Counting closed geodesics on flat surfaces

Elise Goujard ${ }^{1}$

September 18, 2014
${ }^{1}$ IRMAR, University of Rennes 1

What is a flat surface?

What is a flat surface?

Translation surface

What is a flat surface?

Translation surface

What is a flat surface?

Translation surface

What is a flat surface?

Translation surface

What is a flat surface?

Translation surface

equivalently (X, ω) with X
Riemann surface and ω
holomorphic 1-form (Abelian
differential)

What is a flat surface?

Translation surface

equivalently (X, ω) with X
Riemann surface and ω holomorphic 1-form (Abelian differential)

Half-translation surface

What is a flat surface ?

Translation surface

equivalently (X, ω) with X
Riemann surface and ω holomorphic 1-form (Abelian differential)

Half-translation surface

equivalently (X, q) with X
Riemann surface and q
quadratic differential

What is a flat surface?

Translation surface

equivalently (X, ω) with X
Riemann surface and ω holomorphic 1-form (Abelian differential)
Both types of surfaces inherits from \mathbb{C} of a flat metric with conical singularities.

Half-translation surface

equivalently (X, q) with X
Riemann surface and q
quadratic differential

	Translation surfaces	Half-translation surfaces
singularity order	d	k
singularity angle	$2 \pi(d+1)$	$\pi(k+2)$
moduli space	\mathcal{H}_{g}	\mathcal{Q}_{g}
strata	$\mathcal{H}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$	$\mathcal{Q}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$
hypersurface	$\mathcal{H}_{1}(\underline{d})$	$\mathcal{Q}_{1}(\underline{k})$

	Translation surfaces	Half-translation surfaces
singularity order	d	k
singularity angle	$2 \pi(d+1)$	$\pi(k+2)$
moduli space	\mathcal{H}_{g}	\mathcal{Q}_{g}
strata	$\mathcal{H}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$	$\mathcal{Q}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$
hypersurface	$\mathcal{H}_{1}(\underline{d})$	$\mathcal{Q}_{1}(\underline{k})$

Connected components of $\mathcal{H}_{1}(\underline{d})$ and $\mathcal{Q}_{1}(\underline{k})$ carry invariant finite measures (Masur-Veech).

Flat surfaces VS Billiards

Flat surfaces VS Billiards

Flat surfaces VS Billiards

Counting closed geodesics on flat surfaces
Siegel-Veech constants

For S a flat surface $(=(X, \omega)$ or $(X, q))$, we introduce $N(S, L)$ the number of (families of) closed geodesics on S of length $\leq L$.

For S a flat surface $(=(X, \omega)$ or $(X, q))$, we introduce $N(S, L)$ the number of (families of) closed geodesics on S of length $\leq L$. Problem: find the asymptotic of $N(S, L)$ as L goes to ∞.

Toy example: the torus $\mathbb{T}=\mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$

Toy example: the torus $\mathbb{T}=\mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$

Toy example: the torus $\mathbb{T}=\mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$

$$
\begin{array}{ccc}
\gamma & \mapsto & \pm \operatorname{hol}(\gamma) \\
\{\gamma\} & \mapsto & V(\mathbb{T})
\end{array}
$$

Toy example: the torus $\mathbb{T}=\mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$

$$
\begin{array}{rll}
\gamma & \mapsto & \pm \operatorname{hol}(\gamma) \\
\{\gamma\} & \mapsto & V(\mathbb{T}) \\
N(\mathbb{T}, L) & =\operatorname{Card}\left(V(\mathbb{T}) \cap B_{+}(0, L)\right) \\
& =\text { Number of primitive points of } \mathbb{Z}+i \mathbb{Z} \text { in } B_{+}(0, L)
\end{array}
$$

Toy example: the torus $\mathbb{T}=\mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$

$$
\begin{array}{ccc}
\gamma & \mapsto & \pm \operatorname{hol}(\gamma) \\
\{\gamma\} & \mapsto & V(\mathbb{T})
\end{array}
$$

$$
N(\mathbb{T}, L)=\operatorname{Card}\left(V(\mathbb{T}) \cap B_{+}(0, L)\right)
$$

$=$ Number of primitive points of $\mathbb{Z}+i \mathbb{Z}$ in $B_{+}(0, L)$

$$
N(\mathbb{T}, L) \sim \frac{1}{\zeta(2)} \pi L^{2} \text { as } L \rightarrow \infty
$$

For a flat surface S :

$$
N(S, L)=\operatorname{Card}\left(V(S) \cap B_{+}(0, L)\right)
$$

For a flat surface S :

$$
N(S, L)=\operatorname{Card}\left(V(S) \cap B_{+}(0, L)\right)
$$

Let K be a connected component of a stratum $(\mathcal{H}(\underline{d})$ or $\mathcal{Q}(\underline{k}))$.

For a flat surface S :

$$
N(S, L)=\operatorname{Card}\left(V(S) \cap B_{+}(0, L)\right)
$$

Let K be a connected component of a stratum $(\mathcal{H}(\underline{d})$ or $\mathcal{Q}(\underline{k}))$.

- Masur ('88, '90)

$$
\forall S, \exists c_{1}, c_{2}>0, c_{1} \pi L^{2} \leq N(S, L) \leq c_{2} \pi L^{2}
$$

For a flat surface S :

$$
N(S, L)=\operatorname{Card}\left(V(S) \cap B_{+}(0, L)\right)
$$

Let K be a connected component of a stratum $(\mathcal{H}(\underline{d})$ or $\mathcal{Q}(\underline{k}))$.

- Masur ('88, '90)

$$
\forall S, \exists c_{1}, c_{2}>0, c_{1} \pi L^{2} \leq N(S, L) \leq c_{2} \pi L^{2}
$$

- Veech ('98)

$$
\exists c, \forall L, \frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, L) d \nu_{1}(S)=c \pi L^{2}
$$

For a flat surface S :

$$
N(S, L)=\operatorname{Card}\left(V(S) \cap B_{+}(0, L)\right)
$$

Let K be a connected component of a stratum $(\mathcal{H}(\underline{d})$ or $\mathcal{Q}(\underline{k}))$.

- Masur ('88, '90)

$$
\forall S, \exists c_{1}, c_{2}>0, c_{1} \pi L^{2} \leq N(S, L) \leq c_{2} \pi L^{2}
$$

- Veech ('98)

$$
\exists c, \forall L, \frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, L) d \nu_{1}(S)=c \pi L^{2}
$$

- Eskin-Masur ('00)

$$
\text { for a.e. } S \in K_{1}, N(S, L) \sim c \pi L^{2} \text { as } L \rightarrow \infty
$$

For a flat surface S :

$$
N(S, L)=\operatorname{Card}\left(V(S) \cap B_{+}(0, L)\right)
$$

Let K be a connected component of a stratum $(\mathcal{H}(\underline{d})$ or $\mathcal{Q}(\underline{k}))$.

- Masur ('88, '90)

$$
\forall S, \exists c_{1}, c_{2}>0, c_{1} \pi L^{2} \leq N(S, L) \leq c_{2} \pi L^{2}
$$

- Veech ('98)

$$
\exists c, \forall L, \frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, L) d \nu_{1}(S)=c \pi L^{2}
$$

- Eskin-Masur ('00)

$$
\text { for a.e. } S \in K_{1}, N(S, L) \sim c \pi L^{2} \text { as } L \rightarrow \infty
$$

c is called Siegel-Veech constant for K.

Counting closed geodesics on flat surfaces
Siegel-Veech constants

Variants:

Variants:

- $N_{\text {cyl }}(S, L)$ counts flat cylinders on S of width at most L

Variants:

- $N_{\text {cyl }}(S, L)$ counts flat cylinders on S of width at most L
- $N_{\text {area }}(S, L)$ counts flat cylinders on S of width at most L, with weight the area of the cylinders.

Variants:

- $N_{\text {cyl }}(S, L)$ counts flat cylinders on S of width at most L
- $N_{\text {area }}(S, L)$ counts flat cylinders on S of width at most L, with weight the area of the cylinders.
The corresponding Siegel-Veech constants $c_{c y l}$ and $c_{\text {area }}$ have the same properties as c.

Variants:

- $N_{\text {cyl }}(S, L)$ counts flat cylinders on S of width at most L
- $N_{\text {area }}(S, L)$ counts flat cylinders on S of width at most L, with weight the area of the cylinders.
The corresponding Siegel-Veech constants $c_{c y l}$ and $c_{\text {area }}$ have the same properties as c.

Theorem (Eskin-Kontsevich-Zorich)

The top g Lyapunov exponents of the Hodge bundle over $\mathcal{H}\left(d_{1}, \ldots, d_{n}\right)$ along the Teichmüller flow satisfy

$$
\lambda_{1}+\cdots+\lambda_{g}=\frac{1}{12} \sum_{i} \frac{d_{i}\left(d_{i}+2\right)}{d_{i}+1}+\frac{\pi^{2}}{3} c_{\text {area }}(\mathcal{H}(\underline{d}))
$$

where $d_{1}+\cdots+d_{n}=2 g-2$.

Variants:

- $N_{\text {cyl }}(S, L)$ counts flat cylinders on S of width at most L
- $N_{\text {area }}(S, L)$ counts flat cylinders on S of width at most L, with weight the area of the cylinders.
The corresponding Siegel-Veech constants $c_{c y l}$ and $c_{\text {area }}$ have the same properties as c.

Theorem (Eskin-Kontsevich-Zorich)

The top g Lyapunov exponents of the Hodge bundle over $\mathcal{H}\left(d_{1}, \ldots, d_{n}\right)$ along the Teichmüller flow satisfy

$$
\lambda_{1}+\cdots+\lambda_{g}=\frac{1}{12} \sum_{i} \frac{d_{i}\left(d_{i}+2\right)}{d_{i}+1}+\frac{\pi^{2}}{3} c_{\text {area }}(\mathcal{H}(\underline{d}))
$$

where $d_{1}+\cdots+d_{n}=2 g-2$.

- Works for any invariant sub-orbifold.
- Similar result in the quadratic case.

Computing Siegel-Veech constants

General idea (Eskin-Masur-Zorich):

Computing Siegel-Veech constants

General idea (Eskin-Masur-Zorich):
Veech's formula works for all L : take $L=\varepsilon$ very small.

$$
\frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, \varepsilon) d \nu_{1}(S)=c \pi \varepsilon^{2}
$$

Computing Siegel-Veech constants

General idea (Eskin-Masur-Zorich):
Veech's formula works for all L : take $L=\varepsilon$ very small.

$$
\frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, \varepsilon) d \nu_{1}(S)=c \pi \varepsilon^{2}
$$

Let $K^{0, \varepsilon}$ denote the set of surfaces with no short closed geodesic, $K^{1, \varepsilon}$ the set of surfaces with one short closed geodesic, and $K \geq 2, \varepsilon$ the set of surfaces with at least two short closed geodesics.

$$
\frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, \varepsilon) d \nu_{1}(S)=\frac{1}{\operatorname{Vol} K_{1}}\left(\int_{K^{0, \varepsilon}} 0+\int_{K^{1, \varepsilon}} 1+\int_{K \geq 2, \varepsilon} N(S, \varepsilon)\right)
$$

Computing Siegel-Veech constants

General idea (Eskin-Masur-Zorich):
Veech's formula works for all L : take $L=\varepsilon$ very small.

$$
\frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, \varepsilon) d \nu_{1}(S)=c \pi \varepsilon^{2}
$$

Let $K^{0, \varepsilon}$ denote the set of surfaces with no short closed geodesic, $K^{1, \varepsilon}$ the set of surfaces with one short closed geodesic, and $K \geq 2, \varepsilon$ the set of surfaces with at least two short closed geodesics.

$$
\frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, \varepsilon) d \nu_{1}(S)=\frac{1}{\operatorname{Vol} K_{1}}\left(\int_{K^{0, \varepsilon}} 0+\int_{K^{1, \varepsilon}} 1+\int_{K \geq 2, \varepsilon} N(S, \varepsilon)\right)
$$

By a result of Eskin-Masur, the last integral

$$
\int_{K \geq 2, \varepsilon} N(S, \varepsilon) d \nu_{1}(S)=o\left(\varepsilon^{2}\right) .
$$

Computing Siegel-Veech constants

General idea (Eskin-Masur-Zorich):
Veech's formula works for all L : take $L=\varepsilon$ very small.

$$
\frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, \varepsilon) d \nu_{1}(S)=c \pi \varepsilon^{2}
$$

Let $K^{0, \varepsilon}$ denote the set of surfaces with no short closed geodesic, $K^{1, \varepsilon}$ the set of surfaces with one short closed geodesic, and $K \geq 2, \varepsilon$ the set of surfaces with at least two short closed geodesics.

$$
\frac{1}{\operatorname{Vol} K_{1}} \int_{K_{1}} N(S, \varepsilon) d \nu_{1}(S)=\frac{1}{\operatorname{Vol} K_{1}}\left(\int_{K^{0, \varepsilon}} 0+\int_{K^{1, \varepsilon}} 1+\int_{K \geq 2, \varepsilon} N(S, \varepsilon)\right)
$$

By a result of Eskin-Masur, the last integral
$\int_{K \geq 2, \varepsilon} N(S, \varepsilon) d \nu_{1}(S)=o\left(\varepsilon^{2}\right)$.
Finally

$$
c=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi \varepsilon^{2}} \frac{\operatorname{Vol} K^{1, \varepsilon}}{\operatorname{Vol} K_{1}}
$$

K

K

Definition

A maximal collection of saddle connections on S whose ratios of lengths persist under a small deformation in the stratum is called a configuration.

Definition

A maximal collection of saddle connections on S whose ratios of lengths persist under a small deformation in the stratum is called a configuration.

In the Abelian case, it corresponds to maximal collection of homologous saddle connections, and in the quadratic case it corresponds to maximal collections of homologous saddle connections.
Configurations are classified by their geometric data.

Configurations

Examples of configurations with cylinders

\times poles, • zeroes

Geometric types of configurations were classified by
Eskin-Masur-Zorich in the Abelian case, and Masur-Zorich in the quadratic case.

Geometric types of configurations were classified by
Eskin-Masur-Zorich in the Abelian case, and Masur-Zorich in the quadratic case.
Assume now that $K=\mathcal{H}(\underline{d})$ or $K=\mathcal{Q}(\underline{k})$ is a connected stratum. For each geometric type of configuration \mathcal{C}, we can define the associate Siegel-Veech constant $c(\mathcal{C})$:

$$
c(\mathcal{C})=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi \varepsilon^{2}} \frac{\operatorname{Vol} K^{1, \varepsilon}(\mathcal{C})}{\operatorname{Vol} K_{1}}
$$

Geometric types of configurations were classified by
Eskin-Masur-Zorich in the Abelian case, and Masur-Zorich in the quadratic case.
Assume now that $K=\mathcal{H}(\underline{d})$ or $K=\mathcal{Q}(\underline{k})$ is a connected stratum. For each geometric type of configuration \mathcal{C}, we can define the associate Siegel-Veech constant $c(\mathcal{C})$:

$$
c(\mathcal{C})=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi \varepsilon^{2}} \frac{\operatorname{Vol} K^{1, \varepsilon}(\mathcal{C})}{\operatorname{Vol} K_{1}}
$$

We have $\operatorname{Vol} K^{1, \varepsilon}(\mathcal{C})=M(\mathcal{C}) \cdot 2 \pi \varepsilon^{2} \cdot \prod \operatorname{Vol}($ boundary strata $)$, where $M(\mathcal{C})$ is a combinatorial constant.

Geometric types of configurations were classified by
Eskin-Masur-Zorich in the Abelian case, and Masur-Zorich in the quadratic case.
Assume now that $K=\mathcal{H}(\underline{d})$ or $K=\mathcal{Q}(\underline{k})$ is a connected stratum.
For each geometric type of configuration \mathcal{C}, we can define the associate Siegel-Veech constant $c(\mathcal{C})$:

$$
c(\mathcal{C})=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi \varepsilon^{2}} \frac{\operatorname{Vol} K^{1, \varepsilon}(\mathcal{C})}{\operatorname{Vol} K_{1}}
$$

We have $\operatorname{Vol} K^{1, \varepsilon}(\mathcal{C})=M(\mathcal{C}) \cdot 2 \pi \varepsilon^{2} \cdot \prod \operatorname{Vol}($ boundary strata $)$, where $M(\mathcal{C})$ is a combinatorial constant.
These constants were computed by Eskin-Masur-Zorich in the Abelian case and Athreya-Eskin-Zorich in the quadratic case for genus 0 .

Principal result

Theorem

Explicit formula for the Siegel-Veech constants $c(\mathcal{C}), c_{c y l}(\mathcal{C})$, and $c_{\text {area }}(\mathcal{C})$, in the quadratic case, genus ≥ 1.

Principal result

Theorem

Explicit formula for the Siegel-Veech constants $c(\mathcal{C}), c_{c y l}(\mathcal{C})$, and $c_{\text {area }}(\mathcal{C})$, in the quadratic case, genus ≥ 1.

Main difficulty: check this formula!

Principal result

Theorem

Explicit formula for the Siegel-Veech constants $c(\mathcal{C}), c_{c y l}(\mathcal{C})$, and $c_{\text {area }}(\mathcal{C})$, in the quadratic case, genus ≥ 1.

Main difficulty: check this formula!

- Computation of Lyapunov exponents are programmed (Zorich, Trevino, ...): numerical values can be easily obtained

Principal result

Theorem

Explicit formula for the Siegel-Veech constants $c(\mathcal{C}), c_{c y l}(\mathcal{C})$, and $c_{\text {area }}(\mathcal{C})$, in the quadratic case, genus ≥ 1.

Main difficulty: check this formula!

- Computation of Lyapunov exponents are programmed (Zorich, Trevino, ...): numerical values can be easily obtained
- In the Abelian case Eskin's program gives numerical values of $c(\mathcal{C})$ for each configuration.

Principal result

Theorem

Explicit formula for the Siegel-Veech constants $c(\mathcal{C}), c_{c y l}(\mathcal{C})$, and $c_{\text {area }}(\mathcal{C})$, in the quadratic case, genus ≥ 1.

Main difficulty: check this formula!

- Computation of Lyapunov exponents are programmed (Zorich, Trevino, ...): numerical values can be easily obtained
- In the Abelian case Eskin's program gives numerical values of $c(\mathcal{C})$ for each configuration.
- Volumes are known explicitly only in the Abelian case (Eskin-Okounkov) and in the quadratic case in genus 0 (Athreya-Eskin-Zorich)

Computing volumes of moduli spaces

Computing volumes of moduli spaces

General idea to evaluate the volumes of moduli spaces: count integer points (Zorich, Eskin-Okounkov, Athreya-Eskin-Zorich, etc.)

Computing volumes of moduli spaces

General idea to evaluate the volumes of moduli spaces: count integer points (Zorich, Eskin-Okounkov, Athreya-Eskin-Zorich, etc.)

L lattice

Computing volumes of moduli spaces

General idea to evaluate the volumes of moduli spaces: count integer points (Zorich, Eskin-Okounkov, Athreya-Eskin-Zorich, etc.)

L lattice
$\operatorname{Vol} \mathcal{Q}_{1}(\alpha)=\operatorname{dim}_{\mathbb{R}}(\mathcal{Q}(\alpha)) \cdot \operatorname{Vol} C\left(\mathcal{Q}_{1}(\alpha)\right)$

Computing volumes of moduli spaces

General idea to evaluate the volumes of moduli spaces: count integer points (Zorich, Eskin-Okounkov, Athreya-Eskin-Zorich, etc.)

L lattice
$\operatorname{Vol} \mathcal{Q}_{1}(\alpha)=\operatorname{dim}_{\mathbb{R}}(\mathcal{Q}(\alpha)) \cdot \operatorname{Vol} C\left(\mathcal{Q}_{1}(\alpha)\right)$
$\operatorname{Vol} C\left(\mathcal{Q}_{1}(\alpha)\right)=\lim _{N \rightarrow \infty} \frac{1}{N^{\mathrm{dim}} \mathrm{C}} \operatorname{Card}\left\{L \cap C\left(\mathcal{Q}_{N}(\alpha)\right)\right\}$

Computing volumes of moduli spaces

General idea to evaluate the volumes of moduli spaces: count integer points (Zorich, Eskin-Okounkov, Athreya-Eskin-Zorich, etc.)

L lattice
$\operatorname{Vol} \mathcal{Q}_{1}(\alpha)=\operatorname{dim}_{\mathbb{R}}(\mathcal{Q}(\alpha)) \cdot \operatorname{Vol} C\left(\mathcal{Q}_{1}(\alpha)\right)$
$\operatorname{Vol} C\left(\mathcal{Q}_{1}(\alpha)\right)=\lim _{N \rightarrow \infty} \frac{1}{N^{\text {dim }}} \operatorname{Card}\left\{L \cap C\left(\mathcal{Q}_{N}(\alpha)\right)\right\}$
Integer points in the moduli space (surfaces $S \in L$) correspond to square-tiled surfaces / pillowcases covers.

Conventions (corresponding to [AEZ]):

- labelled zeroes
- $\mathcal{Q}_{1}(\alpha)$ correspond to surfaces of area $1 / 2$
- $L=\left(H_{1}^{-}(\hat{S}, \hat{\Sigma} ; \mathbb{Z})\right)_{*}$

Conventions (corresponding to [AEZ]):

- labelled zeroes
- $\mathcal{Q}_{1}(\alpha)$ correspond to surfaces of area $1 / 2$
- $L=\left(H_{1}^{-}(\hat{S}, \hat{\Sigma} ; \mathbb{Z})\right)_{*}$

In this convention, all saddle connections and loops representing non trivial cycles in the relative homology are "half-integer". Trivial cycles are integer.

Counting integer points of area $\leq N / 2$: counting square-tiled surfaces with $2 N$ squares of size $1 / 2 \times 1 / 2$.

Counting integer points of area $\leq N / 2$: counting square-tiled surfaces with $2 N$ squares of size $1 / 2 \times 1 / 2$.

An example

Computation of the volume of $\mathcal{Q}_{1}\left(2,-1^{2}\right)$

An example

Computation of the volume of $\mathcal{Q}_{1}\left(2,-1^{2}\right)$ (Remark: this stratum is connected and hyperelliptic, so its volume is easily computable)

An example

Computation of the volume of $\mathcal{Q}_{1}\left(2,-1^{2}\right)$ (Remark: this stratum is connected and hyperelliptic, so its volume is easily computable)
(1) Find all ribbon graphs with one vertex of valency 4 and two of valency 1

An example

Computation of the volume of $\mathcal{Q}_{1}\left(2,-1^{2}\right)$ (Remank: this stratum is connected and hyperelliptic, so its volume is easily computable)
(1) Find all ribbon graphs with one vertex of valency 4 and two of valency 1

An example

Computation of the volume of $\mathcal{Q}_{1}\left(2,-1^{2}\right)$ (Remank: this stratum is connected and hyperelliptic, so its volume is easily computable)
(1) Find all ribbon graphs with one vertex of valency 4 and two of valency 1

(2) Eliminate ribbon graphs with no admissible gluing of cylinders.

An example

Computation of the volume of $\mathcal{Q}_{1}\left(2,-1^{2}\right)$ (Remank: this stratum is connected and hyperelliptic, so its volume is easily computable)
(1) Find all ribbon graphs with one vertex of valency 4 and two of valency 1

(2) Eliminate ribbon graphs with no admissible gluing of cylinders.

An example

Computation of the volume of $\mathcal{Q}_{1}\left(2,-1^{2}\right)$ (Remank: this stratum is connected and hyperelliptic, so its volume is easily computable)
(1) Find all ribbon graphs with one vertex of valency 4 and two of valency 1

(2) Eliminate ribbon graphs with no admissible gluing of cylinders.
(3) For each diagram, count the number of square-tiled surfaces of this type with at most 2 N squares.

All parameters are "half integer".

All parameters are "half integer". Equation $w=2 l_{1}+I_{2}$ has $\simeq w$ solutions.

All parameters are "half integer". Equation $w=2 l_{1}+I_{2}$ has $\simeq w$ solutions. The number of square-tiled surfaces with area at most $N / 2$ of this type is:

$$
\sum_{w h \leq N / 2} 2 w^{2}=\sum_{W H \leq 2 N} \frac{W^{2}}{2} \sim \frac{1}{2} \frac{(2 N)^{3}}{3} \zeta(3)=\frac{4 N^{3}}{3} \zeta(3)
$$

(with $W=2 w, H=2 h$, integers).

$w=W$ is an integer and all other parameters are "half integer". Equation $W=2\left(I_{1}+I_{2}\right)$ has $\simeq W$ solutions.
Here we have a factor $1 / 4$ responsible for the symmetries of the ribbon graph.
The number of square-tiled surfaces with area at most $N / 2$ of this type is:

$$
\frac{1}{4} \sum_{W h \leq N / 2} 2 W \cdot W=\frac{1}{2} \sum_{W H \leq N} W^{2} \sim \frac{N^{3}}{6} \zeta(3)
$$

All parameters are "half integer". Equation $w=I$ has 1 solution. Here we have a factor $1 / 2$ responsible for the symmetries of the ribbon graph.
The number of square-tiled surfaces with area at most $N / 2$ of this type is:
$\frac{1}{2} \sum_{w\left(2 h_{1}+h_{2}\right) \leq N / 2} 2 w(4 w)=\sum_{w\left(2 H_{1}+H_{2}\right) \leq 2 N} W^{2} \sim \frac{N^{3}}{6}(8 \zeta(2)-9 \zeta(3))$
$\operatorname{dim}_{\mathbb{C}} \mathcal{Q}\left(2,-1^{2}\right)=3$
We obtain

$$
\operatorname{Vol} \mathcal{Q}_{1}\left(2,-1^{2}\right)=\underbrace{8 \zeta(3)+\zeta(3)}_{1-\text { cyl diag }}+(\underbrace{8 \zeta(2)-9 \zeta(3)}_{2-\text { cyl diag }})=8 \zeta(2)
$$

Stratum	$1 c y l$	$2 c y l$	$3 c y l$	Vol
$\mathcal{Q}\left(1,-1^{5}\right)$	$40 \zeta(4)$	$50 \zeta(4)$		$90 \zeta(4)=\pi^{4}$
$\mathcal{Q}\left(1^{2},-1^{6}\right)$	$140 \zeta(6)$	$210 \zeta(6)$	$\frac{245}{2} \zeta(6)$	$\frac{945}{2} \zeta(6)=\frac{\pi^{6}}{2}$
$\mathcal{Q}\left(2,-1^{2}\right)$	$9 \zeta(3)$	$8 \zeta(2)-9 \zeta(3)$		$8 \zeta(2)=\frac{4 \pi^{2}}{3}$
$\mathcal{Q}\left(1^{2},-1^{2}\right)$	$\frac{50}{3} \zeta(4)$	$\frac{40}{3} \zeta(4)$		$30 \zeta(4)=\frac{\pi^{4}}{3}$
$\mathcal{Q}\left(3,-1^{3}\right)$	$30 \zeta(4)$	$20 \zeta(4)$		$50 \zeta(4)=\frac{5 \pi^{4}}{9}$
$\mathcal{Q}\left(2,1^{2}\right)$	$\frac{11}{2} \zeta(5)$	$-\frac{11}{2} \zeta(5)$ $+3 \zeta(2) \zeta(3)$ $+\frac{16}{2} \zeta(4)$	$-3 \zeta(2) \zeta(3)$ $+\frac{20}{3} \zeta(4)$	
$\mathcal{Q}(5,-1)$	$12 \zeta(4)$	$\frac{20}{3} \zeta(4)$		$\frac{56}{3} \zeta(4)=\frac{28 \pi^{4}}{135}$

Further directions to get the volumes:

Further directions to get the volumes:

- For small strata use Eskin-Okounkov's work to obtain explicit volumes

Further directions to get the volumes:

- For small strata use Eskin-Okounkov's work to obtain explicit volumes
- Compute proportion of 1-cylinder diagrams experimentally (Zorich and Delecroix), and compute (exactly) contribution of 1-cylinder diagrams (Zograf, Zorich)

Thank you for your attention!
J.S. Athreya, A. Eskin, A. Zorich, Right-Angled Billiards and Volumes of Moduli Spaces of Quadratic Differentials on $\mathbb{C} P^{1}$, arXiv:1212.1660.
J.S. Athreya, A. Eskin, A. Zorich, Counting Generalized Jenkins-Strebel Differentials, arXiv:1212.1714.
A. Eskin, H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory and Dynamical Systems, 21:2 (2001), pp. 443-478.
A. Eskin, M. Kontsevich, A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publications mathématiques de l'IHÉS, Springer Berlin Heidelberg (2013).
A. Eskin, H. Masur, A. Zorich, Moduli Spaces of Abelian Differentials: The Principal Boundary, Counting Problems, and the Siegel-Veech Constants, Publications de I'IHES, 97:1 (2003), pp. 61-179.
A. Eskin, A. Okounkov, Asymptotics of number of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Inventiones Mathematicae, 145:1 (2001), pp. 59-104.
A. Eskin, A. Okounkov, Pillowcases and quasimodular forms, Algebraic Geometry and Number Theory, Progress in Mathematics 253 (2006), pp 1-25.
H. Masur, A. Zorich, Multiple Saddle Connections on Flat Surfaces ans the Principal Boundary of the Moduli Spaces of Quadratic Differentials, Geom. Funct. Anal., 18:3 (2008), pp. 919-987.

