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Abstract. We study the action of modular correspondences in the p-
adic neighborhood of CM points. We deduce and prove two stable and
efficient p-adic analytic methods for computing singular values of mod-
ular functions. On the way we prove a non trivial lower bound for the
density of smooth numbers in imaginary quadratic rings and show that
the canonical lift of an elliptic curve over F; can be computed in proba-
bilistic time < exp((log q)%*'e) under GRH. We also extend the notion of
canonical lift to supersingular elliptic curves and show how to compute
it in that case.

1 Introduction

Let X — X (1) be any modular curve seen as a covering of X(1). Let P be a
Heegner point on X and let f € Q(X) be a Q-rational function.

For reasonable choices of f, class field theory ensures that f(P) is an algebraic
integer. It is a classical algorithmic problem to compute the minimum polynomial
of f(P).

The known methods for this rely on complex analytic uniformization of X
and provide complex approximations for f(P) and its conjugates f;. See [5] for
a recent general study of this approach.

One then forms and expands the degree h minimal polynomial p(X) =
[1;(X — f;) the coefficient of which are rational integers.

The difficulty with this method (that appears in quite a range of different
contexts) is that it is very hard to control the loss of accuracy while expanding
73

The only rigorous available evaluations of how many digits are needed are a
bit alarming (see [1, Section 7] and [2, Section 9]).

It is thus temptating to look for a p-adic analytic method for computing
singular values of modular functions. The reason for that is that the p-adic
absolute accuracy is conserved when adding or multiplying two p-adic integers
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i.e if one knows a and b up to O(p*) then one knows a + b and ab up to O(p*)
also.

One may logically look for some p-adic uniformization of X but such an
uniformization does not exist in general. In particular it does not exist in the
most important case of X = X(1).

Instead of that we define and study a representation of the ideal group of an
imaginary quadratic order as automorphism group of a p-adic neighborhood of
the associated CM points. This representation is quite computational and the
CM points are characterized and computed as fixed points of this representation.
In this way we also manage to define canonical lifts for supersingular curves.

All this leads to two different proven stable and efficient methods for com-
puting singular values of modular functions.

The reader who is not completely unwilling to read mathematics may also
find some intrinsic interest to the p-adic representation itself and to our lemmata.

2 Modular correspondences in the neighborhood of CM
points

We refer to [8] for the elementary theory of complex multiplication.
We start with

Definition 1. Let k be an algebraically closed field and O the imaginary quadra-
tic order with discriminant —A. We denote by NELLA(k) the set of isomor-
phism classes of couples (E, 1) where E is an elliptic curve over k and 1 : O —
End(E) is a mazimal embedding (when E is ordinary v is an isomorphism). Such
a couple is called a normalized elliptic curve. We say that two normalized elliptic
curves (E,1) and (E',.') are isomorphic if there is an isomorphism I : E — E'
such that I=1/(X)I = 1(X) for any X in O.

We denote by ELLA(K) the quotient of NELL A(k) by the action of complex
conjugation. When the characteristic p of k has two primes in the fraction field
of O above it then ELL A (k) is the set of isomorphism classes of curves with CM
by O.

We now fix an embedding of Q in C. Let O be a quadratic order with group
of units {1,—1}, class group C£(0), conductor m and discriminant —A. Then
ELLA(Q) is the finite set of isomorphism classes of elliptic curves over Q with
complex multiplication by . We may see it as a reduced zero dimensional
subvariety in X (1) = P! — {00}, the moduli space of elliptic curves. There is a
free faithful action of C4(O) on it.

We fix a prime p and an embedding of Q in C, and denote by F, the
residue field of C,. We assume that p has two primes of Q(+/—A) above it. Then
ELLA(Q) splits over F, with ¢ = p? and d = c£(O') where O’ is the order with
conductor m' the larger prime to p factor of m. We call —A’ the discriminant of

O'. We know that reduction modulo p induces a surjection from £E£LA(Q) onto

ELL A (F,). This is the set of isomorphism classes of elliptic curves over F, with



CM by O'. It has cardinality ¢£(O") and is acted on by C£(O). We also assume
that O’ has unit group {1, —1}.

Let ELLY be the set of isomorphism classes of elliptic curves over C, that
reduce modulo p to an elliptic curve in E£L (I, ). Using the modular invariant
Jj this set can be given an analytic structure and is the disjoint union of ¢£(O’)
open p-adic disks of radius 1. Every such disk contains c£(O)/cf(O') elements in
ELLA(Q).

To every point in £L£L 4 (Q) we associate an ideal a € O C Q C C and a model
E, = C/a for the corresponding isomorphism class. This way, all the curves E,
share the same endomorphism ring O. The reductions £, mod p provide models
for the elements in £L£L o/ (F,). Whenever there is no risk of confusion, we shall
denote by a a point in ELLA(Q) or ELL A (F,).

If i is a prime to m ideal in O we denote by E,[i] the intersection of kernels of
all endomorphisms in i. Quotienting by this subgroup defines an isogeny E, —
E 1. If b represents the class of ai~! we set i ® a = b. If further i is prime to p
we similarly define an isogeny from the reduction E, modulo p of E,.

Thus the group I(pm) of prime to pm ideals of O acts on both ELLA(Q)
and ELL A/ (F,) and the reduction map is equivariant for these actions.

We now show how this action extends to a continuous action on ELLY. Let
z be a point in £LLS. Let a be a point in ELLA(Q) which is close to x and
let Eq = C/a be the corresponding elliptic curve. We denote by D, the disk
in ELL5 that contains a and z. Let E, be a model for x which is close to E,
i.e. an elliptic curve over C, such that j(E,) = j(z) and E, and E; have equal
reductions modulo p (so E, is the fiber at z in the universal curve over D, and
this universal curve exists because D, does not contain j = 0 nor j = 1728.)
Let i be an ideal in I(pm) and set b =i e a. Let E4[i] be the finite subgroup of
E, defined by i. Because i is prime to p this group ’lifts’ to a group scheme over
D, whose fiber at z defines a subgroup FE,[i] of E,. The quotient of E, by this
group defines a point y =i ez in ELLS which is close to b.

For every i € I(pm) the map [i] :  — i ez is a continuous map on ELLY.
Indeed, let j be an ideal in O and « a rational integer such that i = (a)j and O/j
is cyclic of order N. Then [i] being the restriction of the level N correspondence
is an algebraic map. We recall that the level N correspondence is the divisor on
X (1) x X (1) image of Xo(N) by the map (E — E') — (j(E),j(E")). The curve
Xo(N) has good reduction modulo p and a € Xo(N) is not p-adically close to
any ramification point of j or j'. So j' — j'(a) is an integral invertible series in
j — j(a) and the radius of convergence of [i] is 1. The integer o being inessential
we shall assume o = 1 and i = j. In that case we say that i is reduced. The
inverse of [i] is [i] given by complex conjugation.

We thus have constructed a morphism p from the group I(pm) of prime to
pm ideals of O to the group Aut(£LLS,) of automorphisms of the analytic variety
ELLS. The restriction of p to the group P(pm) of prime to pm principal ideals
of O defines a morphism (still denoted by p)

p: P(pm) — Aut*(ELLY)



to the group of automorphisms that fix ELLA(Q) (the CM points) and therefore
stabilize every disk D,.

In order to study this morphism we denote by dq : Aut*(ELLY) — C; the
differentiation at the CM point a.

From lemma 1 below we deduce that 6, 0 p : P(pm) — C; is independent of
a, takes values in Q* and 84(p((£))) = LL* where £* = L~!. In particular, the
kernel of p consists of ideals (£) with £ € Q* prime to pm.

Lemma 1. Let O be a quadratic order with group of units {1, —1} and conductor
m. Let L € O such that O/L is cyclic of order N. Let j and j' be the two
functions on Xo(N) defined by j(E — E') = j(E) and j'(E —» E') = j(E').
The value of the slope of the tangent o = %I at all Heegner points with CM by
O and representing multiplication by L isogenies is LL*.

The order O has discriminant —A = —m2D and basis (l,miv_];_D) and

L = a+bm¥=2=L has norm N = a? — abDm + b Km? with K = D(D + 1) /4.

Set a = m@ and let ¢ be an integer congruent to a/b modulo N. We have
a? + Dma+ Km? = 0. Define the two integers u = ¢ and v = b%.
Note that b is invertible modulo N because £ is reduced. We look for the Smith
normal form of (£) C O. Let ¢ : O — Z be the linear form defined by ¢(z+ya) =

z—cy that induces an isomorphism O/ L 4z /NZ. Together with the linear form
1 defined by ¢ (z + ya) = y this makes a basis (¢, ) for the dual of O. A dual
basis for O is (1, 8) with 8 = ¢+ . A basis for (£) is then (N, 8) and this is the
Smith normal form. The lattice £*O = +(£) admits the two basis (1, %) and
(£*, £*B) with transition matrix M € PSLy(Z)

(2)-n(D)- (-7 ()

The class of 7 = % modulo the action of IH(N) on the upper half plane

represents the N-isogeny C/(1,7) =y C/(1,N7) = C/(1,7) which is an endo-
morphism. So 7 is a Heegner point associated to multiplication by ,£ endomor-
phism. Since % is a constant times j %‘;, the slope %I is N J]—’g—i% and since
N7 = Mr the slope at 7 is N(br + u)? which is easily seen to be independent
of ¢ and equal to LL*. There are cf(O) Heegner points of level N with complex
multiplication by O and representing the multiplication by £ isogeny, all defined
over the Hilbert class field of O and conjugated over Q(v/—A).

Since LL* belongs to the later field, the slope is the same at all such Heegner

points. O

We observe that the action of a reduced ideal i of norm N on a point
x € ELLS can be computed in time polynomial in N, logg, and almost lin-
ear in the p-adic accuracy of z i.e. the number of significant terms in its p-adic
expansion. One first reduces to the case N is prime (not essential but simpler).



One then computes the kernel E,[i] of the isogeny modulo p thanks to Atkin-
Elkies techniques (see [15]). This kernel is then lifted on E, thanks to Hensel’s
lemma. The isogeny E, — E, follows using Vélu’s formulae [18].

We summarize in

Theorem 1. Let O be a quadratic order, p a prime and O' the smallest p-
mazimal overorder of O. Assume O' has group of units {1,—1}. Let m be the
conductor of O. The group P(pm) of prime to pm principal ideals of O has a
modular representation p as automorphism group of the p-adic disk with radius
1 in X(1) around any point a with CM by O. The differentiation of this rep-
resentation is just L € P(pm) — LL*. The action of p(L) on a given point
can be computed in time polynomial in N, n, logq and almost linear in k i.e.
k(log k)9 where N is the norm of the bigger prime ideal factor of £, and n is
the number of such factors with multiplicities, Fy s the residue field of a and k
is the desired accuracy of the result.

Remark 1. If O is Z[i] (resp. Z[p]) then the theorem holds with ££* replaced
by (LL*)? (resp. (LL*)3.)

Remark 2. The e action of principal ideals in O' (not necessarily principal in

O) on the set ELLA(Q) is a Galois action and can be expressed in terms of the
Artin map.

3 Computing the canonical lift in all characteristics

In this section we are interested in computing p-adic approximations of the
canonical lift of an ordinary elliptic curve over a finite field.

We shall restrict to the case p is prime to the conductor m. So p splits in O.
If this is the case the reduction map

R:ELLA(Q) — ELLA(F,)

is an equivariant bijection.
We shall prove the

Theorem 2. Assuming GRH, for any positive € there is an algorithm that com-
putes the inverse of the reduction map R at a given point x in ELLA(F,) in

probabilistic time
1 0o(1)
[exp((log q)27¢) x logk x k

with accuracy k i.e. the error is O(p).

In order to prove 2 we give and discuss an algorithm. For fixed € the algorithm
goes as follows. We first call E the curve over I, associated to the point . We
look for the canonical lift of E.

If the characteristic p of Fy is less than 2 exp((log 4q)2+¢) we lift E together
with all its conjugates over F,, using the equations in Lubin and Tate and Serre’s



work [16,11] and/or the cousin algorithm used in Satoh’s algorithm [13]. The
running time is polynomial in p and the degree d of F, over F,. The result
follows.

If p > 2exp((log4g)z+¢) we make use of smooth isogenies in the spirit of
Oesterlé and Mestre’s method [12] and Kohel’s thesis [6]. We compute the trace ¢
of the Frobenius @ of E using Schoof’s algorithm [14]. Let — A be the discriminant
of Z[®] and let A be the set of prime to pA integers of the form a+bP with 1 < b <
2exp((log A)3+¢) and |a + 1bt| < A% exp((log A)3+¢). Let B = |exp(y/Iog A)].
We say that an integer in Z[®] is B-smooth iff all its prime factors have norm
bounded by B. We assume A is big enough to apply lemma 2. Otherwise we
may just read the result in a table. We pick random elements in A with uniform
probability until we find one £ which is B-smooth. By lemma 2 we succeed after
< exp(2(log A)% loglog A) attempts with bounded probability. This is the only
probabilistic step in the algorithm. We now choose any lift £y of E and call j; its
7 invariant and compute £ e E;. This is done step by step, applying successively
all prime factors of £. So the running time is polynomial in B. We denote by
L o j; the j-invariant of £ e E; and set

Jk+1 = Jk — £ede—de

o—1
for k > 1 where 0 = LL*.

If joo is the j-invariant of the canonical lift we check that |jri1 — joo| <
ik — joo|?. This is just the Newton’s tangent method. It is decisive however for
this convergence property to hold that o — 1 be a p-adic unit. It is a unit indeed

otherwise we would have £ = £ (mod p) so p|b since E is ordinary. But this
would contradict our assumption that p > 2exp((log A)2+¢). O

Lemma 2. Fiz an € in ]0,%[. Let & be an imaginary quadratic integer and
t and q two integers such that # — t® + q¢ = 0. Let —A = t2 — 4q be the
discriminant of the order generated by ®. Let B = |exp(v/log A)|. Let A be the
set of prime to gA integers of the form a + b® with 1 < b < 2exp((log A)%Jrf)
and |a + $bt| < Az exp((log A)2%¢). If GRH holds the proportion of B-smooth
elements in A is > exp(—2(log A)2 loglog A) if A is big enough (depending on
€).

We now prove lemma 2. Call D the set of prime to pA primes in Z[®] with
degree one and norm less than B. Let B C D be a system of coset representatives
for the action of complex conjugation on D i.e. D = BUB and BN B = 0. Let
O = Z[®#] and h = ¢£(O) < AzlogA by a result of Lenstra and Pomerance
[10]. From Lagarias and Odlyzko [7] the size 7 of B is at least ﬁ if A is big

enough. Set u = | ¥E=2 102A + (log A)¢| and let S“B be the u-th symmetric product
of B. Let & : S“B — CL(O) be defined by s({p1,...,pu}) is the class of the
product []; .., P& Let F C S*B x S“B be the subset of couples (V1,V2) such
that V7 # V4 and k(V1) = k(Va). The average size of fibers of k is > L%Jh_l >

1
2log A2 Te
3

il
ulh

— 2 which is bigger than exp( ) when A is big enough. The size of



F is minimum when all ﬁbers have equal cardinality so the size of F is at least
([u,h )(L%J 3)h > 2h(u,)2 for A big enough. To every couple (Vi,Vs) in
JF one associates the product of primes in V; together with conjugates of primes
in V5. Let u(V1,V2) be the unique generator of this ideal of the form a + b®
with b positive. We observe that this integer exists because the concerned ideal
is principal in O. It has norm (a + %)2 + £ bounded by Aexp(2(log A)zte)
and it is not in Z because V; # V2. So p is a map from F to A. The size of a
fiber of i is bounded by (2u).

So the image of p which is made of B-smooth elements in 4 has size at least
2u
2(72FW' The proportion of B-smooth elements in A is thus

3
> exp(— (log A)7 loglog A + O((log A)?))
which is bigger than exp(—2(log A)z loglog A) when A is big enough. O

Remark 3. The method of Lubin-Serre-Tate used by Satoh and its variants (es-
pecially Mestre’s ones using Algebraic Geometrical Means that stresses the un-
derlying dynamical system [3]) use degree p isogenies to compute the canonical
lift. We avoid them on the contrary. Firstly because p might be too big and
secondly because the slope of a level p correspondence at a CM point is not a
p-adic unit. This is not necessarily an inconvenient but it requires a different
treatment. Indeed the level p correspondence induces a contracting map on the
p-adic neigborhood of CM points that Serre uses to prove the existence and
unicity of the canonical lift using the fixed point theorem.

4 Singular values of modular functions

Being able to lift an ordinary elliptic curve we may also lift torsion points on it
and this gives a p-adic method for computing p-adic approximations of singular
values of any modular function f € Q(X) at a point P with CM by an order O,
provide we are given an ordinary elliptic curve with complex multiplication by
0.

This gives a stable and efficient method for computing (ray) class fields.

Indeed, given a negative discriminant —A we first look for the smallest prime
to A square t? such that t?>+ A is four times a prime p = ¢q. We expect the smallest
such ¢ to be quite small (e.g. (log A)°()) so that 4q is very close to A. Even
GRH cannot ensure this however.

We then look for an elliptic curve over F, with trace t. This is done by
choosing random elliptic curves modulo ¢ and requires g/cf(—A) trials which is
less than gA~2+°(1) by Siegel’s theorem. Any trial takes time (log )" using
Schoof’s algorithm. This is hopefully O(A2+°(1)). We then lift this curve using
the methods presented above. We thus compute p-adic approximations for all
conjugates of an element f in the Hilbert class field of the order with discriminant
—A and all this in time hk'°(M) A1) where h = ¢f(—A) is the class number of
the order with discriminant —A.



If we now want to reconstruct the minimal polynomial of f, we need a bound
for the logarithm of coefficients of this polynomial. For reasonable functions (e.g.
the modular invariant j see [9, 5.10]) this bound is O(h'™¢) so we need accuracy
k = O(h'*¢) so that the algorithm runs in probabilistic expected time O(h%+¢)
which is essentially linear in the size of the result and certainly better than
the tremendous (but somewhat pessimistic) estimate in [1]. Indeed our method
avoids the accuracy problems of the classical one (evaluating modular functions
at CM points in the upper half plane). It is compatible with the improvement
given by Gee and Stevenhagen in [5] where functions n(Nz)/n(z) are used (that
generalize Weber’s functions) together with a rationality criterion deduced from
Shimura’s reciprocity law.

We now can state the

Theorem 3. If G.R.H. holds, for any positive € there is an algorithm that
computes the Hilbert class polynomial of discriminant —A in probabilistic time
0( A1+€).

The algorithm presented above does not quite prove the theorem since there
is no proof that a small enough t exists such that A + 2 is four times a prime.

However, G.R.H. ensures that there exists a principal prime ideal in the
Hilbert class field with norm less than a constant times

h%(log h)*(log A)?(log log A)*

which is O(A(log A)®(loglog A)?) by Lenstra an Pomerance [10].

Therefore there exist t = v/A(log A)*T°(M) and u = (log A)*+t°() such that
t2 + w2 A is four times a prime p. Such a pair (¢,u) may be found by exhaustive
search. The rest of the algorithm goes as above except that in the end we obtain
an elliptic curve with CM by an order of discriminant —uA. Applying isogenies
of degree dividing u we obtain en elliptic curve with CM by the order with
discriminant —A. O

Remark 4. There is a tentative algorithm for computing CM fields in [2]. This
method (Algorithm 3 on page 100) collects information modulo many small
primes £ by exhaustive search among elliptic curves modulo £ for every £. It is
overexponential in the class number h however, contrary to the author’s claim.
The definition field of ordinary elliptic curves used in this method has degree
O(h) over I, and the exhaustive search takes time O(£") rather than the claimed
O(h?). So this algorithm is worse than any possible one.

It may be possible to turn it into something slightly more sensible by remov-
ing step 1 an dealing only with primes with supersingular reductions. Even with
this restriction, working with several moduli is not a good idea. See section 5.

5 Canonical lift of supersingular curves

In this section we adapt our ideas to the case of curves with supersingular re-
duction. We keep the notation of section 2. We assume p has a single prime of



Q(v/—A) above it. We assume the order O with discriminant A is maximal. In

this case the inertia degree d of p in the Hilbert class field is 1 or 2 and ¢ = p or

P’

Reduction modulo p of curves with CM by O needs not be injective. However,
let 2 be the quaternion algebra ramified at p and oo and for every supersingular
curve E modulo p let ip : A — End(E) ® Q be a fixed isomorphism as in
Waterhouse [19]. This way, all endomorphism rings of all supersingular curves
are seen as maximal orders inside the same algebra 2. We denote by End(E) the
endomorphism ring of E over F,.

Reduction of a normalized curve (E, ) in NELLA(Q) thus gives a supersin-
gular curve E = E mod p together with an injection of O in the maximal order
ip(End(E)) of 2.

This is an element of NELLA(F,) the set of isomorphism classes of super-
singular curves modulo p normalized with the order O with discriminant —A.

We prove the

Theorem 4. Let —A be a primitive discriminant and O the quadratic imagi-
nary mazimal order with discriminant —A and p an odd inert prime number in
O. The reduction map

R:NELLAQ) = NELLA(F,)

is a bijection.
Its inverse will be called the canonical lift on normalized supersingular curves.

We first observe that the two sets have equal cardinality by one of the many
Eichler formulae [4, Proposition 5] and [17, Theorem 2.4.].

We also note that O has a prime to p element £ such that £L£* Z 1 mod p.
This together with theorem 1 and remark 1 implies that R is injective. a

Remark 5. If p ramifies in O the reduction map is no longer a bijection. It is a
two to one surjection. One may define a pair of canonical lifts at p-adic distance
1 of each other.

Remark 6. The theorem above suggests possible generators for the ring of inte-
gers of the Hilbert class field.

As for explicit computation of the canonical lift we observe that results and
algorithms in section 2 generalize to the case with supersingular reduction.

Let E be a supersingular elliptic curve. Using the graph method of Oesterlé
and Mestre we find in probabilistic time O(p'*¢) a basis for a sub-order R’ of R
with index M bounded by p©®) and the associated quadratic form.

We now assume O is a maximal imaginary quadratic order where p stays
inert and we look for an embedding of O into R. Since we do not know R we
rather look for an embedding in R’ of a sub-order O’ of O with conductor m
dividing M.
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This boils down to representing m?>A by a positive definite quadratic form
of rank three and discriminant p®*) and is done in time (plog A)°") A by mere
exhaustive search and (plog A)°() heuristically by a random search.

This is a competitive approach for computing singular values of modular
functions since we can find a very small (e.g. (log A)°") under GRH) inert
prime p in O.

The prime p is indeed very small since 3 is fine for half quadratic orders
and 5 is fine for half the remaining ones etc. So the endomorphism rings of all
supersingular curves modulo small primes can be precomputed together with
their norm forms.
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