
Reformulation and Decomposition of Integer Programs

François Vanderbeck1 and Laurence A. Wolsey2

(1) Université de Bordeaux 1 and INRIA, Bordeaux Sud Ouest,fv@math.u-bordeaux1.fr

(2) CORE, Université catholique de Louvain, laurence.wolsey@uclouvain.be

(Working paper reference: CORE DP 2009/16 - revised in June 2009)

Abstract

In this survey we examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one

reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-

bound based algorithm. First we cover in detail reformulations based on decomposition, such as Lagrangean relaxation,

Dantzig-Wolfe and the resulting column generation and branch-and-price algorithms. This is followed by an examination

of Benders’ type algorithms based on projection. Finally wediscuss in detail extended formulations involving additional

variables that are based on problem structure. These can often be used to provide strengthened a priori formulations.

Reformulations obtained by adding cutting planes in the original variables are not treated here.

1 Introduction

Integer linear programs (IPs) and mixed integer linear programs (MIPs) are often difficult to solve, even though the

state-of-the-art mixed integer programming solvers are inmany cases remarkably effective, and have improved radically

in the last ten years. These solvers typically use branch-and-cut involving cutting planes to obtain improved linear

programming bounds and branching to carry out implicit enumeration of the solutions. However these systems essentially

ignore problem structure.

The goal in this chapter is to show the numerous ways in which,given an initial formulation of an IP,problem structure

can be used to obtain improved problem formulations and moreeffective algorithms that take the structure into account.

One common way to obtain reformulations is by adding valid inequalities (cutting planes) in the original variables. This

topic is treated in considerable detail in Chapters ??. Herewe consider other possibilities. The general motivation isto

obtain a reformulation for which the optimal value of the linear programming relaxation is closer to the optimal value of

the IP than that of the original formulation and that is computationally tractable.

One approach is to introduce new variables so as to better model the structure of the problem - the resultingextended

formulationswill be studied in detail. Introducing new variables typically permits one to model some combinatorial

structure more precisely and to induce integrality throughtighter linear constraints linking the variables. One such

extended formulation is provided by the classical Minkowski representation of a polyhedron in terms of its extreme

points and extreme rays. An alternative is to develop reformulations based on projection onto a subset of the variables,

based on Farkas’ lemma and/or Fourier-Motzkin elimination. Projection allows one to reduce the number of variables

so that calculations are typically faster: thus for a mixed integer program one might project onto the integer variables,

and for an extended formulation giving an improved bound onemight project so as to obtain the tightened bound while

working in the space of the original variables.

There are also other reasons leading us to look at alternative formulations. One might be to treat or eliminate symmetry

among solutions (see Chapter ??), another might be to obtainvariables that are more effective as branching variables, or

variables for which one can develop effective valid inequalities.

Reformulations often rely on a decomposition of the problem. Given a hard integer program (IP) in the form

min{cx : x∈ X} whereX = {x∈ Z
n
+ : Ax≥ a},

1

one typical way to obtain a set with structure is todecompose Xinto two (or more) setsX = Y∩Z, where one or both of

the setsY,Z hasstructureand is a candidate for reformulation. In addition reformulations often require specific solution

methods: the reformulation may involve a very large number of variables and/or constraints, in which case it becomes

necessary to develop algorithms that treat the corresponding columns or rows implicitly, Dantzig-Wolfe decomposition

and Benders’ decomposition being the two classical examples.

The contents of this chapter are as follows. In Section 2 we introduce the different concepts used later. We give defini-

tions and simple examples of polyhedra, formulations, extended formulations and reformulations obtained by projection.

We discuss how decomposition can be used to obtain simpler sets, and what we mean by a set with structure.

In Section 3 we consider reformulations that are appropriate when the optimization problem over a “simpler” setZ,

obtained by dropping some “hard” constraints, is relatively easy to solve. In particular we consider the Lagrangean dual

approach to obtain tight bounds and related algorithms, andthe Dantzig-Wolfe reformulation whose linear programming

relaxation gives an identical bound. The basic column generation algorithm to solve the linear programming relaxation

of the Dantzig-Wolfe reformulation is presented, as well asits integration into a branch-and-bound algorithm to solve

the integer problem. In Section 4 we consider formulations and algorithms based on projection, in particular Benders’

reformulation. Projection typically leads to formulations with a very large number of constraints, so here the algorithms

rely on cut generation.

The reformulations in Sections 3 and 4 are generic. In Section 5 we consider sets with more structure for which it is

possible to obtain interesting extended formulations. In many cases optimization over the sets is polynomially solvable.

We show extended formulations a) based on variable splitting such as the multi-commodity reformulation of single source

fixed charge network flow problems, b) for sets over which one can optimize by dynamic programming, c) for sets in the

form of disjunctions, and d) for a variety of other sets with structure.

In Section 6 we discuss hybrid reformulations and algorithms; for example ifX = Y∩Z and both sets have some

special structure, we might wish to combine a (large) extended formulation forY with a (large) cutting plane description

for Z. Section 7 consists of historical notes as well as a few references concerning recent theoretical and computational

developments.

2 Polyhedra, Reformulation and Decomposition

2.1 Introduction

Given a problem that has been formulated as a linear integer program, we are interested in finding reformulations

(alternative problem descriptions) that are more effective in one way or another. We present some basic results about

polyhedra, and give definitions of formulations and extended formulations, with a couple of examples to show how

reformulations arise. Finally we discuss how decomposition leads one to simpler subsets, and indicate how their structure

can be exploited to provide reformulations and possibly specialized algorithms.

Throughout we assume that our objective is to solve the integer program

(IP) min{cx : x∈ X}

whereX⊆Z
n is a discrete solution set that can be modeled as the set of integer points satisfying a set of linear inequalities

X = P∩Z
n with P = {x∈ R

n
+ : Ax≥ a}

or the mixed integer program

(MIP) min{cx+hy : (x,y) ∈ XM}

whereXM ⊆ Z
n×R

p is given in the form

XM = PM ∩ (Zn×R
p) with PM = {(x,y) ∈R

n
+×R

p
+ : Gx+Hy≥ b}.

P andPM will be referred to as the initial formulations ofX andXM respectively. For simplicity, results are presented for

the integer setX, unless the presence of continuous variablesy is important.

2

2.2 Polyhedra and Reformulation

Here we study the feasible solutions setsX andXM arising in IP and MIP respectively. Throughout we will use the

termreformulationinformally to mean any alternative description of problemsIP or MIP.

Definition 1 A polyhedron P⊆ R
n is the intersection of a finite number of half-spaces. In other words there exists

A∈R
m×n and a∈R

m such that P= {x∈R
n : Ax≥ a}.

Definition 2 A polyhedron P is a formulation for X if X= P∩Z
n.

Sets such asX have many formulations. IfP1,P2 are two formulations forX with P1 ⊂ P2, we say thatP1 is astronger

formulation thanP2 because

z(c) = min{cx : x∈ X} ≥min{cx : x∈ P1} ≥min{cx : x∈ P2} ∀c∈ R
n

and thus the lower bound onz(c) provided by the linear programming relaxation with formulation P1 is always greater

than or equal to that provided byP2.

Definition 3 Given X⊆ R
n, the convex hull of X, denotedconv(X), is the smallest closed convex set containing X.

The convex hull of an integer setX (or a mixed integer setXM defined by rational data) is a polyhedron. Thus the

strongest possible formulation is provided by conv(X) becausez(c) = min{cx : x∈ conv(X)}.

Given an initial formulationP of X, one classical way to obtain a stronger formulation is to addvalid inequalities

(cutting planes) in thex variables so as to obtain a better approximation to conv(X). This is discussed in Chapters ??. The

main concepts presented in this chapter, extended formulations and projection, are now defined.

Definition 4 An extended formulation for a polyhedron P⊆ R
n is a polyhedron Q= {(x,w) ∈ R

n+p : Gx+ Hw≥ d}

such that P=projx(Q).

Definition 5 Given a set U⊆ R
n×R

p, the projection of U on the first n variables, x= (x1, · · · ,xn), is the set

projx(U) = {x∈R
n : ∃ w∈ R

p with (x,w) ∈U}.

Minkowski’s representation of a polyhedron in terms of its extreme points and extreme rays gives an extended formu-

lation that can be useful for both linear and integer programs.

Definition 6 Given a non-empty polyhedron P⊆R
n,

i) x ∈ P is an extreme point of P if x= λx1 +(1−λ)x2, 0 < λ < 1, x1,x2 ∈ P implies that x= x1 = x2.

ii) r is a ray of P if r 6= 0 and x∈ P implies x+ µr ∈ P for all µ ∈R
1
+.

iii) r is an extreme ray of P if r is a ray of P and r= µ1r1 + µ2r2, µ ∈ R
2
+ \ {0}, r1, r2 rays of P implies r1 = αr2 for

someα > 0.

From now on we assume thatrank(A) = n which is necessary forP to have extreme points.

Theorem 1 (Minkowski) Every polyhedron P= {x∈ R
n : Ax≥ a} can be represented in the form

P = {x∈R
n : x = ∑

g∈G
λgxg + ∑

r∈R
µrv

r , ∑
g∈G

λg = 1,λ ∈R
|G|
+ ,µ ∈ R

|R|
+ }

where{xg}g∈G are the extreme points of P and{vr}r∈R the extreme rays of P.

Example 1 The polyhedron

P = {x∈ R
2
+ : 4x1 +12x2 ≥ 33,3x1−x2 ≥−1,x1−4x2 ≥−23}

has the extended formulation

Q = {(x,λ ,µ) ∈ R
2×R

3
+×R

2
+ : x =

(
33
4

0

)

λ1 +

(
21
40
103
40

)

λ2 +

(
19
11
68
11

)

λ3 +

(

1

0

)

µ1 +

(

4

1

)

µ2,

λ1 +λ2 +λ3 = 1}. See Figure 1.

The concept of extended formulation for a polyhedron generalizes to setsX of integer points, and in particular one

can apply Definition 4 to conv(X).

3

0 5

5

1

2

3

4

6

7

1 2 3 4 6 7 8 9

(9,0)

(3,2)

(1,3)

(1,4)

(2,6)

(5,7)

(2,5)

(6,1)

(33/4,0)

(21/40,103/40)

(19/11,68/11)

Figure 1: Extreme Points and Rays ofP and conv(P∩Z
n)

Definition 7 An extended formulation for an IP set X⊆ Z
n is a polyhedron Q⊆ R

n+p such that X=projx(Q)∩Z
n.

Minkowski’s Theorem (Theorem 1) obviously provides an extended formulation forX. Specifically take

Q = {(x,λ ,µ) ∈R
n×R

|G|
+ ×R

|R|
+ : x = ∑

g∈G
λgxg + ∑

r∈R
µrv

r , ∑
g∈G

λg = 1}

where{xg}g∈G are the extreme points and{vr}r∈R the extreme rays of conv(X).

Definition 8 An extended formulation Q⊆ R
n+p for an IP set X⊆ Z

n is tight if projx(Q) = conv(X).

An extended formulation Q⊆R
n+p for an IP set X= P∩Z

n is compact if the length of the description of Q is polynomial

in the length of the description of X (i.e., the length of the description of the initial formulation P of X).

In general the number of extreme points and extreme rays of conv(X) is not polynomial in the length of the description of

X, so the extended formulation provided by Minkowski’s Theorem is not compact. Similarly the number of inequalities

in thex variables required to describe conv(X) is usually not polynomial in the length of the description ofX.

In the framework of integer programs one also encounters more general reformulations in which some of the additional

variables are required to be integer, replacing the integrality constraints on some of the original variables. It may then be

possible to drop the original variables.

Definition 9 An extended IP-formulation for an IP set X⊆Z
n is a set QI = {(x,w1,w2)∈R

n×Z
p1×R

p2 : Gx+H1w1+

H2w2≥ b} such that X=projxQI .

There is a somewhat similar result to Minkowski’s theorem concerning an extended IP-formulation. Again we assume

rationality of the data in the case of mixed integer sets.

Theorem 2 Every IP set X= {x∈ Z
n : Ax≥ a} can be represented in the form X=projx(QI), where

QI = {(x,λ ,µ) ∈ R
n×Z

|G|
+ ×Z

|R|
+ : x = ∑

g∈G

λgxg + ∑
r∈R

µrvr ,

∑
g∈G

λg = 1},

where{xg}g∈G is a finite set of integer points in X, and{vr}r∈R are the extreme rays (scaled to be integer) ofconv(X).

Note that whenX is bounded, all the points ofX must be included in the set{xg}g∈G andR= /0. WhenX is unbounded,

the set{xg}g∈G includes all of the extreme points of conv(X) and typically other points, see Example 2 below.

4

Theorem 2 provides an example of a common situation with extended IP-formulations in which there is a linear

transformationx = Tw linking all (or some) of the originalx variables and the additional variablesw. In such cases IP

can be reformulated in terms of the additional variables in the form

min{cTw: ATw≥ a,w∈W},

where the setW provides an appropriate representation of the integralityof the originalx variables.

Example 2 The set of integer points X= P∩Z
2 where

P = {x∈ R
2
+ : 4x1 +12x2 ≥ 33,3x1−x2 ≥−1,x1−4x2 ≥−23}

has an extended IP-formulation, based on Theorem 2:

Q= {(x,λ ,µ) ∈R
2×Z

6
+×Z

2
+ : x=

(

9

0

)

λ1+

(

3

2

)

λ2+

(

1

3

)

λ3+

(

1

4

)

λ4+

(

2

6

)

λ5+

(

5

7

)

λ6+

(

2

5

)

λ7 +

(

6

1

)

λ8 +

(

1

0

)

µ1 +

(

4

1

)

µ2, ∑6
p=1 λp = 1}.

Here the points(2,5)T and (6,1)T are not extreme points ofconv(X). However they cannot be obtained as an integer

combination of the extreme points and rays ofconv(X), so they are necessary for this description. See Figure 1.

Given an IP setX or a MIP setXM , an alternative is to concentrate on a subset of the more important variables (for

instance the integer variables in an MIP). Here projection is the natural operation and the lemma of Farkas a basic tool.

From now on, we typically assume that all the variablesx or (x,y) encountered in IP or MIP are non-negative.

Lemma 3 (Farkas) [36] Given A∈ R
m×n and a∈ R

m, the polyhedron{x∈ R
n
+ : Ax≥ a} 6= /0 if and only if vA≤ 0 for

all v ∈R
m
+ such that vA≤ 0.

This immediately gives a characterization of the projection of a polyhedron. Specifically ifQ = {(x,w) ∈R
n
+×R

p
+ :

Gx+Hw≥ d}, it follows from the definition thatx∈projx(Q) if and only if Q(x) = {w∈R
p
+ : Hw≥ d−Gx} is nonempty.

Now the Farkas’ Lemma, withA = H anda = d−Gx, gives:

Theorem 4 (Projection) Let Q= {(x,w) ∈R
n×R

p
+ : Gx+Hw≥ d}. Then

projx(Q) = {x∈ R
n : v(d−Gx) ≤ 0 ∀ v∈V}= {x∈ R

n : v j(d−Gx)≤ 0 for j = 1, . . . ,J}

whereV = {v∈ R
m
+ : vH ≤ 0} and{v j}Jj=1 are the extreme rays ofV.

Example 3 Given the polyhedron Q= {(x,y) ∈R
2
+×R

3
+ :

−2x1 −3x2 −4y1 +y2 −4y3 ≥ −9

−7x1 −5x2 −12y1 −2y2 +4y3 ≥ −11},

we have that V= {v ∈ R
2
+ : −4v1−12v2 ≤ 0,v1−2v2 ≤ 0,−4v1 + 4v2 ≤ 0}. The extreme rays are v1 = (1,1)T and

v2 = (2,1)T . From Theorem 4, one obtains

projx(Q) = {x∈R
2
+ : 9x1 +8x2 ≤ 20,11x1 +11x2 ≤ 29}.

The classical application of this approach is to reformulate mixed integer programs.

Now we illustrate by example the sort of reformulations thatcan arise using additional variables and projection for a

problem with special structure.

Example 4 Formulations of the Directed Steiner Tree Problem

Given a digraph D= (V,A) with costs c∈R
|A|
+ , a root r∈V and a set T⊆V \{r} of terminals, the problem is to find

a minimum cost subgraph containing a directed path from r to each node in T .

One way to formulate this problem is to construct a subgraph in which one requires|T| units to flow out from node r

and one unit to flow into every node of T . This leads one to introduce the variables:

xi j = 1 if arc (i, j) forms part of the subgraph and xi j = 0 otherwise, and yi j is the flow in arc(i, j). The resulting MIP

formulation is

5

min∑(i, j)∈Aci j xi j

−∑ j∈V+(r) yr j =−|T| (1)

−∑ j∈V+(i) yi j +∑ j∈V−(i) y ji = 1 i ∈ T (2)

−∑ j∈V+(i) yi j +∑ j∈V−(i) y ji = 0 i ∈V \ (T ∪{r}) (3)

yi j ≤ |T|xi j (i, j) ∈ A (4)

y∈ R
|A|
+ ,x∈ {0,1}|A|,

where V+(i) = { j : (i, j)∈ A} and V−(i) = { j : (j , i)∈ A}, (1) indicates that|T| units flow out from node r, (2) that a net

flow of one unit arrives at each node i∈ T, (3) that there is conservation of flow at the remaining nodes and (4) that the

flow on each arc does not exceed|T| and is only positive if the arc has been installed.

This problem has special network structure that we now exploit.

Multicommodity flow variables

To obtain an extended formulation, consider the flow directed towards node k as a separate commodity for each node

k∈ T. Then wki j denotes the flow in arc(i, j) of commodity k with destination k∈ T. The resulting extended formulation

is:

min∑(i, j)∈Aci j xi j

−∑ j∈V+(r) wk
r j =−1 k∈ T (5)

−∑ j∈V+(i) wk
i j +∑ j∈V−(i) wk

ji = 0 i ∈V \{r,k}, k∈ T (6)

−∑ j∈V+(k) wk
k j +∑ j∈V−(k) wk

jk = 1 k∈ T (7)

wk
i j ≤ xi j (i, j) ∈ A, k∈ K (8)

w∈R
|K|×|A|
+ ,x∈ [0,1]|A|.

Constraints (5)-(7) are flow conservation constraints and (8) variable upper bound constraints for each commodity. The

constraints yi j = ∑k∈K wk
i j (i, j) ∈ A provide the link between the original flow variables y and the new multi-commodity

flow variables w, but the y variables are unnecessary as thereare no costs on the flows.

The main interest of such an extended formulation is that thevalue of its linear programming relaxation is consider-

ably stronger than that of the original formulation becausethe relationship between the flow variables yi j or wk
i j and the

arc selection variables xi j is more accurately represented by (8) than by (4).

Projection onto the Binary Arc Variables

It is well-known (from the max flow/min cut theorem) that one can send flow of one unit from r to k in a network(V,A)

with capacities if and only if the capacity of each cut separating r and k is at least one. Considering the arc capacities to

be xi j , this immediately validates the following formulation in the arc variables x. Equivalently one can apply Theorem

4 to the extended formulation Q= {(x,w) ∈ [0,1]|A|×R
|K|×|A|
+ satisfying(5)− (8)} and project out the w variables. In

both cases one obtains the formulation:

min∑(i, j)∈Aci j xi j

∑(i, j)∈δ +(U) xi j ≥ 1 r ∈U,T \U 6= /0

x∈ {0,1}|A|,

whereδ+(U) = {(i, j) ∈ A : i ∈U, j /∈U} is the directed cut set consisting of arcs with their tails inU and their heads in

V \U.

6

The potential interest of this reformulation is that the number of variables required is as small as possible and the

value of the linear programming relaxation is the same as that of the multi-commodity extended formulation. In Section

5 we will consider the more general problem in which there arealso costs on the flow variables yi j .

2.3 Decomposition

When optimizing over the feasible setX of IP is too difficult, we need to address the question of how to“decompose”

X so as to arrive at one or more sets with structure, and also indicate what we mean by “structure”.

We first present three ways ofdecomposing.

1) Intersections. X = Y∩Z. Now if the setZ has structure, we can consider reformulations for the setZ. More generally,

one might haveX = X1∩·· ·∩XK where several of the setsXk have structure. Another important variant is that in which

X = Y∪Z andZ itself decomposes into setsZk each with distinct variables, namelyZ = Z1×·· ·×ZK .

2) Unions (or Disjunctions). X = Y∪Z whereZ has structure. Again one might haveX = X1∪·· ·∪XK where several of

the setsXk have structure.

3) Variable Fixing. Suppose thatX⊂Z
n×R

p. For fixed values ¯x, letZ(x̄) = {(x,y)∈X : x= x̄}. This is of interest ifZ(x̄)

has structure for all relevant values of ¯x. Again an important case is that in whichZ(x̄) decomposes into sets with distinct

variables, i.e.Z(x̄) = Z1(x̄1)×·· ·×ZK(x̄1) and each setZk(x̄1) just involves the variablesyk, wherey = (y1, · · · ,yK).

Now we indicate in what circumstances we say that the setZ obtained above hasstructure.

i) Either there is a polynomial algorithm for theoptimizationproblem min{cx : x∈ Z}, denoted OPT(Z,c), or OPT(Z,c)

can be solved rapidly in practice. Based on decomposition byintersection, ways to reformulate and exploit such sets are

the subject of the next section.

ii) There is a polynomial algorithm for theseparation problem, SEP(Z,x∗), defined as follows:

Given the setZ⊆R
n andx∗ ∈R

n, isx∗ ∈ conv(Z)? If not, find a valid inequalityπx≥ π0 for Z cutting offx∗ (i.e. πx≥ π0

for all x∈ Z andπx∗ < π0). More generally there is a polyhedronP′ (oftenP′ = conv(Z′) whereZ⊆ Z′) for which there

is a separation algorithm (exact or heuristic) that can be solved rapidly in practice.

Such sets are amenable to reformulation by the addition of cutting planes. A special case of this type, treated in

Section 4, is that in which the setZ(x̄), obtained by variable fixing, has structure of type i). Combined with projection,

this leads to reformulations and algorithms in the space of thex variables.

iii) Set Z has specific structure that can be exploited by introducing new variables that better describe the integrality of the

variables. Examples of sets with interesting extended formulations include network design problems with 0-1 variables to

indicate which arcs are open, such as the Steiner tree problem in Example 4, and scheduling problems in which it is useful

to model start times in detail. Problems that can be solved bydynamic programming and problems of optimizing over

sets defined by disjunctions are also candidates for reformulation through the introduction of new variables. Extended

formulations for a wide variety of such problems are presented in Section 5.

3 Price or Constraint Decomposition

Consider a (minimization) problem of the form

(IP) z= min{cx : x∈ X}

that is difficult, but with the property that a subset of the constraints ofX defines a setZ (X ⊂ Z) over which optimization

is “relatively easy”. More specifically,

(IP) z= min{cx : Dx≥ d,Bx≥ b,x∈ Z
n
+

︸ ︷︷ ︸

x∈X

} (9)

where the constraintsDx≥ d represent “complicating constraints” that define the integer setY = {x ∈ Z
n
+ : Dx≥ d},

while the constraintsBx≥ b define a setZ = {x∈ Z
n
+ : Bx≥ b} that is “tractable”, meaning that min{cx : x∈ Z} can be

solved rapidly in practice.

7

Here we examine how one’s ability to optimize over the simpler setZ can be exploited to produce dual bounds by re-

laxing the complicating constraints and penalizing their violation in the objective function (a procedure called Lagrangean

relaxation). The prices associated to each constraint placed in the objective function are called Lagrange multipliers or

dual variables, and the aim is to choose the prices to try to enforce satisfaction of the complicating constraintsDx≥ d.

An alternative is to view the problem of optimizing overX as that of selecting a solution from the setZ that also satisfies

the constraints definingY. This leads to the so-called Dantzig-Wolfe reformulation in which variables are associated to

the points of the setZ as specified in Theorems 1 or 2. The LP solution to this reformulation provides a dual bound that

is typically tighter than that of the LP relaxation of the original formulation ofX and is equal to the best bound that can

be derived by Lagrangean relaxation of the constraintsDx≥ d. This will be demonstrated below.

In many applications of interestBx≥ b hasblock diagonalstructure: i.e.Z = Z1×·· ·×ZK in which case the integer

program takes the form

(IPBD) min{
K

∑
k=1

ckxk : (x1, · · · ,xK) ∈Y, xk ∈ Zk for k = 1, . . . ,K}

and can be written explicitly as:

min c1x1 + c2 x2 + . . . + cK xK

D1 x1 + D2 x2 + . . . + DK xK ≥ d

B1 x1 ≥ b1

(IPBD) B2 x2 ≥ b2

. . . ≥
...

BK xK ≥ bK

x1 ∈ Z
n1
+ , x2 ∈ Z

n2
+ , . . . , xK ∈ Z

nK
+ .

Here relaxing the constraintsDx≥ d allows one to decompose the problem intoK smaller size optimization problems:

min{ckxk : xk ∈ Zk}.

Another important special case is theidentical sub-problemcase in whichDk = D,Bk = B,ck = c,Zk = Z∗ for all k.

In this case the “complicating” constraints only depend on the aggregate variables

y =
K

∑
k=1

xk , (10)

so the complicating constraints correspond to a set of the form Y = {y∈ Z
n
+ : Dy≥ d}. The problem can now be written

as:

(IPIS) min{cy : Dy≥ d,y =
K

∑
k=1

xk, xk ∈ Z∗ for k = 1, . . . ,K} . (11)

Example 5 (The bin packing problem)

Given an unlimited supply of bins of capacity 1 and a set of items indexed by i= 1, . . . ,n of size si ∈ (0,1], the problem

is to find the minimum number of bins that are needed in order topack all the items. Let K be an upper bound on the

number of bins that are needed (K= n, or K is the value of any feasible solution). A direct IP formulation is

min
K

∑
k=1

uk (12)

K

∑
k=1

xik = 1 ∀i (13)

∑
i

si xik ≤ uk ∀k (14)

xik ∈ {0,1} ∀i,k (15)

uk ∈ {0,1} ∀k (16)

where uk = 1 if bin k is used and xik = 1 if the item of size i is placed in bin k. This is a natural candidate for price

decomposition. Without the constraints (13), the problem that remains decomposes into K identical knapsack problems.

8

In this section,

i) we review the Lagrangean relaxation and Dantzig-Wolfe reformulation approaches, showing the links between them

and the fact that both provide the same dual bound;

ii) we then discuss algorithms to compute this dual bound: sub-gradient methods and the column generation procedure,

as well as stabilization techniques that are used to improveconvergence, and

iii) we consider the combination of column generation with branch-and-bound to solve problems to integer optimality:

deriving branching schemes when using a Dantzig-Wolfe reformulation can be nontrivial in the case of a block diagonal

structure with identical sub-problems.

For simplicity, most of these developments are presented for the case of a single subsystem involving only bounded

integer variables. However the developments easily extendto the case of a mixed integer or unbounded subsystemZ, or

to a subsystem withblock diagonalstructure. The case where these blocks are identical will bediscussed separately. The

economic interpretation of the algorithms reviewed here will justify the use of the terminology “price decomposition”.

3.1 Lagrangean Relaxation and the Lagrangean dual

The Lagrangean relaxation approach to a problemIP with the structure outlined above consists of turning the “dif-

ficult” constraintsDx ≥ d into constraints that can be violated at a priceπ, while keeping the remaining constraints

describing the setZ = {x∈ Z
n
+ : Bx≥ b}. This gives rise to the so-calledLagrangean sub-problem:

L(π) = min
x
{cx+π(d−Dx) : Bx≥ b,x∈ Z

n
+} (17)

that by assumption is relatively tractable. For any non-negative penalty vectorπ ≥ 0, the dual functionL(π) defines a dual

(lower) bound on the optimal valuezof IP: indeed the optimal solutionx∗ of IP satisfiescx∗ ≥ cx∗+π(d−Dx∗)≥ L(π)

(the first inequality results fromx∗ being feasible for IP andπ ≥ 0 and the second becausex∗ is feasible in (17)). The

problem of maximizing this bound over the set of admissible dual vectors is known as theLagrangean dual:

(LD) zLD = max
π≥0

L(π) = max
π≥0

min
x∈Z
{cx+π(d−Dx)}. (18)

We now reformulate the Lagrangean dual as a linear program, assuming that the constraint setZ is non-empty and

bounded. The Lagrangean sub-problem achieves its optimum at an extreme pointxt of conv(Z), so one can write

zLD = max
π≥0

min
t=1,...,T

{cxt +π(d−Dxt)} , (19)

where{xt}t=1,...,T is the set of extreme points of conv(Z), or alternatively{xt}t=1,...,T is the set of all points ofZ.

Introducing an additional variableσ representing a lower bound on the(c−πD)xt values, we can now rewrite LD as the

linear program:

zLD = maxπd+σ (20)

πDxt +σ ≤ cxt t = 1, . . . ,T (21)

π ≥ 0,σ ∈ IR1. (22)

Taking its linear programming dual gives:

zLD = min
T

∑
t=1

(cxt)λt (23)

T

∑
t=1

(Dxt)λt ≥ d (24)

T

∑
t=1

λt = 1 (25)

λt ≥ 0 t = 1, . . . ,T. (26)

From formulation (23)-(26), one easily derives the following result.

9

Theorem 5 (Lagrangean duality)

zLD = min{cx : Dx≥ d,x∈ conv(Z)}. (27)

Indeed, by definition of the set of points{xt}Tt=1, conv(Z) = {x= ∑T
t=1xtλt : ∑T

t=1λt = 1, λt ≥ 0 t = 1, . . . ,T}. Thus, the

value of the Lagrangean dual is equal to the value of the linear program obtained by minimizingcx over the intersection

of the “complicating” constraintsDx≥ d with the convex hull of the “tractable” setZ.

Example 6 (Lagrangean relaxation for the bin packing problem).

Continuing Example 5, consider an instance of the bin packing problem with n= 5 items and size vector s=(1
6 , 2

6 , 2
6 , 3

6 , 4
6).

Dualizing the constraints (13), the Lagrangean subproblem(17) takes the form:min{∑K
k=1uk−∑n

i=1 πi(1−∑K
k=1 xik) :

(14)− (16)}. Arbitrarily taking dual variablesπ = (1
3 , 1

3 , 1
3 , 1

2 , 1
2) and using the fact that this problem splits up into an

identical knapsack problem for each k, the Lagrangean sub-problem becomes:

L(π) =
5

∑
i=1

πi +K min(u−
1
3

x1−
1
3

x2−
1
3

x3−
1
2

x4−
1
2

x5)

1
6

x1 +
2
6

x2 +
2
6

x3 +
3
6

x4 +
4
6

x5 ≤ u

x∈ {0,1}5, u∈ {0,1}.

The optimal solution is x= (1,1,0,1,0),u = 1. For K = n (a trivial solution is to put each item in a separate bin),

the resulting lower bound is12
6 −

5
6 = 7

6 . The best Lagrangean dual bound zLD = 2 is attained forπ = (0,0,0,1,1),

x = (0,0,0,0,1) and u= 1.

3.2 Dantzig-Wolfe Reformulations

Here we consider two closely related extended formulationsfor problem IP: min{cx : Dx≥ d,x ∈ Z}, and then we

consider the values of the corresponding linear programming relaxations.

We continue to assume thatZ is bounded. The Dantzig-Wolfe reformulation resulting from Theorem 1 (called the

convexification approach) takes the form:

zMc = min ∑
g∈Gc

(cxg)λg (28)

∑
g∈Gc

(Dxg)λg ≥ d (29)

(DWc) ∑
g∈Gc

λg = 1 (30)

x = ∑
g∈Gc

xgλg ∈ Z
n (31)

λg ≥ 0 ∀g∈Gc (32)

where{xg}g∈Gc are the extreme points of conv(Z).

The Dantzig-Wolfe reformulation resulting from Theorem 2 (called the discretization approach) is

zDWd = min ∑
g∈Gd

(cxg)λg (33)

∑
g∈Gd

(Dxg)λg ≥ d (34)

(DWd) ∑
g∈Gd

λg = 1 (35)

λg ∈ {0,1} ∀g∈Gd (36)

where{xg}g∈Gd are all the points ofZ.

As pointed out above, the extreme points ofconv(Z) are in general a strict subset of the points ofZ (Gc ⊆Gd). Note

however that the distinction between the two approaches disappears when considering the LP relaxations of the Dantzig-

Wolfe reformulations: both sets allow one to model conv(Z) and they provide a dual bound that is equal to the value of

the Lagrangean dual.

10

Observation 1

i) The linear program (23)-(26) is precisely the linear programming relaxation of DWc.

ii) It is identical to the linear programming relaxations ofDWd (any point of Z can be obtained as a convex combination

of extreme points ofconv(Z)). Hence

zDWc
LP = zDWd

LP = min{cx : Dx≥ d,x∈ conv(Z)}= zLD,

where zDWc
LP and zDWd

LP denote the values of the LP relaxations of DWc and DWd respectively.

In addition there is no difference betweenDWcandDWd whenZ⊂ {0,1}n as every pointx∈ Z is an extreme point

of conv(Z). In other words

x = ∑
g∈GC

xgλg ∈ {0,1}n in DWc if and only if λ ∈ {0,1}|G
d | in DWd.

To terminate this subsection we examine the formDWd takes when there is block diagonal structure. Specifically the

multi-block Dantzig-Wolfe reformulation is:

min{
K

∑
k=1

∑
g∈Gd

k

(cxg)λkg :
K

∑
k=1

∑
g∈Gd

k

(Dxg)λkg≥ d, ∑
g∈Gd

k

λkg = 1 ∀k = 1, . . . ,K,λkg∈ {0,1}∀k,g∈Gd
k} . (37)

whereZk = {xg}g∈Gd
k

for all k andxk = ∑g∈Gd
k
xg λkg∈ Zk.

Identical Subproblems

When the subproblems are identical fork = 1, . . . ,K, the above model admits many different representations of the

same solution: any permutation of thek indices defines a symmetric solution. To avoid this symmetry, it is normal to

introduce the aggregate variablesνg = ∑K
k=1λkg. Defining Z∗ = Z1 = · · · = ZK and Z∗ = {xg}g∈G∗ , one obtains the

reformulation:

min ∑
g∈G∗

(cxg)νg (38)

(DWad) ∑
g∈G∗

(Dxg)νg ≥ d (39)

∑
g∈G∗

νg = K (40)

ν ∈ Z
|G∗|
+ , (41)

whereνg ∈ Z+ is the number of copies ofxg used in the solution. The projection of reformulation solution ν into the

original variable space will only provide the aggregate variablesy defined in (10):

y = ∑
g∈G∗

xgνg . (42)

Example 7 The cutting stock problem

An unlimited number of strips of length L are available. Given d∈ Z
n
+ and s∈ R

n
+, the problem is to obtain di strips of

length si for i = 1, . . . ,n by cutting up the smallest possible number of strips of length L.

Here Z∗ = {x ∈ Z
n
+ : ∑n

i=1 sixi ≤ L}, each point xg of Z∗ corresponds to a cutting pattern, D= I and c= 1, so one

obtains directly the formulation

min{ ∑
g∈G∗

νg : ∑
g∈G∗

(xg)νg ≥ d,ν ∈ Z|G
∗|

+ }

in the form DWad, without the cardinality constraint (40). The bin packing problem is the special case in which di = 1

for all i and each cutting pattern contains each strip lengthat most once.

To complete the picture we describe how to solve the linear programming relaxation of the Dantzig-Wolfe reformu-

lation in the next subsection and how to use this reformulation in a branch-and-bound approach to find an optimal integer

solution (subsection 3.5).

11

3.3 Solving the Dantzig-Wolfe Relaxation by Column Generation

Here we consider how to compute the dual bound provided by the“Dantzig-Wolfe relaxation” using column genera-

tion. Alternative ways to compute this dual bound are then discussed in the next subsection.

Consider the linear relaxation ofDWcgiven in (28)-(32) orDWd given in (33)-(36) which are equivalent as noted in

Observation 1. This LP is traditionally called the (Dantzig-Wolfe) master problem(MLP). It has a very large number of

variables that will be introduced dynamically in the courseof the optimization by the revised simplex method. We assume

thatZ is a bounded integer set. Let{xg}g∈G be either the extreme points of conv(Z) or all the points ofZ. Suppose that,

at iterationt of the simplex algorithm, only a subset of points{xg}g∈Gt with Gt ⊂ G are known. They give rise to the

restricted master linear program:

zRMLP = min ∑
g∈Gt

(cxg)λg (43)

(RMLP) ∑
g∈Gt

(Dxg)λg ≥ d (44)

∑
g∈Gt

λg = 1 (45)

λg ≥ 0 g∈Gt .

The dual of RMLP takes the form:

maxπd+σ (46)

πDxg +σ ≤ cxg g∈Gt (47)

π ≥ 0, σ ∈R
1. (48)

Let λ ′ and(π ′,σ ′) represent the primal and the dual solutions of the restricted master program RMLP respectively.

The column generation algorithm follows directly from the following simple observations exploiting both primal and

dual representations of the master problem.

Observation 2

i) Given a current dual solution(π ′,σ ′), the reduced cost of the column associated to solution xg is cxg−π ′Dxg−σ ′.
ii) ζ = ming∈G(cxg−π ′Dxg) = minx∈Z(c−π ′D)x. Thus, instead of examining the reduced costs of the huge number of

columns, pricing can be carried out implicitly by solving a single integer program over the set Z.

iii) The solution value of the restricted Master problem zRMLP= ∑g∈Gt (cxg)λ ′g = π ′d+σ ′ gives an upper bound on zMLP.

MLP is solved whenζ −σ ′ = 0, i.e., when there is no column with negative reduced cost.

iv) The pricing problem defined in ii) is equivalent to the Lagrangean sub-problem given in (17); hence, each pricing step

provides a Lagrangean dual bound.

v) For another view point on iv), note that the dual solutionπ ′ of RMLP, completed byζ , forms a feasible solution(π ′,ζ)

for the dual of MLP:

{maxπd+σ : πDxg +σ ≤ cxg g∈G; π ≥ 0, σ ∈ R
1},

and thereforeπ ′d+ζ gives a lower bound on zMLP.

vi) If the solutionλ ′ to RMLP is integer, the corresponding value of zRMLP provides a valid primal (upper) bound for

problem IP.

Point ii) is crucial as our motivation for the Dantzig-Wolfereformulation was the assumption that solving an optimization

problem overZ is relatively tractable. Point vi) highlights a strong point of the column generation approach: it may

produce primal integer solutions in the course of the solution of MLP.

The Column Generation Algorithm for a master program of the form (23)-(26):

i) Initialize primal and dual bounds PB= +∞, DB = −∞. Generate a subset of points xg so that RMLP is feasible.

(Master feasibility can be achieved using artificial columns. It is standard to combine Phases 1 and 2 of the simplex

method to eliminate these artificial columns from the LP solution).

ii) Iteration t,

12

ii.a) Solve RMLP over the current set of columns{xg}g∈Gt ; record the primal solutionλ t

and the dual solution(π t ,σ t).

ii.b) Check whetherλ t defines an integer solution of IP; if so update PB. If PB= DB, stop.

ii.c) Solve the pricing problem

(SPt) ζ t = min{(c−π tD)x : x∈ Z}.

Let xt be an optimal solution.

If ζ t −σ t = 0, set DB= zRMLP and stop; the Dantzig-Wolfe master problem MLP is solved.

Otherwise, add xt to Gt and include the associated column in RMLP

(its reduced cost isζ t −σ t < 0).

ii.d) Compute the dual bound: L(π t) = π td+ζ t ; update DB= max{DB,L(π t)}. If PB= DB, stop.

iii) Increment t and return to ii).

When problem IP has a block diagonal structure with thekth subproblem having optimal valueζ k, the corresponding

upper bounds on the unrestricted master LP valuezMLP are of the formπ ′d+∑K
k=1 σ ′k and the lower bounds of the form

π ′d+∑K
k=1ζ k. When theK subsystems are identical these bounds take the formπ ′d+Kσ ′ andπ ′d +Kζ respectively.

The typical behavior of these upper and lower bounds in the course of the column generation algorithm is illustrated in

Figure 2. Example 8 demonstrates the column generation procedure on an instance of the bin packing problem.

844

0 100 200 300 400 500 600 700 800 900 1000
0

84

169

253

338

422

506

591

675

760

Figure 2: Convergence of the column generation algorithm

Example 8 (Column generation for the bin packing problem)

Consider the same instance as in Example 6 with n= 5 items and size vector s= (1
6 , 2

6 , 2
6 , 3

6 , 4
6). Initialize the restricted

master RMLP with the trivial packings in which each item is ina separate bin. The initial restricted master then takes

the form:

minν1 +ν2 +ν3 +ν4 +ν5











1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





















ν1

ν2

ν3

ν4

ν5











≥











1

1

1

1

1











,ν ∈ R
5
+

Its optimal value is Z= 5 with dual solutionπ = (1,1,1,1,1). The column generation sub-problem is

ζ = 1−max{x1 +x2 +x3 +x4 +x5 : x1 +2x2 +2x3 +3x4 +4x5 ≤ 6, x∈ {0,1}5}.

13

The optimal solution of the knapsack problem is x6 = (1,1,1,0,0) with value 3, which gives the lower bound L(π) =

∑i πi + K (1−3) = −5 (with K = 5). x6 is added to the restricted master with associated variableν6. The successive

iterations give

t Zt master sol. π t L(π t) PB xt

5 5 ν1 = ν2 = ν3 = ν4 = ν5 = 1 (1,1,1,1,1) −5 5 (1,1,1,0,0)

6 3 ν4 = ν5 = ν6 = 1, (0,0,1,1,1) −2 3 (0,0,1,1,0)

7 3 ν1 = ν4 = ν5 = 1 (0,1,0,1,1) −2 3 (0,1,0,1,0)

8 3 ν1 = ν6 = ν7 = ν8 = 1
2 ,ν5 = 1 (1,0,0,1,1) −2 3 (1,0,0,0,1)

9 2.5 ν6 = ν7 = ν8 = 1
2 ,ν9 = 1 (0, 1

2 , 1
2 , 1

2 ,1) 0 3 (0,1,0,0,1)

10 2.33 ν6 = ν8 = ν10 = 1
3 ,ν7 = ν9 = 2

3 (1
3 , 1

3 , 1
3 , 2

3 , 2
3) 2

3 3 (1,1,0,1,0)

11 2.25 ν6 = ν11 = 1
4 ,ν9 = ν10 = 1

2 ,ν7 = 3
4 (1

4 , 1
4 , 1

2 , 1
2 , 3

4) 4
3 3 (0,0,1,0,1)

12 2 ν11 = ν12 = 1 (0,0,0,1,1) 2 2 (0,0,0,0,1)

In this example, the master problem has an optimal solution that is integer, so this is an optimal solution of the bin packing

problem (the column generation procedure ends with PB=DB).

The column generation algorithm has an appealing economic interpretation, derived directly from linear programming

duality. Dantzig-Wolfe decomposition can be viewed as a procedure for decentralizing the decision-making process. The

master problem plays the role of the coordinator setting prices that serve as incentives to meet the global constraints

∑k Dxk ≥ d. These prices are submitted to the subdivisions. Each independent subdivision uses these prices to evaluate

the profitability of its activities(xk ∈ Zk) and returns an interesting business proposal (with negative reduced cost). The

procedure iterates until no more improving proposals can begenerated, and the given prices are optimal.

3.4 Alternative methods for solving the Lagrangean Dual

By Observation 1, the above column generation algorithm solves the Lagrangean dualzLD = maxπ≥0L(π). Alterna-

tives to the column generation approach to solving the Lagrangian dual can be related to the different formulations of the

problem: its max-min form (19) or the dual linear program (20)-(22). The dual point of view is particularly important

in the analysis of the convergence of methods for solving theLagrangean dual: convergence is driven by the successive

dual solutions, even for the column generation procedure. Dual analysis has inspired enhanced column generation algo-

rithms making use of so-called stabilization techniques. Abetter theoretical convergence rate can only be achieved by

using non-linear programming techniques such as the bundlemethod. On the other hand, simpler methods (such as the

sub-gradient algorithm), whose convergence in practice isworse than that of the standard column generation approach,

remain useful because of their easy implementation and their ability to cope with large size problems.

Here we review some of the classical alternative approachesto solving the Lagrangean Dual arising from the different

formulations given in Section 3.1.

Note thatL(π) = ming∈G(c− πD)xg + πd is a piecewise affine concave function ofπ, as illustrated in Figure 3.

Solving the Lagrangean dual requires the maximization of this non-differentiable concave function. A simple method for

this is:

The sub-gradient algorithm (for solving the Lagrangean dual in its form (19)):

i) Initialize π0 = 0, t = 1.

ii) Iteration t,

ii.a) Solve the Lagrangean subproblem (17) to obtain the dual bound L(π t) = min{cx+ π t(d−Dx)} and an

optimal solution xt .

ii.b) Compute the violation(d−Dxt) of the dualized constraints; this provides a “sub-gradient” that can be used

as a “potential direction of ascent” to modify the dual variables.

ii.c) Update the dual solution by making a small step in the direction of the subgradient

π t+1 = max{0,π t + εt(d−Dxt)}

14

Figure 3: The Lagrangean dual functionL(π) seen as a piecewise affine concave function; we assumeπ ∈ R
1 in this

representation; each segment/hyperplane is defined by a vector xt .

whereεt is an appropriately chosen step-size.

iii) If t < τ, increment t and return to ii).

Central to this approach is the simple dual price updating rule of stepii.c. The rule leads to an increase in the

prices associated with violated constraints and a decreasefor non-tight constraints. Observe, however, that it ignores all

previously generated pointsxg for g = 1, . . . ,t−1 when updatingπ. Not surprisingly this can result in poor performance.

Moreover, the convergence of the algorithm is quite sensitive to the selection of the step size (choosingεt too large leads

to oscillations and possible divergence, choosing it too small leads to slow convergence or convergence to a non-optimal

point). It is usual to use a normalized step size:εt = αt
||d−Dxt || . Standard choices are:

i) αt = C(PB−L(π t)) with C ∈ (0,2), where the primal boundPB acts as an overestimate of the unknown Lagrangean

dual valuezLD, so the step size reduces as one gets closer to the optimal valuezLD;

ii) theαt form a geometric series:αt = Cρ t with ρ ∈ (0,1) andC > 0;

iii) theαt form a divergent series:α t → 0 and∑t α t → ∞; for instance, takeαt = 1
t .

Convergence is guaranteed for i) ifPB is replaced by a lower bound onzLD and for ii) if C andρ are sufficiently large.

Step size iii) is always convergent, but convergence is veryslow because of the divergent sequence. Parameterτ in step

iii) of the algorithm allows one to limit the number of iterations. Another standard heuristic termination rule is to stop

when the dual boundDB = maxt L(π t) has not improved for several iterations.

The sub-gradient approach can be used as a heuristic to produce a candidate solution for the primal problem (27).

However it is not guaranteed to satisfy constraintsDx≥ d while the primal solution of (23)-(26) does. The candidate,

denoted ˆx, is obtained as a convex combination of previously generated pointsxg for g = 1, . . . ,t. Possible choices of

updating rules are:

i) x̂ = ∑t
g=1 xgλg whereλg =

αg

∑t
g=1 αg

, or

ii) x̂ = α x̂+(1−α)xt with α ∈ (0,1).

The latter rule is of interest because it puts more weight on the pointsxt generated most recently. Using step size iii),

the theory predicts the convergence of ˆx towards an optimal solution to (27). In practice however, one would first check

whether ˆx verifiesDx≥ d and if so record the associated value as an upper bound onzLD that can be helpful in monitoring

convergence (although there is no monotonic convergence ofthese upper bounds as in Figure 2). If furthermore ˆx verifies

the integrality conditions, then it defines a primal bound PB.

Thevolume algorithmis a variant of the sub-gradient method in which one uses the information of all the previously

generated Lagrangean subproblem solutions to estimate both primal and dual solutions to (23)-(26), thus providing better

stopping criteria. At each iteration,

i) the estimate of a primal solution is updated using: ˆx = η x̂+(1−η)xt with a suitableη ∈ (0,1);

ii) the dual solution estimatêπ is defined by the price vector that has generated the best dualbound so far: π̂ =

15

argmaxg=1,...,tL(πg);

iii) the “direction of ascent” is defined by the violation(d−Dx̂) of the dualized constraint by the primal solution estimate

x̂ instead of using the latest Lagrangean sub-problem solution xt ;

iv) the dual price updating rule consists in taking a step fromπ̂ instead ofπ t : π t+1 = max{0, π̂ + εt(d−Dx̂)}.

The method is inspired by the conjugate gradient method. It is equivalent to making a suitable correctionvt in the dual

price updating directionπ t+1 = max{0,π t + εt(d−Dxt)+vt}. The nameVolumerefers to the underlying theory saying

that the weight(1−η)ηg−1 of thegth solutionxg in the primal solution estimate ˆx approximates the volume under the

hyperplaneπDxt +σ = cxg in the dual polyhedron of Figure 3 augmented by the constraint σ ≥ π̂d. The algorithm stops

when primal feasibility is almost reached:||(d−Dx̂)|| ≤ ε and the duality gap is small enough:||cx̂− π̂d|| ≤ ε. The

implementation of the method is as simple as that of the sub-gradient algorithm, while its convergence performance is

typically better.

The linear programming representation (20)-(22) of the Lagrangean dual suggests the use of a cutting plane procedure

to dynamically introduce the constraints associated with the different pointsxg. This procedure is a standard nonlinear

programming approach to maximize a concave non-differentiable function, known asKelley’s cutting plane algorithm.

It is identical to the above column generation procedure butseen in the dual space: pointxg defines a violated cut for

(20)-(22) if and only if it defines a negative reduced cost column for (23)-(26).

The convergence of the basic column generation algorithm (or its dual counterpart) suffers several drawbacks, as

illustrated in Figure 2:i) during the initial stages, when few pointsxg are available, primal and dual bounds are very weak

and ineffective,ii) convergence can be slow with very little progress made in improving the bounds,iii) the dual bounds

can behave erratically asπ jumps from one extreme point solution to another at successive iterations, andiv) the upper

boundszRMLP can remain stuck at the same value due to degeneracy (iterating between alternative solutions of the same

value).

Efforts have been made to construct more sophisticated and robust algorithms. They combine several mechanisms:

i) proper initialization (warm start): what is essential is tohave meaningful dual solutionsπ from the outset (using a dual

heuristic or a rich initial set of pointsxg, produced for instance by the sub-gradient method);

ii) stabilization techniques that penalize deviations of the dual solutions from astability centerπ̂, defined as the dual

solution providing the best dual bound so far: the dual problem becomes

max
π≥0
{L(π)+S(π − π̂)},

whereS is a penalty function that increases asπ moves away from̂π;

iii) smoothing techniques that moderate the current dual solution based on previous iterates: the price vector sent to the

subproblem is

π t = απ t−1 +(1−α)π t , ;

whereπ t is the current dual solution of RMLP,α ∈ (0,1) is a smoothing parameter, andπ t−1 is the smoothed price of

the previous iterate.

iv) an interior point approach providing dual solutions corresponding to points in the center of the face of optimal solutions

of RMLP as opposed to the extreme points generated by simplex-based algorithms;

v) reformulation strategies to avoid degeneracy or symmetries. For instance, when the MLP is a set covering problem,

a dynamic row aggregation and disaggregation procedure allows one to control degeneracy and to reduce the number of

iterations. Another approach consists in adding valid dualcuts in (20)-(22) to break dual symmetries. These mechanisms

can be combined into hybrid methods. For instance, combining ii) and iii) by smoothing around a stability center :

π t = απ̂ +(1−α)π t . (49)

Stabilization techniques differ essentially in the choiceof the penalty function. Several typical penalty functionsare

pictured in Figure 4 for a 1-dimensional vectorπ. WhenS is a piecewise linear function, the modified dual problem

16

can still be formulated as a linear program (with artificial variables). For instance, to model a boxstep penalty function

S(πi) = 0 if π ∈ [0,π i] and−∞ otherwise (forπ i = 2∗ π̂i), the master program (23)-(26) is augmented with artificial

columnsρi for i = 1, . . .m, whose costs are defined by the upper boundsπ i on the the dual prices. The resulting primal -

dual pair of augmented formulations of the master are:

min∑T
t=1(cxt)λt +∑i π iρi

∑T
t=1(Dixt)λt +ρi ≥ di ∀i

∑T
t=1λt = 1

λt ≥ 0 t = 1, . . . ,T. ρi ≥ 0∀i

max∑i πidi +σ
∑i πiDixt +σ ≤ cxt ∀t

πi ≤ π i ∀i

π ≥ 0,σ ∈ IR1.

(50)

Properly setting the parameters that define this stabilization function may require difficult experimental tuning.

In theory the convergence rates of all the LP-based methods (with or without piece-wise linear penalty functions)

are the same (although LP stabilization helps in practice).However using a quadratic penalty allows one to benefit

from the quadratic convergence rate of Newton’s method to get an improved theoretical convergence rate. Thebundle

method consists in choosing the penalty functionS= ||π−π̂||2
η whereη is a parameter that is dynamically adjusted to

help convergence. (In the case of equality constraintsDx = d, the bundle method has an intuitive interpretation in the

primal space: solving the penalized dual is equivalent to solving the augmented Lagrangean subproblem: min{cx+ π̂(d−

Dx)+η||d−Dx||2 : x∈ conv(Z)}.) The method calls for the solution of a quadratic program ateach iteration (the dual

restricted master involves the maximization of a concave objective under linear constraints). Experimentally use of the

bundle method leads to a drastic reduction in the number of iterations for some applications. The extra computing time

in solving the quadratic master is often minor.

Interior-point based solution approaches such as the Analytic Center Method (ACCPM) can also be shown theoreti-

cally to have a better rate of convergence. Even smoothing techniques can benefit from theoretical analysis: using rule

(49), one can show that at each iteration either the dual bound is strictly improved, or the column generated based on the

smoothed pricesπ t has a strictly negative reduced cost for the original pricesπ t .

π̂

S(π− π̂)

π

π̂

S(π − π̂)

π

π̂

S(π− π̂)

π

π̂

S(π− π̂)

π
π̂

S(π− π̂)

π

Figure 4: Examples of penalty functions: the boxstep; threepiece-wice linear penalty functions; the quadratic penalty of

the bundle method.

In practice, each of the above enhancement techniques has been shown to significantly reduce the number of iterations

in certain applications. However there may be overheads that make each iteration slightly more time consuming. Another

factor in assessing the impact of the enhanced techniques isthe time required by the pricing subproblem solver: it has been

17

observed that stabilized, smoothed or centered dual pricesπ can make the pricing problem harder to solve in practice.

Thus the benefit from using stabilization techniques are context dependent.

3.5 Optimal Integer Solutions: Branch-and-Price

To solve problem IP based on its Dantzig-Wolfe reformulation, one must combine column generation with branch-

and-bound; the resulting algorithm is known asbranch-and-priceor IP column generation. The issues are how to select

branching constraints and how to carry out pricing (solve the resulting subproblem(s)) after adding these constraints. Note

that a standard branching scheme consisting in imposing a disjunctive constraint on a variableλg of the Dantzig-Wolfe

reformulation that is currently fractional is not advisable. First, it induces an unbalanced enumeration tree: rounding

down aλg variable is weakly constraining, while rounding it up is considerably more constraining, especially when the

corresponding bounds are 0 and 1 respectively. Second, on the down branch it is difficult to impose an upper bound on a

λg variable: the associated column is likely to be returned as the solution of the pricing problem unless one specifically

excludes it from the sub-problem solution set (essentiallyadding the constraintx 6= xg in the sub-problem which destroys

its structure), or one computes the next best column. The alternative is to attempt to express branching restrictions in

terms of the variables of the original formulation. In general, deriving an appropriate branching scheme in a column

generation context can be non-trivial, especially when tackling problems with identical subsystems.

Below we start by considering the case of a single subsystem.The branching schemes developed for this case already

indicate some of the issues and extend directly to the case with multiple but distinct subsystems. We will then consider

the case of a set partitioning master program with multiple identical subsystems in 0-1 variables. In this case, a classical

approach is the Ryan and Foster branching scheme. We place itin the context of alternative schemes. From this dis-

cussion, we indicate the basic ideas for dealing with the general case. In particular, we outline a general branching and

pricing scheme that is guaranteed to produce a finite branching tree and to maintain the structure of the pricing problem

when the setZ is bounded.

3.5.1 Branch-and-Price with a Single or Multiple Distinct Subsystems

We describe the algorithm for a single subsystem, which extends to the case of distinct subsystems. We suppose that

λ ∗ is an optimal solution of the Dantzig-Wolfe linear programming relaxation.

i) Integrality Test . If λ ∗ is integer, or more generally if x∗ = ∑g∈Gxgλ ∗g ∈ Z
n, stop. x∗ is an optimal solution of IP.

ii) Branching. Select a variable xj for which x∗j = ∑g∈G xg
j λ
∗
g /∈ Z. Separate into two subproblems with feasible regions

X∩{x : x j ≤ ⌊x∗j ⌋} and X∩{x : x j ≥ ⌈x∗j ⌉}.

Let us consider just the up-branch (U); the down-branch is treated similarly. The new IP for which we wish to derive a

lower bound is the problem:

zU = min{cx : Dx≥ d,x∈ Z,x j ≥ ⌈x
∗
j ⌉}.

There are now two options, depending whether the new constraint is treated as a complicating constraint, or becomes

part of the “tractable” subproblem.

Option 1. The branching constraint is dualized as a “difficult” constraint: YU
1 = {x ∈ Z

n : Dx≥ d,x j ≥ ⌈x∗j ⌉} and

ZU
1 = Z.

iii) Solving the new MLP: The resulting linear program is

zMLP1 = min ∑
g∈G

(cxg)λg

(MLP1) ∑
g∈G

(Dxg)λg ≥ d

∑
g∈G

xg
j λg ≥ ⌈x∗j ⌉

∑
g∈G

λg = 1

λg ≥ 0 g∈G,

18

where{xg} is the set of points of Z.

iv) Solving the new subproblem. Suppose that an optimal dual solution after iteration t is(π t ,µ t ,σ t)∈R
m
+×R

1
+×R

1
+.

The subproblem now takes the form:

(SPt
1) ζ t

1 = min{(c−π tD)x−µ tx j : x∈ Z}.

Option 2. The branching constraint is enforced in the sub-problem: YU
2 = Y and ZU2 = Z∩{x j ≥ ⌈x∗j ⌉}.

iii) Solving the new MLP: The resulting linear program is

zMLP2 = min ∑
g∈GU

2

(cxg)λg

(MLP2) ∑
g∈GU

2

(Dxg)λg ≥ d

∑
g∈GU

2

λg = 1

λg ≥ 0 g∈GU
2 .

where{xg}g∈GU
2

is the set of points of ZU2 .

iv) Solving the new subproblem. Suppose that an optimal dual solution after iteration t is(π t ,σ t) ∈ R
m
+×R

1
+. The

subproblem now takes the form:

(SPt
2) ζ t

2 = min{(c−π tD)x : x∈ Z∩{x : x j ≥ ⌈x
∗
j ⌉}}.

Note that, with Option 2, branching onx j ≥ ⌈x∗j ⌉ on the up-branch can be viewed as partitioning the set Z into two

setsZ\ZU
2 andZU

2 : adding the constraint∑g∈GU
2

λg = 1 is equivalent to adding∑g∈G\GU
2

λg = 0 and thus the columns of

Z\ZU
2 are removed from the master.

Both options 1 and 2 have certain advantages and disadvantages:

• Strength of the linear programming bound

zMLP1 = min{cx : Dx≥ d,x∈ conv(Z),x j ≥ ⌈x
∗
j ⌉}

≤ zMLP2 = min{cx : Dx≥ d,x∈ conv(Z∩{x : x j ≥ ⌈x
∗
j ⌉})},

so option 2 potentially leads to better bounds.

• Complexity of the subproblem

For option 1 the subproblem is unchanged, whereas for option2 the subproblem may remain tractable, or it may

become more complicated if the addition of bounds on the variables makes it harder to solve.

• Getting Integer Solutions

If an optimal solutionx∗ of IP is not an extreme point of conv(Z), there is no chance thatx∗ will ever be obtained

as an optimal solution of the subproblem under Option 1. Under Option 2, because of the addition of the bound

constraints, one can eventually generate a columnxg = x∗ in the interior ofconv(Z).

The above pros and cons suggest that Option 2 may be preferable if the modified subproblem remains tractable.

In the above we only consider branching at the root node and the modifications to the column generation procedure

after adding a single branching constraint. The two optionscan be used throughout the branch-and-price tree, adding a

new lower or upper bound on a variable on each branch. Both schemes also extend to mixed integer programs in which

case branching is carried out only on the integer variables.

19

3.5.2 Branch-and-Price with Identical Subsystems

In the case of identical subsystems the Dantzig-Wolfe reformulation is given by DWad (38)-(41). Here the model

variables result from an aggregation:νg = ∑K
k=1 λkg with ∑g∈G νg = K. Hence, there is no direct mapping back to

the original distinct subsystem variables(x1, · · · ,xK). The projection (42) of reformulation solutionν into the original

variable space will only provide the aggregate variablesy defined in (10). The“Integrality Test” needs to be adapted.

Moreover, branching on a single component ofy is typically not enough to eliminate a fractional solution.In particular,

the Option 1 scheme typically does not suffice because one mayhavey∗j = ∑g∈Gxg
j λ
∗
g ∈ Z for all j even though the

current master solution does not provide an optimal integersolution to the original problem. The extension consists in

defining branching entities involving more than one variable x j of the original formulation. This can be interpreted as

defining auxiliary variables on which to branch. The branching constraint can then either go in the master (as in Option 1)

or be enforced in the pricing problem (as in Option 2), which amounts to branching on appropriately chosen subsetsẐ⊂Z.

First, we provide an“Integrality Test” although its definition is not unique.

Integrality Test . Sort the columns xg with ν∗g > 0 in lexicographic order. Disaggregateν into λ variables using the

recursive rule:

λ ∗kg = min{1,νg−
k−1

∑
κ=1

λ ∗κg,(k−∑
γ≺g

ν∗g)+} ∀k = 1, . . . ,K,g∈G , (51)

where g1 ≺ g2 if g1 precedes g2 in the lexicographic order. For all k, let(xk)∗ = ∑g∈Gc xgλ ∗kg. If x∗ ∈ Z
Kn, stop. x∗ is a

feasible solution of IP.

Note that ifν∗ is integer, the pointx∗ obtained by the above mapping will be integer. In generalx∗ can be integer

even whenν∗ is not. However, whenZ⊂ {0,1}n, ν∗ is integer if and only ifx∗ is integer.

Let us now discuss Branching. We first treat the special case of (11) in which the master problem is a set partitioning

problem. Then we present briefly possible extensions applicable to the general case.

The Set Partitioning Case

For many applications with identical binary subsystems, one hasZ⊆ {0,1}n, D = I ,d = (1, ...,1), and the master takes

the form of:

min{∑
g

(cxg)νg : ∑
g

xg
j νg = 1∀ j , ∑

g
νg = K, νg ∈ {0,1} ∀g∈G}. (52)

One example is the bin packing problem of Example 8 in whichZ is the set of solutions of a 0-1 knapsack problem.

Another is the graph (vertex) coloring problem in which columns correspond to node subsets that can receive the same

color andZ is the set of stable sets of the graph.

Assume that the solution to the master LP is fractional withν∗ 6∈ {0,1}|G|. Branching on a single componenty j is

not an option. Indeed, if̂G = {g : xg
j = 1}, y∗j = ∑g∈Gxg

j ν
∗
g = ∑g∈Ĝ ν∗g = 1 for any master LP solution. However there

must exist a pair of coordinatesi and j such that

w∗i j = ∑
g:xg

i =1,xg
j =1

ν∗g = α with 0 < α < 1,

so that one can branch on the disjunctive constraint:

(wi j = ∑
g:xg

i =1,xg
j =1

νg = 0) or (wi j = ∑
g:xg

i =1,xg
j =1

νg = 1),

wherewi j = ∑k xk
i xk

j is interpreted as an auxiliary variable indicating whetheror not componentsi and j are in the same

subset of the partition.

20

We present three ways to handle the branching constraint, numbered 3, 4 and 5 to distinguish them from the Options

1 and 2 above. They are illustrated on the up-branchwi j = ∑g:xg
i =1,xg

j =1 νg = 1.

Option 3. The branching constraint is dualized as a “difficult” constraint: YU
3 = {x ∈ Z

n : Dx≥ d,wi j ≥ 1} and

ZU
3 = Z. Then the master includes the constraint∑g:xg

i =1,xg
j =1 νg ≥ 1 with associated dual variableµ and the pricing

subproblem needs to be amended to correctly model the reduced costs of a column; it takes the form:

ζ3 = min{(c−πD)x−µwi j : x∈ Z,wi j ≤ xi ,wi j ≤ x j ,wi j ∈ {0,1}}.

If one wishes to enforce branching directly in the pricing subproblem, note that one cannot simply setwi j = 1 in

the subproblem because this branching constraint must onlybe satisfied by one of theK subproblem solutions. In-

stead one must restrict the subproblem toẐ in such a way that any linear combination of its solutionsx ∈ Ẑ satisfies

wi j = ∑g∈Ĝ:xg
i =1,xg

j =1 νg = 1. This can be done through Options 4 or 5:

Option 4. Let YU
4 = {x ∈ Z

n : Dx≥ d} and Ẑ = ZU
4 = Z∩{xi = x j}. The combination of this restriction on the

solution set with the set partitioning constraints∑g∈Ĝ:xg
i =1νg = 1 and∑g∈Ĝ:xg

j =1νg = 1 results in the desired output:

∑g∈Ĝ:xg
i =1,xg

j =1νg = 1. With this option the master is unchanged, while the pricing subproblem is:

ζ4 = min{(c−πD)x : x∈ Z,xi = x j}.

Option 5. Here on the up branch one works with two different subproblems: one whose solutions havewi j = 1 and

the other whose solutions havewi j = 0. LetYU
5 = {x∈ Z

n : Dx≥ d} andẐ = ZU
5A∪ZU

5B with ZU
5A = Z∩{xi = x j = 0} and

ZU
5B = Z∩{xi = x j = 1}. Then, in the master program the convexity constraint∑g∈G νg = K is replaced by∑g∈GU

5A
νg =

K−1 and∑g∈GU
5B

νg = 1, and there are two pricing subproblems, one over setZU
5A and one over setZU

5B:

ζ5A = min{(c−πD)x : x∈ Z,xi = x j = 0} andζ5B = min{(c−πD)x : x∈ Z,xi = x j = 1}.

Option 3 can be seen as an extension of Option 1. Option 4 is known in the literature as the Ryan and Foster branching

scheme. Option 5 can be seen as an extension of Option 2. The analysis of the advantages and disadvantages of Options

3, 4 and 5 provides a slightly different picture from the comparison of Options 1 and 2:

• Strength of the linear programming bound

zMLP3 = min{cx : Dx≥ d,x∈ conv(Z)K ,wi j ≥ 1}

≤ zMLP4 = min{cx : Dx≥ d,x∈ conv(ZU
2)K},

≤ zMLP5 = min{cx : Dx≥ d,x∈ (conv(ZU
5A)K−1×conv(ZU

5B))},

• Complexity of the subproblem

The three options assume a change of structure in the subproblem (even Option 3). The Option 5 modifications of

fixing some of the subproblem variables are the least significant.

• Getting Integer Solutions

Both Option 4 and 5 allow one to generate a columnxg = x∗ in the interior ofconv(Z), but Option 5 is better in this

regard.

The down-branch can be treated similarly:YD
3 = {x∈ Z

n : Dx≥ d,wi j = 0}, ZD
4 = Z∩{xi +x j ≤ 1}, ZD

5A = Z∩{xi =

0} andZD
5B = Z∩{xi = 1,x j = 0}.

Note that the pricing problem modifications are easy to handle in some application while they make the pricing prob-

lem harder in others. The Option 3 modifications affect the cost structure in a way that is not amenable to standard

pricing problem solvers in both of our examples: bin packingand vertex coloring. The Option 4 modifications do not

affect the structure of the stable set sub-problem for the vertex coloring problem: addition of the inequalityxi +x j ≤ 1 on

the down-branch amounts to adding an edge in the graph, whileaddingxi = x j in the up-branch amounts to aggregating

the two nodes – contracting an edge. However, for the bin packing application, a constraint of the formxi +x j ≤ 1 in the

down-branch destroys the knapsack problem structure, so that a standard special purpose knapsack solver can no longer

21

be used, while the up-branch can be handled by the aggregation of items. The Option 5 modifications are easily handled

by preprocessing for both the bin packing and vertex coloring problems.

The General Case with Identical Subsystems

For the general case, such as the cutting stock problem of Example 7, the Master LP relaxation is

min{∑
g∈G

(cxg)νg : ∑
g∈G

(Dxg)νg ≥ d, ∑
g∈G

νg = K,ν ∈R
|G|
+ }.

If its solutionν does not pass the“Integrality Test”, one must apply an ad-hoc branching scheme. The possible choices

can be understood as extensions of the schemes discussed in Options 1 to 5.

Option 1 Branching on the aggregate variablesy does not guarantee the elimination of all fractional solutions. As we

have seen in the set partitioning case, no fractional solutions can be eliminated in this way. However for the general

case, in some (if not all) fractional solutions, there exists a coordinatei for which yi = ∑g∈Gxg
i νg = α /∈ Z. Then

one can create two branches

∑
g∈G

xg
i νg≤ ⌊α⌋ and ∑

g∈G
xg

i νg ≥ ⌈α⌉.

This additional constraint in the master does not change thestructure of the pricing problem that becomes

ζ = min{(c−πD)x−µixi : x∈ Z}

whereµi (resp.−µi) is the dual variable associated to up-branch (resp. down-branch) constraint.

Options 3 and 4 If the original variables do not offer a large enough spectrum of branching objects (i.e. if the integrality

of the aggregateyi value does not yield an integer solutionx to the original problem), one can call on an extended

formulation, introducing auxiliary integer variables. Then one can branch on the auxiliary variables, either by

dualizing the branching constraint in the master (Option 3)or, when possible, by enforcing it in the subproblem

(Option 4). A natural approach is to exploit the extended formulation that is implicit to the solution of the pric-

ing problem. For example, in the vehicle routing problem, solutions are the incidence vectors of the nodes in a

route, whereas the edges defining the routes implicitly define the costs of the route; branching on the aggregated

edge variables summed over all the vehicles allows one to eliminate all fractional solutions. For the cutting stock

problem, solving the knapsack subproblem by dynamic programming amounts to searching for a longest path in a

pseudo-polynomial size network whose nodes represent capacity consumption levels (see Section 5.4). Branching

on the associated edge flows in this network permits one to eliminate all fractional solutions.

Options 2 and 5 For a general integer problem, a generalization of the Option 2 approach is to look for a pair consisting

of an index j and an integer boundl j for which ∑g:xg
j≥l j

νg = α 6∈ Z, and then create the two branches:

∑
g∈Ĝ

νg ≥ ⌈α⌉ or ∑
g∈G\Ĝ

νg ≥ K−⌊α⌋ (53)

whereẐ = Z∩{x j ≥ l j} = {xg}g∈Ĝ. Then pricing is carried out independently over the two setsẐ andZ \ Ẑ =

Z∩{x j ≤ l j −1} on both branches. As in the set partitioning special case, one may have to consider setsẐ defined

by more than a singlecomponent bound. It is easy to show that if a solutionν does not pass the“Integrality Test”

there must exists a branching setẐ = Z∩{sx≥ l}, wherel ∈ Z
n is a vector of bounds ands∈ {−1,1}n defines

the sign of each component bound, such that∑g:xg∈Ẑ νg = α 6∈ Z. Then, branching takes a form generalizing (53)

and pricing is carried out independently forẐ and its complementary sets: the technicalities are beyond the scope

of this chapter (see the references provided in Section 7); in particular, to avoid the proliferation of the number

of cases to consider when pricing, it is important to chose a branching set̂Z that is either a subset of a previously

defined branching set or lies in the complement of all previously defined branching sets.

Option 1 can always be tried as a first attempt to eliminate a fractional solution. Although easy to implement, the

resulting branching can be weak (low improvement in the dualbound). Options 3 and 4 are application specific schemes

(whether the branching constraint can be enforced in the subproblem and whether this modifies its structure are very much

dependent on the application). By comparison Option 5 is a generic scheme that can be applied to all applications for

which adding bounds on the subproblem variables does not impair its solution (i.e., it works ifZ is bounded). Typically

it provides the strongest dual bound improvement.

22

3.6 Practical Aspects

In developing a branch-and-price algorithm, there are manypractical issues such as a proper initialization of the re-

stricted master program, stabilization of the column generation procedure (as discussed in Section 3.4), early termination

of the master LPs, adapting primal heuristics and preprocessing techniques to a column generation context, combining

column and cut generation, and branching strategies. Note that the branching schemes of Section 3.5 must be under-

stood as default schemes that are called upon after using possible branching on constraint strategies that can yield a more

balanced search tree.

Initialization is traditionally carried out by running a primal heuristic and using the heuristic solutions as an initial

set of columns. Another classical option is to run a sub-gradient or a volume algorithm to obtain an initial bundle of

columns before going into the more computationally intensive LP based column generation procedure. An alternative is

to run a dual heuristic to estimate the dual prices. These estimates are then used to define the cost of the artificial columns

associated with each of the master constraints as presentedin (50).

The column generation approach is often used in primal heuristics. A branch-and-price algorithm can be turned

into a heuristic by solving the pricing problem heuristically and carrying out partial branching. A classical heuristic

consists in solving the integer master program restricted to the columns generated at the root node using a standard MIP

solver (hoping that this integer program is feasible). Another common approach is to apply iterative rounding of the

master LP solution, which corresponds to plunging depth-first into the branch-and-price tree (partial backtracking yields

diversification in this primal search). The branching scheme underlying such a rounding procedure is simpler than for

exact branch-and-price (for instance one can branch directly on the master variables as only one branch is explored).

4 Resource or Variable Decomposition

The “classical” problem tackled by resource decompositionis the mixed integer program

zMIP = mincx+hy

(MIP) Gx+Hy≥ d

x∈ Zn,y∈R
p
+

where the integer variablesx are seen as the “important” decision variables (possibly representing the main investment

decisions). One approach is then to decompose the optimization in two stages: first choosingx and then computing the

associated optimaly. A feedback loop allowing one to adjust thex solution after obtaining pricing information from the

optimization ofy makes the Benders’ approach different from simple hierarchical optimization.

In this section we first derive the Benders’ reformulation inthe space of thex variables and show how it can be solved

using branch-and-cut. We then consider the case in which they variables are integer variables, as well as the case with

block diagonal structure in which the subproblem obtained when thex variables are fixed decomposes, and finally we

discuss computational aspects.

4.1 Benders’ reformulation

The approach here is to rewriteMIP as a linear integer program just in the space of the integer variablesx. First we

rewrite the problem as

zMIP = min{cx+φ(x) : x∈ projx(Q)∩Z
n}

where

Q = {(x,y) ∈ R
n×R

p
+ : Gx+Hy≥ d}

and

φ(x) = min{hy : Hy≥ d−Gx,y∈ R
p
+}

is the second stage problem that remains once the important variables have been fixed in the first stage. This can in turn

be written as

zMIP = min{cx+σ : x∈ projx(Q)∩Z
n,(σ ,x) ∈ Pφ}

23

wherePφ = {(σ ,x) : σ ≥ φ(x)}. Note that whenx yields a feasible second stage problem, i.e.,x ∈projx(Q), Pφ can

be described by linear inequalities. By LP duality,φ(x) = max{u(d−Gx) : uH ≤ h,u∈ R
m
+} = maxt=1,...,T ut(d−Gx)

where{ut}Tt=1 are the extreme points ofU = {u ∈ R
m
+ : uH ≤ h}. In addition a polyhedral description of projx(Q) is

given by Theorem 4. Thus we obtain the reformulation:

zMIP = mincx+σ

(RMIP) σ ≥ ut(d−Gx) t = 1, · · · ,T

vr (d−Gx) ≤ 0 r = 1, · · · ,R

x∈ Z
n,

where{ut}Tt=1 and{vr}Rr=1 are the extreme points and extreme rays ofU respectively.

RMIP is a linear integer program with a very large (typically exponential) number of constraints. With modern mixed

integer programming software, the natural way to solve sucha problem is by branch-and-cut (see Chapter ??).

Specifically at each node of the enumeration tree, a linear programming relaxation is solved starting with a subset

of the constraints ofRMIP. If this linear program is infeasible,RMIP at that node is infeasible, and the node can be

pruned. Otherwise if(σ∗,x∗) is the current linear programming solution, violated constraints are found by solving the

linear programming separation problem

φ(x∗) = min{hy : Hy≥ d−Gx∗,y∈R
p
+}, (54)

or its dual max{u(d−Gx∗) : uH ≤ h,u∈R
m
+}. There are three possibilities:

i) The linear programming separation problem (54) is infeasible and one obtains a new extreme rayvr with vr(d−Gx∗) >

0. (An extreme ray is obtained as the dual solution on termination of the simplex algorithm). The violated constraint

vr (d−Gx) ≤ 0, called afeasibility cut, is added, and one iterates.

ii) The linear programming separation subproblem is feasible, and one obtains a new dual extreme pointut with φ(x∗) =

ut (d−Gx∗) > σ∗. The violated constraintσ ≥ ut(d−Gx), called anoptimality cut, is added, and one iterates.

iii) The linear programming separation subproblem is feasible with optimal valueφ(x∗) = σ∗. Then(x∗,σ∗) is a solution

to the linear programming relaxation ofRMIPand the node is solved.

Example 9 Consider the mixed integer program

min −4x1 −7x2 −2y1 −0.25y2 +0.5y3

−2x1 −3x2 −4y1 +y2 −4y3 ≥ −9

−7x1 −5x2 −12y1 −2y2 +4y3 ≥ −11

x ≤ 3, x∈ Z
2
+, y∈R

3
+

where the feasible region is similar to that of Example 3.

The extreme rays v1 = (1,1)T ,v2 = (2,1)T of the feasible region of the dual U= {u∈ R
2
+ :−4u1−12u2 ≤−2,u1−

2u2≤−0.25,−4u1+4u2≤ 0.5}were calculated in Example 3. The extreme points are u1 = (1/32,5/32),u2 = (1/20,3/10),

so the resulting complete reformulation RMIP is:

min σ −4x1 −7x2

−9x1 −8x2 ≥ −20

−11x1 −11x2 ≥ −29

σ −1.15625x1 −0.875x2 ≥ −2

σ −1.15x1 −0.9x2 ≥ −2.1

x ≤ 3, x∈ Z
2
+.

Now we assume that the extreme points and rays of U are not known, and the problem is to be solved by branch-and-cut.

One starts at the initial node 0 with only the bound constraints 0≤ x≤ 3 and dynamically adds Benders’ cuts during

branch-and-cut. We further assume that a lower bound of -100on the optimal value ofφ(x) is given.

Node 0. Iteration 1. Solve the Master linear program:

24

ζ = min σ −4x1 −7x2

σ ≥−100

x1 ≤ 3, x2 ≤ 3, x∈ R
2
+.

Solution of the LP Masterζ =−133,x = (3,3),σ =−100.

Solve the separation linear program

min −2y1 −0.25y2 +0.5y3

−4y1 +y2 −4y3 ≥ −9+15

−12y1 −2y2 +4y3 ≥ −11+36

y∈R
3
+ .

The ray v= (1,1) shows that the separation LP is infeasible. The corresponding feasibility cut−9x1− 8x2 ≥ −20 is

added to the Master LP.

Node 0. Iteration 2.

Solution of the LP Master:ζ =−117.5,x = (0,2.5),σ =−100.

Solution of the Separation LP:φ(x) = 3/16> σ . u= (1/32,5/32). The corresponding optimality cutσ −1.15625x1−

0.875x2 ≥−2 is added to the Master LP.

Node 0. Iteration 3.

Solution of the LP Master:ζ =−17 5
16,x = (0,2.5),σ = 3

16.

Solution of the Separation LP:φ(x) = σ . The LP at node 0 is solved.

Create node 1 by branching on x2 ≤ 2 and node 2 by branching on x2 ≥ 3, see Figure 5.

Node 1. Iteration 1

The constraint x2 ≤ 2 is added to the Master LP of Node 0, Iteration 3.

Solution of the LP Master:ζ =−15.514,x = (4/9,2),σ = 0.264.

Solution of the Separation LP:φ(x) = σ . The LP at node 1 is solved.

Create node 3 by branching on x1 ≤ 0 and node 4 by branching on x1 ≥ 1.

Node 3. Iteration 1

The constraint x1 ≤ 0 is added to the Master LP of Node 1, Iteration 1.

Solution of the LP Master:ζ =−14.25,x = (0,2),σ =−0.25.

Solution of the Separation LP:φ(x) = σ . The LP at node 3 is solved. The solution is integer. The value-14.25 and the

solution x= (0,2),y = (0.25,0,0.5) are stored. The node is pruned by optimality.

Node 4. Iteration 1

The constraint x1 ≥ 1 is added to the Master LP of Node 1, Iteration 1.

Solution of the LP Master:ζ =−13.26. The node is pruned by bound.

Node 2. Iteration 1

The constraint x2 ≥ 3 is added to the Master LP of Node 0, Iteration 3.

The LP Master is infeasible. The node is pruned by infeasibility.

All nodes have been pruned. The search is complete. The optimal solution is x= (0,2),y = (0.25,0,0.5) with value

-14.25. The branch-and-cut tree is shown in Figure 5.

4.2 Benders with Integer Subproblems

The Benders’ approach has also been found useful in tacklinginteger programming models of the form

min{cx+hy : Gx+Hy≥ d,x∈ {0,1}n,y∈Y ⊆ Z
p},

where thex variables are 0-1 and represent the “strategic decisions”,and they variables are also integer. Once thex

variables are fixed, there remains a difficult combinatorialproblem to find the best correspondingy in the second stage.

25

0

1 2

3 4

x2<=2 x2>=3

x1<=0 x1>=1

LP infeasible
x=(0.444,2)

ζ= -15.514

x=(0,2)

ζ= -14.25 ζ= -13.26

 x=(0,2.5)

 ζ= -17.3125

Figure 5: Branch-and-Cut Tree for Benders’ Approach

Typical examples are vehicle routing (or multi-machine scheduling) in which thex variables may be an assignment of

clients to vehicles (or jobs to machines) and they variables describe the feasible tours of each vehicle (or the sequence of

jobs on each machine).

As before one can design a Benders’ reformulation and branch-and-cut algorithm in the(σ ,x) variables:

zMIP = min{cx+σ ,σ ≥ φ(x),x∈ Z
n},

whereφ(x) = ∞ whenx 6∈ projx(Q). However the separation subproblem is no longer a linear program, but the integer

program:

φ(x) = min{hy : Hy≥ d−Gx,y∈Y}. (55)

Now one cannot easily derive a polyhedral description of theprojection into thex-space as in the continuous subproblem

case. The combinatorial subproblem (55) must be solved repeatedly at each branch-and-bound node. It is often tackled

by constraint programming techniques, especially when it reduces to a feasibility problem (in many applicationsh = 0).

A naive variant of the algorithm presented in Section 4.1 is to solve the master problem to integer optimality before

calling the second stage problem: one only calls the separation algorithm whenRMIPhas an integer solutionx∗ ∈ {0,1}n.

The separation is typically easier to solve in this case. This approach is often used when the subproblem is handled by

constraint programming. There are three possible outcomes:

i) The separation subproblem is infeasible for the pointx∗ ∈ {0,1}n, and one can add the infeasibility cut

∑
j:x∗j =0

x j + ∑
j:x∗j =1

(1−x j)≥ 1 (56)

that cuts off the pointx∗.

ii) The separation subproblem is feasible forx∗, butφ(x∗) > σ∗. One can add the optimality cut

σ ≥ φ(x∗)− (φ(x∗)−M)
(

∑
j:x∗j =0

x j + ∑
j:x∗j =1

(1−x j)
)

that cuts off the point(σ∗,x∗), whereM is a lower bound onφ .

iii) The separation subproblem is feasible forx∗, andφ(x∗) = σ∗ = hy∗. Now (x∗,y∗) is a feasible solution with value

cx∗+φ(x∗). The node can be pruned by optimality.

This naive version has to be improved to have any chance of working in practice (for instance, in some applications

one can add certain valid inequalities in thex variables a priori). In particular it is important to find inequalities that cut off

more than just the pointx∗. One case in which a slightly stronger inequality can be generated is that in whichx∗ ∈ {0,1}

26

infeasible impliesx infeasible wheneverx≥ x∗. In this case one searches for a minimal infeasible solutionx̃≤ x∗ and the

infeasibility cut (56) is replaced by the inequality:

∑
j:x̃ j =1

(1−x j)≥ 1

stating that in any feasible solution at least one variable with x̃ j = 1 must be set to zero.

Finally note that one can also work with a relaxation of (55) as any feasibility cut or optimality cut that is valid for

the relaxation is valid for (55).

4.3 Block Diagonal Structure

In many applicationsMIP has block diagonal structure of the form

mincx + h1y1 + h2y2 + · · · +hKyK

G1 x + H1 y1 ≥ d1

G2 x + H2 y2 ≥ d2

. . .
. . . ≥

...

GK x + HK yK ≥ dK

x ∈ X, yk ∈ Zk k = 1, . . . ,K

Here the second stage subproblem breaks up intoK subproblems

ζ k = min{hkyk : Hkyk ≥ dk−Gkx,yk ∈ Zk} for k = 1, . . . ,K.

One important and well-known case is that of two-stage stochastic linear and integer programming, wherex represent

the first stage decisions (discrete or otherwise). Then depending on a discrete probability distribution, one observesthe

random variables involving one or more elements of(Gk,Hk,hk,dk) with probability pk before taking an optimal second

stage decisionyk. Note that all the subproblems will have a similar structurein the relatively common situation in which

the matricesHk,Gk are independent ofk.

We now consider an example in which all the costs are restricted to thex variables, but the subproblems are hard

combinatorial problems.

Example 10 (Multi-Machine Job Assignment Problem)

There are K machines and n jobs. Each job j has a release date rj and a due date dj . The processing time of job j on

machine k is pkj and the associated processing cost is ck
j . The problem is to assign each job to one machine so that the

jobs on each machine can be scheduled without preemption while respecting the release and due dates, and the sum of

the assignment costs are minimized.

Letting xkj = 1 if job j is assigned to machine k, the problem can be written as

zMIP = min{
K

∑
k=1

n

∑
j=1

ck
jx

k
j :

K

∑
k=1

xk
j = 1 ∀ j , xk ∈ Zk ∀ k},

where xk ∈ Zk if and only if the set Sk = { j : xk
j = 1} of jobs can be scheduled on machine k. The set Zk can be represented

as a linear integer program, but the feasibility problem foreach machine is well-solved in practice by the“Cumulative

Constraint” from Constraint Programming. Given a proposedassignment x∗, one calls the Cumulative Constraint in turn

for each of the K subproblems. Either x∗ is a feasible assignment, or one or more infeasibility cuts

∑
j∈Sk

xk
j ≤ |S

k|−1,

are added (involving as small as possible a set Sk of infeasible jobs). Note that as the costs are limited to thex variables,

there are no optimality cuts for this problem. Results are also significantly improved by the a priori addition of valid

inequalities in the xki variables.

27

4.4 Computational Aspects

Much recent research has shown the importance of normalization in generating cutting planes, and Benders’ algorithm

is no exception. Returning to the algorithm outlined in Subsection 4.1, given(x∗,σ∗), a violated feasibility or optimality

cut is generated if and only if there is no feasible point(x∗,y∗) attaining the present lower boundcx∗+σ∗, or equivalently

the set

{y∈R
p
+ : Hy≥ d−Gx∗,hy≤ σ∗}= /0.

By Farkas’ Lemma this holds if and only if

{(u,u0) ∈ R
m
+×R

1
+ : u(d−Gx∗)−u0σ∗ > 0,uH−u0h≤ 0} 6= /0.

Taking the normalization∑m
i=1 ui +u0 = 1 motivated by the aim of generating a minimal infeasible subsystem of inequal-

ities and also the fact that this normalization has been effective for other problems, the earlier separation problem (54)

can be replaced by the linear program:

ζ = maxu(d−Gx∗)−u0σ∗

uH−u0h≤ 0

∑m
i=1 ui +u0 = 1

u∈R
m
+,u0 ∈ R

1
+.

Now if ζ > 0, the inequalityu(d−Gx) ≤ u0σ is violated byζ . Note that this is a feasibility cut whenu0 = 0 and

an optimality cut whenu0 > 0. A recent computational study has shown that Benders’ algorithm is significantly more

effective and requires far fewer iterations when this normalized separation problem is used.

5 Extended Formulations: Problem Specific Approaches

We now consider the use and derivation of extended formulations based on explicit problem structure in more detail.

Typically we again have a decompositionX = Y∩Z of the feasible region, andZ has some specific structure that we

wish to exploit. In nearly all such cases a minimal inequality description of conv(Z) in the original space of variables

requires a very large number of constraints. However there is the possibility that one can find a compact extended

formulation that is tight or at least considerably strongerthan the initial formulation forZ. This section is mainly about

such reformulations.

First it is natural to ask when there is hope of finding such a compact and tight extended formulation forZ. An

important indication is given by the Polynomial Equivalence of Optimization and Separation. Informally it states that,

subject to certain technical conditions:

A family of problems min{cx : x ∈ Z ⊆ Z
n} is polynomially solvable if and only if for all instancesZ there is a

polynomial separation algorithm for conv(Z).

AssumingP 6= N P , this tells us that a tight and compact extended formulationcan only exist for a problem for

which the optimization/separation problem is inP . However it gives no guarantee of the existence of such a formulation.

Below we briefly discuss ways in which “relatively compact” extended formulations can be used. Then we look at

different ways to derive extended formulations. We have attempted to classify them according to the method of derivation.

In particular we consider extended formulations based on variable splitting, dynamic programming algorithms, unionsof

polyhedra, explicit convex hull descriptions or the associated separation problem, and finally a couple of miscellaneous

extended IP-formulations are presented.

5.1 Using Compact Extended Formulations

Here we consider briefly different ways to make use of extended formulations that are compact or of “reasonable

size”.

28

Intersection

Given an initial formulationPof X, the decompositionX =Y∩Z and an extended formulationQ for Z, thenQ′= P∩Q

is an extended formulation forX. Assuming thatQ is compact, one simple option is to feed the reformulated problem

max{cx+0w : (x,w) ∈Q′,x∈ Z
n}

to an MIP solver. Alternatively one might also try to improvethe formulation ofY and combine this with the extended

formulationQ so as to produce an even stronger reformulation, see Section6.

Projection

Again given the decompositionX = Y ∩Z and an extended formulationQ for Z, one may wish to avoid explicit

introduction of the new variablesw∈R
p. One possibility is to use linear programming to provide a separation algorithm

for projx(Q).

Separation Algorithm

GivenQ = {(x,w) ∈ R
n
+×R

p
+ : Gx+Hw≥ d} andx∗ ∈ R

n
+,

i) check whetherQ(x∗) = {w∈R
p : Hw≥ d−Gx∗} 6= /0. This can be tested by linear programming.

ii) If Q(x∗) 6= /0, thenx∗ ∈ projx(Q). Stop.

iii) If Q(x∗) = /0, then by Farkas’ lemma there existsv∗ ∈V = {v∈ R
m
+ : vH ≤ 0} with v∗(d−Gx∗) > 0 (v∗ is obtained

as a dual solution of the linear program used in i)). Thenv∗Gx≥ v∗d is a valid inequality for projx(Q) cutting off x∗.

Note that the Minkowski non-compact extended formulation of Z (see Section 2) can be used in a similar manner to

provide a separation algorithm for conv(Z). However in this case a column generation approach (or some alternative)

must be used, and the resulting column generation subproblem is the optimization problem overZ.

Inequality Representation of projx(Q)

One can sometimes obtain an explicit polyhedral description of projx(Q) by way of linear inequalities. In the simple

cases the projection can be obtained directly from inspection ofQ. Otherwise givenQ= {(x,w) ∈R
n
+×R

p
+ : Gx+Hw≥

d}, one may be able to describe all the extreme rays{v1, · · · ,vT} of V = {v∈R
m
+ : vH ≤ 0}. This immediately gives the

polyhedral description{x∈R
n
+ : vtGx≥ vtd, t = 1, . . . ,T} of projx(Q). Alternatively, a systematic method of projecting

out variables one at a time, known as “Fourier-Motzkin elimination”, can be used to eliminate thew variables in certain

cases.

5.2 Variable Splitting I: Multi-commodity Extended Formul ations

Using a multi-commodity extended formulation of the flows asfor the directed Steiner tree problem presented in

Example 4 is an example of variable splitting. Here we consider a more general fixed charge network flow problem, and

present two further applications to the asymmetric traveling salesman problem and a lot-sizing problem.

Single-Source Fixed Charge Network Flows

Given a directed graph or networkD = (V,A), a rootr ∈V, a vectorb∈ R
|V| of demands withbr < 0, bv ≥ 0 for all

v∈V \{r}, unit flow costsc∈ R
|A| and fixed costsq∈ R

|A|
+ for the use of an arc, the problem is to find a feasible flow

that minimizes the sum of all the flow and fixed costs. This can be formulated as the mixed integer program:

min∑(u,v)∈A(quvxuv+cuvyuv)

∑u∈δ−(v) yuv−∑u∈δ +(v) yvu = bv v∈V

yuv≤ |br |xuv (u,v) ∈ A

y∈R
|A|
+ ,x∈ [0,1]|A|,x∈ Z

|A|.

The linear programming relaxation of this model does not provide good bounds because, whenyuv > 0 for some arc(u,v),

one typically hasyuv≪ |br |. Thusxuv = yuv
|br |
≪ 1, which means that the fixed cost termquvxuv seriously underestimates

the correct fixed costquv. One way to improve the formulation is to use amulti-commodityreformulation.

29

Let T = {v ∈ V \ {r} : bv > 0} be the set of terminals, or commodities. We now treat flow withdestinationt ∈ T

as a distinct commodity and define the variablewt
uv to be the flow in arc(u,v) with destinationt ∈ T. The resulting

reformulation is

min{qx+cy : (x,y,w) ∈Q,x∈ Z
|A|},

whereQ is the polyhedron

∑ j wt
jr −∑ j wt

r j =−bt t ∈ T

∑ j wt
jv−∑ j wt

v j = 0 v∈V \{r} t ∈ T,t 6= v

∑ j wt
jt −∑ j w

t
t j = bt t ∈ T

wt
i j ≤ btxi j (i, j) ∈ A t ∈ T

yi j = ∑t∈T wt
i j (i, j) ∈ A (57)

y∈R
|A|
+ , w∈ R

|A|·|T|
+ ,x∈ [0,1]|A|.

Note that now the bound on the flow on the decision variablexi j is xi j ≥ maxt∈T
wt

i j

bt
. Again considering the linear

programming relaxation, it is often the case thatwt
i j = bt for some commodityt, and this forcesxi j = 1, so that in this

case the evaluation of the fixed cost for the arc(i, j) is exact.

For the special case of the directed Steiner tree problem introduced in Section 2.2, we noted that projection of the

above formulation leads us to the reformulation min{qx : x∈ P′,x∈ Z
n} whereP′ is the polyhedron

{x∈ [0,1]|A| : ∑
i∈U, j∈V\U

xi j ≥ 1, U ⊆V with r ∈U,t ∈ T ∩ (V \U)}.

As P′ has an exponential number of constraints, one can use the max-flow/min-cut theorem to provide a polynomial

separation algorithm for the polyhedronP′. Note that this is exactly the Benders’ separation problem.For this special

case, the linear programming relaxation has an optimal solution that solves the original problem in certain cases, in

particular when the network is Series Parallel, or whenT = V \{r} (minimum weight spanning tree) or|T|= 2 (shortest

path).

More generally network design problems, in which the first stage variables are the choice of open arcs (or the multiples

of capacity installed) and the second stage variables are the resulting flows, are often treated by Benders’ approach.

TSP and Sub-tour Polytope: A Three-Index Flow Reformulation

It is well known and follows directly from the last reformulation that the asymmetric traveling salesman problem

(ATSP) can be written as the integer program:

min∑ci j xi j (58)

∑
j

xi j = 1 i ∈V (59)

∑
i

xi j = 1 j ∈V (60)

∑
i∈U

∑
j∈V\U

xi j ≥ 1 U ⊂V with φ ⊂U (61)

x∈ {0,1}|A|, (62)

wherexi j = 1 if arc (i, j) lies on the tour. LetZ = {x ∈ Z
|A| satisfying (61) and (62)}. To model these connectivity

constraints one can again use multi-commodity flows to ensure that one unit can flow from some root noder ∈V to every

other node. This leads to the extended formulationQ for conv(Z):

∑
j

wt
r j −∑

j
wt

jr = 1 t ∈V \{r}

∑
j

wt
i j −∑

j
wt

ji = 0 i ∈V \{r,t},t ∈V \{r}

wt
i j ≤ xi j (i, j) ∈ A,t ∈V \{r}

x∈ [0,1]|A|,w∈ [0,1] (i, j) ∈ A,t ∈V \{r}

30

wherewt
i j is the flow in(i, j) from noder to nodet. HereQ is a tight and compact extended formulation forZ.

For the symmetric traveling salesman problem on an undirected graphG = (V,E), one can also make use of this

reformulation by settingye = xi j +x ji , and addingwt
i j +wt ′

ji ≤ ye for all (i, j) ∈ E, t,t ′ ∈ T. Conversely it can be shown

that projection onto the edge variablesy gives back the well-known sub-tour elimination constraints ∑e∈E(S) ye≤ |S|−1,

whereE(S) = {e= (i, j) ∈ E : i, j ∈ S}.

Uncapacitated Lot-Sizing

The uncapacitated lot-sizing problem involves time periods t = 1, · · · ,n, demandsdt in periodt, production costspt ,

a set-up or fixed production costqt and a unit (end-of-period) storage costht .

Lettingxt ,st be the production and end-stock in periodt, andyt ∈ {0,1} indicate if there is a set-up or not, a natural

formulation as an MIP is given by:

min∑n
t=1 ptxt +∑n

t=0htst +∑n
t=1 qtyt

st−1 +xt = dt +st 1≤ t ≤ n (63)

xt ≤Myt 1≤ t ≤ n (64)

x∈R
n
+, s∈R

n+1
+ , y∈ {0,1}n (65)

with feasible regionXLS−U .

For this problem various polynomial algorithms are known, as well as a complete description of the convex hull of

solutions given by an exponential number of facet-defining inequalities.

As this problem can be viewed as a special case of the fixed charge network flow problem, it is easy to add an

additional subscript to the production and stock variablesindicating the periodt in which the units will be used to satisfy

the demand.

Rescaling the resulting production variable, one can definenew variableswut to be the fraction of the demand in

periodt satisfied by production in periodu. This leads immediately to the following reformulationQLS−U of XLS−U

∑t
u=1 wut = 1 1≤ t ≤ n (66)

wut ≤ yu 1≤ u≤ t ≤ n with dut > 0 (67)

w∈R
(n−1)n/2
+ , y∈ [0,1]n (68)

xu = ∑n
t=udtwut 1≤ u≤ n (69)

st = ∑u≤t ∑t<ℓ dℓwuℓ 1≤ t ≤ n. (70)

It can be shown that projx,s,y(Q) = conv(XLS−U). It follows that the linear program

min{px+hs+qy,(x,s,y,w) ∈QLS−U}

has an optimal solution that solves the lot-sizing problem.Note that this formulation can also be obtained from the

complete multi-commodity reformulation by elimination ofthe multi-commodity stock variables.

5.3 Variable Splitting II

Here we present other reformulations obtained by variable splitting.

Given an integer variablex with 0≤ x≤C, it is possible to model it with binary variables, either with a so-called

unary expansion:

x =
C

∑
q=0

qzq,
C

∑
q=0

zq = 1,z∈ {0,1}C+1,

or with a binary expansion

x =
P

∑
p=0

2pwp ≤C, ,w∈ {0,1}P+1,

whereP = log2⌊C⌋.

31

Time-Indexed Formulation

Machine scheduling problems are traditionally modeled using variables representing the starting time (or completion

time) of the jobs. However, when using these variables, sequencing constraints (enforcing that a machine can only

process one job at a time) are not easily modeled as linear mixed integer programs. Consider a single machine scheduling

problem, in which there aren jobs with processing timesp j , release datesr j and deadlinesd j for job j . Let the variable

y j ∈ R
1
+ represent the start-time of jobj , with r j ≤ y j ≤ d j − p j for all j . These variables must satisfy the disjunctive

constraints

y j ≥ yi + pi , or yi ≥ y j + p j i 6= j

which are often modeled in mixed integer programming by the introduction of so-called bigM constraints of the form

y j ≥ yi + pi −M(1−δi j), where the 0-1 variableδi j = 1 if job i precedesj .

Time-indexed variables, based on the unary decomposition of theyvariables, allow one to build a linear IP-reformulation

avoiding the bigM constraints. Assuming integer processing timesp j , one can discretize the time horizon intoT periods.

One can then introduce new variablesw j
t wherew j

t = 1 if job j starts at the beginning of the interval[t−1,t], andw j
t = 0

otherwise. Then one obtains the IP-reformulation

∑T
t=1w j

t = 1 1≤ j ≤ n

∑n
j=1 ∑t

u=t−pj +1w j
u ≤ 1 1≤ t ≤ T− p j +1, 1≤ j ≤ n

w j
t ∈ {0,1} r j ≤ t ≤ d j − p j +1, 1≤ j ≤ n,

where the first constraint ensures that each jobj is started once, the second that at most one job is on the machine in each

period, the range of definition of the variables handles the release and due dates, and the original variables are obtained

by settingy j = ∑t(t−1)w j
t .

Many different objective functions and constraints, such as precedence constraints, are easily handled using such time-

indexed variables. Though pseudo-polynomial in size, the linear programming relaxation of this extended IP-formulation

typically provides a much stronger bound than that of a big-Mformulation in the(x,δ) variables.

Capacity-Indexed Variables

In capacitated vehicle routing problems with integral demandsdi and a vehicle capacityC, it has been proposed to

apply variable splitting to the arc indicator variables. Specifically if xa = 1 indicates that an arca forms part of a vehicle

route,wa
q = 1 indicates thata = (i, j) forms part of the route and the total load of the vehicle whiletraversing arca is q.

Now as a quantitydi is delivered to clienti, one must have

∑
a∈δ−(i)

wa
q = ∑

a∈δ +(i)

wa
q−di

di ≤ q≤C

and flow conservation becomes:

C

∑
q=0

∑
a∈δ−(i)

qwa
q−

C

∑
q=0

∑
a∈δ +(i)

qwa
q = di i ∈V.

Summing overS⊂V and defining aggregate variablesy−q (S) = ∑a∈δ−(S) wa
q andy+

q (S) = ∑a∈δ +(S) wa
q, one obtains integer

knapsack sets
C

∑
q=0

qy−q (S)−
C

∑
q=0

qy+q (S) = ∑
i∈S

di , y−q (S), y+
q (S) ∈ Z

C+1
+

for which a variety of cutting planes can be generated. Herexa = ∑q wa
q provides the link to the original arc variables.

Fractionality-Indexed Variables and Network Dual MIPs

A network dual set is a mixed integer set in which all the constraints have two non-zero entries of +1 and -1 respec-

tively. Thus we consider the set

XND = {x∈ R
n : xi −x j ≥ bi j i, j ∈N,xi ∈ Z

1 i ∈ I ⊂ N}

32

whereN = {1, . . . ,n}. Such sets have been studied recently motivated by researchon lot-sizing problems.

For the presentation here, we assume that each right-hand side valuebi j is a multiple of 1
K , so we can writebi j =

⌊bi j ⌋+
hi j
K with hi j ∈ Z

1
+ andhi j ∈ {0,1, . . . ,K−1}. As a consequence of this assumption, one can assume thatKxi ∈ Z

1

for all i.

Following the idea of a unary expansion, we can write

Kxi = K⌊xi⌋+
K−1

∑
h=0

hzh,
K−1

∑
h=0

zh = 1, z∈ Z
K
+.

This in turn can be rewritten as

Kxi = ⌊xi⌋+(⌊xi⌋+zK−1)+(⌊xi⌋+zK−2 +zK−1)+ · · ·+(⌊xi⌋+z1 + · · ·+zK−1)

=
K−1

∑
h=0

(⌊xi⌋+
K−1

∑
j=K−h

zj)

=
K−1

∑
h=0

wh
i

wherewh
i = ⌊xi⌋ if xi −⌊xi⌋< K−h

K andwh
i = ⌈xi⌉ if xi −⌊xi⌋ ≥

K−h
K .

With these variables, one obtains the extended formulation

xi = 1
K ∑K−1

h=0 wh
i i ∈ N (71)

wt
i −w f (t)

j ≥ ⌊bi j ⌋ t = 0, . . . ,K−hi j −1, i, j ∈ N (72)

wt
i −w f (t)

j ≥ ⌊bi j ⌋+1 t = K−hi j , . . . ,K−1, i, j ∈N (73)

xi = wh
i h = 0, . . . ,K−1, i ∈ I , (74)

where f (t) = t + hi j modK. For the integer variablesxi with i ∈ I , one can use (74) to eliminate the correspondingw

variables. The important observation is that this reformulation again has network dual structure, but with an integer right

hand side. Thus the corresponding matrix is totally unimodular and the extremal solutions are integer. So it provides a

tight and compact extended formulation forXND.

We now indicate briefly how network dual sets arise in lot-sizing problems.

Example 11 Consider the set

sk−1 +∑t
u=kCyu + rt ≥ ∑t

u=k du 1≤ k≤ t ≤ n (75)

s∈R
n+1
+ , r ∈R

n
+,y∈ [0,1]n,y∈ Z

n, (76)

known as the constant capacity Wagner-Whitin relaxation with backlogging, where st ,yt are the same stock and set-up

variables introduced earlier for the lot-sizing problem, and rt represents the backlog/shortage at the end of period t.

Introducing the new variables: zt = ∑t
u=1 yu, σk−1 =−(sk−1−Czk−1+∑k−1

u=1du)/C andρt = (rt +Czt−∑t
u=1 du)/C,

constraint (75) after division by C can be written asρt −σt−1 ≥ 0, 1
Csk−1 ≥ 0 becomes zk−1−σk−1 ≥ (∑k−1

u=1 du)/C,
1
C rt ≥ 0 becomesρt −zt ≥−(∑t

u=1du)/C, and0≤ yt ≤ 1 becomes0≤ zt −zt−1 ≤ 1.

Thus one obtains the reformulation:

ρt − σk−1 ≥ 0 1≤ k≤ t ≤ n

zk−1 − σk−1 ≥ (∑k−1
u=1du)/C 1≤ k≤ n

ρt − zt ≥ −(∑t
u=1du)/C 1≤ t ≤ n

−zt + zt−1 ≥ −1 1≤ t ≤ n

zt − zt−1 ≥ 0 1≤ t ≤ n

ρ,σ ∈R
n,z∈ Z

n,

which is precisely a network dual MIP.

More generally when thebt take arbitrary values, the extended formulation (71)-(74)can always be reduced to a size

that is polynomial inF, the number of distinct fractional values taken by the continuous variables in the extreme point

solutions. For the lot-sizing set (75)-(76), theF ∈ O(n2), corresponding to the values 0 and∑t
u=k du/C mod 1, so that

the extended formulation is both tight and compact.

33

0 1 2 3 4 5 6 7

5 5 5 5 5 5

7 7 7 7 7 7

0 0 0 0 0 0 0

Figure 6: Knapsack Longest Path:a = (2,3,1),b = 7,c = (5,7,0)

5.4 Reformulations based on Dynamic Programming

In many cases, solving a problem by dynamic programming can be interpreted as transforming it to a shortest or

longest path problem (in an appropriate network of possiblyvery large size). It is then natural to look for a reformulation

as a network flow problem. More generally, a dynamic programming recursion can often be written as a linear program,

and the dual of this linear program provides an extended formulation in which the variables indicate which terms are tight

in the dynamic programming recursion. We demonstrate this with two examples, the first of which illustrates the simple

case in which the dynamic program corresponds to a longest path algorithm.

The Integer Knapsack Problem

Consider the integer knapsack problem:

z= max{
n

∑
j=1

c jx j :
n

∑
j=1

a jx j = b,x∈ Z
n
+}

with {a j}
n
j=1, b positive integers. (The standard inequality knapsack problem is obtained by takingan = 1 andcn = 0).

It is well-known that the dynamic programming recursion:

G(t) = max
j=1,...,n:t−aj≥0

{c j +G(t−a j)}

with G(0) = 0, can be used to findz= G(b) and then the corresponding optimal solution. One can convert the recursion

into a linear program in which the valuesG(t) for t = 0, . . . ,b are the variables:

minG(b)

G(t)−G(t−a j)≥ c j a j ≤ t ≤ b, 1≤ j ≤ n

G(0) = 0.

Defining dual variablesw j,t−aj for all t, j with t−a j ≥ 0, the linear programming dual is

max∑n
j=1 ∑

b−aj

t=0 c jw jt

∑ j w jt = +1 t = 0

−∑ j w j,t−aj +∑ j w jt = 0 a j ≤ t ≤ b

−∑ j w j,t−aj = −1 t = b

w jt ≥ 0, t = 0,1, · · · ,b−a j , j = 1, · · · ,n

(77)

The resulting problem can be viewed as a longest path problemin a networkD = (V,A) with nodesV = {0,1, . . . ,b} and

arcs(t,t +a j) ∈ A for all t ∈ {0,1, · · · ,b−a j} with weightc j for all j . Any path from 0 tob corresponds to a feasible

solution of the knapsack problem. Adding the equationsx j = ∑
b−aj

t=0 w jt that count the number of timesj-type arcs are

used, one has that the polyhedron is a tight extended formulation for Z = {x∈ Z
n
+ : ∑n

j=1 a jx j = b}.

An instance of the network corresponding to this extended formulation is shown in Figure 5.4.

For this instance, the optimal linear programming solutionx1 = 7
2 ,x2 = x3 = 0 is not integral and provides an upper

bound onz of 17.5. The linear programming relaxation of the extended formulation has an optimal solutionw1
0 = w1

2 =

w2
4 = 1, w j

t = 0 otherwise, giving the optimal solutionx1 = 2,x2 = 1 of value 17.

34

Optimal cardinality constrained subtrees of a tree

The second example involves a somewhat different dynamic program. One is given a rooted directed treeT = (V,A)

with node weightsc ∈ R
|V |. Node 1 is the root. The problem is to find an optimal rooted subtree with 1 as the root

containing at mostK nodes. A natural IP formulation is given by

max∑
v∈V

cvxv : xp(v) ≥ xv v∈V, ∑
v∈V

xv ≤ K,x∈ {0,1}|V |,

wherexv = 1 if v forms part of the subtree,p(v) is the predecessor ofv on the path fromv to the root andxp(1) = 1 by

definition. For simplicity, we suppose that it is a binary tree and the left and right sons of nodev are the nodes 2v and

2v+1 respectively.

LetH(v,k) denote the maximum weight subtree with at mostk nodes rooted atv. The dynamic programming recursion

is:

H(v,k) = max{H(v,k−1),cv + max
t=0,...,k−1

[H(2v,t)+H(2v+1,k−1− t)]},

where the first term in the maximization can be dropped forv 6= 1. Replacing the max by appropriate inequalities and

taking the optimal valueH(1,K) as the objective function leads to the linear program:

minH(1,K)

H(1,k)−H(1,k−1) ≥ 0 1≤ k≤ K

H(v,k)−H(2v,t)−H(2v+1,k−1− t) ≥ cv v∈V, 0≤ t < k≤ K

H(v,k)≥ 0 ∀v∈V, 0≤ k≤ K.

Takingy1,k andwv,k,t,k−1−t as dual variables, we obtain

max∑v∈V cv ∑K
k=1∑k−1

t=0 wv,k,t,k−1−t

∑t w1,K,t,K−1−t +y1,K ≤ 1

∑t w1,k,t,K−1−t +y1,k−y1,k+1 ≤ 1 1≤ k≤ K−1

∑k−1
t=0 wv,k,t,k−1−t−∑κ>k wp(v),κ ,k,κ−1−k ≤ 0 v > 1 even, 1≤ k≤ K

∑k−1
t=0 wv,k,t,k−1−t−∑κ>k wp(v),κ ,κ−1−k,k ≤ 0 v > 1 odd, 1≤ k≤ K

w,y≥ 0.

wherep(v) = ⌊ k
2⌋. Herewv,k,t,k−1−t = 1 means that the optimal tree contains a subtree rooted atv containingk nodes

with t (respk−1− t) nodes in the subtrees rooted in its left (resp. right) successors, andy1k = 1 indicates thatH(1,k) =

H(1,k−1). Settingxv = ∑K
k=1∑k−1

t=0 wv,k,t,k−1−t allows us to complete the extended formulation.

5.5 The Union of Polyhedra

One of the very basic polyhedral results of relevance to integer programming concerns the union of polyhedra. As-

sumeP = conv(P1∪ ·· ·∪PK) wherePk = {x∈ Rn : Akx≤ bk} andCk = {x∈ R
n : Akx≤ 0} is the recession cone ofPk

for all k.

Theorem 6 (Balas) If Pk 6= φ and C= Ck for 1≤ k≤ K, then

conv(∪K
k=1Pk) = projx{(x,w,δ) ∈ IRn× IRnK×R

K
+ : Akwk ≤ bkδ k 1≤ k≤ K

∑K
k=1δ k = 1,x = ∑K

k=1wk}.

Disjunctions arise frequently in integer programming. Given a 0-1 setX = P∩Z
n whereP = {x∈ R

n : Ax≤ b, 0≤

x≤ 1} it is natural to select some variablej and consider the disjunction

P = P0
j ∪P1

j wherePi
j = {x∈ P : x j = i} for i = 0,1.

One use of extended formulations is to give tightened formulations that are then projected back into the original space.

One example using the above disjunction is the lift-and-project approach presented in Chapter ??.

35

Here we consider situations in which a problem becomes easy when the value of one variable is fixed. Then, if one

can describe the convex hull of solutions when this variableis fixed, an extended formulation is obtained for the original

set by taking the convex hull of the union of the convex hulls.

1−k Configurations

A 1−k configuration is a special 0-1 knapsack set of the form

Y = {(x0,x) ∈ {0,1}n+1 : kx0 +
n

∑
j=1

x j ≤ n}.

To describe its convex hullO(nk) valid inequalities are needed. Now observe thatY =Y0∪Y1 whereY0 = {x∈{0,1}n+1 :

x0 = 0} andY1 = {x∈ {0,1}n+1 : x0 = 1,∑n
j=1 x j ≤ n−k}. To obtain the convex hulls ofY0 andY1, it suffices to drop

the integrality constraints in their initial descriptions. Theorem 6 then gives the extended formulationQ:

x j = x j0 +x j1 0≤ j ≤ n

x00 = 0, 0≤ x j0 ≤ δ0 1≤ j ≤ n

x01 = δ1, 0≤ x j1 ≤ δ1 1≤ j ≤ n
n

∑
j=1

x j1 ≤ (n−k)δ1

δ0 +δ1 = 1,δ ∈ R
2
+.

After renamingx j1 asw j , and replacingδ1 by x0 andx j0 by x j −w j for j = 1, . . . ,n, the resulting tight extended formu-

lation is:

0≤ x j −w j ≤ 1−x0 1≤ j ≤ n

0≤ w j ≤ x0 1≤ j ≤ n
n

∑
j=1

w j ≤ (n−k)x0

x∈ [0,1]n+1,w∈ [0,1]n.

Circular Ones Matrices

Consider the setX = {x∈ {0,1}n : Ax≤ b} whereA is acircular onesmatrix, i.e, each row is either of the form

0 0 0 1 1 1 1 0 0

with 0’s followed by 1’s followed by 0’s, or of the form

1 1 0 0 1 1 1 1 1

with 1’s followed by 0’s followed by 1’s.

Let Pk = {x∈ [0,1]n : Ax≤ b,∑n
j=1 x j = k} for k = 0, . . . ,n. Observe first that subtracting a row of the second type

from a row of all 1’s gives a row of the first type. Secondly a 0-1matrix with only rows of the first type is known as a

consecutive 1’s matrix, and is known to be totally unimodular. It follows thatPk = conv(Pk∩Z
n) and

conv(X) = conv(∪n
k=0Pk),

so a tight extended formulation is obtained immediately from Theorem 6.

5.6 From Polyhedra and Separation to Extended Formulations

Given the setX ⊆ Z
n, suppose that a family of valid inequalities forX is known. This family explicitly or implicitly

describes a polyhedronP containing the feasible regionX. A first possibility is that the inequalities directly suggest an

extended formulation.

36

Uncapacitated Lot-Sizing

Let XLS−U be as described in (63)-(65). It has been shown that every non-trivial facet-defining inequality for

conv(XLS−U) is of the form

∑
j∈S

x j + ∑
j∈L\S

d jl y j ≥ d1l (78)

whereL = {1, . . . , l}, S⊆ L, l = 1, . . . ,n anddut ≡∑t
j=u d j .

Let µ jl = min{x j ,d jl y j} for 1≤ j ≤ l ≤ n. One sees that (78) is satisfied for allS if and only if ∑l
j=1 min{x j ,d jl y j} ≥

d1l . It follows immediately that a tight and compact extended formulation is given by the polyhedron consisting of the

original constraints (63)-(65) less the integrality constraints, plus the constraints

∑l
j=1 µ jl ≥ d1l 1≤ l ≤ n

µ jl ≤ x j 1≤ j ≤ l ≤ n

µ jl ≤ d jl y j 1≤ j ≤ l ≤ n.

A second possibility is that the separation problem forP can be formulated as an optimization problem that can be

reduced to a linear program. Specifically suppose thatP = {x∈ R
n : π tx≥ π t

0, t = 1, . . . ,T}. Now x∗ ∈ P if and only if

ζ ≥ 0 whereζ = mint=1,...,T(π tx∗−π t
0). Suppose now that the latter can be reformulated as a linear program:

ζ = min
w
{gx∗+hw−d0 : Gx∗+Hw≥ d,w∈ R

p
+}.

By LP duality,ζ ≥ 0 if and only if there exists a dual feasible solution with a non-negative value, namely

{u∈R
p : ud−uGx∗ ≥ d0−gx∗,uH ≤ h,u∈R

m
+} 6= /0.

Finally lettingx vary, this gives us an extended formulation

Q = {(x,u) ∈ R
n×R

p : ud−uGx≥ d0−gx,uH ≤ h,u∈R
m
+}

for which P =projx(Q).

Subtour Elimination Constraints

Consider the relaxation of the set of forests or symmetric traveling salesman tours consisting of the setY defined by

the exponential family of subtour elimination constraints. Specially setZ = ∩K
k=1Zk whereZk = Pk

Z∩Z
|E| and

Pk
Z = {x∈ [0,1]|E| : ∑

e∈E(S)

xe≤ |S|−1 S⊆V with k∈ S}.

Now consider the separation problem forx∗ ∈ [0,1]|E|. One sees thatx∗ ∈ Pk
Z if and only if

max
S:k∈S⊆V

{ ∑
e∈E(S)

x∗e−|S\{k}|} ≤ 0.

Lettingv j = 1 if j ∈ Sandue = 1 if e= (i, j) ∈ E(S), this optimization problem can be formulated as the IP

ζ = max∑
e∈E

x∗eue− ∑
j∈V\{k}

v j (79)

ue≤ vi ,ue≤ v j e= (i, j) ∈ E (80)

ue≥ vi +v j −1 e= (i, j) ∈ E (81)

u∈ {0,1}m,v∈ {0,1}n,vk = 1. (82)

It can then easily be shown that the constraints (81) can be dropped, and in addition that the integrality and bounds can

be relaxed. It follows thatζ ≤ 0 if and only if η ≤ 0 where

37

η = max∑
e∈E

x∗eue− ∑
j∈V\{k}

v j

ue≤ vi ,ue≤ v j e= (i, j) ∈ E

u∈R
m,v∈R

n
+.

In this last linear program, eitherη = 0 or it is unbounded, so the dual of this linear program is feasible if and only if

η ≤ 0. In other wordsx∗ ∈ [0,1]n is in Pk
Z if and only if Qk(x∗) 6= /0, whereQk(x) is the polyhedron:

wi jk +w jik = xe e= (i, j) ∈ E

∑
j: j<i

w jik + ∑
j: j>i

wi jk ≤ 1 i 6= k

∑
j: j<i

w jik + ∑
j: j>i

wi jk ≤ 0 i = k

x∈R
m,wi jk ,w jik ≥ 0 e= (i, j) ∈ E.

5.7 Miscellaneous

There are several other reasons that might lead one to try an alterative formulation. An important one, already

discussed in Section 3, is the problem of symmetry. A second is to find good branching directions for use in the context

of branch-and-bound and branch-and-cut, and a third as before is to derive stronger linear programming bounds.

Symmetry-Breaking in Vertex Coloring

Given a graphG = (V,E) with |V| = n and |E| = m, the textbook formulation for vertex coloring is based on the

variables:

yk = 1 if color k is used

xik = 1 if vertex i receives colork, wherek = 1, . . . ,K are the permissible colors.

This leads to the formulation:

min∑k yk

∑k xik = 1 i ∈V

xik +x jk ≤ yk 1≤ k≤ K, (i, j) ∈ E

xik ≤ yk 1≤ k≤ K, i ∈V

xik ∈ {0,1} 1≤ k≤ K, i ∈V, yk ∈ {0,1} 1≤ k≤ K.

Clearly given any coloring, any permutation of the colors leads to essentially the same solution independently of the

structure of the graph. To avoid this symmetry and also to tighten the formulation, it suffices to observe that, given any

feasible coloring, each stable set can be assigned the colorof its node of minimum index. Hence one can eliminate all

variablesxik with k > i, and also eliminateyk by settingyk = xkk. Note that a similar approach applies for the bin packing

problem of Example 5.

Boolean Reformulation: 0-1 Knapsack

Given two 0-1 knapsack sets of the form

Xi = {x∈ {0,1}n :
n

∑
j=1

ai
jx j ≤ ai

0} i = 1,2

with {ai
j} positive integers, it is natural to ask whenX1 = X2, or the two sets are equal. In particular one might be

interested in finding the set of integer coefficients for which the right-hand side valueai
0 or the sum of the weights

∑n
j=1 ai

j is minimum. It also seems likely that the corresponding formulationPX i is typically tighter when the coefficients

are smaller.

38

Example 12 Consider the knapsack set

X = P1∩Z
n whereP1 = {x∈ [0,1]5 : 97x1 +65x2 +47x3 +46x4 +25x5 ≤ 136}.

It can be verified that X can also be expressed as

X = P2∩Z
n whereP2 = {x∈ [0,1]5 : 5x1 +3x2 +3x3 +2x4 +1x5 ≤ 6}

and this is the reformulation with integer coefficients withthe minimum possible right hand-side value.

In addition it is easy to check that the extreme points of P2 all lie in P1 and thus P2 ⊂ P1.

Improved Branching Variables for an Equality Integer Progr am.

Consider the set

X = {x∈ Z
n
+ : Ax= b}

with A ∈ Zm×n andb ∈ Z
m. “Integer programming in a fixed number of variables is polynomially solvable” is one of

the most fundamental results in integer programming. Lattice reformulations and the calculation of a reduced basis of a

lattice play an important role in the proof of this result. Here we indicate briefly how a lattice reformulation can be used

as a heuristic to look for effective branching variables. See the references cited in Section 7 for the appropriate lattice

definitions.

Suppose thatx0 ∈ Z
n with Ax0 = b, thenX can be rewritten asX = {x∈ Z

n
+ : x= y+x0,Ay= 0}. Now given a matrix

T ∈ Z
n×(n−m) such that{y∈ Z

n : Ay= 0} = {y∈ Z
n : y = Tw,w∈ Z

n−m}, thenX =projx(W) where

W = {(x,w) ∈ R
n
+×Z

n−m : x = x0 +Tw}.

Here the extended IP-formulation does not provide tighter bounds. However it is possible to find an appropriate matrix

T in polynomial time using a “reduced basis” algorithm, and for certain instances the new integer variablesw are much

more effective variables for branching than the original variablesx.

Example 13 Consider the setX = {x∈ Z
5
+ : ax= b} where

a = (11737 7263 9086 32560 20823),b = 639253.

This has the extended formulation










x1

x2

x3

x4

x5











=











28

51

−40

17

−12











+











−1 −1 7 239

0 0 −11 616

−1 0 −10 −445

0 1 4 33

1 −1 −2 −207











w, x∈R
5
+, w∈ Z

4.

Here branching onw4, it is easily verified thatX = /0, whereas this is very hard to detect when branching on thex variables.

In fact that the best MIP solvers all require millions of nodes to prove infeasibility for this tiny instance when using the

original formulation.

5.8 Existence of Polynomial Size Extended Formulations

Yannakakis has shown that for the perfect matching polytopethere is no extended formulation that is “symmetric”

in a very general sense. This includes formulations in whichone chooses a root, such as the extended formulation for

the subtour polytope in Subsection 5.2. Thus it appears veryunlikely that every family of IPs: min{cx : x∈ X} that is

polynomially solvable has a polynomial size extended formulation whose projection in the original variables provides

conv(X). It remains a major challenge to discover necessary and/or sufficient conditions for the existence of polynomial

size extended formulations for such problems.

On the other hand it has very recently been shown that for the 0-1 knapsack problemz= min{cx : ax≥ b,x∈ {0,1}n},

given anyε > 0, there exists a polynomial size extended formulation based on disjunctions for which the valuezLP of the

linear programming relaxation is such thatz≤ (1+ ε)zLP.

39

6 Hybrid Algorithms and Stronger Dual Bounds

Here we consider ways to obtain stronger dual bounds for the problemz= min{cx : x∈Y∩Z} by using properties

of both the setsY andZ. Thus we assume as before that optimizing overZ is relatively easy, and now we assume also

that we can either optimize overY relatively easily, or that we have a cut generation routine forY or some polyhedronPY

containing conv(Y).

6.1 Lagrangean Decomposition or Price-and-Price

Here we assume that we can optimize efficiently over the setZ and also over the setY. We reformulateIP by

duplicating thex variables giving the new formulation:

mincy

y−z= 0

y∈Y

z∈ Z.

Applying Lagrangean relaxation, the subproblem with dual variablesu∈R
n gives two subproblems min{(c−u)y : y∈Y}

and min{uz: z∈ Z}, and by Theorem 5 the value of the resulting Lagrangean dual is min{cx : x∈ conv(Y)∩conv(Z)}.

This model can be solved either by dual methods such as a basicsubgradient approach, or by a column generation

approach (called Price-and-Price in this context).

In the latter case,the restricted master problem at iteration tis constructed from a set{yi}i∈I t−1 of extreme points of

conv(Y) and a set{(zj)} j∈Jt−1 of extreme points of conv(Z) giving the linear program:

min cx

x− ∑
i∈I t−1

λiy
i = 0

(RMPP) ∑
i∈I t−1

λi = 1

x− ∑
j∈Jt−1

β jz
j = 0

∑
j∈Jt−1

β j = 1

λ ∈ R
I t−1

+ ,β ∈ R
Jt−1

+ ,

where thex variables can be easily eliminated. If(π,π0,µ,µ0) are optimal dual variables, one can solve the two pricing

subproblems

ζ 1 = min{πx−π0, x∈Y}

and

ζ 2 = min{µx−µ0,x∈ Z}.

If ζ 1 < 0 orζ 2 < 0, then the corresponding optimal solution provides a new column to be added, and one updates RMPP.

If ζ 1 = ζ 2 = 0, the algorithm terminates. In practice, convergence (anddual instability) require an even more careful

treatment in price-and-price than in branch-and-price.

6.2 Cut-and-Price

Here we assume that we can optimize efficiently over the setZ = {x∈ Z
n
+ : Bx≥ b} and that there is a cut generation

algorithm forY = {x∈ Z
n
+ : Dx≥ d}, or more realistically for some polyhedronPY containing conv(Y).

The restricted master problem at iteration t.

This problem is constructed from a set{xi}i∈I t−1 of extreme points of conv(Z) and a set{(α j ,α j
0)} j∈Jt−1 of valid inequal-

40

ities forPY (or Y), including the constraintsDx≥ d, giving the linear program:

min cx

x− ∑
i∈I t−1

λix
i = 0

(RMCP) ∑
i∈I t−1

λi = 1

∑
j∈Jt−1

α jx≥ α j
0 j ∈ Jt−1

λi ≥ 0 i ∈ I t−1,

Let (x,λ) be a primal optimal solution and (π,π0,µ)∈R
n×R

1×R
|Jt−1|
+ a dual optimal solution. Here again, one can

eliminate thex variables, observing thatπ = c−∑ j∈Jt−1 µ t
jα

j from dual feasibility.

The order in which the two subproblems are solved below is arbitrary. We have chosen to give priority to column

generation.

The Optimization Subproblem – Adding Columns.

Solveζ t = min{πx−π0 : x∈ Z} with solutionxt .

If ζ t < 0, the column corresponding toxt has negative reduced cost. SetI t = I t−1∪{t}, sett ← t + 1, and reoptimize

RMCP.

Otherwise go to the (Constraint) Separation Subproblem.

The Separation Subproblem – Adding Constraints.

Solve the separation problem to see if the pointx = ∑i∈It−1
λixi can be cut off.

If a cut (α t ,α t
0) is generated, setJt = Jt−1∪{t}, sett← t +1, and reoptimize RMCP.

Otherwise stop.

On terminationx = ∑i∈I t−1 λixi ∈ PY ∩ conv(Z). If the separation routine is exact for conv(Y), the optimal value on

termination is min{cx : x∈ conv(Y)∩conv(Z)} as with the other hybrid approaches.

Example 14 (The Vehicle Routing Problem)

Given a fleet of K identical vehicles of capacity C, and clients with demands di for i = 1, . . . ,n, the problem is to determine

a delivery route for each vehicle starting and ending at the depot, so that the demand of each client is satisfied by exactly

one vehicle, the total amount delivered by a vehicle does notexceed its capacity and the total travel costs are minimized.

Consider a complete graph H= (V,E), where the nodes V= {0, . . . ,n+1} correspond to departure from the depot (node

0), the n customers and arrival at the depot (node n+1). The travel cost on edge e is ce.

One possibility is to formulate the problem with K distinct vehicles based on the variables xk
e such that xke = 1 if

edge e is traversed by vehicle k. However as the vehicles are identical, one can attempt to build a formulation using the

variables xe specifying the number of vehicles traversing edge e. Note that xe∈ {0,1} for all e. This leads to a standard

formulation

min ∑
e∈E

ce xe (83)

∑
e∈δ (i)

xe = 2 i ∈V \{0,n+1} (84)

∑
e∈δ (i)

xe = K i ∈ {0,n+1} (85)

∑
e∈δ (S)

xe ≥ 2B(S) S⊆V \{0,n+1} (86)

xe ∈ {0,1} e∈ E, (87)

where B(S) denotes the minimum number of vehicles required to visit theset S of clients. The value of B(S) is in fact the

41

solution of a bin-packing problem, but a valid formulation is obtained if one ensures that the number of vehicles traveling

through S is sufficient to satisfy the sum of the demands, i.e.∑e∈δ (S) xe≥ 2(∑i∈Sdi)/C.

On the other hand the price decomposition approach leads to an extended formulation in which one must select K

feasible routes in such a way that each client is visited exactly once, leading to the master problem

min{∑
g∈G

(∑
e

cexg
e)λg : ∑

g∈G
(∑
e∈δ (i)

xg
e)λg = 2 i ∈V \{0,n+1}, ∑

g∈G
λg ≤ K, λ ∈ {0,1}|G|} (88)

where Z= {xg}g∈G is the set of edge incidence vectors of feasible routes.

Unfortunately optimizing over this set Z is a hard problem that is not tractable in practice. This suggests using a

relaxation of the set Z in which feasible routes are replacedby “q-routes”, where a q-route is a walk beginning at node

0 and ending at node n+1 (possibly visiting some client nodes more than once) for which the sum of the demands at the

nodes visited does not exceed the capacity. It is easily seenthat if the union of K q-routes satisfies the degree constraints

(84)-(85), then one has K feasible routes. However, in the LPrelaxation of (88), inequalities (86) are useful cuts. Thus, a

hybrid cut-and-price approach can be implemented where themaster is

min ∑
e∈E

ce xe

x satisfies(84)− (86)

xe = ∑
p∈P

qp
eλp e∈ E

∑
p∈P

λp = K,

x∈R
|E|, λ ∈ {0,1}P

in a form ready to be tackled by a cut-and-price algorithm. The degree constraints are kept throughout, the constraints

(86) are generated by cutting planes, and the q-routes are generated by column generation. Branching is dealt with by

branching on the original xe variables.

In practice one may choose to eliminate the original xe variables by substitution, the cut generation problem is

tackled using a heuristic because the calculation of the exact bin-packing value B(S) is hard. Cuts of the form (86) can be

generated by identifying small sets S that require more thanone vehicle, or else inequalities are generated in which B(S)

is replaced by a lower bound(∑i∈Sdi)/C or ⌈(∑i∈Sdi)/C⌉. The separation problem for the inequalities with right hand

side(∑i∈Sdi)/C is solvable by maximum flow algorithms. For the column generation problem, a dynamic programming

algorithm is used to find q-routes of minimum reduced cost.

7 Notes

Here we present notes providing some basic historical references, some references for results or applications men-

tioned in the chapter, and a few recent references concerning interesting extensions or examples of the ideas presentedin

the different sections.

7.1 Basics of Reformulation

The result (Theorem 1) that every polyhedron is finitely generated by extreme points and extreme rays is due to

Minkowski [74] and its converse, Theorem 4, to Weyl [96]. Meyer [73] showed that for integer programs and mixed

integer programs with rational data the convex hull of solutions is a polyhedron. Theorem 2 on the representation of

integer sets is proved in Giles and Pulleyblank [47]. For Farkas’ lemma, see [36], and for the projection procedure of

Fourier-Motzkin, see [41].

7.2 Dantzig-Wolfe and Price Decomposition

The first use of an optimization subproblem to price out an exponential number of non-basic variables can be found

in a paper of Ford and Fulkerson [39] on multi-commodity flows. Specifically they used a path-flow formulation, and

42

then using the LP dual variables on the arcs, they solved shortest path problems for each commodity to find a path with

negative reduced cost to enter the basis. This was closely followed by the Dantzig-Wolfe decomposition algorithm [22].

The first applications to discrete problems are the two papers on the cutting stock problem of Gilmore and Gomory

[48, 49], introduced in Example 7, in which the subproblem was a knapsack problem, as well as the model of Dzielinski

and Gomory [28] on multi-item lot-sizing in which the subproblem was a single item lot-sizing problem.

Lagrangean Relaxation

Early work showing the effectiveness of Lagrange multipliers in optimization can be found in Everett [35]. The first

demonstration of the effectiveness of Lagrangean relaxation and the subgradient algorithm were the seminal papers of

Held and Karp [55, 56] on the symmetric traveling salesman problem, based on the 1-tree relaxation that can be solved by

a greedy algorithm. The survey of Geoffrion [45] clarified the properties of Lagrangean relaxation as applied to integer

programs, including the integrality property, and Fisher [37] was one of several researchers to popularize the approach.

Later dual heuristics, or approximate algorithms for the Lagrangean dual, were proposed by numerous authors, in-

cluding Bilde and Krarup [12] and Erlenkotter [33] for uncapacitated facility location, Wong [98] for directed Steiner

trees and Balakrishnan, Magnanti and Wong [3] for multicommodity uncapacitated fixed charge network flows.

Solving the Lagrangean dual

The subgradient algorithm was proposed in Uzawa [87], Ermolev [34] and Polyak [79]. Its variant, the volume

algorithm, is due to Barahona and Anbil [5]. The cutting plane algorithm applied to the LP form of the Lagrangean dual

is known as the method of Kelley [61] or Cheney-Goldstein [18]. It is the equivalent of the column generation approach

but carried out in the dual space. The piece-wise linear stabilization of column generation is studied in du Merle et al.

[27] and Ben Amor et al. [8]. Stabilization based on smoothing dual prices was introduced by Neame [75] (using a

convex combination of the current master dual solution and that of the previous iterate) and Wenges [95] (using a convex

combination of the current dual solution and the dual solution that yielded the best Lagrangean bound). Recently Pessoa

et al (2009) [77] have proved that at each iteration either the column generated with the smoothed prices has a strictly

negative reduced cost for the restricted master, or one getsa strictly improving dual bound and a new associated stability

center.

The Bundle method, in which a quadratic term is introduced inthe restricted master dual problem to penalize the

deviation from a stability center, was developed by Lemaréchal [64], see also [65, 62]. There has been a large amount

of research on such methods in the last few years. In many cases, and particular for very large problems in which

the column generation approach is much too slow, the proximal bundle method has been effective. See Borndorfer et

al. [13, 14] for applications to vehicle and duty schedulingin public transport and airline crew scheduling. Bundle’s

numerical performance is compared to LP based column generation in [16], and many references can be found in the

thesis of Weider [94].

The analytic center cutting plane method (ACCPM) is due to Goffin and Vial [52].

Branching and Column Generation

For some of the first successful applications of integer programming column generation to routing problems, see

Desrochers, Soumis et al. [26] and Desrochers and Soumis [25]. The branching rule of Ryan and Foster appears in [84].

Vanderbeck and Wolsey [89, 88] discuss different branchingstrategies (extending the scheme of Ryan and Foster to cases

where the master is not a set partitioning problem) and theirinherent difficulties. Villeneuve et al. [93] suggest that one

can always proceed by using standard branching in an “original” formulation and re-apply Dantzig-Wolfe reformulation

to the problem augmented with branching constraints, but this leads to problems of symmetry in the case of multiple

identical subproblems. Examples of branching on auxiliaryvariables, implicitly using an extended formulation as pre-

sented in Options 3 and 4 can be found in Belov et al. [7], Campˆelo et al. [17] and Carvalho [23]. The scheme presented

in Option 2 and its extension presented in Option 5 has been proposed as a generic all-purpose scheme by Vanderbeck

[90] (although it normally assumes a bounded subproblem, itis can also be used in some application specific contexts in

43

which the subproblem is unbounded).

7.3 Resource Decomposition

The resource decomposition approach that became known as Benders’ algorithm was proposed by Benders [9]. Ge-

offrion [43] produced the first important surveys on different ways to create decomposition algorithms. Geoffrion and

Graves [46] reported a successful application of Benders’ algorithm to a large distribution problem. Magnanti and Wong

[69] studied ways to obtain strong Benders cuts. Since branch-and-cut algorithms became a practical possibility, this

allows one to solve the Benders’ reformulation directly by solving LP subproblems to generate cuts at the nodes rather

than having to solve an integer program at each iteration, asproposed originally. Applications of Benders’ algorithm to

two stage stochastic programs are numerous, see for exampleVan Slyke and Wets [91]. The case with integer variables

at both stages was treated by Laporte and Louveaux [63] amongothers. The multi-machine job assignment problem was

first treated by Jain and Grossman [58]. The importance of normalization and the computational effectiveness of using a

modified linear program to solve the separation problem is demonstrated in Fischetti et al. [38].

7.4 Extended Formulations

Apart from Minkowski’s representation of a polyhedron, extended formulations were not considered systematically

as a tool for modeling integer programs until the 70’s.

Grötschel, Lovasz and Schrijver’s paper on the equivalence of optimization and separation [51] implies that, unless

P = NP, one can only hope to find tight and compact extended formulations for integer programs if the corresponding

optimization problem is polynomially solvable. Balas and Pulleyblank [4] gave an extended formulation for the per-

fectly matchable subgraph polytope of a bipartite graph andextended formulations have been proposed for a variety of

combinatorial optimization problems in the last twenty years.

Variable Splitting I: Multi-Commodity Extended Formulati ons

Rardin and Choe [82] explored the effectiveness of multi-commodity reformulations, and Wong [97] showed that the

multi-commodity reformulation gives the spanning tree polytope. For the Steiner problem on series parallel graphs, see

Prodon et al. [81]. Bilde and Krarup [11] showed that the extended facility location reformulation for uncapacitated

lot-sizing was integral, and later Eppen and Martin [32] proposed an alternative formulation. The book of Pochet and

Wolsey [78] contains numerous reformulations for different single and multi-item lot-sizing problems.

Variable Splitting II

Pritsker et al. [80] contains one of the first uses of a time-indexed formulation for a scheduling problem. Gouveia [53]

demonstrates the use of capacity indexed variables. The reformulation of network dual MIPs was studied in Conforti et

al. [19], and the specific formulation proposed here is from Conforti et al. [21]. The first compact extended formulation

for the constant capacity Wagner-Whitin relaxation with backlogging is due to Van Vyve [92].

Extended Formulations based on Dynamic Programming

Martin [70] and Eppen and Martin [32] show how dynamic programs can be used to derive extended formulations.

The longest/shortest path formulations for knapsack problems were known in the early 70’s and probably date from the

work of Gilmore and Gomory [48] on knapsack functions or Gomory on group problems. For dynamic programs that are

not of the shortest path type, see Martin et al. [72]. The cardinality constrained problem is a natural generalization ofthe

problem of finding an optimal subtree of a tree.

The Union of Polyhedra

The characterization of the convex hull of the union of polyhedra is due to Balas [2]. Recently Conforti and Wolsey

[20] show how the union of polyhedra can be used to develop compact and tight extended formulations for several

44

problems whose complexity was not previously known.

1− k configurations are studied by Padberg [76]. Circular ones matrices are treated in Bartholdi et al. [6], see also

Eisenbrand et al. [29].

From Polyhedra and Separation to Extended Formulations

Martin [71] demonstrates how LP separation algorithms can lead to extended formulations.

Miscellaneous

Equivalent knapsack problems are studied in Bradley et al. [15]. The polynomiality of IP with a fixed number of

variables is due to H.W. Lenstra, Jr., [68] and the lattice reformulation demonstrated in the example was proposed by

Aardal and A.K. Lenstra [1]. See Lenstra, Lenstra and Lovasz[67] for properties of reduced bases and a polynomial

algorithm to compute a reduced basis.

Existence of Polynomial Size Extended Formulations

Yannakis [99] presents lower bounds on the size of an extended formulation for a given class of problems, and shows

that even though weighted matching is polynomially solvable, it is most unlikely that there is a tight and compact extended

formulation. The existence of polynomial size extended formulations approximating the convex hull of the 0-1 knapsack

polytope is from Bienstock and McClosky [10].

7.5 Hybrid Algorithms and Stronger Dual Bounds

For Lagrangean decomposition, see Jornsten and Nasberg [60] and Guignard and Kim [54]. For cut-and-price, recent

papers include Fukasawa et al. [42] on vehicle routing and Ochoa et al. [86] on capacitated spanning trees. In the latter

paper use was also made of the capacity-indexed variables from subsection 5.3. Jans and Degraeve [59] combine an

extended formulation and column generation for a multi-item lot-sizing problem.

References
[1] K. Aardal and A. K. Lenstra. Hard equality constrained integer knapsacks.Mathematics of Operations Research29 724–738

(2004). Erratum:Mathematics of Operations Research31, 2006, page 846.

[2] E. Balas, Disjunctive programming: properties of the convex hull of feasible points, GSIA Management Science Research Report

MSRR 348, Carnegie Mellon University (1974), published as invited paper inDiscrete Applied Mathematics89, 1-44 (1998).

[3] A. Balakrishnan, T.L. Magnanti and R.T. Wong, A dual ascent procedure for large-scale uncapacitated network design, Operations

Research37, 716–740 (1989).

[4] E. Balas and W.R. Pulleyblank, The perfectly matchable subgraph polytope of a bipartite graph,Networks13, 495–516 (1983).

[5] F. Barahona and R. Anbil, The volume algorithm: Producing primal solutions with a subgradient method,Mathematical Program-

ming87, 385-399 (2000).

[6] J.J. Bartholdi, J.B. Orlin and H. Ratliff, Cyclic scheduling via integer programs with circular ones,Operations Research28,

1074-1085 (1980).

[7] G. Belov, A.N. Letchford, and E. Uchoa (2005). A node-flowmodel for the 1D stock cutting: robust branch-cut-and-price. Working

paper available at http://www.lancs.ac.uk/staff/letchfoa/csp.pdf.

[8] H. Ben Amor, J. Desrosiers and A. Frangioni, On the choiceof explicit stabilizing terms in column generation,Discrete Applied

Mathematics, to appear (2009).

[9] J.F. Benders, Partitioning procedures for solving mixed variables programming problems,Numerische Mathematik4, 238–252

(1962).

[10] D. Bienstock adn B. McClosky, Tightening simple mixed-integer sets with guaranteed bounds, Columbia University,New York,

July 2008.

45

[11] O. Bilde and J. Krarup, Plant location, set covering andeconomic lot size: anO(mn) algorithm for structured problems, in

Numerische Methoden bei Optimierungsaufgaben, Band 3: Optimierung bei Graphentheoretischen and Ganz-zahligen Problemen,

Birkhauser, Basel-Stuttgart (1977).

[12] O. Bilde and J. Krarup, Sharp lower bounds and efficient algorithms for the simple plant location problem,Annals of Discrete

Mathematics1, 79-97 (1977).

[13] R. Borndörfer, A. Löbel and S. Weider, A Bundle Methodfor Integrated Multi-Depot Vehicle and Duty Scheduling in Public

Transit, ZIB Report 04-14, Konrad-Zuse Zentrum, Berlin (2004).

[14] R. Borndörfer, U. Schelten, T. Schlechter l and S. Weider, A Column Generation Approach to Airline Crew Scheduling, ZIB

Report 05-37, Konrad-Zuse Zentrum, Berlin (2004).

[15] G.H. Bradley, P.L. Hammer and L.A. Wolsey, Coefficent reduction for inequalities in 0-1 variables,Mathematical Programming

7, 263–282 (1974).

[16] O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot and F. Vanderbeck, Comparison of bundle and classical column

generation,Mathematical Programming113, 299-344 (2008).

[17] M. Campêlo, V. Campos, and R. Corréa, On the asymmetric representatives formulation for the vertex coloring problem. Notes in

Discrete Mathematics, 19, 337–343 (2005),

[18] E. Cheney and A. Goldstein, Newton’s method for convex programming and Tchebycheff approximations,Numerische Mathematik

1, 253-268 (1959).

[19] M. Conforti, M. Di Summa, F. Eisenbrand and L. A. Wolsey,Network formulations of mixed integer programs,Mathematics of

Operations Research34, 194–209 (2009).

[20] M. Conforti and L. A. Wolsey, Compact formulations as unions of polyhedra,Mathematical Programming, 114, 277–289 (2008).

[21] M. Conforti, L.A. Wolsey and G. Zambelli, Projecting anextended formulation for mixed integer covers on bipartitegraphs,

Working Paper, Université catholique de Louvain, November 2008.

[22] G.B. Dantzig and P. Wolfe, Decomposition principle forlinear programs,Operations Research8, 101–111 (1960).

[23] J.V. de Carvalho, Exact solution of bin packing problems using column generation and branch-and-bound.Ann. Oper. Res86,

629-659 (1999).

[24] J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis, Time constrained routing and scheduling. pp 35-139 inNetwork Routing,

Handbooks in Operations Research and Management Science 8,M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser,

eds., Elsevier (1995).

[25] J. Desrosiers and F. Soumis, A column generation approach to the urban transit crew scheduling problem,Transportation Science

23, 1–13 (1989).

[26] J. Desrosiers, F. Soumis and M. Desrochers, Routing with time windows by column generation,Networks14, 545–565 (1984).

[27] O. du Merle, D. Villeneuve, J. Desrosiers and P. Hansen,Stabilized column generation.Discrete Math., 194, 229-237 (1999).

[28] B.P. Dzielinski and R.E. Gomory, Optimal programming of lot sizes,Operations Research11, 874–890 (1965).

[29] F. Eisenbrand, G. Oriolo, G. Stauffer and P. Ventura, Circular ones matrices and the stable set polytope of quasi-line graphs, pp

291-305 inInteger Programming and Combinatorial Optimization, IPCO2005, M. Jünger and V. Kaibel eds., Lecture Notes in

Computer Science 3509, Springer 2005.

[30] F. Eisenbrand and G. Shmonin, Carathéodory bounds forinteger cones,Operations Research Letters34, 564–568 (2006).

[31] I. Elhallaoui, D. Villeneuve, F. Soumis and G. Desaulniers, Dynamic aggregation of set-partitioning constraintsin column genera-

tion, Operations Research53, 632–645 (2005).

[32] G. Eppen and R.K. Martin, Solving multi-item capacitated lot-sizing problems using variable redefinition,Operations Research

35, 832–848 (1992).

[33] D. Erlenkotter, A dual-based procedure for uncapacitated facility location,Operations Research26, 992–1009 (1978).

[34] Y.M. Ermol’ev, Methods of solution of nonlinear extremal problems,Kibernetica2, 1-17 (1966).

[35] H. Everett III, Generalized Lagrange multiplier method for solving problems of optimal allocation of resources,Operations Re-

search11, 399–417 (1963).

[36] Gy. Farkas, On the applications of the mechanical principle of Fourier,Mathematikai es Termeszettudomanyi Ertesoto12, 457-472

(1894).

[37] M.L. Fisher, The Lagrangean relaxation method for solving integer programming problems,Management Science27, 1-18 (1981).

[38] M. Fischetti, D Salvagnin and A. Zanette, Minimal infeasible subsystems and Benders’ cuts, DEI, University of Padua,Mathemat-

ical Programmingto appear.

46

[39] L.R. Ford, Jr. and D.R. Fulkerson, A suggested computation for maximal multi-commodity network flows,Management Science

5, 97–101 (1958).

[40] J.B.J. Fourier, Solution dune question particulièredu calcul des inégalités,Nouveau Bulletin des Sciences par la Société Philoma-

tique de Paris317-319, (1826).

[41] J.B.J. Fourier, from 1824, republished as Second extrait in Oeuvres de Fourier, Tome II, G. Darboux, ed. Gauthier-Villars, Paris

1890, see D.A. Kohler, Translation of a report by Fourier on his work on linear inequalities,Opsearch10, 38–42 (1973).

[42] R. Fukasawa, H. Longo, J. Lysgaard, M.P. Aragao, M. Reis, E. Uchoa and R.F. Werneck, Robust branch-and-cut-and-price for the

capacitated routing problem,Mathematical Programming106, 491-512 (2006).

[43] A.M. Geoffrion, Elements of large scale mathematical programming I and II,Management Science16, 652-691 (1970).

[44] A.M. Geoffrion, Generalized Benders’ decomposition,Journal of Optization Theory and Applications10, 237–260 (1972).

[45] A.M. Geoffrion, Lagrangean relaxation for integer programming,Mathematical Programming Study2, 82–114 (1974).

[46] A.M. Geoffrion and G.W. Graves, Multicommodity distribution design by Benders’ decomposition,Management Science20,

822-844 (1974).

[47] R. Giles and W.R. Pulleyblank, Total dual integrality and integral polyhedra,Linear algebra and its applications25, 191–196

(1979).

[48] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem,Operations Research9, 849–859

(1961).

[49] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem: Part II,Operations Research11,

863–888 (1963).

[50] P.C. Gilmore and R.E. Gomory, The theory and computation of knapsack functions,Operations Research14, 1045–1074 (1966).

[51] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinator-

ica 1, 169–197 (1981).

[52] J.-L. Goffin and J.-Ph. Vial, Convex non-differentiable optimization: a survey focused on the analytic center cutting plane method,

Optimization Methods and Software17, 805–867 (2002).

[53] L. Gouveia, A 2n constraint formulation for the capacitated minimal spanning tree problem,Operations Research43, 130-141

(1995).

[54] M. Guignard and S. Kim, Lagrangean decomposition for integer programming: theory and applications,RAIRO21, 307–323

(1987).

[55] M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees,Operations Research18, 1138–1162

(1970).

[56] M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees: Part II,Mathematical Programming1,

6–25 (1971).

[57] M. Held, P. Wolfe and H.P. Crowder, Validation of subgradient optimization,Mathematical Programming6, 62–88 (1974).

[58] V. Jain and I.E. Grossman, Algorithms for hybrid MILP/CLP models for a class of optimization problems,INFORMS J. Computing

13, 258–276 (2001).

[59] R. Jans and Z. Degraeve, Improved lower bounds for the capacitated lot sizing problem with set-up times,Operations Research

Letters32, 185-195 (2004).

[60] K. Jornsten and M. Nasberg, A new Lagrangean relaxationapproach to the generalized assignment problem,European Journal of

Operational Research27, 313–323 (1986).

[61] J. E. Kelley, The cutting plane method for solving convex programs,Journal of the SIAM8, 703–712 (1960).

[62] K.C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization,Mathematical Programming, 27, 320–341

(1983).

[63] G. Laporte and F.V. Louveaux, The integer L-shaped method for stochastic integer programs with complete recourse.Operations

Research Letters13, 133-142 (1993).

[64] C. Lemaréchal, An algorithm for minimizing convex functions, pp 552-556 inInformation Processing ’74, J.L. Rosenfeld, ed.,

North Holland, (1974)

[65] C. Lemaréchal, Nonsmooth optimization and descent methods, Research Report 78-4, IIASA (1978).

[66] C. Lemaréchal, Lagrangean relaxation, in M. Jünger and D. Naddef, eds.Computational Combinatorial Optimization, Springer

(1998).

47

[67] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational coefficients.Mathematische Annalen261,
515–534 (1982).

[68] H.W. Lenstra, Jr., Integer programming with a fixed number of variables,Mathematics of Operations Rresearch8, 538–547 (1983).

[69] T.L. Magnanti and R.T. Wong, Accelerated Benders decomposition: Algorithmic enhancement and model selection criteria,Oper-

ations Research29, 464–484 (1981).

[70] R.K. Martin, Generating alternative mixed integer programming models using variable definition,Operations Research35, 820–

831 (1987).

[71] R.K. Martin, Using separation algorithms to generate mixed integer model reformulations,Operations Research Letters10, 119–

128 (1991).

[72] R.K. Martin, R.L.Rardin and B.A. Campbell, Polyhedralcharacterization of discrete dynamic programming,Operations Research,

38, 127–138 (1990).

[73] R.R. Meyer, On the existence of optimal solutions to integer and mixed integer programming problems,Mathematical Program-

ming7, 223–235 (1974).

[74] H. Minkowski, Geometrie der Zahlen (Erste Lieferung), Teubner, Leipzig (1896).

[75] P.J. Neame, Nonsmooth dual methods in integer programing. PhD thesis, Depart. of Math. and Statistics, The University of

Melbourne (1999).

[76] M.W. Padberg,(1,k)-configurations and facets for packing problems,Mathematical Programming18, 94–99 (1980).

[77] A. Pessoa, E. Uchoa, M. Poggi de Aragao and R. Rodrigues,Algorithms over arc-time indexed formulations for single and parallel

machine scheduling problems. Working paper, (2009).

[78] Y. Pochet and L. A. Wolsey,Production Planning by Mixed-Integer Programming, Springer Series in Operations Research and

Financial Engineering, Springer, New York, 2006.

[79] B.T. Polyak, A general method for solving extremum problems,Soviet Mathematic Doklady8, 593-597 (1967).

[80] A.A.B. Pritsker, L.J. Watters and P.J. Wolfe, Multiproject scheduling with limited resources: a zero-one programming approach,

Management Science16, 93-108 (1969).

[81] A. Prodon, T.M. Liebling and H. Gröflin, Steiner’s problem on 2-trees, RO 850351 Département de Mathématiques, Ecole Poly-

technique Fédérale de Lausanne (1985).

[82] R. Rardin and U. Choe, Tighter relaxations of fixed charge network flow problems, Industrial and Systems EngineeringReport

J-79-18, Georgia Institute of Technology (1979).

[83] L.-M. Rousseau, M. Gendreau and D. Feillet, Interior point stabilization for column generation, Working paper (2003).

[84] D.M. Ryan and B.A. Foster, An integer programming approach to scheduling, in A. Wren, ed.,Computer Scheduling of Public

Transport Urban Passenger Vehicle and Crew Scheduling, North-Holland, Amsterdam, 269–280 (1981).

[85] F. Soumis, Decomposition and column generation, Chapter 8 115-126, inAnnotated Bibliographies in Combinatorial Optimization,

eds. M. Dell’Amico, F. Maffioli and S. Martello, Wiley, Chichester 1997.

[86] E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M.P. Aragao and D. Andrade, Robust branch-and-cut-and-price for thecapacitated

minimum spanning tree problem over an extended formulation, Mathematical Programming112, 443-472 (2008).

[87] H. Uzawa, Iterative methods for concave programming, in Studies in Linear and Nonlinear Programming, K. Arrow and L.

Hurwicz and H. Uzawa, eds., Stanford University Press, 154-165 (1959).

[88] F. Vanderbeck, On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price

algorithm,Operations Research48, 111–128 (2000).

[89] F. Vanderbeck and L. A. Wolsey, An exact algorithm for IPcolumn generation,Operations Research Letters19, 151–159 (1996).

[90] F. Vanderbeck, Branching in branch-and-price: a generic scheme, Report, University Bordeaux I, (2006), revised as Research

Report Inria-00311274, August 2008.

[91] R.M. Van Slyke and R. Wets, L-shaped linear programs with applications to optimal control and stochastic programming,SIAM J.

of Applied Mathematics17, 638–663 (1969).

[92] M. Van Vyve, Linear programming extended formulationsfor the single-item lot-sizing problem with backlogging and constant

capacity,Mathematical Programming108, 5378 (2006).

[93] D. Villeneuve, J. Desrosiers, M.E. Lübbecke and F. Soumis (2005). On compact formulations for integer programs solved by

column generation,Annals of Operations Research, 139, 375–388.

[94] S. Weider, Integration of Vehicle and Duty Scheduling in Public Transport, Ph.D thesis, Faculty of Mathematics andSciences, The

Technical University, Berlin (2007).

48

[95] P. Wentges, Weighted Dantzig-Wolfe decomposition forlinear mixed-integer programming.Int Trans. Opl. Res.4, 151–162 (1997).

[96] H. Weyl, The elementary theory of convex polyhedra, inContributions to the Theory of Games I, H.W. Kuhn and A.W. Tucker

eds., Princeton University Press, Princton n.J., 3–18 (1950), translated from 1935 original in German.

[97] R.T. Wong, Integer programming formulations of the traveling salesman problem,Proceedings of 1980 IEEE International Con-

ference on Circuits and Computers149–152 (1980).

[98] R.T. Wong, Dual ascent approach for Steiner tree problems on directed graphs,Mathematical Programming28, 271–287 (1984).

[99] M. Yannakakis, Expressing combinatorial optimization problems by linear programs,Journal of Computer and System Sciences

43, 441–466 (1991).

49

