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Introduction

What is a flat surface ?

Translation surface

equivalently (X , ω) with X

Riemann surface and ω
holomorphic 1-form (Abelian
differential)

Half-translation surface

equivalently (X , q) with X

Riemann surface and q

quadratic differential

Both types of surfaces inherits from C of a flat metric with conical
singularities.
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Translation surfaces Half-translation surfaces

singularity order d k

singularity angle 2π(d + 1) π(k + 2)

moduli space Hg Qg

strata H(d1, d2, . . . , dn) Q(k1, k2, . . . , kn)

hypersurface H1(d) Q1(k)

Connected components of H1(d) and Q1(k) carry invariant finite
measures (Masur-Veech).
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Siegel–Veech constants

For S a flat surface (= (X , ω) or (X , q)), we introduce N(S , L) the
number of (families of) closed geodesics on S of length ≤ L.
Problem: find the asymptotic of N(S , L) as L goes to ∞.
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Siegel–Veech constants

Toy example: the torus T = C/(Z+ iZ)

γ 7→ ±hol(γ)
{γ} 7→ V (T)

N(T, L) = Card(V (T) ∩ B+(0, L))

= Number of primitive points of Z+ iZ in B+(0, L)

N(T, L) ∼
1

ζ(2)
πL2 as L → ∞
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Siegel–Veech constants

For a flat surface S :

N(S , L) = Card(V (S) ∩ B+(0, L))

Let K be a connected component of a stratum (H(d) or Q(k)).

Masur (’88, ’90)

∀S , ∃c1, c2 > 0, c1πL
2 ≤ N(S , L) ≤ c2πL

2

Veech (’98)

∃c , ∀L,
1

VolK1

∫

K1

N(S , L)dν1(S) = cπL2

Eskin–Masur (’00)

for a.e.S ∈ K1, N(S , L) ∼ cπL2 as L → ∞

c is called Siegel–Veech constant for K .
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Siegel–Veech constants

Variants:

Ncyl (S , L) counts flat cylinders on S of width at most L

Narea(S , L) counts flat cylinders on S of width at most L, with
weight the area of the cylinders.

The corresponding Siegel–Veech constants ccyl and carea have the
same properties as c .

Theorem (Eskin–Kontsevich–Zorich)

The top g Lyapunov exponents of the Hodge bundle over

H(d1, . . . , dn) along the Teichmüller flow satisfy

λ1 + · · ·+ λg =
1

12

∑

i

di (di + 2)

di + 1
+

π2

3
carea(H(d))

where d1 + · · ·+ dn = 2g − 2.
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Siegel–Veech constants

Variants:

Ncyl (S , L) counts flat cylinders on S of width at most L

Narea(S , L) counts flat cylinders on S of width at most L, with
weight the area of the cylinders.

The corresponding Siegel–Veech constants ccyl and carea have the
same properties as c .

Theorem (Eskin–Kontsevich–Zorich)

The top g Lyapunov exponents of the Hodge bundle over

H(d1, . . . , dn) along the Teichmüller flow satisfy

λ1 + · · ·+ λg =
1

12

∑

i

di (di + 2)

di + 1
+

π2

3
carea(H(d))

where d1 + · · ·+ dn = 2g − 2.

Works for any invariant sub-orbifold.

Similar result in the quadratic case.
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Computing Siegel–Veech constants

General idea (Eskin–Masur–Zorich):
Veech’s formula works for all L: take L = ε very small.

1

VolK1

∫

K1

N(S , ε)dν1(S) = cπε2

Let K 0,ε denote the set of surfaces with no short closed geodesic,
K 1,ε the set of surfaces with one short closed geodesic, and K≥2,ε

the set of surfaces with at least two short closed geodesics.

1

VolK1
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1

VolK1
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N(S , ε)
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Veech’s formula works for all L: take L = ε very small.

1

VolK1

∫

K1

N(S , ε)dν1(S) = cπε2

Let K 0,ε denote the set of surfaces with no short closed geodesic,
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the set of surfaces with at least two short closed geodesics.

1

VolK1
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1

VolK1

(∫

K 0,ε

0 +
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1 +
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By a result of Eskin–Masur, the last integral
∫

K≥2,ε N(S , ε)dν1(S) = o(ε2).
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Computing Siegel–Veech constants

General idea (Eskin–Masur–Zorich):
Veech’s formula works for all L: take L = ε very small.

1

VolK1

∫

K1

N(S , ε)dν1(S) = cπε2

Let K 0,ε denote the set of surfaces with no short closed geodesic,
K 1,ε the set of surfaces with one short closed geodesic, and K≥2,ε

the set of surfaces with at least two short closed geodesics.

1

VolK1

∫

K1

N(S , ε)dν1(S) =
1

VolK1

(∫

K 0,ε

0 +

∫

K 1,ε

1 +

∫

K≥2,ε

N(S , ε)

)

By a result of Eskin–Masur, the last integral
∫

K≥2,ε N(S , ε)dν1(S) = o(ε2).
Finally

c = lim
ε→0

1

πε2
VolK 1,ε

VolK1
.
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Configurations

Definition

A maximal collection of saddle connections on S whose ratios of
lengths persist under a small deformation in the stratum is called a
configuration.

In the Abelian case, it corresponds to maximal collection of
homologous saddle connections, and in the quadratic case it
corresponds to maximal collections of ĥomologous saddle
connections.
Configurations are classified by their geometric data.
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Examples of configurations with cylinders

× poles, • zeroes
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where M(C) is a combinatorial constant.
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Configurations

Geometric types of configurations were classified by
Eskin–Masur–Zorich in the Abelian case, and Masur–Zorich in the
quadratic case.
Assume now that K = H(d) or K = Q(k) is a connected stratum.
For each geometric type of configuration C, we can define the
associate Siegel–Veech constant c(C):

c(C) = lim
ε→0

1

πε2
VolK 1,ε(C)

VolK1

We have VolK 1,ε(C) = M(C) · 2πε2 ·
∏

Vol(boundary strata),
where M(C) is a combinatorial constant.
These constants were computed by Eskin–Masur–Zorich in the
Abelian case and Athreya–Eskin–Zorich in the quadratic case for
genus 0.
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Configurations

Principal result

Theorem

Explicit formula for the Siegel–Veech constants c(C), ccyl (C), and
carea(C), in the quadratic case, genus ≥ 1.

Main difficulty: check this formula !

Computation of Lyapunov exponents are programmed (Zorich,
Trevino, ...): numerical values can be easily obtained

In the Abelian case Eskin’s program gives numerical values of
c(C) for each configuration.

Volumes are known explicitly only in the Abelian case
(Eskin–Okounkov) and in the quadratic case in genus 0
(Athreya–Eskin–Zorich)
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Volumes

Computing volumes of moduli spaces

General idea to evaluate the volumes of moduli spaces: count
integer points (Zorich, Eskin–Okounkov, Athreya–Eskin–Zorich,
etc.)

L

L lattice

Q1(α)

QN(α)

Q(α)

VolQ1(α) = dimR(Q(α)) · VolC (Q1(α))
VolC (Q1(α)) = lim

N→∞

1
NdimC

Card{L ∩ C (QN(α))}

Integer points in the moduli space (surfaces S ∈ L) correspond to
square-tiled surfaces / pillowcases covers.
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1 (Ŝ , Σ̂;Z)

)

∗



Counting closed geodesics on flat surfaces

Volumes

Conventions (corresponding to [AEZ]):

labelled zeroes

Q1(α) correspond to surfaces of area 1/2

L =
(

H−
1 (Ŝ , Σ̂;Z)

)

∗

In this convention, all saddle connections and loops representing
non trivial cycles in the relative homology are “half-integer”.
Trivial cycles are integer.
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Volumes

Counting integer points of area ≤ N/2: counting square-tiled
surfaces with 2N squares of size 1/2× 1/2.

1

2 1

3 4 5 3 4 5

1(1, 1)

w1

w2

0(2)

l4

l3

l5
•◦

l2 l1

�
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Volumes

An example

Computation of the volume of Q1(2,−12) (Remark: this stratum is connected and

hyperelliptic, so its volume is easily computable)

1 Find all ribbon graphs with one vertex of valency 4 and two of
valency 1

2 Eliminate ribbon graphs with no admissible gluing of cylinders.

3 For each diagram, count the number of square-tiled surfaces
of this type with at most 2N squares.
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Volumes

All parameters are “half integer”. Equation w = 2l1 + l2 has ≃ w

solutions. The number of square-tiled surfaces with area at most
N/2 of this type is:

∑

wh≤N/2

2w2 =
∑

WH≤2N

W 2

2
∼

1

2

(2N)3

3
ζ(3) =

4N3

3
ζ(3)

(with W = 2w , H = 2h, integers).
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Volumes

w = W is an integer and all other parameters are “half integer”.
Equation W = 2(l1 + l2) has ≃ W solutions.
Here we have a factor 1/4 responsible for the symmetries of the
ribbon graph.
The number of square-tiled surfaces with area at most N/2 of this
type is:

1

4

∑

Wh≤N/2

2W ·W =
1

2

∑

WH≤N

W 2 ∼
N3

6
ζ(3)
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Volumes

All parameters are “half integer”. Equation w = l has 1 solution.
Here we have a factor 1/2 responsible for the symmetries of the
ribbon graph.
The number of square-tiled surfaces with area at most N/2 of this
type is:

1

2

∑

w(2h1+h2)≤N/2

2w(4w) =
∑

W (2H1+H2)≤2N

W 2 ∼
N3

6
(8ζ(2)− 9ζ(3))
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Volumes

dimCQ(2,−12) = 3
We obtain

VolQ1(2,−12) = 8ζ(3) + ζ(3)
︸ ︷︷ ︸

1−cyl diag

+ (8ζ(2) − 9ζ(3)
︸ ︷︷ ︸

2−cyl diag

) = 8ζ(2)
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Volumes

Stratum 1cyl 2cyl 3cyl Vol

Q(1,−15) 40ζ(4) 50ζ(4) 90ζ(4) = π4

Q(12,−16) 140ζ(6) 210ζ(6) 245
2 ζ(6) 945

2 ζ(6) = π6

2

Q(2,−12) 9ζ(3) 8ζ(2) − 9ζ(3) 8ζ(2) = 4π2

3

Q(12,−12) 50
3 ζ(4)

40
3 ζ(4) 30ζ(4) = π4

3

Q(3,−13) 30ζ(4) 20ζ(4) 50ζ(4) = 5π4

9

Q(2, 12) 11
2 ζ(5) −11

2 ζ(5) 12ζ(4) = 2π4

15

+3ζ(2)ζ(3) −3ζ(2)ζ(3)

+16
3 ζ(4) +20

3 ζ(4)

Q(5,−1) 12ζ(4) 20
3 ζ(4)

56
3 ζ(4) =

28π4

135
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Further directions to get the volumes:

For small strata use Eskin–Okounkov’s work to obtain explicit
volumes

Compute proportion of 1-cylinder diagrams experimentally
(Zorich and Delecroix), and compute (exactly) contribution of
1-cylinder diagrams (Zograf, Zorich)
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Thank you for your attention !
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