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Abstract

We list several techniques for efficient computation of families of cov-
erings and we illutrate them on an example.

1 Introduction

The computation of algebraic models for coverings of the line is interesting both
for theoretical reasons (e.g. the inverse Galois problem) and computational ones
(as a test example for computer algebra tools). In many cases one reduces to
solving a zero dimensional algebraic system (see [22, 2, 21] for many examples).
This can be achieved using Buchberger algorithm. For many reasons, however,
one would like to avoid using such an expensive algorithm from the point of view
of complexity. In particular, the algebraic system one can associate to a covering
does not provide a very sharp characterization and usually admits many solutions
having nothing to do with the initial problem. Indeed, such a system may easily
encode multiplicities but certainly not such discrete invariants as the monodromy
group. On the other hand, famous work by Atkin and Swinnerton-Dyer achieves
quite non-trivial computations using methods from numerical analysis [1| and
similar methods were applied succesfully in different contexts. Some time ago
Ralph Dentzer asked about how to compute an algebraic model for a covering of
the sphere ramified above four points with monodromy group Ms, given in [20].
This computation was achieved by Granboulan in [14] with a lot of numerical
methods. At that time I collected several tricks and constructions in order to
help with this computation, but this was not published because of the length of
the result itself and also because the computational challenge appeared to be the
most important. It seems that this information, however, may be of some use to
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other people performing similar computations. Also I have developed it a little
bit further and I give in this work an illustration of it on a simple though non
trivial example. It gave me an opportunity to consider these computations from a
more conceptual point of view. In particular I realized the importance of explicit
patching a la Harbater [15], and I tried to detail the algorithmic aspects of it for
genus zero coverings. In this special case one can use the explicit description of
the moduli spaces [12] to deal efficiently with not necessarily Galois coverings.
The reason why patching is efficient is that it allows the computation of formal
fibers without computing the extension of the base. The latter may really be
huge in non-rigid cases (degree 144 in [14]). On the contrary, the extension of
the basis is derived from the model for the fiber.

The paper is organized as follows. In section 2 we present down to earth
techniques for computing an algebraic model for a covering. These techniques
were known to Fricke. We illustrate them on simple examples. In section 3 we
define the main family of coverings that will serve us as an example and start
studying its combinatorial properties. The main point there is Hurwitz braid
action. In section 4 and 5 we show how to compute an algebraic model for our
family of coverings from the consideration of degenerate ones. Once a model has
been computed for a degenerate cover, we first compute an analytic deformation
of it which consists of a one parameter family of coverings, the parameter taking
its values in a real interval. This is the purpose of section 4 and does not require
more than linear algebra computations. From this analytic family we derive an
algebraic one in section 5. This again reduces to linear algebra. In section 6 we
give a more general and more conceptual description of our method. It uses the
explicit description of the compactification of moduli spaces of curves given in
[12] for the case of genus zero curves. We explain in particular how to compute in
advance the degree of the coefficients that appear in the algebraic model we are
looking for. Geometrically, these degrees are expressed in terms of the “thickness”
of intersections in some formal curves.

It should be clear that the example we present is a toy that we chose for its
simplicity and for such a small covering there exist simpler, faster methods.

The methods presented here apply to any genus zero covering of the sphere
minus r points. Computations will be more difficult for higher genera, however,
(except small values) because of the lack of a sufficiently explicit description for
the corresponding moduli spaces.

We hope the reader will be convinced that the rich recent theory together
with old computational methods make the computation of coverings much easier
than it appears provided one does not rely too much on Buchberger’s algorithm,
as useful as it is.

I thank Helmut Volklein for his careful reading of a first version of this work.
I thank Louis Granboulan and Lily Khadjavi for several useful corrections and
comments.



2 Two coverings ramified over three points

In this section we shall compute an algebraic model for two coverings of the
sphere minus three points. This will be useful in the next sections. We take this
opportunity to recall how people have been efficiently computing simple coverings
since the last century.

Let P, (C) be the projective line over the field of complex numbers and let
R1, Ry, Rs3 be three distinct points on it. By a coordinate on P;(C) we mean a
generator of its function field. For P a point and z a coordinate we denote by
z(P) the value of z at P. There is a unique coordinate z such that z(R;) = 0,
z(Ry) = 1, z(R3) = oo. Let [ be the point with z-coordinate equal to z(5) =
i+ 1/2 and let X1, ¥y and X3 be the three loops represented on figure 1 in the
plane with coordinate z.

Figure 1: m (P — {R1, Rs, R3},b)
Let p1, p2, p3 be the three permutations below

pl = [1,2,3,4,5,6,7],
P2 [152]5
P3 (p2p1)~ .

We consider the covering of Py (C) —{ R, Rs, R3} with monodromy (p1, p2, p3)
in the basis (X1, X9, X3).

The Riemann-Hurwitz formula shows that this is a genus zero covering that
is a map f : P; — P; unramified outside {R;, Ry, R3}. This map f can be
represented as a rational fraction F' provided we pick a coordinate on the left and
a coordinate on the right. Let S} be the unique point above R; and S5 the unique
point with multiplicity 1 above R3 and Ss the unique point with multiplicity 6
above R3. Let = be the coordinate which takes the values 0, 1 and oo at Sy, So,
S5 respectively.



We now can represent the covering f as a rational fraction F(z) = z which
satisfies

7
Yz —1
with K, a constant and F(z) — 1 has a double zero i.e. Kz" — (z — 1) has a

double zero. We therefore solve the system {Kz" —z +1 = 0,7K.2% — 1 = 0}
and trivialy find the unique solution x = 7/6 and K; = 6°/77. We thus get

F(z)=K
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We observe that the coefficients in the expressions above are rational. This
could have been deduced a prior: using a rigidity criterion.

The reader who is familiar with the theory of Grothendieck’s dessins d’enfant
as presented in [22] may like to see the dessin corresponding to f. It is the
preimage of [0,1] by F. In figure 2, bullets correspond to points above 0 and
arrows to points above 1.

S1

Figure 2: Dessin

We now consider a slightly more difficult example. Let 71, 7, 73 be the three
permutations below

(1], [2,3,4], (5], [6, 7],
[1,2,5,6],

T3 = (7'27'1)_1.

T1

T2

They define a genus zero covering g : P; — P; unramified outside { R, Ry, R3}
with monodromy (7, 79, 73) in the basis (X1, X9, 33). We call T} the unique point
with multiplicity 3 above R; and T, the unique point with multiplicity 4 above
Ry and T3 the unique point above R3. We take y to be the unique coordinate on



P, which takes values 1, 0 and oo at T, T5 and T3 respectively. We also call T}
the unique point with multiplicity 2 above R;.

The covering g may be represented as a polynomial function G(y) = z which
satisfies

G(y) = Ka(y — 1)*(y — y(T4))*C(y) and G(y) — 1 = Kyy* A(y)

where C(y) is a degree 2 monic polynomial and A(y) is a degree 3 monic polyno-
mial and K is a constant. We set C(y) = y>—ay+b and A(y) = y* —cy’+dy—e
and y(7,) = f and we write the identity

Koy =1y = /(P —ay+b) = 1= Koy'(y* — ey’ +dy —e).  (3)
We differentiate the identity above with respect to the variable y and find

(y=)y=1)?(Ty>+(~6a—4—5f)y* +(4fa+2f+3a+5b)y— fa—2b—3 fb)=y® (Ty®—6cy® +5dy—4e)
and since f # 0 we deduce that y3 divides 7y> + (—6a — 4 —5f)y? + (4fa +2f +
3a + 5b)y — fa — 2b — 3fb and thus that
—6a—4—-5f=0and 4fa+2f+3a+5b=0and fa+2b+3fb=0.

We solve the system above and find that f is one of the three solutions of

102 +12f>+9f+4=0 (4)
and
2 0 2 2, 19, 2
Cly) = (/=3 T35/ +5
and 77 4. 7.7
.3 (D “\,2 - oy — _
Ay) = (6f+3)y +(5f+5)y i (5)
and
60
K2=7f_4. (6)

Simple combinatorial considerations (see [5] or [6, Theorem 2| ) show that the
field of moduli of our covering is real. There is a single real solution to equation
4. We therefore take f to be this real solution. This finishes the computation of
a model for the covering g. We draw the corresponding dessin on figure 3.
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Figure 3: Dessin

3 Topological description

In this section we describe a simple family of coverings branched over 4 points and
we start studying it from the point of view of combinatorics. We start with an
integer d = 7 and four partitions of d, namely P, = {1,1,2,3}, P, = {4,1,1,1},
Ps ={2,1,1,1,1,1}, and P, = {6,1}. Associated to these data we consider the
set, of isomorphism classes of connected coverings of the sphere ramified over four
ordered points, of degree d and with ramification data given by the four above
partitions in this order. The (not a priori connected) topological configuration
space for such coverings is called a Hurwitz space. Its construction and finer ones
are given in [16, 11, 10, 9, 23]. A nice introduction to these questions is [24,
Chapter 10].

Our goal in this section is to obtain topological information on the Hurwitz
space associated to the data above through a simple combinatorial study.

We say that two permutation vectors on d letters ({1, (s, (3, (1) and (v, va, v3, 1y)
are conjugate if there is a u € S, such that v; =*(; for i € {1,2,3,4}.

We call P; the conjugacy class in Sy associated to the partition P;. We first
collect all vectors of permutations on d letters (1, (2, (3, (4) up to conjugacy, such
that the following conditions hold

1. ¢ eP;forie{l,2,3,4)
2. (GGG =1

3. the (; generate a transitive subgroup G of S,.

Being transitive of prime degree, GG is primitive. Since it contains a transpo-
sition it must be the full symmetric group on 7 letters [25, Theorem 13.3].

There exist various formulae for counting vectors of permutations ([3, 4, 17, 13]
among many others). Unfortunately we also need to exhibit all these vectors and
the known methods do not provide an elegant feature for this task.

In general we may just do an exhaustive search with a computer. For the
example under study, however, we can find all solutions by hand. A useful though
trivial tool is the following “thickening” lemma. We first give a few natural
definitions.



Definition 1 Let d be a positive integer and S a permutation in Sy. Let T be a
non empty subset of {1,2,3,...,d}. We define a permutation Sz in the following
manner. For any x € T we call K the smallest positive integer k such that S*(x)
is in T and we set Siz(z) = S¥(z). We call [z, S(z), ..., SE1(z)] the tail of x. If
x is not in I we set Siz(x) = x. We call Sz the restriction of S to T.

Lemma 1 Let ¢ and S be two permutations in Sy and let T = Supp(C) be the
support of ¢ and Sz the restriction of S to it. Then the restriction ((S)z of
the product ¢S 1s equal to the product (Siz. This means that the product (S is
obtained from the product (Siz by replacing every x not fizred by ¢ by its tail.
Similarly (S¢) iz = Siz€.

This is useful when multiplying a fixed permutation by a permutation whose
cycle lengths depend on a few parameters. For example

Corollary 1 Let m, n, p be three positive integers. Then the product [1, m+n+
Lm+1]*[1,2,...m+n]m+n+1,...m+n+p|is[l,2,...m]m+1,....,m+
n,m+n+1,...,m-+n+pl.

Note that the restriction of a product is not the product of restrictions. How-
ever lemma, 1 is of some theoretical interest. Indeed, consider the set A of infinite
sequences of permutations (op)nenn>o0 sSuch that o, € S, and the restriction of
ont1 to {1,2,...,n} is 0,. This is the inverse limit of the sets S, with respect
to the restriction maps. This A is not a group by the above remark. However,
lemma 1 implies that the group S, of permutations of the positive integers with
bounded support acts on A by action on coordinates. Indeed for any permuta-
tion 7 of degree m and any o = (0,), in A we define 7.0 as follows. For any
n > m set u, = 70, and for any n < m take u, to be the restriction of u,, to
{1,2,...,n}. Then 7.0 = (i), is in A. One can also define a right action. These
actions clearly have no fixed points.

Elements of A admit a more geometric description. Consider pairs of the form
(U, 1) where U is a finite or enumerable disjoint union of oriented circles and ¢
is an injection of the set of positive integers into Y. Two such pairs (U1, ¢;) and
(Us, 12) are said to be equivalent if and only if there is an orientation preserving
homeomorphism A from U; to Us such that 1o = hot;. We call such an equivalence
class a propermutation. The left and right actions of S, on propermutations can
be seen as cutting and glueing circles.

As elementary as they are, these considerations allow mental computation
with permutations.

We proceed as in [7] and find that there are exactly 48 vectors satisfying
conditions 1, 2, 3 above (up to conjugacy). We give these vectors in the following
definition in which a residue class modulo a positive integer NN is identified with
its smallest positive element.



Definition 2 For any k mod 7 a residue class modulo 7 we denote by ay the
vector (C1, Ca, (3, Ca) with

G (1], (2], [3,4], (5,6, 7],
G = [1,2,3,5],
(3 = [kmod7, k—|—1mod7]

G = (¢¢¢)t

We say that the 7 such vectors form the A family.
For any k mod 7 a residue class modulo 7 we denote by by, the vector (1, (2, (3,Ca)
with

G = [1} [ ] [3 4, 5]7[61 7]’
¢ = [1,2,3,6],
¢s = [kmodT, k+1mod7]

G = (G¢6)!

We say that the 7 such vectors form the B family.
For any k mod 7 a residue class modulo 7 we denote by ¢, the vector (1, (2, (3, (1)
with

1 = [1}5[25314]5[5]7[67 7]’

CQ = [152755 6}5

(s = [kmodT7,k+1mod?7],
G = (¢s¢q)!

We say that the 7 such vectors form the C family.
For any k mod 3 a residue class modulo 3 we denote by dy, the vector ({1, 2, (3, C4)
with

G = [1]) [2]7 [3a 4]) [5) 6, 7]a
CZ = [1,27374]5
¢¢ = [kmod3,5],

G = (g™

We say that the 3 such vectors form the D family.
For any k mod 3 a residue class modulo 3 we denote by e, the vector ({1, (o, (3, (4)
with

G = [1},[2],[3,4,5],[6,7],
& = [1,2,3,5],
(3 = [kmod 3, 6]

G = (¢¢a)™!

We say that the 3 such vectors form the E family.
For any k mod 5 a residue class modulo 5 we denote by fi the vector ((1, (o, (3, C4)
with

G = [1[23],[4,5,6],[7],
G = [1,2,4,6],
(3 = [kmod 5, 7]

G = (G¢l)™?



We say that the 5 such vectors form the F' family.
For any k mod 5 a residue class modulo 5 we denote by gy, the vector ((1, (2, (3, 4)
with

G = [1,2],[3],[4,5,6],[7],
CZ = [1’37476]1

¢ = [kmods5,7,

G = (¢sr)™"

We say that the 5 such vectors form the G family.
For any k mod 5 a residue class modulo 5 we denote by hy the vector ({1, (s, (3, Cs)
with

G = [1]’[27374]’[576}’[7],
CZ = [152757 6]1

(3 = [kmod5,7],

G = (¢¢Cr)™"

We say that the 5 such vectors form the H family.
For any k mod 5 a residue class modulo 5 we denote by iy, the vector (1, (2, (3, 4)
with

G = [15273]7[4]1[576}5[7]5
CQ = [154757 6]1

(s = [kmod5,7],

G = (€)™

We say that the 5 such vectors form the I family.

We now compute the action of braids on these 48 vectors. To this end we
consider the configuration space Xy 4 = P;* — A of spheres minus four pairwise
distinct points. A point Q = (Q1, Q2, Qs, Q4) in X(4 corresponds to the sphere
P, — (Q1,Q2,Rs3,Q4). If Z is a coordinate on P; we denote by Z(Q) the vector
(Z(Q1), Z(Q2), Z(Qs3), Z(Q4)) and we call it the Z-coordinate of Q. We pick such
a coordinate Z and choose as a base point for X4 the point P = (P, P, P, Py)
with Z-coordinate Z(P) = (0,1, 2, 00). We also choose a base point b on the cor-
responding sphere P; — (P, Py, P3, P;). We take for b the whole upper half plane in
the Z-coordinate. This makes sense because the upper half plane is a contractible
set. We also pick generators (I'1, 'y, '3, T'y) for m (Py — { Py, P», P5, P,},b) as on
figure 4.

The fundamental group 71 (Xo 4, P) is generated by braids ¢, o, t2 3, 3,4 defined
in the classical way. For example t; 5 is represented by the map t; o(u) with Z-
coordinates Z(t1o(u)) = (1/2 — 1/2e*™ 1/2 4+ 1/2e*™ 2, 00) for u € [0, 1]. The
action on monodromy vectors in these basis is then given by t; 2((¢1, (2, (3, () =
($29¢1, ©29¢,, €3, (4). See [16]. Straightforward calculation then gives the following
fact.



Ty

Figure 4: 7T1(P1 — {Pl, PQ, P3, P4}, b) in the Z-coordinate

Fact 1 For any k a residue modulo 7

ti2(ar) = ap—1
t12(bg) = bp—1
t1,2(ck) = cp—1-

For any k a residue modulo 3

ti2(dy) = dp_1.

For any k a residue modulo 4

t1,2(ek) = ep_1-

For any k a residue modulo 5

ti2(fk) = fe—1
t1,2(9%) = gk—1
t12(hy) = hp_1
t1,2(ik) E T

The action of ta3 on our 48 vectors is given below (trivial cycles are omitted)
[B1,B3,C5][C1,A1,A3][C7,I1,D9,Hy,CgllA3,A4,D1,14,I5][A7,F1,Fy,E3,A5][By,Hy,Hg,D3,Bgl[B3,Bs,E1,G3,G4][C2,C4,G1,E9, Fy].

The above fact gives us the combinatorial description of the configuration
space M parametrizing our family. Since the coverings we consider have no
automorphisms we even have a covering of universal curves:

Py

"

Xoa<— Xos
Following [8] we embed the moduli space of spheres minus four points My 4 =
P, — {Ry, Ry, R3} in the configuration space X4 as the subvariety of points
(Ry, Rs, Q, Rs) for Q € Py — { Ry, Ry, R3}. The restriction of A to the curve My 4
is a covering of curves also called A : H — Py — { Ry, Ry, R3}. The curve H is the

10



moduli space of our family of coverings and is often called a Hurwitz space. This
Hurwitz space is mapped by A onto the moduli space My 4 of spheres minus four
points.

From fact 1 and the Hurwitz formula we deduce that the curve H has genus
zero. Recall that z is the coordinate such that z(R;) = 0, 2(R2) = 1 and
z(R3) = oo. The preimage by A of the segment consisting of points with z-
coordinates in [1, 0o] is a connected graph on the sphere which we represent below.
The bullets correspond to points above oo and the other vertices to points over 1.
The points above 0 are associated with faces. To any point above oo corresponds
one of the nine families A, B,C, D, E, F,G,H, and I.

Figure 5: The Hurwitz space ‘H

4 Patching

In this section we compute an analytic model for the family of coverings presented
in section 3.

Let again IP; (C) be the projective line over the field of complex numbers and
let Uy, Us, Uz, U, be four distinct points on it. We call Z the unique coordinate
such that Z(Uy) = 0, Z(Uz) = 1, Z(Us) = co. We also set A = Z(Us3) and
X = 1/A. For convenience we introduce another coordinate W = Z/X such that
W(Ul) = O, W(UQ) =X, W(Ug) = 1, and W(U4) = Q.

Assume first that A is a real greater than 1 and let us choose as a base point
b the whole upper half plane in the Z-coordinates (which is also the upper half

11



plane in the W-coordinate since Z = AW and A is real positive). We also pick
generators (01,0, 03,0,) for m (P,(C) — {Uy,Us, Us, U, },b) as represented on
figure 6. Note that these data depend continuously on A. For A = 2 we find
ourselves in the situation of figure 4.

ot b2 Us
T
[SH} Og O3
O4

Figure 6: (P, (C) — {Uy, Uy, Us, Uy}, b) in the Z-coordinate

We define p = K3x'/" where K3 is a constant that will be chosen most con-
veniently latter and x'/7 is the unique real seventh root of y. The reason for
introducing this y is that we are going to study the Hurwitz space H locally at
the point C represented on figure 5. This point corresponds to the C' family and
it is mapped onto R3 € P; by the Hurwitz map A. The ramification index of
A at C is 7. Therefore p is a local parameter at C' on the Hurwitz space and
we expect all coordinates arising in the algebraic model we are looking for to be
Laurent series in pu.

For any p €]0,1[ we call ¢, : Py — P; the covering with monodromy c; =

(Cla C?a C3a <4)

G = [1,[2,3,4],[5],[6,7],
¢ = [1,2,5,6],

(s = [175]7

Ca = (¢s¢2Cn) ™

in the basis of w1 (P, — {Uy, Us, Us, U, }, b) given in figure 6. Again, one can show
that this covering is defined over the field of real numbers (see [5, 6]). We call V;
the unique point above U; with multiplicity 2 and V5 the unique point above U
with multiplicity 3. We call V3 the unique point above U, with multiplicity 4 and
V4 the unique point above Us with multiplicity 2 and V5 the unique point above
U, with multiplicity 1 and Vg the unique point above U, with multiplicity 6.

We now try to understand what happens when u tends to zero.

If we look at things from the point of view of W-coordinates we see that
W (U,) = x tends to 0 = W (U;) while W(Us3) = 1 and W(U,;) = co. In the limit
we get a sphere minus three points U; = U,, Us and U, and a fundamental group
7T1(P1((C) — {Ul = UQ, U3,U4},b) generated by F1,2 = Fle,Fg,Rl as on ﬁgure

12



7. Indeed, when U; and U, coalesce, turning around the resulting point is just
turning around U; then U,. Topologically, this is equivalent to punching a big
grey hole containing U; and U, or equivalently removing the segment [U, Us].
Turning around this big hole is equivalent to turning around U; and then around
U2.

Figure 7: m(IPy — {U; = Us, Us, Us)}, b)

We conclude that when p tends to zero the covering ¢, tends to a cover-
ing of the sphere minus three points with monodromy ({2(3, (3,(4) in the basis
(T'12,T3,T4) of m(Py — {Uy = Us, Us, Uy}, b) shown on figure 7. Coming back to
section 2 we see that (2(; = p; and (3 = p and (4 = p3. Therefore ¢, tends to f
when p tends to zero.

In order to take advantage of this we shall write down a model for ¢,. As
usual, we must chose coordinates on each side. As for the right-hand side we
shall of course consider W-coordinates. We note that when u tends to zero W
tends to the coordinate z of section 2 since it takes values 0, 1 and oo at the three
ramification points of the limit covering.

On the left-hand side we must pin three points to 0, 1 and co. We must be
careful to choosing three points that do remain distinct when g tends to zero.
For example, points above U; and Us; may well coalesce since U; and U, coalesce.
On the other hand, a point above U; and a point above Uz will not coalesce. Two
points above Uz will not coalesce either. This corresponds mutatis mutandis to
the notion of admissible families of points introduced in Définition 3 of [7]. The
key mathematical idea underneath is to be found in sections 2 and 3 of [11].

In our situation we see that {Vj3, Vs, V5} form an admissible family because
V5 and Vg map to Uy which does not coalesce to any other point. Indeed when
1 tends to zero then V3 tends to the point S; of section 2 because V3 is above
U, and U, tends to R; and S; is the unique point above R;. Similarly V5 tends
to Sy because Vj is above Uy and Uy tends to R3 and the multiplicity of Vs is
equal to 1 and is not affected as p tends to zero because Uy is simple (i.e. does
not coalesce) in the W-coordinate, see [11]. Also Vs tends to S3. We call X the
coordinate which takes values 0, 1 and oo at V3, V5 and Vg respectively. Then X
tends to the coordinate z of section 2.

The covering ¢, is now represented by a rational fraction ®,(X) = W such
that

13



Ku(X? = mX + ) (X — X(V))*(X — X(V3))°

®,(X)=
W(X) — 7)
and K, X4(X3 X? X
B, (x) - y = A Z 0 Tk o n) ©
and
K4(X _X(V;O)Z(XS — U1X4 +u2X3 — U,3X2 +U,4X — U5)
d,—1= <1 9)

Where Ky, 71, 19, S1, S9, S3, U1,...,u5 depend on .

As 1 tends to zero the covering ¢, tends to f while the coordinates X and
W tend to x and y. Therefore the rational fraction ®, tends to F. From the
comparison of formulae 1 and 2 on the one hand and 7, 8, 9 on the other hand
we deduce the following

1 O(n)
T2 O(n)

X(W) = O(p)

X(Va) = O(p)
s1 = O(p)
s2 = O(p)
S3 O(p)

X(V) = £+0()
w o= —2+0()

49

Y2 = 15 O(p)
u =~ +0)
Uy = %‘FO(H)
Us = —%‘FO(N)
K = Svow

Further if we set X = 0 in equations 7 and 8 we find

X = Kyroa X (V1)2 X (Va)®. (10)

14



We shall denote by v, the valuation associated to p. We know that v,(x) =7
and from the above

vu(r2) + 20,(X (V1)) + 31, (X (V) = 7. (11)

On the other hand since V3 and all the points above U; coalesce we know that
vu(ra), v, (X (V1)) and v, (X (V2)) are positive integers. We deduce that v,(ry) = 2
and v, (X (V1)) = v,(X(V3)) = 1. We write

X (Vo) = plvap + v pt + vaop’ + ...)

In order to complete the picture we now look at the situation from the point
of view of the coordinate Z. We see that Z(U;) = A tends to oo = Z(U,) when
w tends to 0 while Z(U;) = 0 and Z(U,) = 1.

At the end we get a sphere minus three points U;, Uy and U3 = U, and a
fundamental group 7 (P, (C) — {Uy, Uz, Us = Uy}, b) generated by I'y, '3, T'5 4 =
'3y as on figure 8. Indeed, when Us and U, coalesce, turning around the resulting
point is just turning around Us then U,. Topologically, this is equivalent to
punching a big grey hole containing Us and U, or equivalently removing the
segment [Us, U]. Turning around this big hole is equivalent to turning around
U; and then around Uj.

Figure 8: 7T1(P1 — {Ul, U2, U3 = U4)},b)

We conclude that when p tends to zero the covering ¢, tends to a cover-
ing of the sphere minus three points with monodromy ({1, (2, (4(3) in the basis
(['y,T9,T54) of m (P, — {Uy, Uy, Us = Uy}, b) shown on figure 8. Coming back to
section 2 we see that (; = 71 and (, = 7 and (4¢3 = 73. Therefore ¢, tends to g
when y tends to zero.

In order to take advantage of this we shall write down a model for ¢, with
adapted coordinates on each side. As for the right-hand side we shall of course
consider Z-coordinates. We note that when p tends to zero Z tends to the
coordinate z of section 2 since it takes values 0, 1 and oo at the three ramification
points of the limit covering.
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On the left-hand side we must pin down again three points that do not pairwise
coalesce, for example {Vj3, V5, Vs}. We pick a coordinate Y that takes values 0, 1
and oo at V3, V5 and Vg respectively. This implies that X/Y is constant equal to

X(Va)/Y(Va). We set k = % = vg,0 + O(p) and we have

X = prY (12)

Note also that Y tends to the coordinate y of section 2.

The covering ¢, can be now represented by a rational fraction ¥,(Y) = Z
which is related to ®,(X) = W by Z = WA and X = pxY. We replace X by
ukY in equations 7, 8 and divide out by x and find

_KQQMQQ—%Y+“%XY—5%%%Y—U3

v, (Y

(13)

and

ROV e Y )
B urY —1

As pu tends to zero ¥, tends to the rational fraction G' given in section 2.
Comparing the leading coefficients in 13 and 3, and using 6 we find

T,(V) -1

6° 60
79 7 _
K3 ﬁ’l}zo = 7][7_4
We now take advantage of the freedom in chosing K3 assuming K3 is the
unique real root of

60.77
K= 71—
P65(7f - 4)
so that
vg,o =1
Since our covering is real we deduce that v, =1 so
X(Va) = p(1 + O(p))-
Comparing 13, 14 and 5 we find

2 5

no= a3 —2f+0()
ro= WG g + 50+ OW)

X)) = u(f+0(w)
X(Va) = p(1+0(w)
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5= ule+ f+0()

52 = u2(g+%f+0(u))

55 = W +0W)

This time we have first order approximations for all the coefficients arising
in our algebraic model. Computing higher order approximations now reduces
to linear algebra by Hensel’s Lemma. We just plug formal developements into
equations 7, 8, 9 and develop in the variable . We get a non singular linear
system of equations in the next order terms etc.

For example we find

X(Vo) = p—(8/21+5f/42)p* + (101/2205 + 529f /4410 — 5£2/252)u® + ...
X(Vi) = fu— (5f/21 +11f2/42)p? + (29/4410 + 2291 /17640 + 811 f2/4410) > + ...

5 Looking for algebraic dependencies

In this section we shall derive an algebraic model from the analytic one obtained
in section 4.

5.1 General procedure

In section 4 we obtained an analytic model for the covering ¢, with coefficients
in the complete field Q(f)((x)). We know that this model is actually defined
over the algebraic closure of Q(\) in Q(f)((u)). We shall now look for algebraic
dependencies between the various coefficients arising in the expression for ¢,.
This will give us a model for the Hurwitz space H defined in section 3.

We pick two functions (X (V;) and X (V3) for example) and look for algebraic
dependencies between them. Let us call C(H) the field of functions on the curve
‘H (our Hurwitz space). This is a genus zero function field over C. To ease
notations we shall set v; = X (V;) and vy = X(V5). Assume the degree of the
extension C(H)/C(v,) is d; and the degree of C(H)/C(vy) is dy. Then there
exists a polynomial F (X1, X5) in two variables, with coefficients in C and degree
in X (resp. in Y') equal to dy (resp. d;) such that E(vy,vs) = 0. If we know the
expansions of vy and v, with enough accuracy (i.e. more than (dy + 1)(ds + 1))
finding such a relation is just a matter of linear algebra. We try successive
increasing values for d; and dy. For d; = dy = 3 we find

E(v1,v9) = —360903 + 2403 + 6003 + 54vav; + 72020, — 18v3v; — 36viv? = 0. (15)
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We shall see in section 6 that the degrees d; and dy can be computed a prior:
from the monodromy (. We therefore need not compute infinitly many terms in
our expansions. With bounded accuracy we can obtain enough dependencies to
determine all the coefficients in our equation. This will provide us with a proof
that the equation holds since we a priori know that such an equation does exist.
Considerations in section 6 will enable us to choose functions like v; and vy that
make the degrees d; and ds minimal.

The curve given by equation 15 is expected to be of genus 0. We therefore look
for a parametrization using an algorithm due to Noether, Poincaré and Vessiot—
see [18] for a complete algorithmic survey on this question, including problems
of rationality. In our case, of course, finding a parameter is particularly trivial
since 15 has a unique triple point.

We find that 7' = vy /vy is a parameter and

_ 10+ 12T 4 972 + 477

T 3T + 2T + 1)
Let dy be the degree of the field extension C(H)/C(vy, v2). We may reasonably
expect this dy to be small (the irreducibility of equation 15 implies dy = 1). Let

ds be the degree of C(H)/C(r1). We now look for algebraic dependencies between
T and r; with degree dy in 7 and d3 in T'. For dy = 1 and d3 = 6 we find

and vy = Tv;.

2(T 4+ 4)(4T° + 977 + 12T + 10)(T + 1)?
3(T* + 613 + 2172 + 16T + 6) '

r =—-
Similarly we find

(4T3 + 9T2 + 12T + 10)?
3(T2 + 2T + 2)(T* + 673 + 2172 + 16T + 6)
and this is enough for our purpose since C(H) = C(vy,vy) = C(T).
Indeed we set yp(X) = (X2 —7r1X +72)(X —v1)%(X —v)3/(X —1) and factor
its derivative with respect to X. This derivative has roots v, v, with multiplicity
2, 0 with multiplicity 3 and v4 = X (V}). We deduce an expression for vy :

To =

by — 2(T° + 6T° 4 21T* + 56T° + 5177 + 30T + 10)
T 3T (T* + 613 + 2172 + 16T + 6)

We have Ky = 1/vp(vs) and x = y7r(0)/yr(vs) and @7 (X) = yr(X)/yr(vs)-
Note that we now write ®7 rather than ®, since T' is the right algebraic param-
eter.

The singular value y is given as a rational fraction in 7" which is unramified
outside {0, 1,00} i.e. a Belyi function. The associated dessin is the one on figure
5 and the monodromy is the one described in section 3. Note in particular that
the factorisation of x and x — 1 fits with fact 1. Indeed x=X¢ and x-1-21 with
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xo = —(T* + 673 + 21T% + 16T + 6)°T*(4T> + 9T* + 12T + 10)”

and
xoo=(T—1)3 (T4 +8T3 +36T2 +40T+20)* (T+1)2 (272 +T+2)2 (274 +8T3 +15T2 +8T+2)3
(T3 +3T24+6T+10) (270 +127% + 5174 +94T3 411172 +60T+20)
and
x1=—16(—80—288T —48T2 +2432T3 +7896T4 +13776T° +15656T0 +12432T7 +-671178 +222279
+477710 460711 +4T12) (2427 +72)3 (T6 467542174 +56T3 +51T2 +30T+10)5.
and

TO(T* + 6T + 21T% + 16T + 6)%(T?% + 2T + 2)°
Xoo '
We can now replace T by values in Q and find coverings defined over QQ in our
family. The key point here is that our family is defined over Q. More precisely
the Hurwitz space is irreducible and defined over Q and further has many rational

points. To check our computations, we just make sure that formulae 7, 8 and 9
hold.

K4 = —729

5.2 Using numerical approximations

In the previous paragraph we computed an algebraic model for our family of
coverings from an analytic one using linear algebra computations over the field
Q(f)- Indeed we were dealing with series in Q(f)((x)) with bounded accuracy.
The computations, however, will be greatly accelerated if we work in C((u))
instead of Q(f)((¢)) approximating complex numbers to some fixed accuracy.
This accuracy depends now on the height of the equations we expect to find. We
have no nice upper bound for this height. We just try. We compute an estimate
for f and write down expansions for v; and vy with approximate coefficients in
C. For the linear algebra part (looking for dependencies) we no longer use Gauss
algorithm but least squares. This gives a vector V that minimizes the Ly-norm
of MV — b for a given matrix M and vector b. Of course least squares always
give a solution and we need a criterion for this solution to be relevant, depending
on the accuracy. We may give a quantified criterion but there is a very simple
and efficient qualitative one: something interesting is happening if and only if a
small perturbation in the data (i.e. close to zero according to current accuracy)
induces a big gap in the minimal norm (i.e. change of magnitude). We thus obtain
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approximations for the coefficients in the linear equation we are looking for. Since
these coefficients are expected to belong to Q(f) we then look for integer linear
relations between 1, #, 6? and any such coefficient ¢. This is achieved using the
famous LLL algorithm [19]. Indeed such a relation corresponds to a small vector
in the orthogonal lattice to the vector (N, |[N@|, | N6?], | Nc]|) where N is a large
integer (close to the inverse of the accuracy). And LLL is designed for finding
such small vectors. Another possibility is to perform all the computations using
successively all the conjugates of f in C and then form the symmetric functions
of the results. We then obtain approximations of rational numbers and may find
their exact values thanks to continued fraction algorithm. This is the strategy
adopted in [1].

There is an important variant to the method described above. Once we have
computed @, as a rational fraction with coefficients in C((x)) with a small accu-
racy (in the p-adic topology) we may stop there the computation of expansions
and replace p by a small complex number py. This will give us an approxima-
tion according to the ordinary absolute value in C of the rational fraction ®,,
branched at {0, 1,00, A\g}. We then plug this approximation into equations 7, 8
and 9 (where A is fixed to the value )\¢) and apply an iterative numerical method
like Newton’s method to get an arbitrarily accurate approximation. We may then
replace A\ by a very close value A; in equations 7 and 8. The rational fraction ®,,
is then a close approximation of a rational fraction ®,, branched at {0, 1,00, A;}
and the latter one is found by applying Newton’s method to equations 7 and 8
with A fixed to A\; and initial value ®,, for ®,,. We can move slowly this way in
our Hurwitz space and list vectors of values of the various functions 71, ry, v1,...
at many points in it. If @1, Q2, ..., Q) are these points we represent any such
function by an element in the algebra C* and we can look for algebraic relations
as before. We have replaced Taylor expansion at one point by interpolation at
many points. We may of course mix the two approaches. We have to be careful
that our points ); should be well distributed on the Hurwitz space. Otherwise
we are going to loose much accuracy since too points that are close to each oth-
er lead to almost the same equations. We use least squares as before with the
same criterion for testing the relevance of the result. This approach was used
succesfully in [14].

6 Stable curves

In this section we shall give elements for the generalization of the method pre-
sented in section 4. We shall also explain how one can compute the degrees of
coefficients in some algebraic model for a family of coverings by mere considera-
tion of its monodromy. This will be useful when looking for algebraic depencies
since it will tell us what is the degree of the relations we are looking for. In
particular we shall be able to select functions that satisfy algebraic relations with
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smallest possible degree.

The key point in section 4 was that the degeneracy of a sphere minus four
points could be seen from two different points of views (namely according to Z
or W coordinates). There is a standard way to reconciliate these two points of
views. It is connected with the compactification of the moduli space of genus
zero r-pointed curves. This compactification is very explicitely described in [12]
in terms of trees of projective lines. In this section we shall assume that the reader
has some familiarity with this work. We just recall that the authors construct
a fine moduli space for r-pointed curves from the consideration of all possible
cross-ratios between four marked points on the sphere. One defines the cross-
ratio [Uy, Us, Us, Us] as (23 — 21) (24 — 22) /(23 — 22) /(24 — 21) where 2y, 29, 23, 24
are the value of any coordinate z at Uy, U, Us, Us. Note that [0, 00,z,1] = x.
The relations between these cross-ratios are of two types. Those coming from the
action of the symmetric group S, on the cross-ratio [Uy, U, Us, Uy| by permutation
of the indices plus a relation involving five points

[U27 U5) U3a U4]-[U17 U27 U3: U4] = [UI: U5: U37 U4]

This last relation is connected with the algebraic group law on Py, — {Us, Us}.
If we consider the projective variant of these equations (introducing numerators
and denominators for all cross-ratios) we obtain a projective variety My, which
contains the moduli space M, as an open subset.

There also exists a universal curve Mo,r+1 — MO,T corresponding to “forgetting
the last point”.

The degenerate curves can be described as follows. Assume that we have a
projective line minus four points Uy, Uy, Us, Uy and let U; and U, coalesce. The
object we get at the end is obtained in the following way : replace U; and U, by
another line crossing the first one and put U; and U on it.

Uy
Uz Uy U Ug Uz Uy

Uz

Figure 9: A 4-pointed tree of two projective lines

Now let A = C[[p]] be the local ring of Laurent series in the parameter y and
@ = C((pn)) its quotient ring. Let ¢, : C, — Py — {U1,Us,, Us, Us} be a covering
defined over ) (i.e. a family of coverings parametrized by the local parameter y).
We assume that the cross-ratio [Uy, Uy, Us, Us] is equal to p¢ for some positive
integer e. Let W be the coordinate that takes values 0, u¢ 1, oo at Uy, Us,
Us, Uy respectively. Let Z = W/u® be the coordinate that takes values 0, 1,
pu=¢, oo at Uy, Uy, Us, Uy respectively. The associated field extension to ¢, is
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QW) C Q(C,). By restricting y to values in [0, 1] we may define the monodromy
¢ = (¢1, (o, C3,Ca) of @, as in section 4. We assume ((2¢1)¢ = 1. We can always
reduce to this case after base change (i.e. replacing p by ,u% for some integer o).
We now consider the ring Ry generated by W and T'=1/Z over A. This ring Ry
is equal to C[[u]][W,T]/(WT — uf). Let also Ry = A[W] and Ry = A[T]. Then
Spec(R1) and Spec(Rs) glue together along Spec(Ry) to form a fibered surface S
over Spec(A) the generic fiber of which is a smooth curve of genus zero while the
special fiber S, is made of two genus zero curves V and W crossing at the point O
with coordinates W = T = u = 0. The local ring at O is C[[u, W, T]]/(WT — uf).
The Zarisky closures of the points Uy, Uy, Us and U, define horizontal divisors
on §. We represent the situation in figure 10.

Us

Uy

Figure 10: The fibered surface S

We may now take the normal closure of S in the field extension Q(W) C Q(C,)
and obtain a fibered surface T over Spec(A) and a map ¢ : T — S whose generic
fiber is just ¢,. The point is that 7 can be described quite sharply in terms of
the monodromy (. First of all, the special fiber 7, is a connected curve made of
several irreducible components meeting each other transversally and with no other
singularity than these crossing points between distinct irreducible components.

The irreducible components of 7 fall in two parts. Those that are mapped
onto ¥V by ¢ which we call V; for 1 < ¢ < I and those that are mapped onto
W which we call W; for 1 < j < J. The components V; correspond to the
orbites O; of ({1, (2, (4(3) and the restriction of ¢ to V; is a covering ramified over
three points with monodromy ((i, (2, (4(3)|o, where the | means restriction to
O;. Similarly the components W; correspond to orbites Q; of ((2(1,(3,(s). Two
components V; and W; intersect if they share a cycle of (21 = ((4¢3)~! and these
cycles are in bijection with the crossing points Oy for 1 < k < K on 7,. These
points are the points above O.

If the crossing point Oy of V; and W; is associated to a cycle of length ¢ in

(2¢1 then the local ring at Oy is isomorphic to C[[u, w, t]]/(wt—,ui) where ¢ and w
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are local parameters at Oy on V; and W; respectively. The ratio 6, = i is called
the thickness of the intersection point Of. Note that 6, is an integer because we
assumed ((2(1)¢ = 1. Note also that 6, depends on the local parameter y in the
sense that if we replace pu by /ﬁ for some integer o (base change) the thickness
0. is multiplied by o.

The points mapped to U; and U, by ¢, correspond to cycles of ¢; and (2 and
their Zarisky closures in 7 cross the V;’s while the points mapped to Us and Uy
by ¢, correspond to cycles of (3 and (4 and their Zarisky closures in 7" cross the
Wj’S.

In case the generic genus is zero, the special fiber 7; is a r-pointed tree of
projective lines as in [12] and 7 is a deformation of it over Spec(A).

We show two examples of such a situation. These examples will be two de-
generacies of the covering ¢r studied before.

Assume first that ¢ is the monodromy c5 studied in section 4, corresponding
to point C' on figure 5. Both ({1, (s, (4(3) and ((2(1, (3, (4) have a single orbite.
Therefore we have a single component V; above V and a single component W,
above W. Since (»(; is a full 7-cycle we have £; = 7. On the other hand, the
order e of the braid ¢, , acting on ( is also 7. Thus the thickness of the unique
point O; above O is just 6; = 1.

We draw the corresponding situation on figure 11.

Vi

Ve
141

01

Vs &

Va Vo

Wi Thickness 67 =1

Figure 11: The special fiber at point C' € H

Assume now that ¢ is the monodromy d; given in definition 2.

a = [1,[2],[3,4],[5,6,7],
& = [1,2,3,4],

(s = [155]7

Ca = (¢3¢)™

This monodromy corresponds to point D in figure 5. This time ({1, (2, (4(3)
has two orbites O; = {1,2,3,4} and Oy = {5,6,7} while ((2(i, (3,(4) has two
orbites @; = {1,2,3,5,6,7} and Q, = {4}.
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We have three points O, O, and O3 above O corresponding to the three cycles
(1,2,3), (5,6,7) and (4) of (2(;.

The order e of braid action is 3 thus the thicknesses are #; = 1,6, =1, 63 = 3.

We draw the corresponding picture on figure 12.

w1

Figure 12: The special fiber at point D € H

Thicknesses are very useful to compute the order of vanishing (u-adic valua-
tion) of cross-ratios. For example, in figure 12 the thickness #; of O; is nothing
but the valuation of the cross-ratio [V, V1, Vg, V3).

More generally, recall that associated to each component K of a stable tree
of projective lines there is a projection Py of the full curve onto this component.
There is also a unique median component L; associated to any triple of non-
singular points 6 = (01, d,d3). This component is the unique one on which the
three points have pairwise distinct projections.

If we have four points Vi, V5, V3, V, crossing the special fiber at non-singular
distinct points, then there are only two possibilities.

Either the intersections of these points with the special fiber have distinct pro-
jections on some component of it. In this case the cross-ratio p = [Vi, Vs, Vo, V]
is a unit in A = C[[p]] and so is p — 1. This is the case for Vi, V3, V4, V5 on figure
12 since their instersections with the special fiber have distinct projections on V.

If the intersections of Vi, V,, V3, V4 don’t project on distinct points on any
component, then there are two components IC; and Ky with associated projec-
tions Py, and P, such that for example Py, (V1), Pk, (V2), Px,(V3) are pairwise
distinct while Py, (V3) = Px, (Vi) and P, (V3), Px,(Va), Pk, (V1) are pairwise dis-
tinct while P, (V1) = Px,(V2). In this case, the cross-ratio [Vi, V3, Vs, V4] has
pu-adic valuation equal to the distance between IC; and Ko which is defined as the
sum of the thicknesses of all intersections between K; and /C,.

In particular, we see that the multiplicity of this cross-ratio is bounded by e
times the number of intersections. And there are no more intersections than the
degree d, of the covering ¢,.
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We deduce that if we have a genus zero covering ¢ of degree dy4 of P, ramified
over four points U;, U,, Us, Uy and if we pick Vi, V5, V3, V4 above Uy, Us,
Us, U, respectively, then the cross-ratio p = [Vi, V3, Vs, V4] only vanishes when
A = [Uy,Us, Uy, Uy] vanishes and the multiplicity of p is at most d, times the
multiplicity of A. The exact multiplicity can be obtained from the geometry of
the special fiber as we just did.

Let us now call d5 the degree of the Hurwitz map from the moduli space H for
a family of coverings to My 4 = P; —{0,1,00}. We represent below this Hurwitz
map and the covering of universal curves as a fibration above it.

H~——T

po b

Moy <— My

The degree of the extension C(Mp4) = C(A) C C(H) is da and from the
calculation above we deduce that the degree of the extension C(p) C C(#H) is
bounded above by da X dy.

We thus have a bound for the degree of coefficients appearing in some algebraic
model for ¢.

This bound is indeed very pessimistic since it assumes that we always have
many orbites and thick intersections between them. In practice one rather expects
degrees like dj/d,. In our example we have dy = 7 and dy = 48 so that our
estimate gives 48 x 7. If we look at formulae in section 5 we find that all quantities
are rational fractions of degree 6 = 48/7 of the parameter.

In all cases, the extensive combinatorial study of all degenerations of a genus
zero covering gives the divisor of zeros and poles of any cross-ratio between
branched points. One can then cook a multiplicative combination of these cross-
ratios with smallest possible degree. This amounts to finding the shortest vector
in the linear space generated by the divisors of all cross-ratios.

Incidentally we obtain a criterion for the Hurwitz space H to be rational : it
is rational if there exists a (combination of) cross-ratio with a single zero. This
may be checked easily on the monodromy ( in some cases.

The method presented here applies to any genus zero covering of the sphere
minus r points. When r is bigger than 4 one has to consider maximally degener-
ate covers. The local ring at the corresponding points in the moduli space M,
is generated by cross-ratios. The ramification at the minimal primes correspond-
ing to these cross-ratios is computed in terms of braid action and the order of
vanishing of cross-ratios of branched points along the corresponding divisors can
be evaluated as before. This gives a method for computing the partial degrees of
any coefficient in the algebraic model.
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7 Conclusion

We have shown how the computation of a family of coverings can efficiently reduce
to the computation of degenerate coverings of the sphere minus three points. The
most degenerate will be the better. Reciprocally, if we want to compute a covering
of the sphere minus three points, we may find it as a special fiber in a family
of higher dimension. The latter family may well be easy to compute provided it
admits an(other) simple special fiber. We also have given a method for computing
the degree of a coefficient ¢ in some algebraic model (the degree of C(H)/C(c))
in terms of the monodromy (. These degrees depend on the geometry of the
degenerate coverings in the family.
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