the construction and notation of diagram 4 above. We further assume that
the chosen function has degree at least f has degree at least 3. By Hurwitz genus formula, the
curve X ′ has a genus greater than or equal to 2.

This construction yields a morphism of stacks F : Mϕ → Mϕ′ . The cover ϕ : Y → X is
the maximal sub-cover of ψ : Y ′ → X unramified at the support of f . Therefore, there exists a
morphism from Autka(ϕ

′)→ Autka(ϕ). This morphism is bijective because ka(X ′) and ka(Y )
are linearly disjoint over ka(X). So the morphism F is fully faithful. We conclude, this time,
using proposition 2.5. �
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Last, we prove that one can assume the base curve to have no non-trivial ka-automorphism.

Proposition 3.3 Let Xk be a smooth, projective, geometrically integral curve over k and set
X = Xk ×Spec(k) Spec(ka). Let Y be a smooth projective and integral curve over ka and
let ϕ : Y → X be a cover over ka. There exists a smooth, projective, geometrically integral
curve X ′k over k, of genus greater that 2, such that X ′ = X ′k×Spec(k) Spec(ka) does not have any
non-trivial automorphism and there exists a cover ϕ′ : Y ′ → X ′ over ka having the same field of
moduli and the same fields of definition as ϕ.

Proof — Thanks to proposition 3.2, one can assume that the genus g(X) of X is greater then 2.
Consequently, the group Aut(X) of ka-automorphisms is finite.

Let p ≥ 3 be a prime integer. To begin with, we show that there exists a non-constant func-
tion f ∈ k(X) which is non-singular above 2, −2 and∞, of degree greater than 2 + 4p(g(X)−
1) + 2p2, such that the set f−1({−2, 2}) is not invariant by any non-trivial automorphism of X ,
and such that the set of singular values of ϕ does not meet the set f−1({2,−2,∞}).

Let D be a simple effective divisor on X with degree greater than 2 + 4p(g(X) − 1) + 2p2.
We also assume that D is disjoint from the set of singular values of ϕ and the linear space L(D)
associated with D generates ka(X) over ka. In particular, for every θ ∈ Aut(X), this linear
space is not contained in the Kernel of θ − Id. It is not contained in the kernel of θ + Id
either because it contains ka. If D has been chosen with a large enough degree, the functions
in L(D) having degree less than the degree of D are contained in a finite union of strict vector
subspaces. Therefore there exists a non constant function f ∈ L(D) such that deg(f) = deg(D)
and θ(f) 6= ±f for all θ ∈ Aut(X)\{Id}. By construction, this function is not singular above∞
and f−1(∞) does not meet the singular values of ϕ. We can also assume that f ∈ k(Xk).

By construction, the function f 2 does not have any non-trivial automorphism (in short one
has Autka(f2)(k

a(X)) = {Id}). Using lemma 7.3, we deduce that almost all the fibers of f 2

are non singular and not fixed by any non trivial automorphism of Aut(X). In particular, there
exists λ ∈ k∗ such that the fiber of f 2 above λ2 is non singular, not fixed by any non-trivial
automorphism in Aut(X) and does not meet the singular values of ϕ. The function 2f/λ satisfies
all the properties we want. Let us denote it by f .

Now the equation hp + h−p − f = 0 defines a regular extension of k(Xk). Let X ′′k be the
smooth, projective, geometrically integral curve associated to this function field. We denote
by w the automorphism of X ′′k given by w(h) = h−1 and by X ′k the quotient X ′′k/〈w〉; this is a
smooth, projective, geometrically integral k-curve, covering Xk by a k-cover νk : X ′k → Xk of
degree p. Extending scalars to ka, we obtain a Galois cover X ′′ → X of ka-curves, with Galois
group Dp, and whose singular values are exactly f−1({2,−2,∞}). Since the subgroup 〈w〉 is
self-normalized in Dp, the quotient by this subgroup is a sub-cover ν : X ′ → X of ka-curves of
degree p which does not have any non-trivial automorphism.

Because the ramification loci do not meet, the function fields ka(X ′′) and ka(Y ) are linear
disjoint over ka(X). Let Y ′ (resp. Y ′′) be the smooth, projective, integral curve corresponding to
the compositum of ka(Y ) with ka(X ′) (resp. ka(X ′′)). We have the following diagram:
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Y ′′

X ′′ Y ′

P1 X ′ Y

P1 X

P1

h

h+ 1
h

f

ϕ′

ϕν

k-
rat

ion
al

tow
ers

The cover Y ′′ → Y is again a Dp-Galois cover and the cover Y ′′ → Y ′ has degree 2.
Let us show that the cover ϕ′ : Y ′ → X ′ has the expected properties.
First of all, it is clear that the construction above yields a morphism of stacks F : Mϕ →Mϕ′ .

The Galois equivariance is a direct consequence of the fact that the middle diagonal tower is
defined over k. This morphism is in fact fully faithful because the sub-cover ϕ : Y → X
of ν ◦ ϕ′ : Y ′ → X is the maximal sub-cover unramified at f−1({2,−2,∞}).

Last we have to prove that the curveX ′ does not have any non-trivial automorphism. Let θ′ be
an automorphism ofX ′. CallZ the imageZ of ν×(ν◦θ′) : X ′ → (X×X). Let π1 : X×X → X
be the projection to the first factor. The map ν factors as:

ν : X ′ −→ Z
π1−→ X

and it has prime degree p. So Z is either isomorphic to X or birationaly equivalent to X ′. In the
latter case, the geometric genus of Z would be > 1

4
deg(f)p ≥ 1 + 2p(g(X) − 1) + p2 by Hur-

witz genus formula. But the bi-degree of Z is ≤ (p, p); so, by lemma 7.1, its virtual arithmetic
genus is less than 1 + 2p(g(X)− 1) + p2. A contradiction. Therefore Z is a correspondence of
bi-degree (1, 1) which defines an automorphism θ of X such that θ ◦ ν = ν ◦ θ′. Such an auto-
morphism preserves the ramification data of ν, the one of its Galois closure X ′′ → X and also
the one of the unique subcover of degree 2 of the cover X ′′ → X . Since this last cover is exactly
ramified above f−1({−2, 2}), we deduce that θ = Id and then that θ′ is a ka-automorphism of
the cover ν. Since ν does not have any non-trivial automorphism, necessarily θ′ = Id. �

4 Quasi-projective surfaces
Let k be a field of characteristic zero. In this section, we give a general process which associates
to each ka-cover of curves, a smooth quasi-projective integral ka-surface with the same field of
moduli and fields of definition.
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Theorem 4.1 Let Xk be a smooth, projective, geometrically integral curve over k and set X =
Xk ×Spec(k) Spec(ka). Let Y be a smooth, projective, integral curve over ka and let ϕ : Y → X
be a non-constant morphism of ka curves. Then there exists a smooth quasi-projective integral
ka-surface having the same field of moduli and the same fields of definition as ϕ.

First of all, by propositions 3.2 and 3.3, one can assume that the base curve X has genus
greater than 2 and has no non-trivial ka-automorphism.

We consider the product X × Y of the two curves and we denote by G(ϕ) the graph of ϕ
inside this product. Let U be the open complementary set of G(ϕ) in X × Y .

The surface we are looking for is nothing else than the open set U . We call it the mark of the
cover ϕ : Y → X and we now prove that is has the same field of moduli and the same fields of
definition as ϕ.

We need two lemmas.

Lemma 4.2 Let l/k be a finite extension of k inside ka. Let Xk be a smooth, projective, geo-
metrically integral k-curve. Set X = Xk ×Spec(k) Spec(ka) and assume that the genus of X is
greater than 2 and that X has no non-trivial ka-automorphism. Let Ul and Vl be the marks of
two non-trivial geometrically integral l-covers ϕl : Yl → Xl and ψl : Zl → Xl, where Xl =
Xk ×Spec(k) Spec(l).

Then every morphism of covers between ϕl : Yl → Xl and ψl : Zl → Xl induces a morphism
between the corresponding marks Ul and Vl. Conversely, every surjective l-morphism from Ul
to Vl is equal to Id × γl where γl : Yl → Zl is a l-morphism between the covers ϕl : Yl → Xl

and ψl : Zl → Xl.

Proof — Recall that a l-morphism between the covers Yl
ϕl−→ Xl and Zl

ψl−→ Xl is a l-morphism
of l-curves γl : Yl → Zl such that ψl ◦ γl = ϕl. The product Id× γl : Xl × Yl → Xl × Zl maps
the graph of ϕl to the graph of ψl and also the mark Ul to the mark Vl.

Conversely, let υl be a surjective l-morphism form Ul to Vl. We denote by υ : U → V ,
ϕ : Y → X , ψ : Z → X the base change to ka of υl, ϕl, ψl respectively.

Let y be a closed ka-point of Y . Let π2 : X ×Z → Z be the projection on the second factor.
The restriction of π2 ◦ υ to (X × {y}) ∩ U is a constant function because the genus of X is less
than the one of Z. We denote by γ(y) this constant; this defines a morphism γ : Y → Z which
cannot be constant since υ is surjective. Let π1 : X × Z → X be the projection on the first
factor. The restriction of π1 ◦υ to (X×{y})∩U is a morphism βy with values in X . Let F ⊂ Y
the set of closed ka-points of Y such that the morphism βy is constant. This is a closed set;
and a finite one because υ is surjective. For a closed ka-point y 6∈ F the morphism βy induces
an automorphism of X , which is trivial since X does not have any non-trivial automorphism.
Thus we have υ(x, y) = (x, γ(y)) for every closed ka-point x on X and y on Y with y 6∈ F
and (x, y) ∈ U . Let x be a closed ka-point of X . The restriction of π1 ◦ υ to ({x} × Y ) ∩ U
is constant and equal to x on the non-empty open set ({x} × (Y − F )) ∩ U . So it is a constant
function. So F is empty and υ is the restriction of Id × γ to U . Thus Id × γ maps U to V and
therefore ψ ◦ γ = ϕ. Moreover γ must be defined over l since υ, U, V are defined over l. �
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Lemma 4.3 LetXk be a smooth, projective, geometrically integral k-curve. SetX = Xk×Spec(k)

Spec(ka) and assume that the genus of X is greater than 2 and that X has no non-trivial ka-
automorphism. Let U be the mark of a non-constant ka-cover ϕ : Y → X , where Y is a smooth,
projective, integral ka-curve. Then:

1. k is the field of moduli of U (in the category of quasi-projective varieties) if and only if it
is the field of moduli of the cover ϕ : Y → X;

2. an algebraic extension of k is a field of definition of U if and only if it is the field of
definition of the cover ϕ : Y → X .

Proof — It is clear that the construction of the mark from the cover commutes with base change.
This yields a morphism of stacks F : Mϕ → MU which is fully faithful according to lemma 4.2.
The result follows by proposition 2.5. In particular, F has an inverse functor G : MU →Mϕ. �

5 Proper normal surfaces
In this section k is a field of characteristic zero. We start from a cover of curves, having k as field
of moduli, and we construct a proper normal integral surface over ka, having the same field of
moduli and the same fields of definition as the original cover.

Theorem 5.1 Let Xk be a smooth, projective, geometrically integral curve over k and set X =
Xk ×Spec(k) Spec(ka). Let Y be a smooth projective, integral curve over ka and let ϕ : Y → X
be a cover. Assume that k is the field of moduli of ϕ. Then, there exists a proper, normal and
integral surface S over ka, having k as field of moduli, and having the same fields of definition
as ϕ.

The proof of this theorem is given in the rest of this section. The surface is constructed as the
cover of a surface X×Z, strongly ramified along the graph of ψ, where ψ : Z → X is a suitably
chosen cover of curves deduced from ϕ.

5.1 Construction of the surface S
The construction of the surface is divided in several steps.

Step 0. Starting point.

We keep notation and assumptions of theorem 5.1. We denote by g(X) the genus of X and
by d the degree of the cover ϕ. According to proposition 3.3, we may assume that g(X) is at
least 2 and that X has no non-trivial automorphism over ka.
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Step 1. A system of generators f1, . . . , fI of the function field k(Xk).

We need to exhibit some k-rational functions on X .

Lemma 5.2 (The functions fi on X and the primes pi) There exist I ∈ N∗, some prime inte-
gers p1, . . . , pI > d, and functions f1, . . . , fI ∈ k(Xk) satisfying the following conditions:

1. the functions (fi)1≤i≤I generate the field k(Xk) over k;

2. for every 1 ≤ i ≤ I and every λ ∈ ka, none of the functions fi − λ is a pi-th power
in ka(X);

3. let Π =
∏I

i=1 pi and let M (resp. m) be the maximum (resp. minimum) among the degrees
of the fi, then:

∀1 ≤ i ≤ I, 1 + 2(g(X)− 1)Π + Π2 < m ≤ deg(fi) ≤M.

Proof — We first choose a finite generating system (hj)1≤j≤J of k(Xk) over k. We assume that
none of the hj is a power in ka(X). We set I = 2J and let Π =

∏I
i=1 pi be the product of the

first I prime integers greater than the degree d of ϕ. We choose two distinct prime integers a and
b, both bigger than 1 + 2(g(X)− 1)Π + Π2. For every 1 ≤ j ≤ J , we set:

fj = haj , and fj+J = hbj.

We can choose a and b in such a way that none of the functions fi − λ is a pi-th power in
ka(X) for λ ∈ ka and 1 ≤ i ≤ I: this is evident for λ = 0. If λ 6= 0 and if hai − λ =∏

0≤k≤a−1(hi−ζkaλ
1
a ) is a power, then hi has at least a distinct singular values. This is impossible

if we choose an a bigger than the number of singular values of hi.
We note also that the (fi)1≤i≤I generate k(Xk) over k and that they all have a degree greater

than 1 + 2(g(X)− 1)Π + Π2, as expected. �

Step 2. A cover ψ : Z → X of large enough degree.

Let p be a prime integer bigger than (g(X)+IM)Π. We call Z the curve and ψ : Z → X the
degree pd cover given by proposition 3.1. The genus of Z is bigger than dp > (g(X) + IM)Π
and the covers ϕ and ψ have the same field of moduli and the same fields of definition.

Step 3. A system of functions g1, . . . , gI on X × Z.

Using the previous functions fi, we define functions on X × Z.

Lemma 5.3 (The functions gi on X × Z) For every 1 ≤ i ≤ I , let gi be the function on X ×Z
defined by:

gi(P,Q) = fi(ψ(Q))− fi(P ).

Then:
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1. the negative part (gi)∞ of the divisor of gi is (fi)∞ × Z +X × (fi ◦ ψ)∞;

2. the positive parts (gi)0 are such that gcdi((gi)0) = G(ψ), where G(ψ) is the graph of ψ;

3. for every point P ∈ X the function Q 7→ gi(P,Q) on P × Z is not a pi-th power.

Proof — The first two points are easy. To prove the third one, recall that each function fi is such
that none of the fi−λ for λ ∈ ka is a pi-th power (lemma 5.2). Since the degree pd of ψ is prime
to pi, none of the function fi ◦ ψ − λ is a pi-th power in ka(Z). Condition 3 follows. �

Let us note that, if ψ is defined over a field l, then so are the functions gi.

Step 4. At last, the surface S.

Let ka(X × Z) be the field of functions of the surface X × Z. We define a regular radicial
extension of ka(X × Z) by setting

ypii = gi.

We denote by S the normalization of X×Z in the latter radicial extension. It is a normal surface
by construction and there is a ramified cover:

χ : S → X × Z

which is a Galois cover of surfaces over ka with Galois group
∏I

i=1 Z/piZ.

5.2 The group of automorphisms of S
We denote byA the group of ka-automorphisms ofψ. An element inA induces a ka-automorphism
of the surface X ×Z, and this latter automorphism can be lifted uniquely to an automorphism of
ka(S)/ka that fixes all yi and stabilizes ka(X ×Z). In the sequel we shall use the same notation
for an automorphism of ψ, the induced automorphism of X ×Z and its lift to S. In other words,
A can be identified with a subgroup of Autka(S), the group of ka-automorphisms of S.

We know another subgroup of Autka(S), namely the Galois group B =
∏I

i=1 Z/piZ of the
extension ka(S)/ka(X × Z).

To summarize, A is the set of α such that the following diagram commute:

S
α //

χ
��

S
χ
��

X × Z α // X × Z
(5)

while B is the set of β such that the following diagram commute:

S
β //

χ $$HHHHHHH S

χzzvvvvvvv

X × Z
(6)

It is clear that A × B ⊂ Autka(S). We now prove that this inclusion is an equality. To this
end, we introduce a family of curves on S.
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Lemma 5.4 (The curves EQ) For any point Q on Z, we call EQ the inverse image of X ×Q by
χ and we denote by χQ : EQ → X × Q the restriction of χ to EQ. The geometric genus of EQ
can be bounded from above:

g(EQ) ≤ (g(X) + IM)Π < g(Z), (7)

and the genus of any non-trivial subcover of χQ can be bounded from below:

1 + 2(g(X)− 1)Π + Π2 < m ≤ g(non-trivial subcover of χQ : EQ → X). (8)

Proof — If Q is the generic point on Z, then EQ is a geometrically integral curve and χQ is a
degree Π, geometrically connected cover. The degree of the ramification divisor of this cover is
bounded from above by the product 2IM (where I is the number of functions in the family (fi)i
and M is the maximum of the degrees of these functions). The upper bound follows.

For the lower bound, let us consider a non-trivial subcover of χQ. Such a cover has degree at
least p1 ≥ 3 and its ramification divisor has degree at least m (where m is the minimum among
the degrees of the functions fi). So its genus is greater than m and the lower bound follows. �

Lemma 5.5 The group Aut(S) of ka-automorphisms of S is A×B.

Proof — Let θ be a ka-automorphism of S.
First of all, let Q be the generic point of Z. We know from inequality (7) of lemma 5.4 that

g(EQ) < g(Z). We deduce that θ(EQ) = Eα(Q) where α is a ka-automorphism of Z.
We now prove that the isomorphism betweenEQ andEα(Q) induced by θ makes the following

diagram commute:
EQ

θ //

χQ

��

Eα(Q)

χα(Q)

��
X ×Q Id×α // X × α(Q)

(9)

Indeed, the cartesian product of the maps χQ and χα(Q) ◦ θ defines a morphism:

EQ
χQ×(χα(Q)◦θ)−−−−−−−−→ X ×X,

whose image W is a divisor with bidegree ≤ (Π,Π). Using lemma 7.1 we deduce that the
arithmetic genus of W is smaller than or equal to 1 + 2(g(X)− 1)Π + Π2. Let π1 : X×X → X
be the projection on the first factor. The morphism χQ factors as:

χQ : EQ −→ W
π1−→ X.

The map W π1−→ X is a birational isomorphism. Otherwise, it would define a non-trivial sub-
cover of χQ : EQ → X . But we know from inequality (8) of lemma 5.4 that such a subcover has
geometric genus greater than or equal tom > 1+2(g(X)−1)Π+Π2. A contradiction. We deduce
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that W is a correspondence of bidegree (1, 1). Since X has no non-trivial ka-automorphism we
deduce that diagram (9) commutes.

We now prove that α ∈ A. We just showed that θ induces an isomorphism between the
covers χQ : EQ → X and χα(Q) : Eα(Q) → X . Therefore these two covers have the same
ramification data: for every 1 ≤ i ≤ I the points P such that fi(P ) = fi(ψ(Q)) and those such
that fi(P ) = fi(ψ(α(Q))) are the same. Thus:

∀i, fi(ψ(Q)) = fi(ψ(α(Q)))

therefore ψ(Q) = ψ(α(Q)), because the fi generate ka(X) over ka (lemma 5.2). So ψ = ψ ◦ α,
and α ∈ A.

Diagram 9 implies that the map χα(Q) ◦ θ : EQ → Eα(Q) is equal to (Id× α) ◦ χQ. And this
is χα(Q) ◦ α according to diagram (5). We set β = θ ◦ α−1 and we check that χα(Q) ◦ β = χα(Q).
Since Q is generic and α surjective we deduce that χ ◦ β = χ so β ∈ B. We conclude that θ =
βα ∈ A×B as was to be shown. �

Remark – We have proven something slightly stronger than lemma 5.5: the group
of birational ka-automorphisms of S isA×B. We shall not need this stronger result.

5.3 Field of moduli and fields of definition of S
To prove theorem 5.1, we have to show that the cover ϕ and the surface S share the same field of
moduli and the same fields of definition. In fact, by construction, one can replace the cover ϕ by
the cover ψ, since those two covers have same field of moduli and fields of definition.

The construction of section 5.1 yields a morphism of stacks F : Mψ → MS . To see this, let
us consider l/k extension inside ka and let ψl : Zl → Xl be an l-model of ψ. We just follow the
line of the construction, replacing ψ by ψl. Since the functions fi are k-rational, the functions gi
lie in l(Xl × Zl). Then the radical extension defined by the equations ypii = gi is a regular
extension of l(Xl × Zl). The normalization of Xl × Zl in this extension is a surface Sl which
is defined over l. Of course, this surface Sl is an l-model of S and the morphism F is defined
on objects by F(ψl) = Sl. Because functions fi are k-rational, F is a morphism of stacks. By
proposition 2.5, k is the field of moduli of S and every field of definition of ψ (or ϕ) is a field of
definition of S.

Unfortunately, F is not fully faithful. As in proposition 3.1, we use proposition 2.7 to con-
struct a morphism the other way around. The group Autka(S) is a normal subgroup of Autk(S).
Conjugation by an element of Autk(S) induces an automorphism of Autka(S). This automor-
phism must stabilize the unique sub-group of order Π of Autka(S), which is nothing but B =
Autka(χ). Let U be the mark of the cover ψ. This is the complementary set of the branch locus
of the quotient map χ : S → X×Z. According to proposition 2.7, taking the complementary set
of the branch locus of a quotient map defines a morphism of stacks G : MS → MU . Therefore,
every field of definition of S is a field of definition of the mark of ψ and then also a field of
definition of ψ by lemma 4.3. Indeed the proof of this lemma provides a morphism from MU

to Mψ and the proof of proposition 3.1 provides a morphism from Mψ to Mϕ.
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6 Curves
In this section k is still a field of characteristic zero. We start from a cover of curves, having k
as field of moduli, and we construct, a projective normal integral curve over ka, having the same
field of moduli and the same fields of definition as the original cover. This will prove theorem 1.2.

We shall make use of the surface S constructed in section 5. So we keep the notation of
section 5. We know that S has field of moduli k and the same fields of definition as the initial
cover ϕ : Y → X (or equivalently ψ : Z → X).

The main idea is to draw on S a singular (but stable) curve inheriting the field of moduli and
fields of definition of S; then to deform it to obtain a smooth projective curve.

6.1 Two stable curves
In section 5.1, we have constructed a cover χ : S → X × Z strongly ramified along the graph
of ψ : Z → X . For any point P on X , we call FP the inverse image of P × Z by χ and
χP : FP → P × Z the correstriction of χ to P × Z. We call Γ the union of the supports of all
divisors of the functions gi of lemma 5.3. It contains the ramification locus of the cover χ.

Lemma 6.1 There exist two non-constant k-rational functions f, g ∈ ka(X) such that:

1. the divisor ((f)0 + (f)∞)× Z crosses transversally Γ;

2. the divisor X × ((g ◦ ψ)0 + (g ◦ ψ)∞) crosses transversally Γ ∪ [((f)0 + (f)∞)× Z];

3. any ka-automorphism of Z that stabilizes the fiber (g ◦ ψ)0 is an automorphism of the
cover ψ (note that the preceding condition implies that this fiber is simple);

4. for any zero P of f , the cover g ◦ ψ ◦ χP : FP → P1 has no automorphism other than the
elements of A×B:

Autka(g ◦ ψ ◦ χP ) = Autka(ψ ◦ χP ) = A×B.

Proof — Let f ∈ ka(X) be a k-rational non-constant function. We apply lemma 7.2 to k, X ,
Z, Γ and f . We deduce that there exist two distinct scalars x and y in ka such that (f)x × Z
and (f)y × Z cross transversally Γ. We even can choose x and y in k and such that for every
point P in f−1(x) or f−1(y), the fiber of every function fi ∈ k(X) above fi(P ) does no meet
the singular values of ψ, that is:

∀P ∈ f−1(x) ∪ f−1(y), f−1
i (fi(P )) ∩ {singular values of ψ} = ∅. (10)

We replace f by (f − x)/(f − y) and the first condition is fulfilled.
Now, for every zero P of f , we see that FP is smooth and geometrically integral, because

(f)0 × Z crosses transversally the ramification locus Γ of χ. We now prove that

Autka(ψ ◦ χP ) = A×B.
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Indeed the function field ka(FP ) is the compositum:

ka(FP )

vvvvvvv
VVVVVVVVVVVVVVV

ka(Z)

pd HHHHHHH
ka(X ′)

def.
= ka

(
(fi − fi(P ))

1
pi , 1 ≤ i ≤ I

)
∏
i pihhhhhhhhhhhhhhh

ka(X)

where X ′ → X is an abelian cover with Galois group B =
∏I

i=1 Z/piZ. The ka(X)-extensions
ka(Z) and ka(X ′) are linearly disjoint (their degrees are coprime and one of them is Galois) and
condition (10) implies that the extension ka(Z)/ka(X) is not ramified above the zeros of the
functions fi − fi(P ).

Now, any subcover ofX ′ → X is ramified above the zeros of at least one of the functions fi−
fi(P ). The same is true for any subcover of FP → Z. We deduce that Z → X is the maximal
subcover of FP → X that is not ramified above the zeros of the functions fi − fi(P ). Therefore
any ka(X)-automorphism of ka(FP ) stabilizes ka(Z). Thus:

Autka(X)(k
a(FP )) = Autka(X)(k

a(Z))× Autka(X)(k
a(X ′)),

as was to be shown.
Next we look for a function g in k(X) such that g ◦ ψ has no ka-automorphism but elements

of A and, for every zero P of f , the cover g ◦ ψ ◦ χP has no ka-automorphism but elements
of Autka(ψ ◦ χP ) = A × B. According to lemma 7.4, the functions in k(X) that do not fulfill
all these conditions lie in a finite union of strict sub-k-algebras. Therefore there exists such a
function g.

According to lemma 7.2, the scalars x in k such that (g ◦ ψ)x does not cross Γ ∪ [((f)0 +
(f)∞)× Z] transversally, are finitely many.

According to lemma 7.3, the x in k such that (g ◦ ψ)x has a ka-automorphism not in A, are
finitely many.

Therefore there exist two distinct scalars x and y in k such that (g ◦ ψ)x and (g ◦ ψ)y cross
Γ ∪ [((f)0 + (f)∞) × Z] transversally and (g ◦ ψ)x has no automorphism but those in A. We
replace g by (g − x)/(g − y) and the last three conditions are satisfied. �

The curves C0 and D0.
Let C0 be the curve on X × Z with equation:

f(P )× g ◦ ψ(Q) = 0.

Let D0 be the inverse image of C0 by χ. These are singular curves over ka. The two following
lemmas are concerned with the stability and the automorphism groups of these two curves.

Lemma 6.2 The curve C0 is stable and Autka(C0) ' A.
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Proof — The curve C0 is geometrically reduced because the zeros of f and g ◦ψ are simple. The
singular points on C0 are the couples (P,Q) on X × Z such that f(P ) = g ◦ ψ(Q) = 0. These
are ordinary double points. Therefore C0 is semistable. It is geometrically connected also. Its
irreducible components are isomorphic to X or Z. So they all have genus ≥ 2. Therefore C0 is
a stable curve.

We now prove that Autka(C0) ' A, i.e. that the group of ka-automorphisms of C0 is the
group A of ka-automorphisms of ψ. It is clear that A is included in Autka(C0). Conversely, let θ
be a ka-automorphism of C0. Then θ permutes the irreducible components of C0. Some of these
components are isomorphic to X , and the others are isomorphic to Z. Since X and Z are not ka-
isomorphic, θ stabilizes the two subsets of components. If we restrict θ to a component isomor-
phic to X then compose with the projection on X , we obtain a non-constant ka-morphism from
X to itself. This morphism must be the identity because X has no non-trivial ka-automorphism.
Therefore θ stabilizes each component isomorphic to Z. The singular points on such a compo-
nent are the zeros of g ◦ ψ. The set of these zeroes is stabilized by no ka-automorphism of Z but
those of ψ by (3) of lemma 6.1. So the restriction of θ to any component isomorphic to Z is an
element in A. If we compose θ with some well chosen element in A, we may assume that θ is
trivial on one component isomorphic to Z. Therefore θ stabilizes every component isomorphic
to X . Since these components have no non-trivial automorphism, θ acts trivially on them. Now
let P × Z be a component of C0 isomorphic to Z. The restriction of θ to it is an automorphism
that fixes the singular points. These points are the zeros of g ◦ ψ. So θ restricted to P × Z is an
element of A. But A acts faithfully on the set of zeros of g ◦ ψ. We deduce that θ acts trivially
on every component isomorphic to Z. �

Controlling the full group of ka-automorphisms of D0 seems difficult to us. So we shall
be interested in the subgroup consisting of admissible automorphisms. This subgroup is de-
noted Autadm.

ka (D0). We now explain what we mean by an admissible automorphism.
We first notice that the components ofD0 are of two different kinds. Some of them are covers

of some X × Q where Q is a zero of g ◦ ψ. We denote such a component by EQ. The other
components are covers of some P × Z where P is a ka-zero of f . Such a component is denoted
by FP . We call χP : FP → P ×Z and χQ : EQ → X ×Q the restrictions of χ to components of
D0. Now let T be a singular point onD0 such that χ(T ) = (P,Q). So T lies in the intersection of
EQ and FP . The point on EQ corresponding to T is denoted U . The point on FP corresponding
to T is denoted V . So χQ(U) = P and χP (V ) = Q. And f ◦χQ is a uniformizing parameter for
EQ at U , while g ◦ ψ ◦ χP is a uniformizing parameter for FP at V . Let θ be an automorphism
of D0 and let T ′ = (U ′, V ′) be the image of T = (U, V ) by θ. We write χ(T ′) = (P ′, Q′).
We observe that f ◦ χQ′ ◦ θ is a uniformizing parameter for EQ at U and g ◦ ψ ◦ χP ′ ◦ θ is a
uniformizing parameter for FP at V .

We say that θ is an admissible automorphism of D0 if for every singular point T of D0 we
have

f ◦ χQ′ ◦ θ
f ◦ χQ

(U)× g ◦ ψ ◦ χP ′ ◦ θ
g ◦ ψ ◦ χP

(V ) = 1 (11)

where χ(T ) = (P,Q) and χ(θ(T )) = (P ′, Q′).
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The justification for this definition is given at paragraph 6.2. Admissible automorphisms
form a subgroup of the group of ka-automorphisms of D0.

Lemma 6.3 The curve D0 is stable and Autadm.
ka (D0) ' A×B.

Proof — First, it is clear that A×B acts faithfully on D0, and the corresponding automorphisms
are admissible.

The curve D0 is drawn on S. Let us prove that D0 is a stable curve. Points (1) and (2) of
lemma 6.1 imply that the ramification locus Γ of χ does not contain any singular points of C0.
Therefore every singular point on C0 gives rise to deg(χ) singular points on D0; and all these
singular points are ordinary double points. To prove that D0 is connected, we observe that the
function gi restricted to any irreducible component of C0 is not a pi-th power because none of
the functions fi − λ, λ ∈ ka is a pi-th power (and the fi ◦ ψ − λ are not either) as shown in
lemma 5.2. Also the irreducible components of D0 correspond bijectively to those of C0.

Now let us prove that Autadm.
ka (D0) ' A × B. The components FP and EQ have different

genera. Therefore no FP is ka-isomorphic to some EQ. Thus any ka-automorphism θ of D0

stabilizes the set of all components FP (and also the set of all EQ).
Let Q and Q′ be two ka-zeros of g ◦ψ such that θ(EQ) = EQ′ . As in the proof of lemma 5.5,

we notice that the image of EQ in the product X × X , by the morphism χQ × χQ′ ◦ θ, has an
arithmetic genus smaller than or equal to 1 + 2(g(X) − 1)Π + Π2. Again, this implies that
this image is ka-isomorphic to X (otherwise, this image would have geometric genus bigger
than 1+2(g(X)−1)Π+Π2 by Hurwitz formula). Since X has no ka-automorphism, we deduce
as before that θ induces an isomorphism of covers between the restrictions χQ : EQ → X
and χQ′ : EQ′ → X of χ. Thus

χQ = χQ′ ◦ θ. (12)

This implies that θ stabilizes every component FP where P is any ka-zero of f . Indeed, let
us start from a singular point T = (U, V ) ∈ EQ ∩ FP , where P is a ka-zero of f and Q is a
ka-zero of g ◦ ψ. We thus have χ(T ) = (P,Q) ∈ X × Z. We know there exists P ′ ∈ X(ka)
and Q′ ∈ Z(ka) such that θ(T ) ∈ FP ′ ∩ EQ′ . We deduce from Equation (12) that:

P ′ = χQ′ ◦ θ(T ) = χQ(T ) = P.

We conclude that P = P ′ and θ(FP ) = FP .
Now, we deduce from formulae (11) and (12) that:

g ◦ ψ ◦ χP ◦ θ
g ◦ ψ ◦ χP

(V ) = 1. (13)

Call θP the restriction of θ to FP . This is an automorphism of FP . We prove that θP is the
restriction to FP of an element ofA×B. To this end, we introduce the function hP = g◦ψ◦χP ∈
ka(FP ). The degree of hP is deg(g) × pd × Π and its zeros are all simple. These zeros are the
intersection points between FP and the other components of D0. Since θP permutes these zeros,
the functions hP ◦ θP and hP have the same divisor of zeros. Therefore the only possible poles
of the function hP

hP ◦ θP
− 1 are the poles of hP . Thus the degree of hP

hP ◦ θP
− 1 is smaller than or
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equal to the degree of hP . But according to (13), the zeros of hP are also zeros of hP
hP ◦θP

− 1. So
we just proved that if the function hP

hP ◦θP
−1 is non-zero, it has the same divisor as hP . Therefore

there exists a constant c ∈ ka such that:

hP
hP ◦ θP

− 1 = chP or equivalently:
1

hP ◦ θP
=

1

hP
+ c.

Since θP has finite order e and ka has characteristic zero, we deduce that ce = 0, then c = 0,
then hP ◦ θP = hP . In other words, θP is an automorphism of the cover hP = g ◦ψ ◦χP : FP →
P1. According to point (4) of lemma 6.1, we deduce that θP is the restriction to FP of an element
in A×B. We replace θ by θ composed with the inverse of this element. So we now assume that
θ acts trivially on FP for some P . In particular θ fixes every singular point on FP . So θ stabilizes
every component EQ. The restriction θQ of θ to EQ is an automorphism of χQ according to (12).
Further θQ fixes one point (and even every point) in the unramified fiber above P of the Galois
cover χQ : EQ → X . Therefore θQ is the identity. We have proved that θ is trivial on every
component EQ.

To finish with, we now prove that θ is also trivial on the components FP ′ for every zeros P ′

of f . Remind we have already assumed this to be true for one of these zeros. We call θP ′
the restriction of θ to FP ′ . We already proved that θP ′ is the restriction of an element in A × B.
Further θP ′ fixes all the singular points ofD0 lying on FP ′ . These points are the zeros of g◦ψ◦χP ′ .
So we just need to prove that the action of A× B on the set of zeros of g ◦ ψ ◦ χP ′ is free. This
is certainly the case for elements in B because the zeros of g ◦ ψ are, by hypothesis, unramified
in the Galois cover χP ′ : FP ′ → Z. This is true also for elements in A × B because the action
of A on the set of zeros of g ◦ ψ is free. �

6.2 Deformations
In this paragraph we deform the two stable curves C0 and D0. If t ∈ ka is a scalar, it is natural
to consider the curve Ct drawn on the surface W = X × Z and defined by the equation f(P )×
g(ψ(Q)) = t. We call Dt the inverse image of Ct by χ. In this paragraph and in the next one, we
shall prove that for almost all scalars t in k, the curve Dt is smooth, geometrically integral, with
ka-automorphism group equal to A×B, and with the same field of moduli and the same fields of
definition as the original cover ϕ. To this end, we would like to consider the families (Ct)t and
(Dt)t as fibrations above P1. We should be careful however : the family (Ct)t has base points.
So we first have to blow up W = X × Z along

∆ = ((f)∞ × (g ◦ ψ)0) ∪ ((f)0 × (g ◦ ψ)∞).

Note that ∆ is the union of 2 × deg(f) × deg(g ◦ ψ) simple geometric points. We denote by
W∞,∞ ⊂ W = X ×Z the complementary open set of ((f)∞ ×Z)∪ (X × (g ◦ ψ)∞) in X ×Z.
We similarly define W0,0, W0,∞, W∞,0. These four open sets cover X × Z.

Let P1 = Proj(ka[T0, T1]) be the projective line over ka. We set F = 1/f and G = 1/g.
Let C∞,0 ⊂ W∞,0 × P1 be the set of (P,Q, [T0 : T1]) such that f(P )T0 = G(ψ(Q))T1. Let
C0,∞ ⊂ W0,∞ ×P1 be the set of (P,Q, [T0 : T1]) such that g(ψ(Q))T0 = F (P )T1. Let C∞,∞ ⊂
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W∞,∞×P1 be the set of (P,Q, [T0 : T1]) such that f(P )g(ψ(Q))T0 = T1. Let C0,0 ⊂ W0,0×P1

be the set of (P,Q, [T0 : T1]) such that T0 = F (P )G(ψ(Q))T1. We glue together these four
algebraic varieties and obtain a variety C ⊂ W × P1. Let πW : C → W be the projection on
the first factor and let πC : C → P1 be the projection on P1. This is a flat, projective, surjective
morphism.

LetD ⊂ S×P1 be the inverse image ofC by χ×Id where Id : P1 → P1 is the identity. This
is the blow up of S along χ−1(∆). Note that χ−1(∆) is the union of deg(χ)×deg(f)×deg(g◦ψ)
simple geometrical points because χ is unramified above ∆. Actually, D is the normalization of
C in ka(S ×P1). We denote by χ : D → C the corresponding morphism. We call πS : D → S
the projection on the first factor. We call πD : D → P1 the projection on the second factor. This
is the composed morphism πD = πC ◦ χ. This is a flat, proper and surjective morphism.

Let A1 ⊂ P1 be the spectrum of ka[T ] where T = T1
T0

. Using the function T we identify
P1(ka) and ka ∪ {∞}. If t is a point on P1(ka) we denote by Ct the fiber of πC above t and Dt

the fiber of πD above t. The restriction of πW to Ct is a closed immersion. So we can see Ct as
a curve drawn on W = X × Z. Similarly, the restriction of πS to Dt is a closed immersion. So
we can see Dt as a curve drawn on S. In particular, the fiber of πC at 0 is isomorphic by πW to
the stable curve C0 introduced in paragraph 6.1. Similarly, the fiber of πD at 0 is isomorphic by
πS to the stable curve D0 introduced in paragraph 6.1.

We call Cη the generic fiber of πC and Dη the generic fiber of πD.
We now show that the curve Cη over ka(P1) is geometrically connected and that for almost

every t ∈ P1(ka) the curve Ct over ka is connected. According to Stein’s factorization theorem
[Liu02, Chapter 5, Exercise 3.11], we can factor πC : C → P1 as πf ◦ πc where πc has geomet-
rically connected fibers and πf is finite and dominant. The fiber of πf above 0 is trivial because
C0 is connected and reduced. Therefore the degree of πf is 1 according to [Liu02, Chapter 5,
Exercise 1.25]. Therefore πf is an isomorphism above a non-empty open set of P1. The generic
fiber Cη is geometrically connected over ka(P1) and for almost all t ∈ P1(ka) the curve Ct
over ka is connected.

We now show that Cη is smooth (and therefore geometrically integral). Indeed, it is smooth
outside the points (P,Q) ∈ Cη ⊂ X×Z where df(P ) = 0 and d(g ◦ψ)(Q) = 0. Such points are
defined over ka. Therefore the function f(P )× g(ψ(Q)) cannot take the transcendental value T
at these points.

The ramification locus Γ ⊂ W of χ cuts the fiber C0 transversally. Therefore it cuts the
generic fiber Cη transversally. So Dη is smooth and geometrically integral. Thus for almost
every t ∈ ka the fibers Ct and Dt are smooth and integral.

Finally, our knowledge of Autadm.
ka (D0) enables us to show that Autk(P1)s(Dη) ' A × B.

Indeed, set R = ka[[T ]] the completed local ring at the point T = 0 of P1. The curve D̂ =
D ×P1 Spec(R) is stable over the spectrum of R. According to [Liu02, Chapter 10, Proposition
3.38, Remark 3.39] the functor ”automorphism group” t 7→ Autt(D̂t) is representable by a finite
unramified scheme over SpecR and the specialization morphism Autka((T ))(D̂η)→ Autka(D0)
is injective. According to lemma 7.6, the image of this morphism is included in the subgroup
of admissible ka-automorphisms of D0. Since SpecR has no unramified cover, we deduce the
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following estimate for the automorphism group of the generic fiber

A×B ⊂ Autka(P1)s(Dη) ⊂ Autka((T ))(D̂η) ⊂ Autadm.
ka (D0).

We have already seen that the rightmost group is equal to A × B. So Autka(P1)s(Dη) = A × B
as was to be proved.

6.3 Fields of moduli and fields of definition of fibers
As we have seen in paragraph 6.2, for almost all t ∈ A1(k), the fiber Dt is smooth and geomet-
rically integral. Using lemma 7.7 on the specialization of the automorphism group in a family of
curves, we deduce that for almost all t ∈ A1(k), the group of ka-automorphisms of the fiber Dt

is isomorphic to the group of k(A1)
s-automorphisms of the generic fiber. Since the latter group

is isomorphic to the automorphism group A × B of the surface S, we deduce that, for almost
all t, the restriction map above is an isomorphism:

Autka(S)
'−→ Autka(Dt). (14)

Now let t ∈ k be such that Dt is smooth and geometrically integral and such that Autka(Dt) =
A×B. We call πt : Dt → S the corresponding embedding.

We construct a functor Ft : MS → Mπt . We first define the image of an object by Ft. Let l
be a finite extension of k inside ka and Sl an l-model of S. Using the functor MS → MU given
in section 5.3 followed by the functor MU → Mψ of the proof of lemma 4.3, we obtain an l
model ψl : Zl → Xl of the cover ψ, where Xl = Xk ×Spec(k) Spec(l) and Zl is a l-model of Z.
There exists also an abelian cover χl : Sl → Xl×Zl. It is uniquely defined up to an automorphism
of Sl. We denote by Ct,l the curve on Xl×Zl defined by the equation f · g ◦ψl− t = 0. Let Dt,l

be the inverse image of Ct,l by χl. Let πt,l : Dt,l ↪→ Sl be the inclusion map. The image
of the object Sl by the functor Ft is defined to be πt,l. We still need to define the image of a
morphism by the functor Ft. Let l′ be another finite extension of k and let σ : l → l′ be a k-
homomorphism. Let S ′l′ be an l′-model of S and let α : Sl → S ′l′ be a morphism above Spec(σ).
We call π′t,l′ : D′t,l′ ↪→ S ′l′ the image by Ft of S ′l′ . Then α maps Dt,l to D′t,l′ . We denote by β
the restriction of α to Dt,l. The image of α by Ft is defined to be the morphism (α, β) from πt,l
to π′t,l′ . If we compose Ft : MS → Mπt with the forgetful functor Mπt → MDt , we obtain
a cartesian functor Gt : MS → MDt . Further, identity (14) implies that the functor Gt is fully
faithful. Therefore, by proposition 2.5, both S andDt have k as field of moduli and a k-extension
is a field of definition of S if and only if it is a field of definition of Dt. In view of section 5.3,
Dt, ψ and ϕ also share the same fields of definition. Theorem 1.2 is proved.

7 Six lemmas about curves and surfaces
In this section we state and prove seven lemmas that are needed in the proof of theorem 1.2.
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7.1 About curves and products of two curves
Lemma 7.1 Let k be a algebraically closed field. Let X and Y be two projective, smooth and
integral curves over k. Let β be the genus of X and let γ be the genus of Y . We fix a geometric
point P on X and a geometric point Q on Y . We identify the curves X and X × Q and the
curves Y and P ×Y . Let Γ be a divisor on X×Y of bidegree (b, c), i.e. b = X ·Γ and c = Y ·Γ.
The virtual arithmetic genus π of Γ is at most 1 + bc + c(β − 1) + b(γ − 1). When b = c this
bound reads 1 + 2b(β − 1) + b2.

Proof — We follow the lines of Weil’s proof of the Riemann hypothesis for curves (cf. [Har77,
Exercise V-1.10]).

The algebraic equivalence class of the canonical divisor onX×Y isK = 2(β−1)Y +2(γ−
1)X . We recall that the virtual arithmetic genus π, as defined in [Har77, Exercise V-1.3], is such
that π = D·(D+K)

2
+ 1 for every divisor D. Thus:

π =
D · (D + 2(β − 1)Y + 2(γ − 1)X)

2
+ 1 =

D ·D + 2c(β − 1) + 2b(γ − 1)

2
+ 1,

and we just need to bound the self intersectionD ·D. We deduce from Castelnuovo’s and Severi’s
inequality (cf.[Har77, Exercise V-1.9]) that D ·D ≤ 2bc. This finishes the proof of the lemma.
�

Lemma 7.2 Let k be an algebraically closed field. Let X and Y be two projective, smooth,
integral curves over k. Let Γ be an effective divisor without multiplicity on the surfaceX×Y . Let
f ∈ k(X) be a non-constant function. For all but finitely many scalars x in k, the divisor (f)x×Y
crosses transversally Γ, where (f)x is the positive part of the divisor of f − x.

Proof — We call pX : X × Y → X the projection on the first factor. Let E be the set of points
in X(k) such that at least one of the following condition holds: p−1

X (P ) contains a singular point
on Γ, or p−1

X (P ) contains a ramified point of the morphism pX : Γ → X , or the fiber p−1
X (P ) is

contained in Γ. The set E is finite. For all x ∈ k but finitely many, the fiber f−1(x) avoids E and
it is simple. �

Lemma 7.3 Let k be an algebraically closed field. Let X be a projective, smooth, integral curve
over k. Assume the genus of X is at least 2. Let f ∈ k(X) be a non-constant function. We note
G the group of k-automorphisms of f . This is the set of all k-automorphisms θ of X such that
f ◦ θ = f . For any x ∈ P1(k), we note (f)x = f−1(x) the fiber above x and Gx the group of
k-automorphisms of X that stabilize the set of k-points of (f)x.

For all x in P1(k) but finitely many we have Gx = G.

Proof — The group H = Autk(X) of k-automorphisms of X is finite because the genus of X
is at least two. Let θ be an automorphism in H \G and let x ∈ P1(k). Assume that the k-points
in (f)x are permuted by θ. Let P be one of them. Then f ◦ θ(P ) = f(P ) = x. So P is a zero
of the non-zero function f ◦ θ − f . For each θ there are finitely many such zeros. And the θ are
finitely many. So the images by f of such P ’s are finitely many also. �
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Lemma 7.4 Let k be a field. Let Xk be a projective, smooth, geometrically integral curve over
k. Set X = Xk ×Spec(k) Spec(ka) and assume that X has genus at least 2. Let Y be a projective,
smooth, integral curve over ka and let ϕ : Y → X be a non-constant ka-cover. If f is any non-
constant function in ka(X) then Aut(ϕ) ⊂ Aut(f ◦ ϕ). Let V ⊂ k(Xk) be the set of functions
f ∈ k(Xk) such that Aut(ϕ) 6= Aut(f ◦ ϕ). This set V is contained in a finite union of strict
k-subalgebras of k(Xk).

Proof — The statement to be proven concerns the three function fields ka(f) ⊂ ka(X) ⊂ ka(Y )
and the groups involved are the following ones:

Aut(ϕ) = Autka(X)(k
a(Y )),

Aut(f ◦ ϕ) = Autka(f)(k
a(Y )),

Aut(Y ) = Autka(k
a(Y )),

⇒ Aut(ϕ) ⊂ Aut(f ◦ ϕ) ⊂ Aut(Y ).

Now, the set V can be described as follows:

V =

 ⋃
θ∈Aut(Y )\Aut(ϕ)

ka(Y )θ ∩ ka(X)

 ∩ k(Xk) =
⋃

θ∈Aut(Y )\Aut(ϕ)

ka(Y )θ ∩ k(Xk).

This is a union of sets indexed by elements in the finite set Aut(Y ) \Aut(ϕ) (remind Aut(Y ) is
finite because the genus of Y is at least 2). Since θ 6∈ Aut(ϕ), each ka(Y )θ ∩ ka(X) is a strict
subfield of ka(X) containing ka. Therefore ka(Y )θ ∩ k(Xk) ( k(Xk). �

7.2 Deformation of an automorphism of a nodal curve
In this paragraph we give a necessary condition for extending an automorphism of a nodal curve
to a given deformation of this curve.

Let R be a complete discrete valuation ring. Let π be a uniformizing parameter and let k be
the residue field. We assume k is algebraically closed. LetD be a semi-stable curve over Spec(R).
We note Dη the generic fiber and D0 the special fiber. We assume Dη is smooth over the fraction
field of R. Let T be a singular point of D0. According to [Liu02, Chapter 10, Corollary 3.22],
the completion of the local ring of D at T takes the form:

ÔD,T = R[[f, g]]/〈fg − πe〉

where e is a positive integer. This integer is called the thickness of D at T . We also say that f
and g form a coordinate system for D at T . If we reduce modulo π, we obtain the completion of
the local ring of D0 at T :

ÔD0,T = ÔD,T/〈π〉 = k[[f, g]]/〈fg〉,

where f = f mod π and g = g mod π. Because T is an ordinary double point, D0 has two
branches F and G at T . These correspond to the two irreducible components of the completion
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at T . Be careful that these two branches may lie on the same irreducible component of D0.
Anyway, the functions f and g are the uniformizing parameters of either branches. We call P
and Q the points of F and G above T .

Now let T ′ be another singular point of D0, and let f ′, g′, e′, F ′, and G′ the corresponding
data.

Let θ be an automorphism of D over R such that θ(T ) = T ′ and θ(F ) = F ′, θ(G) = G′. One
easily checks that the functions f ′ ◦ θ and g′ ◦ θ form a coordinate system for D at T . We deduce
that e′ = e and that both f ′ ◦ θ/f and g′ ◦ θ/g are units in ÔD,T (indeed, in either fraction, the
numerator and denominator have the same Weil divisor). Since f × g = πe = f ′ ◦ θ× g′ ◦ θ, we
have f ′◦ θ

f
(T )× g′◦ θ

g
(T ) = 1. We reduce this identity modulo π and obtain the following identity

where the first factor is a function on F evaluated at P while the second factor is a function on
G evaluated at Q:

f
′ ◦ θ
f

(P )× g′ ◦ θ
g

(Q) = 1. (15)

This leads us to the following definition.

Definition 7.5 Let R be a complete discrete valuation ring. Assume that the residue field k is
algebraically closed. Let D be a semi-stable curve over Spec(R). The generic fiber of D is
assumed to be smooth. Assume we are given a coordinate system at each singular point of the
special fiber D0. Let θ̄ be an automorphism of the special fiber D0. We say that θ̄ is admissible
in D/ Spec(R) if for every singular point T of D0, the image θ̄(T ) has the same thickness as T
in D, and if equality (15) holds true.

We have just proved the following lemma.

Lemma 7.6 With the notation of definition 7.5, the set of automorphisms of D0 that are admis-
sible in D/ Spec(R) form a subgroup of Autk(D0). If θ is an automorphism of D over Spec(R),
its reduction θ̄ = θ mod π is an automorphism of D0 and is admissible in D/ Spec(R).

One may compare this statement with [Wew99, Theorem 3.1.1] where the deformation of
morphisms between two distinct curves is studied.

Remark – It must be pointed out that the converse of lemma 7.6 is not true. For
example, consider the elliptic curveE with modular invariant j = 0 (or 1728). Every
automorphism of E is admissible because there are no singular points on the curve
(the condition in definition 7.5 is empty). However, the only automorphisms that can
be extended to the generic elliptic curve are the identity and the involution.

7.3 Automorphisms of curves in a family
In this section we state and prove a lemma of specialization of the automorphism group of curves
in a family.

32



Lemma 7.7 Let k be a field and let U be a smooth, geometrically integral curve over k. Let
X be a quasi-projective, smooth, geometrically integral surface over k. Let π : X → U be a
surjective, projective, smooth morphism of relative dimension 1. Assume that for any point x
of U , the fiber Xx at x is geometrically integral. We call η the generic point of U and X̄η =
Xη ×Spec(k(U)) Spec(k(U)a) the generic fiber, seen as a curve over the algebraic closure of the
function field of the basis U . We assume the genus of Xη is at least 2.

There exists a non-empty open subset V of U over k such that for any geometric point x ∈
V (ka) the group of ka-automorphisms of the fiber at x is equal to the group Autk(U)a(X̄η) of
automorphisms of X̄η.

The following proof was communicated to us by Qing Liu.

Proof — This is a consequence of a general result by Deligne-Mumford. Let X → S be a
flat projective morphism over a noetherian scheme S. The functor T → AutT (XT ) from the
category of S-schemes to the category of groups is representable by a group scheme AutX/S
over S. See [Kol96, Exercise 1.10.2] for example.

When X → S is a stable curve with genus at least 2, Deligne and Mumford [DM69, Thm
1.11] prove that the scheme AutX/S is finite and unramified over S.

In our lemma, S is a the smooth, geometrically integral curve U over k. Replacing S by a
non-empty open subset, we may assume that AutX/S is finite étale over S. At the expense of
a finite surjective base change T → S, we may assume that the generic fiber of AutX/S → S
consists of rational points. So AutX/S → S is now a disjoint union of étale sections and the
fibers have constant degree. In particular, the fibers are constant and the specialization maps
AutS(X) = AutX/S(S)→ Auts(Xs) = AutX/S(k(s)) are isomorphisms. �
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