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Abstract

In this survey we examine ways to reformulate integer anakthinteger programs. Typically, but not exclusively, one
reformulates so as to obtain stronger linear programmitaxaéions, and hence better bounds for use in a branch-and-
bound based algorithm. First we cover in detail reformalatibased on decomposition, such as Lagrangean relaxation,
Dantzig-Wolfe and the resulting column generation and ¢hieand-price algorithms. This is followed by an examinatio
of Benders’ type algorithms based on projection. Finallydigeuss in detail extended formulations involving addi&ib
variables that are based on problem structure. These can bé used to provide strengthened a priori formulations.
Reformulations obtained by adding cutting planes in thgioail variables are not treated here.

1 Introduction

Integer linear programs (IPs) and mixed integer linear @ (MIPs) are often difficult to solve, even though the
state-of-the-art mixed integer programming solvers araamy cases remarkably effective, and have improved rdglical
in the last ten years. These solvers typically use brandkeah involving cutting planes to obtain improved linear
programming bounds and branching to carry out implicit eexation of the solutions. However these systems essentiall
ignore problem structure.

The goal in this chapter is to show the numerous ways in wigigien an initial formulation of an IRyroblem structure
can be used to obtain improved problem formulations and reffeetive algorithms that take the structure into account.
One common way to obtain reformulations is by adding valetjumlities (cutting planes) in the original variables. SThi
topic is treated in considerable detail in Chapters ??. Mereonsider other possibilities. The general motivatiotois
obtain a reformulation for which the optimal value of theslim programming relaxation is closer to the optimal value of
the IP than that of the original formulation and that is cotagionally tractable.

One approach is to introduce new variables so as to betteelrttoelstructure of the problem - the resultiexfended
formulationswill be studied in detail. Introducing new variables tygiggpermits one to model some combinatorial
structure more precisely and to induce integrality throtighter linear constraints linking the variables. One such
extended formulation is provided by the classical Minkowspresentation of a polyhedron in terms of its extreme
points and extreme rays. An alternative is to develop refitations based on projection onto a subset of the variables,
based on Farkas’ lemma and/or Fourier-Motzkin eliminatiBnojection allows one to reduce the number of variables
so that calculations are typically faster: thus for a mixegger program one might project onto the integer variables
and for an extended formulation giving an improved bound might project so as to obtain the tightened bound while
working in the space of the original variables.

There are also other reasons leading us to look at alteerfatimulations. One might be to treat or eliminate symmetry
among solutions (see Chapter ?7?), another might be to olaeables that are more effective as branching variables, o
variables for which one can develop effective valid inediea.

Reformulations often rely on a decomposition of the probl&iven a hard integer program (IP) in the form

min{cx:x € X} whereX = {x € Z, : Ax> a},



one typical way to obtain a set with structure istecompose Xnto two (or more) setX =Y NZ, where one or both of
the setsy, Z hasstructureand is a candidate for reformulation. In addition reforntiolas often require specific solution
methods: the reformulation may involve a very large numideraciables and/or constraints, in which case it becomes
necessary to develop algorithms that treat the correspgratlumns or rows implicitly, Dantzig-Wolfe decompositio
and Benders’ decomposition being the two classical exasnple

The contents of this chapter are as follows. In Section 2 weduce the different concepts used later. We give defini-
tions and simple examples of polyhedra, formulations,reded formulations and reformulations obtained by propecti
We discuss how decomposition can be used to obtain simperasel what we mean by a set with structure.

In Section 3 we consider reformulations that are appropraten the optimization problem over a “simpler” et
obtained by dropping some “hard” constraints, is relayiwssy to solve. In particular we consider the Lagrangeah dua
approach to obtain tight bounds and related algorithmstle®antzig-Wolfe reformulation whose linear programming
relaxation gives an identical bound. The basic column g&iwer algorithm to solve the linear programming relaxation
of the Dantzig-Wolfe reformulation is presented, as welltasntegration into a branch-and-bound algorithm to solve
the integer problem. In Section 4 we consider formulatioms$ algorithms based on projection, in particular Benders’
reformulation. Projection typically leads to formulatfowith a very large number of constraints, so here the alyost
rely on cut generation.

The reformulations in Sections 3 and 4 are generic. In Se&iwoe consider sets with more structure for which it is
possible to obtain interesting extended formulations. &myncases optimization over the sets is polynomially sdéab
We show extended formulations a) based on variable sgjitich as the multi-commodity reformulation of single seurc
fixed charge network flow problems, b) for sets over which areaptimize by dynamic programming, c) for sets in the
form of disjunctions, and d) for a variety of other sets wittusture.

In Section 6 we discuss hybrid reformulations and algorgthfor example ifX =Y NZ and both sets have some
special structure, we might wish to combine a (large) ex¢drfdrmulation fory with a (large) cutting plane description
for Z. Section 7 consists of historical notes as well as a few eefsgs concerning recent theoretical and computational
developments.

2 Polyhedra, Reformulation and Decomposition

2.1 Introduction

Given a problem that has been formulated as a linear integgram, we are interested in finding reformulations
(alternative problem descriptions) that are more effectivone way or another. We present some basic results about
polyhedra, and give definitions of formulations and extehffemulations, with a couple of examples to show how
reformulations arise. Finally we discuss how decompasigéads one to simpler subsets, and indicate how their steict
can be exploited to provide reformulations and possiblyisgieed algorithms.

Throughout we assume that our objective is to solve the émtpgpgram

(1P) min{cx: x € X}
whereX C Z"is a discrete solution set that can be modeled as the seegBinpoints satisfying a set of linear inequalities
X =PnNZ"with P={xe R : Ax> a}

or the mixed integer program
(MIP) min{cx+hy: (x,y) € XM}

whereXM C 7Z" x RP is given in the form
XM = PM ) (Z" < RP) with PM = {(x,y) € R} x R : Gx+Hy > b}.

P andPM will be referred to as the initial formulations #fandXM respectively. For simplicity, results are presented for
the integer seX, unless the presence of continuous varialglessimportant.



2.2 Polyhedra and Reformulation

Here we study the feasible solutions sktandXM arising in IP and MIP respectively. Throughout we will use th
termreformulationinformally to mean any alternative description of probldor MIP.

Definition 1 A polyhedron PC R" is the intersection of a finite number of half-spaces. In otherds there exists
A e R™Mand ac R™such that P= {x € R": Ax> a}.

Definition 2 A polyhedron P is a formulation for X if X PN Z".

Sets such aX have many formulations. P, P2 are two formulations foX with P1 c P2, we say thaP! is astronger
formulation tharP? because

z(c) = min{cx: x € X} > min{cx: x € P} > min{cx: x € P?} vce R"

and thus the lower bound afc) provided by the linear programming relaxation with forniida P! is always greater
than or equal to that provided IB?.

Definition 3 Given XC R", the convex hull of X, denotednv(X), is the smallest closed convex set containing X.

The convex hull of an integer st (or a mixed integer se&XM defined by rational data) is a polyhedron. Thus the
strongest possible formulation is provided by cofiybecause(c) = min{cx: x € conuX)}.

Given an initial formulationP of X, one classical way to obtain a stronger formulation is to eadl inequalities
(cutting planes) in th& variables so as to obtain a better approximation to @hvThis is discussed in Chapters ??. The
main concepts presented in this chapter, extended forimgadnd projection, are now defined.

Definition 4 An extended formulation for a polyhedrondPR" is a polyhedron Q= {(x,w) € R™P : Gx+Hw > d}
such that P=projx(Q).

Definition 5 Given a set UC R" x RP, the projection of U on the first n variables=x(xg, - - ,%n), is the set
proj,(U) = {xe R": Jw e RP with (x,w) € U}.

Minkowski’s representation of a polyhedron in terms of itreme points and extreme rays gives an extended formu-
lation that can be useful for both linear and integer program

Definition 6 Given a non-empty polyhedron®R",

i) X € P is an extreme point of P if3 Ax} 4+ (1—-A)x%, 0 < A < 1, X}, x? € P implies that x= x! = x2.

ii)risaray of Pifr # 0and xe P implies x+ ur e P forall u € Ri.

iii) r is an extreme ray of P if r is a ray of P and= purl + por?, p e R2 \ {0}, rt,r? rays of P implies t = ar? for
somea > 0.

From now on we assume thank(A) = n which is necessary fd? to have extreme points.

Theorem 1 (Minkowski) Every polyhedron £ {x € R": Ax> a} can be represented in the form
P={xeR":x= Y Apd8+ S iV, T Ag=1,A eRI® perF}
ggG rgR ggG

where{x9} 4 are the extreme points of P ad' };<r the extreme rays of P.
Example 1 The polyhedron
P={xeR2 :4x;+12x >33 3x —Xp > —1,xg — 4xp > —23}
has the extended formulation
33 21 19 1 4
Q={(xA ) eRZxRIxREix=| o JA+| fg Jhot| g5 JAat| o Jr+| | K
40
A1+A2+ A3 = 1}. See Figure 1.

The concept of extended formulation for a polyhedron gdizesto setsX of integer points, and in particular one
can apply Definition 4 to corfX).



(33/4,0)

Figure 1: Extreme Points and RaysPand conyPNZ")

Definition 7 An extended formulation for an IP setXZ" is a polyhedron QC R™P such that X=projx(Q) N Z".

Minkowski’'s Theorem (Theorem 1) obviously provides an erted formulation foX. Specifically take
Gl IR
Q:{(x,)\,y)e]R“xR‘+ xR ix=Y Agd+ S v, § Ag=1}
ggG rgR ggG

where{x8}4c are the extreme points afd’ };<r the extreme rays of coliX).

Definition 8 An extended formulation @ R™P for an IP set XC Z" is tight if projx(Q) = conu(X).
An extended formulation Q R™P for an IP set X= PNZ" is compact if the length of the description of Q is polynomial
in the length of the description of X (i.e., the length of thedliption of the initial formulation P of X).

In general the number of extreme points and extreme rays{ %9 is not polynomial in the length of the description of
X, so the extended formulation provided by Minkowski's Thearis not compact. Similarly the number of inequalities
in thex variables required to describe cd) is usually not polynomial in the length of the descriptionXof

In the framework of integer programs one also encountere gemeral reformulations in which some of the additional
variables are required to be integer, replacing the intitggi@onstraints on some of the original variables. It magrtioe
possible to drop the original variables.

Definition 9 An extended IP-formulation for an IP setXZ" is a set Q = { (x,w!,w?) € R" x ZPt x RP2 : Gx+Hw! +
H2w? > b} such that X=projxQ; .

There is a somewhat similar result to Minkowski’s theoremasrning an extended IP-formulation. Again we assume
rationality of the data in the case of mixed integer sets.

Theorem 2 Every IP set X= {x € Z" : Ax> a} can be represented in the form=Xprojx(Q; ), where

Q = {(x A R ZE <2 x= 5 A9+ 5 i
re

geG
)‘g = 1}7
PX

where{x9} < is a finite set of integer points in X, add" };cr are the extreme rays (scaled to be integergarfiv(X).

Note that wherX is bounded, all the points of must be included in the séxg}gee andR = 0. WhenX is unbounded,
the set{X%} ¢ includes all of the extreme points of cdiX) and typically other points, see Example 2 below.



Theorem 2 provides an example of a common situation withnelee IP-formulations in which there is a linear
transformatiorx = Tw linking all (or some) of the originax variables and the additional variables In such cases IP
can be reformulated in terms of the additional variableiéform

min{cTw: ATw> a,w € W},

where the selV provides an appropriate representation of the integrafitiie originalx variables.

Example 2 The set of integer points ¥ PN Z2 where
P={xcR2 :4x;+12x >33 3x —Xp > —1,x — 4xp > —23}

has an extended IP-formulation, based on Theorem 2:

Q:{(X)\yu)eRZXZiXZ?FX:<2>Al+<2>)\2+<;>)\3+<i>A4+<2>)\5+<?>)\6+
2 6 1 4 6 —
() (e i

Here the pointg2,5)T and (6,1)T are not extreme points @onvX). However they cannot be obtained as an integer
combination of the extreme points and raysofiv(X), so they are necessary for this description. See Figure 1.

Given an IP seK or a MIP setxM, an alternative is to concentrate on a subset of the morertamptovariables (for
instance the integer variables in an MIP). Here projectiothé natural operation and the lemma of Farkas a basic tool.
From now on, we typically assume that all the variales (x,y) encountered in IP or MIP are non-negative.

Lemma 3 (Farkas) [36] Given Ac R™" and ac R™, the polyhedrox € R} : Ax> a} # 0 if and only if vA< 0O for
all v e R such that vA< 0.

This immediately gives a characterization of the projettba polyhedron. Specifically = {(x,w) € R x ]Riﬁ :
Gx+Hw > d}, it follows from the definition thax €projx(Q) if and only if Q(x) = {w € R? : Hw > d — Gx} is nonempty.
Now the Farkas’ Lemma, witA = H anda = d — Gx, gives:

Theorem 4 (Projection) Let Q= {(x,w) € R" x R? : Gx+Hw > d}. Then
proj(Q) = {x e R": v(d—Gx) <0VveV}={xeR":vi(d—Gx) <Oforj=1,...,3}
whereV = {ve RT:vH < 0} and {vi }le are the extreme rays bf.

Example 3 Given the polyhedron @ {(x,y) € R2 xR3 :
=2 =3 —4dy1 Y2 —4dy3
= =5 121 -2y, +4y3
we have that = {v € R? : —4v; — 12v; < 0,vq — 2v, < 0,—4vy +4v, < 0}. The extreme rays are'v= (1,1)T and
v2 = (2,1)T. From Theorem 4, one obtains

-9

>

projy(Q) = {x € R2 : 9x; + 8xp < 20,11x; + 11x < 29}.
The classical application of this approach is to refornmutatxed integer programs.

Now we illustrate by example the sort of reformulations e arise using additional variables and projection for a
problem with special structure.

Example 4 Formulations of the Directed Steiner Tree Problem

Given a digraph D= (V,A) with costs c= ]Ri‘f‘, arootreV and aset TCV \ {r} of terminals, the problem is to find
a minimum cost subgraph containing a directed path from rachenode in T.

One way to formulate this problem is to construct a subgrapivhich one require$T | units to flow out from node r
and one unit to flow into every node of T. This leads one todiuire the variables:
xjj = lifarc (i, j) forms part of the subgraph ang| x= 0 otherwise, and iy is the flow in arc(i, j). The resulting MIP
formulation is



mMiny i j)eaCijXij

—Yjeve(n)Yrj = [T @
—Yjev+@)Yij T Zjev-)Yi=11€T )
—Yijevt@)Yij T Yjev-i) Vi =0 i eV\(Tu{r}) (3)
yij <[Tlxij (i,]) €A 4)

ye RN xe {0,1}A,
where VF (i) = {j : (i,j) e A} and V(i) = {j : (j,i) € A}, (1) indicates thatT| units flow out from node r, (2) that a net
flow of one unit arrives at each nodeiT, (3) that there is conservation of flow at the remaining rsoded (4) that the
flow on each arc does not exceldd and is only positive if the arc has been installed.
This problem has special network structure that we now éxplo

Multicommaodity flow variables

To obtain an extended formulation, consider the flow dittsvards node k as a separate commaodity for each node
keT. Then vﬁ denotes the flow in ar@i, j) of commodity k with destination&kT. The resulting extended formulation
is:

MiNy i j)eaCij X
~Yievin W =—-1keT (5)
—SjeveimWE + S jev-) WS =0 ieV\{rk} keT (6)
*Zj€V+(k)Wkkj+ZjeV*(k)Wij(k:l keT (7
Wi <x;j (i,]) €A keK (8)

we RKXA xe 0,24

Constraints (5)-(7) are flow conservation constraints a8p\ariable upper bound constraints for each commodity. The
constraints yj = ZkeKWﬁ- (i, ) € A provide the link between the original flow variables y anel tlew multi-commodity
flow variables w, but the y variables are unnecessary as ther@o costs on the flows.

The main interest of such an extended formulation is thavéhee of its linear programming relaxation is consider-
ably stronger than that of the original formulation becatise relationship between the flow variables gr vv:‘] and the
arc selection variables;jxis more accurately represented by (8) than by (4).

Projection onto the Binary Arc Variables

Itis well-known (from the max flow/min cut theorem) that oae send flow of one unit fromr to k in a netwdkk A)
with capacities if and only if the capacity of each cut sepiagar and k is at least one. Considering the arc capacities to
be xj, this immediately validates the following formulation hetarc variables x. Equivalently one can apply Theorem
4 to the extended formulation © {(x,w) € [0,1]/A x R‘f'X‘A‘ satisfying(5) — (8)} and project out the w variables. In
both cases one obtains the formulation:

miny i j)eaCijXi
Yjesu)Xij =1 reU,T\U#0
xe {0,1}A

whered™(U) ={(i,j) € A:i €U, j ¢ U} is the directed cut set consisting of arcs with their tailsirand their heads in
V\U.



The potential interest of this reformulation is that the hnemof variables required is as small as possible and the
value of the linear programming relaxation is the same as tfidhe multi-commodity extended formulation. In Section
5 we will consider the more general problem in which thereas® costs on the flow variableg y

2.3 Decomposition

When optimizing over the feasible s¢tof IP is too difficult, we need to address the question of hotdezompose”
X so0 as to arrive at one or more sets with structure, and alsceitedwhat we mean by “structure”.

We first present three ways décomposing
1) IntersectionsX =Y NZ. Now if the setZ has structure, we can consider reformulations for th& sktore generally,
one might havéX = X1 -..NXK where several of the sex& have structure. Another important variant is that in which
X =Y UZ andZ itself decomposes into sef§ each with distinct variables, namefy= 7% x ... x ZX.
2) Unions (or Disjunctions)X = Y UZ whereZ has structure. Again one might haXe= X1U---UXK where several of
the setxk have structure.
3) Variable Fixing Suppose thaX C Z" x RP. For fixed valuex, TetZ(x) = {(x,y) € X : x=X}. Thisis of interest iZ(X)
has structure for all relevant values»ofAgain an important case is that in whizlix) decomposes into sets with distinct
variables, i.eZ(X) = Z1(x1) x - -- x ZK(x1) and each sef*(x1) just involves the variableg, wherey = (y, .. yX).

Now we indicate in what circumstances we say that th& sditained above hagtructure

i) Either there is a polynomial algorithm for thgtimizationproblem mirfcx: x € Z}, denoted OPTZ,c), or OPT(Z,c)
can be solved rapidly in practice. Based on decompositioimteysection, ways to reformulate and exploit such sets are
the subject of the next section.

i) There is a polynomial algorithm for th&eparation problemSERZ,x*), defined as follows:
Given the seZ C R" andx* € R", isx* € con(Z)? If not, find a valid inequalityx > m for Z cutting offx* (i.e. x> mp
for all x e Z andnx* < 1p). More generally there is a polyhedré (oftenP’ = conZ’) whereZ C Z’) for which there
is a separation algorithm (exact or heuristic) that can beedaapidly in practice.

Such sets are amenable to reformulation by the addition tinguplanes. A special case of this type, treated in
Section 4, is that in which the sg{x), obtained by variable fixing, has structure of type i). Comeli with projection,
this leads to reformulations and algorithms in the spacbex variables.

iii) Set Z has specific structure that can be exploited by introducaevg variables that better describe the integrality of the
variables. Examples of sets with interesting extended d¢ations include network design problems with 0-1 varialite
indicate which arcs are open, such as the Steiner tree pnoblExample 4, and scheduling problems in which it is useful
to model start times in detail. Problems that can be solvedyimamic programming and problems of optimizing over
sets defined by disjunctions are also candidates for refation through the introduction of new variables. Extended
formulations for a wide variety of such problems are preseiit Section 5.

3 Price or Constraint Decomposition
Consider a (minimization) problem of the form
(IP) z=min{cx: x e X}

that is difficult, but with the property that a subset of thastnaints ofX defines a seZ (X C Z) over which optimization
is “relatively easy”. More specifically,

(IP) z=min{cx: Dx >d,Bx>b,x € Z" } 9)

xexX

where the constraint®x > d represent “complicating constraints” that define the iategetY = {x € Z, : Dx > d},
while the constraint8x > b define a seZ = {x € Z'} : Bx> b} that is “tractable”, meaning that mfox: x € Z} can be
solved rapidly in practice.



Here we examine how one’s ability to optimize over the simpktZ can be exploited to produce dual bounds by re-
laxing the complicating constraints and penalizing th&tation in the objective function (a procedure called Lagyean
relaxation). The prices associated to each constraineglacthe objective function are called Lagrange multiglier
dual variables, and the aim is to choose the prices to try fiarem satisfaction of the complicating constraibts > d.

An alternative is to view the problem of optimizing ow€ras that of selecting a solution from the gdahat also satisfies
the constraints defining. This leads to the so-called Dantzig-Wolfe reformulatiowihich variables are associated to
the points of the seZ as specified in Theorems 1 or 2. The LP solution to this reftatimn provides a dual bound that
is typically tighter than that of the LP relaxation of theginial formulation ofX and is equal to the best bound that can
be derived by Lagrangean relaxation of the constrdimts d. This will be demonstrated below.

In many applications of intereBx > b hasblock diagonalstructure: i.eZ = Z1 x - .- x ZK in which case the integer
program takes the form

K
(IPgp) min{ 3 % (o X6 e, ¥ e Zfork=1,... K}
&

and can be written explicitly as:

min  clxt + 2 x? + e KX
Dixt D2x2 + ..+ DKxK >d
Blx! > pt
(1Pp) B?x? > b?
>
BKxK  >pK
xXooezr, @ ez ., X ez

Here relaxing the constrainBx > d allows one to decompose the problem ikt@emaller size optimization problems:
min{ckxk: Xk ¢ ZKy.

Another important special case is titentical sub-problentase in whictDK = D, B = B,ck = ¢, zK = 7* for all k.
In this case the “complicating” constraints only dependtendggregate variables

X (10)

M =

y=
k

1

so the complicating constraints correspond to a set of thie Yo= {y € Z', : Dy > d}. The problem can now be written
as:

K
(IPs) min{cy: Dy >d,y = 2xk7 XXez* fork=1,... K}. (11)
k=1

Example 5 (The bin packing problem)

Given an unlimited supply of bins of capacity 1 and a set ofi#éndexed by+ 1,...,n of size s€ (0, 1], the problem

is to find the minimum number of bins that are needed in ordgrattk all the items. Let K be an upper bound on the
number of bins that are needed &n, or K is the value of any feasible solution). A direct IP fatation is

min %uk (12)
k=1
K
Yo = 1 Vi (13)
k=1
>sxk < we vk (14)
Xk € {01} Vik (15)
w € {01} Vk (16)

where = 1 if bin k is used and jx = 1 if the item of size i is placed in bin k. This is a natural carad&for price
decomposition. Without the constraints (13), the probleat temains decomposes into K identical knapsack problems.



In this section,
i) we review the Lagrangean relaxation and Dantzig-Wolfemraulation approaches, showing the links between them
and the fact that both provide the same dual bound;
i) we then discuss algorithms to compute this dual bounth-gnadient methods and the column generation procedure,
as well as stabilization techniques that are used to impromeergence, and
iii) we consider the combination of column generation withrirh-and-bound to solve problems to integer optimality:
deriving branching schemes when using a Dantzig-Wolfernefitation can be nontrivial in the case of a block diagonal
structure with identical sub-problems.
For simplicity, most of these developments are presentedhfo case of a single subsystem involving only bounded
integer variables. However the developments easily exietite case of a mixed integer or unbounded subsy&eon
to a subsystem withlock diagonalstructure. The case where these blocks are identical wildmissed separately. The
economic interpretation of the algorithms reviewed heilgjustify the use of the terminology “price decomposition”

3.1 Lagrangean Relaxation and the Lagrangean dual

The Lagrangean relaxation approach to a problEnwith the structure outlined above consists of turning thié “d
ficult” constraintsDx > d into constraints that can be violated at a pricewhile keeping the remaining constraints
describing the sef = {x € Z1} : Bx> b}. This gives rise to the so-callégigrangean sub-problem

L(m) = min{cx+ i(d — Dx) : Bx>b,x € VAR 17

that by assumption is relatively tractable. For any nonatieg penalty vectorr > 0, the dual functior.(T) defines a dual
(lower) bound on the optimal valueof IP: indeed the optimal solutiox® of IP satisfiexx" > cx* 4 ri(d — Dx*) > L(m)
(the first inequality results from* being feasible for IP andr > 0 and the second becauskeis feasible in (17)). The
problem of maximizing this bound over the set of admissihbieldectors is known as tHheagrangean dual

(LD) Zp= r)TwZaa(L(n) = rlrgg(r)](welg{cx—k ni(d—Dx)}. (18)

We now reformulate the Lagrangean dual as a linear prograsunaing that the constraint sétis non-empty and
bounded. The Lagrangean sub-problem achieves its optirhamextreme point' of cony(Z), so one can write

o : _ t
2p = rygg(t:r?m’T{cxt—kn(d Dx)}, (19)

..T is the set of all points oZ.

Introducing an additional variable representing a lower bound on tfe— D)X values, we can now rewrite LD as the
linear program:

z2p = maxmd+o (20)
mx+o<ced t=1,...,T (21)
m>0,0 € R. (22)

Taking its linear programming dual gives:

T

2p = mlnt;(cx‘))\t (23)
ti(Dxt))\t >d (24)

n
t;)\t =1 (25)
A>0t=1,.,T. (26)

From formulation (23)-(26), one easily derives the follogiresult.



Theorem 5 (Lagrangean duality)

zp = min{cx: Dx>d,x € con\(Z)}. 27)
Indeed, by definition of the set of poinfg' }]_;, con(Z) = {x=3_; XAt : ST A =1, A >0t=1,...,T}. Thus, the
value of the Lagrangean dual is equal to the value of thedipemgram obtained by minimizingx over the intersection
of the “complicating” constraintBx > d with the convex hull of the “tractable” s&t

Example 6 (Lagrangean relaxation for the bin packing problem).

Continuing Example 5, consider an instance of the bin papkinblem with n=5items and size vectors (3,5, 5. 5, 5)-
Dualizing the constraints (13), the Lagrangean subprob{&®) takes the formmin{zE:l u— 31 (- zlexik) :
(14) — (16)}. Arbitrarily taking dual variablest= (3,3, 3, 3,3) and using the fact that this problem splits up into an
identical knapsack problem for each k, the Lagrangean sobiem becomes:

5 1 1 1 1 1

Lim=Y m+Kmin(u— X1 — =Xp— =Xg3— =X4 — =Xg)
i; 2 2

3 37 3
Lt 2t 2kt Syt
6 1+ 6X2+ 6X3+ 6X4+ 6X5§ u
xe {0,1}° ue {0,1}.
The optimal solution is x (1,1,0,1,0),u = 1. For K = n (a trivial solution is to put each item in a separate bin),
the resulting lower bound i2 — & = . The best Lagrangean dual bounghz= 2 is attained form = (0,0,0,1,1),
x=(0,0,0,0,1) and u= 1.

3.2 Dantzig-Wolfe Reformulations

Here we consider two closely related extended formulatfongroblem IP: mifcx: Dx > d,x € Z}, and then we
consider the values of the corresponding linear programmelaxations.

We continue to assume thatis bounded. The Dantzig-Wolfe reformulation resultingnfrdheorem 1 (called the
convexification approach) takes the form:

M = min o)A (28)
i géc( )Ag
D)), > d (29)
gegc( x7)Ag
(DW¢) A = 1 (30)
g<Te
x=S ¥y € 77 (1)
Ag > 0VgeG® (32)

where{x8}4ccc are the extreme points of cof&).
The Dantzig-Wolfe reformulation resulting from Theorent2l{ed the discretization approach) is

2PW4 = min S (©8))g (33)
geGd
Y DO)rg > d (34)
geGd
(DWd) S Ag = 1 (35)
geGd
Ay € {0,1}vgeGH (36)

where{x9} 4.+ are all the points of.

As pointed out above, the extreme pointofiZ) are in general a strict subset of the pointZdfG® C GY%). Note
however that the distinction between the two approachepgears when considering the LP relaxations of the Dantzig-
Wolfe reformulations: both sets allow one to model d@)vand they provide a dual bound that is equal to the value of
the Lagrangean dual.
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Observation 1

i) The linear program (23)-(26) is precisely the linear pragiming relaxation of DW c.

ii) It is identical to the linear programming relaxations BiV d (any point of Z can be obtained as a convex combination
of extreme points afonv(Z)). Hence

W/ = 24— min{cx: Dx > d,x € convZ)} = zp,

where £5/¢and £%/9 denote the values of the LP relaxations of DW ¢ and DWd reiségt

In addition there is no difference betweBi candDW dwhenZ C {0,1}" as every poink € Z is an extreme point
of conv(Z). In other words

x=Y %€ {0,1}" inDWc ifand onlyifA € {01}/’ in DWd
geGe
To terminate this subsection we examine the f@Wid takes when there is block diagonal structure. Specifich#ly t
multi-block Dantzig-Wolfe reformulation is:
K

K
mn{y 5 @@y ¥ DO Ng>d, ¥ Mg=1Vk=1,...,K,Ag € {0,1}vk,g e G} . (37)
k=1geG{ k=1geG geGy

whereZ¥ = {x9}_qo for all kandx = 5o X9 Aig € ZX.

Identical Subproblems

When the subproblems are identical foe 1, ...,K, the above model admits many different representationbeof t
same solution: any permutation of tkendices defines a symmetric solution. To avoid this symmaétiig normal to
introduce the aggregate variableg= | Ayg. DefiningZ* =71 = ... = ZK andZ* = {x@}gcq-, one obtains the
reformulation:

min @)y, 38

gé*( )Vg (38)

(DWad) % D)y > d (39)
geT

= K 40

ge%* Vg (40)

v e 78l (41)

wherevg € Z,. is the number of copies of used in the solution. The projection of reformulation sty into the
original variable space will only provide the aggregatdalalesy defined in (10):

y= x3vy . (42)

Example 7 The cutting stock problem
An unlimited number of strips of length L are available. Givke Z" and sc R'l, the problem is to obtain;dstrips of
length sfori=1,...,n by cutting up the smallest possible number of strips ofttehg

Here Z* = {x € Z7 : 3! ; sx < L}, each point & of Z* corresponds to a cutting pattern, &1 and c= 1, so one
obtains directly the formulation

min{ § vg: % (Xg)VgZdﬂ/eZLG*‘}
96 gT

in the form DWad, without the cardinality constraint (40)h€lbin packing problem is the special case in whichk=d
for all i and each cutting pattern contains each strip lengthmost once.

To complete the picture we describe how to solve the lineagnamming relaxation of the Dantzig-Wolfe reformu-
lation in the next subsection and how to use this reformutaith a branch-and-bound approach to find an optimal integer
solution (subsection 3.5).
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3.3 Solving the Dantzig-Wolfe Relaxation by Column Generabn

Here we consider how to compute the dual bound provided byDhatzig-Wolfe relaxation” using column genera-
tion. Alternative ways to compute this dual bound are thecwised in the next subsection.

Consider the linear relaxation &W cgiven in (28)-(32) oDWd given in (33)-(36) which are equivalent as noted in
Observation 1. This LP is traditionally called the (Dant¥iplfe) master problenfMLP). It has a very large number of
variables that will be introduced dynamically in the counthe optimization by the revised simplex method. We assume
thatZ is a bounded integer set. Lgt9} 4 be either the extreme points of cq@) or all the points oZ. Suppose that,
at iterationt of the simplex algorithm, only a subset of poifté}4cq with G' c G are known. They give rise to the
restricted master linear program

ZAMP — min ; (©8)Aq (43)

geG!
(RMLP) % (Dx9)Ag > d (44)

geG!
Ay = 1 (45)

geG!
Ag > 0geG.
The dual of RMLP takes the form:

maxrd + o (46)
mx¥+0 < ofgeG (47)
m>0, oeR™. (48)

Let A’ and(77, 0’) represent the primal and the dual solutions of the resttictaster program RMLP respectively.

The column generation algorithm follows directly from tledldwing simple observations exploiting both primal and
dual representations of the master problem.

Observation 2
i) Given a current dual solutioiir’, '), the reduced cost of the column associated to solufids 8@ — ’'Dx9 — ¢”.
i) ¢ = mingeg(exd — 'DX8) = minkez(c— 'D)x. Thus, instead of examining the reduced costs of the hugeeof
columns, pricing can be carried out implicitly by solvingiagle integer program over the set Z.
iii) The solution value of the restricted Master proble®fV%P = Y geG (c>@))\é = r’'d+ ¢’ gives an upper bound omzp.
MLP is solved whed — ¢’ = 0, i.e., when there is no column with negative reduced cost.
iv) The pricing problem defined in ii) is equivalent to the tamgean sub-problem given in (17); hence, each pricing step
provides a Lagrangean dual bound.
v) For another view point on iv), note that the dual solutigrof RMLP, completed bg, forms a feasible solutio(v, )
for the dual of MLP:

{maxmd+o: Mxd+o<c¥geG; m>0 0cRY,

and thereforer’d + ¢ gives a lower bound on2P.
vi) If the solutionA’ to RMLP is integer, the corresponding value 8P provides a valid primal (upper) bound for
problem IP.

Point ii) is crucial as our motivation for the Dantzig-Woteformulation was the assumption that solving an optindnat
problem overZ is relatively tractable. Point vi) highlights a strong poof the column generation approach: it may
produce primal integer solutions in the course of the sofutif MLP.

The Column Generation Algorithm for a master program of trenf (23)-(26):

i) Initialize primal and dual bounds PB- +, DB = —c. Generate a subset of point§ o that RMLP is feasible.
(Master feasibility can be achieved using artificial colwsnnit is standard to combine Phases 1 and 2 of the simplex
method to eliminate these artificial columns from the LP o).

ii) Iteration t,
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ii.a) Solve RMLP over the current set of columxd}gcr; record the primal solutiorat
and the dual solutiorirt*, at).
ii.b) Check whetheA! defines an integer solution of IP; if so update PB. If BB, stop.
ii.c) Solve the pricing problem
(SP) ¢'=min{(c—'D)x:xeZ}.
Let ¥ be an optimal solution.
If t — ot = 0, set DB= ZRMLP and stop; the Dantzig-Wolfe master problem MLP is solved.
Otherwise, add xto G! and include the associated column in RMLP
(its reduced cost i§! — o' < 0).
ii.d) Compute the dual bound:(iz') = rtd + {*; update DB= max{DB,L(rt")}. If PB = DB, stop.
iii) Increment t and return to ii).

When problem IP has a block diagonal structure withikResubproblem having optimal valug, the corresponding
upper bounds on the unrestricted master LP vattl€ are of the formm'd + Zle oy and the lower bounds of the form
md+ zlezk. When theK subsystems are identical these bounds take the fddw- Ko’ and'd + K respectively.
The typical behavior of these upper and lower bounds in theseoof the column generation algorithm is illustrated in
Figure 2. Example 8 demonstrates the column generatioreguoe on an instance of the bin packing problem.
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Figure 2: Convergence of the column generation algorithm

Example 8 (Column generation for the bin packing problem)
Consider the same instance as in Example 6 withfitems and size vectors (3, 2,2, 2, 2). Initialize the restricted
master RMLP with the trivial packings in which each item isigeparate bin. The initial restricted master then takes
the form:

minvy + Vo + V3 + V4 + Vs

10000 v 1
01000 Vo 1
00100 vz [>] 1 [,veRrd
0 0010 V4 1
0 0001 Vs 1
Its optimal value is Z= 5 with dual solutionrt= (1,1,1,1,1). The column generation sub-problem is

Z =1—max{X;+ X2 +X3+X4+X5 : X1 +2%2 +2X3 4+ 3X4 +4x5 < 6, x € {0,1}°}.
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The optimal solution of the knapsack problem §s=(1,1,1,0,0) with value 3, which gives the lower boundrt) =
Sim+K(1-3)=—5 (with K=05). X8 is added to the restricted master with associated varialgle The successive
iterations give

t| Z master sol. T L(rt) | PB X

5] 5 Vi=Vo=Vz=vg=vs=1 (1,1,1,,1) | -5 | 5 | (1,1,1,0,0)

6| 3 Vi=vs=vg=1, 0,01,1,1) | -2 | 3 |(0,0,1,1,0)

7| 3 Vi=vg=vg=1 (0,1,0,1,1) | -2 | 3 |(0,1,0,1,0)

8| 3 Vi=vg=vr=vg=1vs=1 (1,0,0,1,1) | -2 | 3 |(1,0,0,0,2)

9| 25 Ve=V7=Vg=3,Vg=1 (0,3.3,3.1 0 3 | (0,1,0,0,1)

I SN 11122 2

10| 233 | ve=Vvg=Vvio=3,V7=V9=5 |(3,3:55 3 5 3 1(3,1,0,1,0)

11| 225 | vg=vi1 =S, vg=vio=3,v7=3 | (3,11 33 4 13100101
. 6=Vi1=7,Vo=Vio=135,V7=37 | (:3:5,3:2) | 3 (0,0,1,0,1)

12 2 vii=Vvip=1 (0,0,0,1,1 2 2 | (0,0,0,0,1)

In this example, the master problem has an optimal solutianis integer, so this is an optimal solution of the bin pagki
problem (the column generation procedure ends with PB=DB).

The column generation algorithm has an appealing econan@iretation, derived directly from linear programming
duality. Dantzig-Wolfe decomposition can be viewed as agdore for decentralizing the decision-making process. Th
master problem plays the role of the coordinator settingegrithat serve as incentives to meet the global constraints
Sk Dxk > d. These prices are submitted to the subdivisions. Each émfmt subdivision uses these prices to evaluate
the profitability of its activities(xk € Zk) and returns an interesting business proposal (with negegiduced cost). The
procedure iterates until no more improving proposals cagdmerated, and the given prices are optimal.

3.4 Alternative methods for solving the Lagrangean Dual

By Observation 1, the above column generation algorithivesolhe Lagrangean dualp = max>oL (7). Alterna-

tives to the column generation approach to solving the Lragiean dual can be related to the different formulations ef th
problem: its max-min form (19) or the dual linear program)(g22). The dual point of view is particularly important

in the analysis of the convergence of methods for solvind_ igrangean dual: convergence is driven by the successive
dual solutions, even for the column generation procedur&al Bnalysis has inspired enhanced column generation algo-
rithms making use of so-called stabilization techniquesbefter theoretical convergence rate can only be achieved by
using non-linear programming techniques such as the bumethod. On the other hand, simpler methods (such as the
sub-gradient algorithm), whose convergence in practieeoise than that of the standard column generation approach,
remain useful because of their easy implementation andabdity to cope with large size problems.

Here we review some of the classical alternative approachesving the Lagrangean Dual arising from the different
formulations given in Section 3.1.

Note thatl (71) = mingeg(c— nD)x? + 1 is a piecewise affine concave function mf as illustrated in Figure 3.
Solving the Lagrangean dual requires the maximizationisfribn-differentiable concave function. A simple method fo
this is:

The sub-gradient algorithm (for solving the Lagrangear guits form (19)):
i) Initialize ®° =0, t = 1.
ii) lteration t,

ii.a) Solve the Lagrangean subproblem (17) to obtain thel dwwaind L(7¢) = min{cx+ rt(d —Dx)}  and an
optimal solution %

ii.b) Compute the violatiorid — Dx!) of the dualized constraints; this provides a “sub-gradighat ~ can be used
as a “potential direction of ascent” to modify the dual vabias.

ii.c) Update the dual solution by making a small step in threction of the subgradient

1 = max{0, 7' + &(d — Dx')}
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Figure 3: The Lagrangean dual functib(m) seen as a piecewise affine concave function; we assum&? in this
representation; each segment/hyperplane is defined bytarxec

whereg; is an appropriately chosen step-size.
iii) Ift < 1, increment t and return to ii).

Central to this approach is the simple dual price updatirig ofl stepii.c. The rule leads to an increase in the
prices associated with violated constraints and a decfeas®n-tight constraints. Observe, however, that it igisoall
previously generated point§ for g = 1,...,t — 1 when updatingt. Not surprisingly this can result in poor performance.
Moreover, the convergence of the algorithm is quite serstb the selection of the step size (choosintpo large leads
to oscillations and possible divergence, choosing it toalki®ads to slow convergence or convergence to a hon-optima
point). Itis usual to use a normalized step sige= Hd—aE)x‘H' Standard choices are:

i) a; = C(PB—L(m)) with C € (0,2), where the primal bounBB acts as an overestimate of the unknown Lagrangean
dual valuez, p, so the step size reduces as one gets closer to the optimeakzvgt

i) the a form a geometric seriest; = Cp! with p € (0,1) andC > 0;

iii ) the a; form a divergent seriest! — 0 andy; al — oo; for instance, taker = tl
Convergence is guaranteed for iFB is replaced by a lower bound app and for ii) if C and p are sufficiently large.
Step size iii) is always convergent, but convergence is skny because of the divergent sequence. Pararmétestep

iii ) of the algorithm allows one to limit the number of iteratiodnother standard heuristic termination rule is to stop
when the dual boun®B = max L(7) has not improved for several iterations.

The sub-gradient approach can be used as a heuristic toger@doandidate solution for the primal problem (27).
However it is not guaranteed to satisfy constraibis> d while the primal solution of (23)-(26) does. The candidate,
denotedx; is obtained as a convex combination of previously gendrptentsxd for g=1,...,t. Possible choices of
updating rules are:

i) X=y4_1X0Ag whereAg = E:ff"g or
i) R=ax+ (1—a)x with a € (0,1).

The latter rule is of interest because it puts more weighterpbints<t generated most recently. Using step size iii),
the theory predicts the convergencexabwards an optimal solution to (27). In practice howeveg amould first check
whethenx'verifiesDx > d and if so record the associated value as an upper boungdhat can be helpful in monitoring
convergence (although there is no monotonic convergenitesé upper bounds as in Figure 2). If furthermoverifies
the integrality conditions, then it defines a primal bound PB

Thevolume algorithmis a variant of the sub-gradient method in which one usestfioernation of all the previously
generated Lagrangean subproblem solutions to estimaighiatal and dual solutions to (23)-(26), thus providingiéet
stopping criteria. At each iteration,

i) the estimate of a primal solution is updated using: fX+ (1 — )X with a suitablen € (0,1);
ii) the dual solution estimat& is defined by the price vector that has generated the bestbdusld so far: it =
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iii ) the “direction of ascent” is defined by the violatitah— DX) of the dualized constraint by the primal solution estimate
R instead of using the latest Lagrangean sub-problem salxtjo

iv) the dual price updating rule consists in taking a step fioimstead ofr': 71 = max{0, fi+ &(d — DX)}.

The method is inspired by the conjugate gradient method dtjiiivalent to making a suitable correctidrin the dual
price updating directiom! ™! = max{0, it + &(d — Dx!) +V'}. The namevolumerefers to the underlying theory saying
that the weigh{1—n)n9-1 of the gt solutionx? in the primal solution estimateapproximates the volume under the
hyperplanemDx! + o = ¢ in the dual polyhedron of Figure 3 augmented by the consteain 7id. The algorithm stops
when primal feasibility is almost reachefl(d — DX)|| < € and the duality gap is small enoughcX — 7d|| < €. The
implementation of the method is as simple as that of the sabignt algorithm, while its convergence performance is
typically better.

The linear programming representation (20)-(22) of theraagean dual suggests the use of a cutting plane procedure
to dynamically introduce the constraints associated withdifferent pointsd. This procedure is a standard nonlinear
programming approach to maximize a concave non-diffesbteifunction, known akelley’s cutting plane algorithm
It is identical to the above column generation proceduresken in the dual space: poixt defines a violated cut for
(20)-(22) if and only if it defines a negative reduced costioot for (23)-(26).

The convergence of the basic column generation algoritimit§alual counterpart) suffers several drawbacks, as
illustrated in Figure 2i) during the initial stages, when few poinare available, primal and dual bounds are very weak
and ineffectiveji) convergence can be slow with very little progress made irréwipg the boundsiji ) the dual bounds
can behave erratically asjumps from one extreme point solution to another at suceestgrations, andv) the upper
boundszZ®MLP can remain stuck at the same value due to degeneracy (igtztween alternative solutions of the same
value).

Efforts have been made to construct more sophisticatedanst algorithms. They combine several mechanisms:
i) proper initialization (warm start): what is essential iheve meaningful dual solutiomsfrom the outset (using a dual
heuristic or a rich initial set of pointe?, produced for instance by the sub-gradient method);
ii) stabilization techniques that penalize deviations of thal dolutions from astability centerft, defined as the dual
solution providing the best dual bound so far: the dual mwwbbecomes

max({L (1) +S(m— )},

whereSis a penalty function that increasesramoves away frontr,
iii ) smoothing techniques that moderate the current dual ealéised on previous iterates: the price vector sent to the
subproblem is

T =am 1+ (1-a)rt,;
wherert is the current dual solution of RMLIR € (0,1) is a smoothing parameter, am ! is the smoothed price of
the previous iterate.
iv) an interior point approach providing dual solutions cqueling to points in the center of the face of optimal sohsdio
of RMLP as opposed to the extreme points generated by sinfyalsed algorithms;
v) reformulation strategies to avoid degeneracy or symneetf@r instance, when the MLP is a set covering problem,
a dynamic row aggregation and disaggregation procedweslbne to control degeneracy and to reduce the number of
iterations. Another approach consists in adding valid dutd in (20)-(22) to break dual symmetries. These mechanism
can be combined into hybrid methods. For instance, comgiiiimnd iii) by smoothing around a stability center :

T =aft+(1-a)n'. (49)

Stabilization techniques differ essentially in the chadféhe penalty function. Several typical penalty functi@me
pictured in Figure 4 for a 1-dimensional vectar WhenS is a piecewise linear function, the modified dual problem
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can still be formulated as a linear program (with artificiatimbles). For instance, to model a boxstep penalty functio
S(r5) = 0 if me [0,75] and —o otherwise (forf; = 2« f§), the master program (23)-(26) is augmented with artificial
columnsp; fori = 1,...m, whose costs are defined by the upper boumdsn the the dual prices. The resulting primal -

dual pair of augmented formulations of the master are:

miny {1 () + 3 Tipi maxy; 75di + o
SO+ > divi simDiX+o < ol Wt (50)
S = 1 m < TV
A>0t=1....T. o > OVi m>0,0 € RL

Properly setting the parameters that define this statidizdtinction may require difficult experimental tuning.

In theory the convergence rates of all the LP-based methwitls ¢r without piece-wise linear penalty functions)
are the same (although LP stabilization helps in practi¢édwever using a quadratic penalty allows one to benefit
from the quadratic convergence rate of Newton's method tageémproved theoretical convergence rate. Bhadle
method consists in choosing the penalty funct®a M wheren is a parameter that is dynamically adjusted to
help convergence. (In the case of equality constrdints= d, the bundle method has an intuitive interpretation in the
primal space: solving the penalized dual is equivalent karsgpthe augmented Lagrangean subproblem:{imir- 7r(d —

Dx) + n||d —Dx||? : x € con(Z)}.) The method calls for the solution of a quadratic prograreaah iteration (the dual
restricted master involves the maximization of a concayeabive under linear constraints). Experimentally usehef t
bundle method leads to a drastic reduction in the numbeeddtibns for some applications. The extra computing time
in solving the quadratic master is often minor.

Interior-point based solution approaches such as the findenter Method (ACCPM) can also be shown theoreti-
cally to have a better rate of convergence. Even smoothitiniques can benefit from theoretical analysis: using rule
(49), one can show that at each iteration either the dualdaustrictly improved, or the column generated based on the
smoothed priced has a strictly negative reduced cost for the original prides

S(n— 1)

S(m—1)

Figure 4: Examples of penalty functions: the boxstep; tipieee-wice linear penalty functions; the quadratic pgnaiit
the bundle method.

In practice, each of the above enhancement techniques éashewn to significantly reduce the number of iterations
in certain applications. However there may be overheadsnbke each iteration slightly more time consuming. Another
factor in assessing the impact of the enhanced techniqtlestisne required by the pricing subproblem solver: it hasbe
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observed that stabilized, smoothed or centered dual pricen make the pricing problem harder to solve in practice.
Thus the benefit from using stabilization techniques arésxtmlependent.

3.5 Optimal Integer Solutions: Branch-and-Price

To solve problem IP based on its Dantzig-Wolfe reformulatione must combine column generation with branch-
and-bound; the resulting algorithm is knownkaanch-and-priceor IP column generationThe issues are how to select
branching constraints and how to carry out pricing (soheeréisulting subproblem(s)) after adding these constraiuge
that a standard branching scheme consisting in imposingjandiive constraint on a variablg of the Dantzig-Wolfe
reformulation that is currently fractional is not advisablFirst, it induces an unbalanced enumeration tree: rogndi
down aAq variable is weakly constraining, while rounding it up is swterably more constraining, especially when the
corresponding bounds are 0 and 1 respectively. Secondeatotkin branch it is difficult to impose an upper bound on a
Ag variable: the associated column is likely to be returnedhassblution of the pricing problem unless one specifically
excludes it from the sub-problem solution set (essentalying the constraint£ x9 in the sub-problem which destroys
its structure), or one computes the next best column. Tleenaltive is to attempt to express branching restrictions in
terms of the variables of the original formulation. In gealederiving an appropriate branching scheme in a column
generation context can be non-trivial, especially whekliiag problems with identical subsystems.

Below we start by considering the case of a single subsystlmbranching schemes developed for this case already
indicate some of the issues and extend directly to the cabermuiltiple but distinct subsystems. We will then consider
the case of a set partitioning master program with multigéntical subsystems in 0-1 variables. In this case, a cklssi
approach is the Ryan and Foster branching scheme. We placéhi context of alternative schemes. From this dis-
cussion, we indicate the basic ideas for dealing with thegdrcase. In particular, we outline a general branching and
pricing scheme that is guaranteed to produce a finite bragdhte and to maintain the structure of the pricing problem
when the seZ is bounded.

3.5.1 Branch-and-Price with a Single or Multiple Distinct Subsystems

We describe the algorithm for a single subsystem, whichnelg¢o the case of distinct subsystems. We suppose that
A* is an optimal solution of the Dantzig-Wolfe linear programgirelaxation.
i) Integrality Test. If A* is integer, or more generally if'x= Y g xg)\g* € ZN, stop. X is an optimal solution of IP.
ii) Branching. Select a variable jxfor which ><]k =Y geG x?)\g* ¢ Z. Separate into two subproblems with feasible regions
XO{x:x; < [xj]}and XN {x:xj = [x]]}.
Let us consider just the up-branch (U); the down-branchésited similarly. The new IP for which we wish to derive a
lower bound is the problem:

2’ =min{cx: Dx>d,x € Z,xj > [x{]}.

There are now two options, depending whether the new cansigatreated as a complicating constraint, or becomes
part of the “tractable” subproblem.
Option 1. The branching constraint is dualized as a “difficult’ coraitt: Y = {x € Z": Dx > d,xj > [Xj]} and
Y =z.
iii) Solving the new MLP: The resulting linear program is

P —min T (09)A
PR

v
o

(MLP4) ZG(DXg))\g

ge
xIg [x:]
g; j j

ggc)\g =1

Ag 0gegG,

(A%

(A%
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where{x3} is the set of points of Z.

iv) Solving the new subproblem Suppose that an optimal dual solution after iteration (7, ut, ot) € RT x Ri X Ri.
The subproblem now takes the form:

(SB) Zt = min{(c— 'D)x— p'xj : x € Z}.

Option 2. The branching constraint is enforced in the sub-probleé‘\:é(Y and g =Zn{xj = [x1}.
iii) Solving the new MLP: The resulting linear program is

2P —min 5 (0)g

9eGy
(MLP,) T D))y > d
9eGy
geGy
Ag > 0geGy.

Where{xg}geGlzJ is the set of points onLZ

iv) Solving the new subproblem Suppose that an optimal dual solution after iteration {8, a') ¢ RT x Ri. The
subproblem now takes the form:

(SB) Zb=min{(c—m'D)x:x€ ZN{x:xj > [X]}}.

Note that, with Option 2, branching og > [xﬂ on the up-branch can be viewed as partitioning the set Z imbo t
setsZ\ Zy andZy: adding the constrair g gy Ag = 1 is equivalent to adding 4.\ gy Ag = 0 and thus the columns of
Z\ ZY are removed from the master.

Both options 1 and 2 have certain advantages and disadesntag

e Strength of the linear programming bound

2P = min{cx: Dx > d,x € conv(Z),xj > X1}

<Z"P = min{cx: Dx>d,x € con(ZN{x:xj > [x]]})},

so option 2 potentially leads to better bounds.

e Complexity of the subproblem
For option 1 the subproblem is unchanged, whereas for ogtithe subproblem may remain tractable, or it may
become more complicated if the addition of bounds on thealsées makes it harder to solve.

e Getting Integer Solutions
If an optimal solutiorx* of IP is not an extreme point of co(¥), there is no chance that will ever be obtained
as an optimal solution of the subproblem under Option 1. Ugion 2, because of the addition of the bound
constraints, one can eventually generate a cold¥na x* in the interior ofcony(2).

The above pros and cons suggest that Option 2 may be prefef#iid modified subproblem remains tractable.
In the above we only consider branching at the root node amdnibdifications to the column generation procedure
after adding a single branching constraint. The two optizars be used throughout the branch-and-price tree, adding a

new lower or upper bound on a variable on each branch. Bo#nseb also extend to mixed integer programs in which
case branching is carried out only on the integer variables.
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3.5.2 Branch-and-Price with Identical Subsystems

In the case of identical subsystems the Dantzig-Wolfe refdation is given by DWad (38)-(41). Here the model
variables result from an aggregatiomy = Z|I<<:1)‘kg with ¥ geg Vg = K. Hence, there is no direct mapping back to
the original distinct subsystem variableé,--- ,xX). The projection (42) of reformulation solutioninto the original
variable space will only provide the aggregate varialyleiefined in (10). Thélntegrality Test” needs to be adapted.
Moreover, branching on a single componenydd typically not enough to eliminate a fractional solutidn.particular,
the Option 1 scheme typically does not suffice because onei‘rar:waa;/yjk = deex‘f)\g € Z for all j even though the
current master solution does not provide an optimal integértion to the original problem. The extension consists in
defining branching entities involving more than one vagadl of the original formulation. This can be interpreted as
defining auxiliary variables on which to branch. The brangtgonstraint can then either go in the master (as in Option 1)
or be enforced in the pricing problem (as in Option 2), whigtoants to branching on appropriately chosen sutietg.

First, we provide afilntegrality Test” although its definition is not unique.

Integrality Test. Sort the columns%with vg > 0in lexicographic order. Disaggregate into A variables using the

recursive rule:
k—1

Mg=min{lvg— 5 Agg, (k=Y vg)t} vk=1,...,K,geG, (51)
K=1 Y=g

where g < g if g1 precedes gin the lexicographic order. For all k, Ie(txk)* = YgeGe xg)\ljg. If x* € ZX", stop. % is a
feasible solution of IP.

Note that ifv* is integer, the poink* obtained by the above mapping will be integer. In gengfatan be integer
even wherv* is not. However, whe C {0,1}", v* is integer if and only if* is integer.

Let us now discuss Branching. We first treat the special cBgELpin which the master problem is a set partitioning
problem. Then we present briefly possible extensions agiglkcto the general case.

The Set Partitioning Case
For many applications with identical binary subsystemg basZ C {0,1}", D =1,d = (1, ...,1), and the master takes
the form of:

min{%(cxg)vg: %x? vg =1Vj, %vg:K, vg € {0,1} Vg € G}. (52)

One example is the bin packing problem of Example 8 in whicis the set of solutions of a 0-1 knapsack problem.
Another is the graph (vertex) coloring problem in which e¢ohs correspond to node subsets that can receive the same
color andZ is the set of stable sets of the graph.

Assume that the solution to the master LP is fractional withZ {0, 1}‘6‘. Branching on a single componeyytis
not an option. Indeed, i& = {g: x? =1} Y] =Yg x?vg = g6 vy = 1 for any master LP solution. However there
must exist a pair of coordinatésand j such that

Wi = vg=0a witho<a <1,
gx=1x=1

so that one can branch on the disjunctive constraint:

wWj= 5 vg=0)or (wj= Yy vg=1),
gx=1)¢=1 gx¥=1x=1

wherew;j = ka}(x'f is interpreted as an auxiliary variable indicating whethienot componentsand j are in the same
subset of the partition.
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We present three ways to handle the branching constraimbered 3, 4 and 5 to distinguish them from the Options
1 and 2 above. They are illustrated on the up-bramgh= Ygx-1x0-1Vg = 1

Option 3. The branching constraint is dualized as a “difficult” coastt: YéJ ={xez":Dx>d,wjj > 1} and
Z{ = Z. Then the master includes the constra{'r&txg:m?:l vg > 1 with associated dual variabje and the pricing
subproblem needs to be amended to correctly model the rédosts of a column; it takes the form:

{3 =min{(c— MD)X— uwij : X € Z,wWij <X, Wij < Xj,wjj € {0,1}}.

If one wishes to enforce branching directly in the pricingpmwblem, note that one cannot simply sgt = 1 in
the subproblem because this branching constraint must lmmlyatisfied by one of thi€ subproblem solutions. In-
stead one must restrict the subproblenZtm such a way that any linear combination of its solutions Z satisfies
Wij = deé:ﬁq:lﬁx?:l vg = 1. This can be done through Options 4 or 5:

Option 4. Let Yf ={xeZ":Dx>d} andZ = Z}f = ZN{x = Xj}. The combination of this restriction on the
solution set with the set partitioning constrairgaeé:xig:l vg=1and deé:x?:l vg = 1 results in the desired output:
zgeéx_g:l 91 Vg = 1. With this option the master is unchanged, while the pgainbproblem is:

=1

{a=min{(c—MD)x:X€ Z,% = Xj}.

Option 5. Here on the up branch one works with two different subproisteone whose solutions hawg = 1 and
the other whose solutions hawg = 0. LetYY = {x € Z": Dx> d} andZ = zY, UZ%, with ZJ, = ZN{x = xj = 0} and
Z8, = ZN{x = xj = 1}. Then, in the master program the convexity constrgigiig vy = K is replaced by gy, Vo =
K-1 anngeGgB vg = 1, and there are two pricing subproblems, one ovezggand one over sd}SJB:

{sp = min{(c—mD)x: x € Z,x = xj = 0} and{sg = min{(c— D)X : X € Z,% = Xj = 1}.

Option 3 can be seen as an extension of Option 1. Option 4 iskitothe literature as the Ryan and Foster branching
scheme. Option 5 can be seen as an extension of Option 2. @hesiarof the advantages and disadvantages of Options
3, 4 and 5 provides a slightly different picture from the camgon of Options 1 and 2:

e Strength of the linear programming bound
P min{cx: Dx > d,x € con(Z)¥,wjj; > 1}
<P = min{cx: Dx>d,x € convZY K},

< MP min{cx: Dx > d,x € (convZgx)K 1 x conv(Z))},

e Complexity of the subproblem
The three options assume a change of structure in the sueprgbven Option 3). The Option 5 modifications of
fixing some of the subproblem variables are the least sigmific

e Getting Integer Solutions
Both Option 4 and 5 allow one to generate a coluia- x* in the interior ofconZ), but Option 5 is better in this
regard.

The down-branch can be treated similaMf = {x € Z": Dx > d,wj; =0}, ZD = Zn{x +x; <1}, Z2, =ZN{x =
0} andzB, = ZN{x = 1,x; = 0}.

Note that the pricing problem modifications are easy to famdsome application while they make the pricing prob-
lem harder in others. The Option 3 modifications affect thst structure in a way that is not amenable to standard
pricing problem solvers in both of our examples: bin packamgl vertex coloring. The Option 4 modifications do not
affect the structure of the stable set sub-problem for thexeoloring problem: addition of the inequality+x; <1 on
the down-branch amounts to adding an edge in the graph, atidsgx = x; in the up-branch amounts to aggregating
the two nodes — contracting an edge. However, for the binipgdpplication, a constraint of the form+-x; <1 in the
down-branch destroys the knapsack problem structure a@tbtandard special purpose knapsack solver can no longer
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be used, while the up-branch can be handled by the aggrag#titems. The Option 5 modifications are easily handled
by preprocessing for both the bin packing and vertex coippiroblems.

The General Case with Identical Subsystems
For the general case, such as the cutting stock problem ohfea7, the Master LP relaxation is

min od)vy DXy >d, § v :K7ve]R<‘G‘ )
{ggG( )gggc( )Vg ggcg iy

If its solution v does not pass théntegrality Test”, one must apply an ad-hoc branching scheme. The possibieesho
can be understood as extensions of the schemes discussptianQl to 5.

Option 1 Branching on the aggregate variabjedoes not guarantee the elimination of all fractional sohsi As we
have seen in the set partitioning case, no fractional swiattan be eliminated in this way. However for the general
case, in some (if not all) fractional solutions, there exestoordinateé for whichy; = ¥ g Xing =a ¢Z. Then
one can create two branches

g g
Xvg<laland 3 xvg>[al.
ggG ggG
This additional constraint in the master does not changsttiieture of the pricing problem that becomes
{ = min{(c— mD)x— pjx : Xx€ Z}
wherey; (resp.—L; ) is the dual variable associated to up-branch (resp. doaneh) constraint.

Options 3 and 4 If the original variables do not offer a large enough speutai branching objects (i.e. if the integrality
of the aggregatg; value does not yield an integer solutirto the original problem), one can call on an extended
formulation, introducing auxiliary integer variables. &hone can branch on the auxiliary variables, either by
dualizing the branching constraint in the master (Optionr3when possible, by enforcing it in the subproblem
(Option 4). A natural approach is to exploit the extendednigation that is implicit to the solution of the pric-
ing problem. For example, in the vehicle routing problemusons are the incidence vectors of the nodes in a
route, whereas the edges defining the routes implicitly detfie costs of the route; branching on the aggregated
edge variables summed over all the vehicles allows one nur@ite all fractional solutions. For the cutting stock
problem, solving the knapsack subproblem by dynamic prograag amounts to searching for a longest path in a
pseudo-polynomial size network whose nodes representitggansumption levels (see Section 5.4). Branching
on the associated edge flows in this network permits onendreite all fractional solutions.

Options 2 and 5 For a general integer problem, a generalization of the @tiapproach is to look for a pair consisting
of an indexj and an integer bounlg for which Yz Vg =0 ¢ Z, and then create the two branches:

Y vg=falor Yy vg=K-|a (53)

geG geG\G
whereZ = ZN {xj > 1j} = {x9};_g. Then pricing is carried out independently over the two &et1dZ\ Z =
Zn{xj <lj—1} on both branches. As in the set partitioning special casenmy have to consider seislefined
by more than a singleomponent boundt is easy to show that if a solutiondoes not pass th#ntegrality Test”
there must exists a branching get= ZN {sx> |}, wherel € Z" is a vector of bounds ansle {—1,1}" defines
the sign of each component bound, such @g'a_;gez Vg = a € Z. Then, branching takes a form generalizing (53)
and pricing is carried out independently fdrand its complementary sets: the technicalities are beynmddope
of this chapter (see the references provided in Sectiom7particular, to avoid the proliferation of the number
of cases to consider when pricing, it is important to choseaadhing se¥ that is either a subset of a previously
defined branching set or lies in the complement of all preslipdefined branching sets.

Option 1 can always be tried as a first attempt to eliminataetifsnal solution. Although easy to implement, the
resulting branching can be weak (low improvement in the 8oaihd). Options 3 and 4 are application specific schemes
(whether the branching constraint can be enforced in therebbem and whether this modifies its structure are very much
dependent on the application). By comparison Option 5 isrege scheme that can be applied to all applications for
which adding bounds on the subproblem variables does ndatiiritp solution (i.e., it works iZ is bounded). Typically
it provides the strongest dual bound improvement.
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3.6 Practical Aspects

In developing a branch-and-price algorithm, there are npaagtical issues such as a proper initialization of the re-
stricted master program, stabilization of the column gatien procedure (as discussed in Section 3.4), early tatiom
of the master LPs, adapting primal heuristics and prepsioggechniques to a column generation context, combining
column and cut generation, and branching strategies. Matettie branching schemes of Section 3.5 must be under-
stood as default schemes that are called upon after usisibpbranching on constraint strategies that can yield @mo
balanced search tree.

Initialization is traditionally carried out by running aipral heuristic and using the heuristic solutions as andhiti
set of columns. Another classical option is to run a sub-igrador a volume algorithm to obtain an initial bundle of
columns before going into the more computationally intem&iP based column generation procedure. An alternative is
to run a dual heuristic to estimate the dual prices. Thesmatgs are then used to define the cost of the artificial cobumn
associated with each of the master constraints as presenf&@).

The column generation approach is often used in primal &iesi A branch-and-price algorithm can be turned
into a heuristic by solving the pricing problem heuristigand carrying out partial branching. A classical heucisti
consists in solving the integer master program restricigte columns generated at the root node using a standard MIP
solver (hoping that this integer program is feasible). Awotcommon approach is to apply iterative rounding of the
master LP solution, which corresponds to plunging dep#t-ito the branch-and-price tree (partial backtrackireldg
diversification in this primal search). The branching sceamderlying such a rounding procedure is simpler than for
exact branch-and-price (for instance one can branch direstthe master variables as only one branch is explored).

4 Resource or Variable Decomposition

The “classical” problem tackled by resource decomposiche mixed integer program

MP — mincx+ hy
(MIP) Gx+Hy>d
xeZ"yeR?

where the integer variablesare seen as the “important” decision variables (possitgyesenting the main investment
decisions). One approach is then to decompose the optionzattwo stages: first choosingand then computing the
associated optimal. A feedback loop allowing one to adjust theolution after obtaining pricing information from the
optimization ofy makes the Benders’ approach different from simple hieiaatloptimization.

In this section we first derive the Benders’ reformulatiothia space of the variables and show how it can be solved
using branch-and-cut. We then consider the case in whicli tagiables are integer variables, as well as the case with
block diagonal structure in which the subproblem obtainé@mvthex variables are fixed decomposes, and finally we
discuss computational aspects.

4.1 Benders' reformulation

The approach here is to rewritl P as a linear integer program just in the space of the integéblasx. First we
rewrite the problem as
2P — min{cx+ @(x) : x € proj, (Q) NZ"}

where

Q= {(xy) e R"xR® : Gx+Hy>d}
and

@(x) =min{hy: Hy > d—-Gxye R}
is the second stage problem that remains once the impodaables have been fixed in the first stage. This can in turn

be written as
2P = min{cx+ 0 1 x € proj(Q) NZ", (0,X) € Py}
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wherePy = {(0,x) : 0 > @(x)}. Note that wherx yields a feasible second stage problem, xecprojx(Q), Py can
be described by linear inequalities. By LP dualipyx) = max{u(d —Gx) : uH < h,u € RT} = max_; 7 u'(d—Gx)
where{u‘}[_, are the extreme points &f = {u€ R : uH < h}. In addition a polyhedral description of pg¢R) is
given by Theorem 4. Thus we obtain the reformulation:

MP — minex+ o
(RMIP) o>u(d-Gx) t=1,---,T
V(d-Gx<0r=1---,R
xezZn,

where{ut }Ll and{v' }5:1 are the extreme points and extreme ray aEspectively.
RMIPis a linear integer program with a very large (typically empntial) number of constraints. With modern mixed
integer programming software, the natural way to solve suptoblem is by branch-and-cut (see Chapter ?7?).
Specifically at each node of the enumeration tree, a lineggramming relaxation is solved starting with a subset
of the constraints oRMIP. If this linear program is infeasibl&RMIP at that node is infeasible, and the node can be
pruned. Otherwise ifg*,x*) is the current linear programming solution, violated comists are found by solving the
linear programming separation problem

@(x*) =min{hy: Hy > d—Gx",y e RP }, (54)
or its dual maxu(d — Gx*) : uH < h,ue RT}. There are three possibilities:
i) The linear programming separation problem (54) is infdlasand one obtains a new extreme vawvith V' (d — Gx*) >
0. (An extreme ray is obtained as the dual solution on tertitinaf the simplex algorithm). The violated constraint
V' (d — Gx) < 0, called afeasibility cut is added, and one iterates.
ii) The linear programming separation subproblem is fdasédnd one obtains a new dual extreme painwith @(x*) =
u'(d— Gx*) > g*. The violated constrairt > u'(d — Gx), called aroptimality cut is added, and one iterates.
iii) The linear programming separation subproblem is fielesivith optimal valuep(x*) = o*. Then(x*, ™) is a solution
to the linear programming relaxation BMIP and the node is solved.

Example 9 Consider the mixed integer program

min  —4x; —7xp —2y;  —0.25yo+0.5y3

=20 =3 4 +Y2 —4dy3 > -9
—7xg =5 12 A +4y3 > 11
x <3, xeZ2, yeR3

where the feasible region is similar to that of Example 3.

The extreme rays'v= (1,1)T,v? = (2,1)" of the feasible region of the dual & {u € R? : —4u; — 12up < —2,uy —
2up < —0.25,—4u; +4u, < 0.5} were calculated in Example 3. The extreme points &re (1/32,5/32), 1% = (1/20,3/10),
so the resulting complete reformulation RMIP is:

min o —4xq —Tx2
—9x1 —8% > —-20
—11x, —11x, > -29
o -—115625%; —0.875 > -2
g —1.15x¢ —0.9% > -2.1
X <3, xe7?.

Now we assume that the extreme points and rays of U are notrkramd the problem is to be solved by branch-and-cut.
One starts at the initial node 0 with only the bound constimh< x < 3 and dynamically adds Benders’ cuts during
branch-and-cut. We further assume that a lower bound of €kbthe optimal value op(x) is given.

Node 0. Iteration 1 Solve the Master linear program:
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(=min o -4 —Tx
o > —-100
X1 <3 x<3 xe Ri.

Solution of the LP Mastef = —133x = (3,3),0 = —100,
Solve the separation linear program

min  —2y; —0.25y,+0.5y3

—4y1 +Y2 —4dy3 > —-9+15
—12y -2y, +4y3 > —11+36
yeR3

The ray v= (1,1) shows that the separation LP is infeasible. The correspunéeasibility cut—9x; — 8x; > —20is
added to the Master LP.

Node 0. Iteration 2

Solution of the LP Master{ = —117.5,x = (0,2.5),0 = —100.

Solution of the Separation LRa(x) = 3/16 > 0. u= (1/32,5/32). The corresponding optimality cot— 1.15625; —
0.875¢, > —2is added to the Master LP.

Node 0. Iteration 3

Solution of the LP Master{ = —17,x= (0,2.5),0 = .

Solution of the Separation L#a(x) = 0. The LP at node 0 is solved.

Create node 1 by branching oa X 2 and node 2 by branching on % 3, see Figure 5.

Node 1. Iteration 1

The constraint x < 2 is added to the Master LP of Node 0, Iteration 3.
Solution of the LP Master{ = —15.514x = (4/9,2),0 = 0.264
Solution of the Separation LRa(x) = 0. The LP at node 1 is solved.
Create node 3 by branching on X 0 and node 4 by branching on % 1.

Node 3. Iteration 1

The constraint x< 0 is added to the Master LP of Node 1, Iteration 1.

Solution of the LP Master{ = —14.25 x = (0,2),0 = —0.25.

Solution of the Separation LRa(x) = g. The LP at node 3 is solved. The solution is integer. The vdlde?5 and the
solution x= (0,2),y = (0.25,0,0.5) are stored. The node is pruned by optimality.

Node 4. Iteration 1
The constraint x> 1 is added to the Master LP of Node 1, Iteration 1.
Solution of the LP Master{ = —13.26. The node is pruned by bound.

Node 2. Iteration 1
The constraint x> 3 is added to the Master LP of Node 0, Iteration 3.
The LP Master is infeasible. The node is pruned by infeasibil

All nodes have been pruned. The search is complete. Theadmotution is x= (0,2),y = (0.25,0,0.5) with value
-14.25. The branch-and-cut tree is shown in Figure 5.

4.2 Benders with Integer Subproblems
The Benders’ approach has also been found useful in tacklieger programming models of the form
min{cx+hy: Gx+Hy >d,x€ {0,1}",y e Y C ZP},

where thex variables are 0-1 and represent the “strategic decisiarsd,they variables are also integer. Once the
variables are fixed, there remains a difficult combinatqsfablem to find the best correspondingn the second stage.
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x=(0,2.5)
(=-17.3125

X2<=2 x2>=3

=(0.444.2) 0 LP infeasible
z— -15.514
x1<=0 X1>=1
x=(0,2)
{=-14.25 ) (=-13.26

Figure 5: Branch-and-Cut Tree for Benders’ Approach

Typical examples are vehicle routing (or multi-machineestifling) in which thex variables may be an assignment of
clients to vehicles (or jobs to machines) andyhariables describe the feasible tours of each vehicle séguence of
jobs on each machine).

As before one can design a Benders’ reformulation and brandkcut algorithm in théo, x) variables:

2P — min{cx+ 0,0 > @(x),x € Z"},

where@(x) = « whenx ¢ proj,(Q). However the separation subproblem is no longer a lineagraro, but the integer
program:
@(x) =min{hy: Hy>d-GxyeY}. (55)

Now one cannot easily derive a polyhedral description ofttegection into thex-space as in the continuous subproblem
case. The combinatorial subproblem (55) must be solveditegly at each branch-and-bound node. It is often tackled
by constraint programming techniques, especially wheedtices to a feasibility problem (in many applicatiéns 0).

A naive variant of the algorithm presented in Section 4.bisdlve the master problem to integer optimality before
calling the second stage problem: one only calls the séparalgorithm wherRMIP has an integer solutio € {0,1}".
The separation is typically easier to solve in this cases @pproach is often used when the subproblem is handled by
constraint programming. There are three possible outcomes
i) The separation subproblem is infeasible for the paint {0,1}", and one can add the infeasibility cut

Z X+ Yy 1 xj)>1 (56)
IE Xj= j: Xj=
that cuts off the poink®*.

i) The separation subproblem is feasible ¥6r but ¢(x*) > o*. One can add the optimality cut

0200¢) = (90) M) 5 X+ 5 (1-x))
jZXT ] X*
that cuts off the poinfa™, x*), whereM is a lower bound omp.
iii) The separation subproblem is feasible #6r and ¢(x*) = 0* = hy*. Now (x*,y*) is a feasible solution with value
cX" + @(x*). The node can be pruned by optimality.
This naive version has to be improved to have any chance dfimgin practice (for instance, in some applications
one can add certain valid inequalities in theariables a priori). In particular it is important to find opealities that cut off
more than just the poin¢*. One case in which a slightly stronger inequality can be gaad is that in whickx* € {0, 1}
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infeasible impliex infeasible whenevex > x*. In this case one searches for a minimal infeasible sold&tion* and the
infeasibility cut (56) is replaced by the inequality:

z (1*Xj) >1

jXj=1

stating that in any feasible solution at least one variaktk % = 1 must be set to zero.
Finally note that one can also work with a relaxation of (58)aay feasibility cut or optimality cut that is valid for
the relaxation is valid for (55).

4.3 Block Diagonal Structure

In many application$/1P has block diagonal structure of the form

mincx + hiyt + h3?2 4. LhKyK

Glx + Hy > dt

G?x  + H2y2 >
. . >

GKx + HKyK > K
X eX, Yoo oezk k=1,....K

Here the second stage subproblem breaks ugkrgéabproblems
ZK = min{hky* : HKyK > dk — GKx y* € Z4) fork=1,... K.

One important and well-known case is that of two-stage ststit linear and integer programming, wherespresent
the first stage decisions (discrete or otherwise). Thenrdépg on a discrete probability distribution, one obsenves
random variables involving one or more elements(alf, HK, hk, d") with probability px before taking an optimal second
stage decisiog¥. Note that all the subproblems will have a similar struciorthe relatively common situation in which
the matricedH¥, GK are independent d&¢

We now consider an example in which all the costs are resttita thex variables, but the subproblems are hard
combinatorial problems.

Example 10 (Multi-Machine Job Assignment Problem)
There are K machines and n jobs. Each job j has a release dadad a due date d The processing time of job j on
machine k is band the associated processing cost‘jis The problem is to assign each job to one machine so that the
jobs on each machine can be scheduled without preemptide vésipecting the release and due dates, and the sum of
the assignment costs are minimized.

Letting >§ =1ifjob j is assigned to machine k, the problem can be written as

~
~

MP = min{

k=1]

N YRk =1vj, X eZkvkl,
=

M=

where X € Z*if and only if the set'S={ ] : XX = 1} of jobs can be scheduled on machine k. The §et be represented
as a linear integer program, but the feasibility problem &&ch machine is well-solved in practice by the“Cumulative
Constraint” from Constraint Programming. Given a proposessignment one calls the Cumulative Constraint in turn
for each of the K subproblems. Eitheris a feasible assignment, or one or more infeasibility cuts

Y K <I$)-1,

jes

are added (involving as small as possible a devfnfeasible jobs). Note that as the costs are limited tocthariables,
there are no optimality cuts for this problem. Results aoadignificantly improved by the a priori addition of valid
inequalities in the kvariables.
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4.4 Computational Aspects

Much recent research has shown the importance of normializiatgenerating cutting planes, and Benders’ algorithm
is no exception. Returning to the algorithm outlined in Sadtion 4.1, giver(x*, o*), a violated feasibility or optimality
cutis generated if and only if there is no feasible p@iity*) attaining the present lower bouo#* + o*, or equivalently
the set

{yeRP :Hy>d-Gx,hy< o*} =0.

By Farkas’ Lemma this holds if and only if
{(u,up) € RT x RL : u(d — GX*) —upa™ > 0,uH — ugh < 0} # 0.

Taking the normalizatiofy " ; u; 4 Ug = 1 motivated by the aim of generating a minimal infeasiblesystem of inequal-
ities and also the fact that this normalization has beercefefor other problems, the earlier separation proble#) (5
can be replaced by the linear program:

{ = maxu(d — GX*) —upo™
uH—-ugh<0
St Ui+uo=1

ue R upe RL.

Now if { > 0, the inequalityu(d — GX) < ugo is violated by. Note that this is a feasibility cut whem = 0 and
an optimality cut wheng > 0. A recent computational study has shown that Benderstrigtgo is significantly more
effective and requires far fewer iterations when this ndized separation problem is used.

5 Extended Formulations: Problem Specific Approaches

We now consider the use and derivation of extended fornuuiatbased on explicit problem structure in more detail.

Typically we again have a decompositiin=Y N Z of the feasible region, and has some specific structure that we
wish to exploit. In nearly all such cases a minimal ineqyadi¢éscription of con{Z) in the original space of variables
requires a very large number of constraints. However therthe possibility that one can find a compact extended
formulation that is tight or at least considerably strontpan the initial formulation foZ. This section is mainly about
such reformulations.

First it is natural to ask when there is hope of finding such mmact and tight extended formulation f@r An
important indication is given by the Polynomial Equivaleraf Optimization and Separation. Informally it states that
subject to certain technical conditions:

A family of problems mirfcx: x € Z C Z"} is polynomially solvable if and only if for all instance&there is a
polynomial separation algorithm for cof®).

Assuming?? # 4 2, this tells us that a tight and compact extended formulatam only exist for a problem for
which the optimization/separation problem isdh. However it gives no guarantee of the existence of such adftation.

Below we briefly discuss ways in which “relatively compacktended formulations can be used. Then we look at
different ways to derive extended formulations. We hawenafited to classify them according to the method of derigatio
In particular we consider extended formulations based oalie splitting, dynamic programming algorithms, uniafs
polyhedra, explicit convex hull descriptions or the asatszl separation problem, and finally a couple of miscellaseo
extended IP-formulations are presented.

5.1 Using Compact Extended Formulations

Here we consider briefly different ways to make use of extdrfdemulations that are compact or of “reasonable
size”.
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Intersection

Given an initial formulatiorP of X, the decompositioX =Y NZ and an extended formulati@for Z, thenQ’' = PNQ
is an extended formulation fot. Assuming thaf) is compact, one simple option is to feed the reformulatetlpra

max{cx+0w: (x,w) € Q',x € Z"}

to an MIP solver. Alternatively one might also try to impra¥e formulation ofY and combine this with the extended
formulationQ so as to produce an even stronger reformulation, see Séction

Projection

Again given the decompositiok =Y NZ and an extended formulatio@ for Z, one may wish to avoid explicit
introduction of the new variables € RP. One possibility is to use linear programming to provide gesation algorithm
for proj(Q).

Separation Algorithm

GivenQ = {(x,w) € RT x R? : Gx+Hw > d} andx* € R",

i) check whetheQ(x*) = {w € RP : Hw > d — Gx*} # 0. This can be tested by linear programming.

i) If Q(x*) # 0, thenx* € projx(Q). Stop.

iii) If Q(x*) =0, then by Farkas’ lemma there existsc V = {v e R : vH < 0} with v*(d — Gx*) > 0 (v* is obtained
as a dual solution of the linear program used in i)). TheBx > v*d is a valid inequality for prgj(Q) cutting off x*.

Note that the Minkowski non-compact extended formulatib@ ¢see Section 2) can be used in a similar manner to
provide a separation algorithm for cqi@). However in this case a column generation approach (or stteraative)
must be used, and the resulting column generation subpnabléhe optimization problem ovét.

Inequality Representation of projx(Q)

One can sometimes obtain an explicit polyhedral descrigifqproj(Q) by way of linear inequalities. In the simple
cases the projection can be obtained directly from inspeafQ. Otherwise giverQ = {(x,w) € R'. x Rﬁ :Gx+Hw>
d}, one may be able to describe all the extreme fags- - ,vT } of V = {v € RT : vH < 0}. This immediately gives the
polyhedral descriptiofix € R : ViGx>\id, t = 1,...,T} of projx(Q). Alternatively, a systematic method of projecting
out variables one at a time, known as “Fourier-Motzkin efiation”, can be used to eliminate thevariables in certain
cases.

5.2 \Variable Splitting I: Multi-commodity Extended Formul ations

Using a multi-commodity extended formulation of the flowsfasthe directed Steiner tree problem presented in
Example 4 is an example of variable splitting. Here we cagrsidmore general fixed charge network flow problem, and
present two further applications to the asymmetric traggfialesman problem and a lot-sizing problem.

Single-Source Fixed Charge Network Flows

Given a directed graph or netwolk= (V,A), a rootr €V, a vectorb € RV of demands wittb; < 0, by > 0 for all
veV\ {r}, unit flow costsc € RIA and fixed costs) R‘f‘ for the use of an arc, the problem is to find a feasible flow
that minimizes the sum of all the flow and fixed costs. This aafobmulated as the mixed integer program:

min Z(u,v)eA(QUvXuv + Cuvyuv)
ZU€5’(V) Yuv — Zue6+(v) Ywu=by veVv
Yav < |brxuy (u,v) € A
ye R'f',xe [0,1]IA x e ZIA.

The linear programming relaxation of this model does notipl®good bounds because, whgp> 0 for some arcu, v),
one typically hag/yy < |br|. Thusxyy = I%VI < 1, which means that the fixed cost tegnxuy seriously underestimates
the correct fixed codl,y. One way to improve the formulation is to usenalti-commodityeformulation.
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LetT = {veV\{r}:by > 0} be the set of terminals, or commaodities. We now treat flow wiktinatiort ¢ T
as a distinct commodity and define the variabfg, to be the flow in arqu,v) with destinationt € T. The resulting
reformulation is

min{gx+cy: (X.y,w) € Q,x € ZA1},
whereQ is the polyhedron
W — YW =—br teT
YWy 3w, =0veV\{r} teTt#v
YW - 3w = teT
W <bg (i) €A teT
Yij = JtetWyj (i.j) €A (67)

ye R'f', we R‘f“m,xe [0,2]1A.

Note that now the bound on the flow on the decision variaglés xjj > maxct ”Mtlij Again considering the linear
programming relaxation, it is often the case twﬁt: bt for some commodity, and this forcesi; = 1, so that in this
case the evaluation of the fixed cost for the @r¢) is exact.

For the special case of the directed Steiner tree problemduated in Section 2.2, we noted that projection of the
above formulation leads us to the reformulation fiojx: x € P’,x € Z"} whereP”’ is the polyhedron

{xe0 YA Y x;>1 UCVwithreUteTN(V\U)}
ieU,jev\U
As P’ has an exponential number of constraints, one can use theflowarin-cut theorem to provide a polynomial
separation algorithm for the polyhedré. Note that this is exactly the Benders’ separation probl&or. this special
case, the linear programming relaxation has an optimatisaldhat solves the original problem in certain cases, in
particular when the network is Series Parallel, or wiiea V \ {r} (minimum weight spanning tree) ¢F | = 2 (shortest
path).

More generally network design problems, in which the firagstvariables are the choice of open arcs (or the multiples

of capacity installed) and the second stage variables amnetulting flows, are often treated by Benders’ approach.

TSP and Sub-tour Polytope: A Three-Index Flow Reformulatian

It is well known and follows directly from the last reformtilan that the asymmetric traveling salesman problem
(AT SB can be written as the integer program:

min’y cijX;j (58)
ZXij =1 ieVv (59)
]
ZXij =1 jeVv (60)
I
% xj>1 UcVwithgcU (61)
i€l jev\U
xe {0, 1}, (62)

wherexjj = 1 if arc (i, ]) lies on the tour. LeZ = {x ¢ 7N satisfying (61) and (63) To model these connectivity
constraints one can again use multi-commodity flows to erthat one unit can flow from some root nade V to every
other node. This leads to the extended formula€oior conv(Z):

Zwtrj _Zwtjr =1 teV\{r}

J J
ZV\/}I- —Zvvtji =0 ieV\{rthteVv\{r}
J J
\N}] lej (Ij)EAtEV\{r}
xe [0,% we[0,2] (i,j) e AteV\{r}
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wherew}j is the flow in(i, j) from noder to nodet. HereQ is a tight and compact extended formulation Zor

For the symmetric traveling salesman problem on an undidegtaphG = (V,E), one can also make use of this
reformulation by settinge = xj + X;ji, and adding/v}j +vvt]I <vyeforall (i,j) € E,t,t' € T. Conversely it can be shown
that projection onto the edge variablegives back the well-known sub-tour elimination constmmas) Ve<|§ -1,
whereE(S) = {e=(i,j) € E:i,j € S}.

Uncapacitated Lot-Sizing

The uncapacitated lot-sizing problem involves time pesiog 1,--- ,n, demands; in periodt, production costgt,
a set-up or fixed production cogtand a unit (end-of-period) storage cbst

Lettingx, s be the production and end-stock in pertp@ndy; € {0,1} indicate if there is a set-up or not, a natural
formulation as an MIP is given by:

miny{ g pexe + ¥ ohts + Filq v

S1+%=d+s 1<t<n (63)
X <Myt 1<t<n (64)
xeRY, seRML ye {0,1)" (65)

with feasible regiorx-S-Y

For this problem various polynomial algorithms are knowswell as a complete description of the convex hull of
solutions given by an exponential number of facet-definmegualities.

As this problem can be viewed as a special case of the fixedyehatwork flow problem, it is easy to add an
additional subscript to the production and stock variabidgating the period in which the units will be used to satisfy
the demand.

Rescaling the resulting production variable, one can defawe variablesv,; to be the fraction of the demand in
periodt satisfied by production in periad This leads immediately to the following reformulatiQkS—Y of X-S-Y

Sloqgwi=11<t<n (66)

Wyt <Yu 1<u<t <nwithdy >0 (67)
weR{™V2 ye o (68)
Xu=Y{ydwy 1<u<n (69)

& = Yu<t Dtcr Wy 1<t < (70)

It can be shown that priy(Q) = conyX-S-V). It follows that the linear program
min{ px-+hs+ay, (x,s,y,w) € Q->V}

has an optimal solution that solves the lot-sizing probleiuote that this formulation can also be obtained from the
complete multi-commodity reformulation by eliminationtbe multi-commodity stock variables.

5.3 \Variable Splitting Il

Here we present other reformulations obtained by varigtiigiag.
Given an integer variablg with 0 < x < C, it is possible to model it with binary variables, either i so-called
unary expansion:

c C
x=S qz, Y 7q=12€{0,1}°,
a=0 a=0
or with a binary expansion

P
x=Y 2Pwp <C, ,we {0, 1P+
p=0

whereP = log,|C].
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Time-Indexed Formulation

Machine scheduling problems are traditionally modeledaisariables representing the starting time (or completion
time) of the jobs. However, when using these variables, exgtjng constraints (enforcing that a machine can only
process one job at a time) are not easily modeled as lineathiteger programs. Consider a single machine scheduling
problem, in which there ane jobs with processing timeg;, release dates and deadlineslj for job j. Let the variable
yj € Ri represent the start-time of jolp with rj <y; <dj — p; for all j. These variables must satisfy the disjunctive
constraints

Yi ZVYi+pi, oryi =yj+pj i#]
which are often modeled in mixed integer programming by thieduction of so-called bifyl constraints of the form
Yj 2 Vi+ pi —M(1— §j), where the 0-1 variablgj = 1 if job i precedeg.
Time-indexed variables, based on the unary decomposititre g variables, allow one to build a linear IP-reformulation
avoiding the bigM constraints. Assuming integer processing tirpgsone can discretize the time horizon |ﬁtcper|ods

One can then introduce new varlabw;’swherewt = 1if job j starts at the beginning of the intenyal- 1,t], andw{ =
otherwise. Then one obtains the IP-reformulation

SLaw=11<j<n
t j : ;
YT itp WS 1 1St<T—pj+1,1<j<n

w €{0,1} rj<t<dj—pj+1, 1<j<n,
where the first constraint ensures that eachjjabstarted once, the second that at most one job is on the neaichéach
period, the range of definition of the variables handles #hease and due dates, and the original variables are othtaine
by settingyj = 3¢ (t — 1)w{

Many different objective functions and constraints, suepr@cedence constraints, are easily handled using sueh tim

indexed variables. Though pseudo-polynomial in size,itreal programming relaxation of this extended IP-forniatat
typically provides a much stronger bound than that of a biphhulation in the(x, d) variables.

Capacity-Indexed Variables

In capacitated vehicle routing problems with integral dedsad; and a vehicle capacit@, it has been proposed to
apply variable splitting to the arc indicator variablese8fically if X2 = 1 indicates that an am@forms part of a vehicle
route,\/va1 = 1 indicates thad = (i, j) forms part of the route and the total load of the vehicle whieersing ara is g.
Now as a quantityl; is delivered to client, one must have

S wi= ¥ Wi dsasC
aco (i) aco* (i)

and flow conservation becomes:

C
Z z qv\/a ZJ qv\f1 d ieVv
acot (i

g=0acd—(

Summing oveSC V and defining aggregate variablgs(S) = ¥ ac5- (5 W3 andyg (S) = Y acs+ (g Wq, One obtains integer

knapsack sets
C C ot
zoqya(s) - Zquq ESdh ¥q (9 g (9 e Z5*
for which a variety of cutting planes can be generated. k&re Zq provides the link to the original arc variables.

Fractionality-Indexed Variables and Network Dual MIPs

A network dual set is a mixed integer set in which all the caists have two non-zero entries of +1 and -1 respec-
tively. Thus we consider the set

D {xeR":x—x;>bj i,jeN,x ez icl cN}
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whereN = {1,...,n}. Such sets have been studied recently motivated by reseafdtsizing problems.

For the presentation here, we assume that each right-hdedsaiueb;j is a multiple of £, so we can writegjj =
Lbij ] + h% with hjj € Zi andhjj € {0,1,...,K—1}. As a consequence of this assumption, one can assuméxhatz!
for all i.

Following the idea of a unary expansion, we can write

K-1  K-1
Kxi =K[x]+ 5 ha, 5 z=1, zeZK.
o Hoo

This in turn can be rewritten as
Kxi = Da)+ (D) +zca)+ () +z2+z-a)++ (6] +z+-+2%-1)
K—-1 K-

1
= 5 (xl+ zj)
i=K-n

h=0
KflWh
T "

wherew! = x| if x — %] < X andw = [x ] if x — [x | > K.
With these variables, one obtains the extended formulation

X =g ShowlieN (71)

wE—w!® > b [ t=0,...K—hj~1 i,jeN 72)
wh—w V> by |+ 1t=K—hyj,...K-1 i,jeN (73)
xi=w' h=0,...K-1icl, (74)

wheref(t) =t+h; modK. For the integer variableg with i € I, one can use (74) to eliminate the corresponding
variables. The important observation is that this refoatiah again has network dual structure, but with an inteigét r
hand side. Thus the corresponding matrix is totally unintexdand the extremal solutions are integer. So it provides a
tight and compact extended formulation 5\P.

We now indicate briefly how network dual sets arise in lotrgjzproblems.

Example 11 Consider the set

S1+ Yy CWutre > 3y 1<k<t<n (75)
seRTLrerY,ye[0,1"yez", (76)

known as the constant capacity Wagner-Whitin relaxatio Wwacklogging, where; sy are the same stock and set-up
variables introduced earlier for the lot-sizing problermcar; represents the backlog/shortage at the end of period t.
Introducing the new variables; z 3% yu, 0k 1= —(S_1—C#&_ 1+ 3K }du)/C andp = (i +Cz — 3!, du)/C,
constraint (75) after division by C can be written gs— g;_1 > 0, %sk,l > 0 becomesz.; — Ok_1 > (zﬁ;i dy)/C,
ért > 0becomeg; —z > f(ztu:ldu)/c, and0<y; <lbecome®<z -z ; <1
Thus one obtains the reformulation:

o ~ Oc1 > 0 1<k<t<n
Z1 — o1 > (3tdy/c 1<k<n
P -z > —(3d)/C  1<t<n
—z + oz > -1 1<t<n
% -z > 0 1<t<n

p,0 RN zeZN,
which is precisely a network dual MIP.
More generally when thl; take arbitrary values, the extended formulation (71)-¢&f) always be reduced to a size
that is polynomial inF, the number of distinct fractional values taken by the cordis variables in the extreme point

solutions. For the lot-sizing set (75)-(76), thes O(nz), corresponding to the values 0 ag{j:k dy/C mod 1, so that
the extended formulation is both tight and compact.
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Figure 6: Knapsack Longest Path= (2,3,1),b=7,c=(5,7,0)

5.4 Reformulations based on Dynamic Programming

In many cases, solving a problem by dynamic programming eamterpreted as transforming it to a shortest or
longest path problem (in an appropriate network of possibly large size). It is then natural to look for a reformudati
as a network flow problem. More generally, a dynamic programgmecursion can often be written as a linear program,
and the dual of this linear program provides an extendeddtation in which the variables indicate which terms arettigh
in the dynamic programming recursion. We demonstrate thstwo examples, the first of which illustrates the simple
case in which the dynamic program corresponds to a longésgpgorithm.

The Integer Knapsack Problem

Consider the integer knapsack problem:
n n
z=max } cjx;: } ajxj=b,xeZ}
22,

with {a; }?:17 b positive integers. (The standard inequality knapsacklpmbis obtained by taking, = 1 andc, = 0).
It is well-known that the dynamic programming recursion:

G(t) = i +G(t—a
(t) J.:l_’___r,r;?jaizo{cl +G(t—a))}
with G(0) = 0, can be used to find= G(b) and then the corresponding optimal solution. One can cotiverecursion

into a linear program in which the valu€gt) fort =0,...,b are the variables:

minG(b)
G(t)-G(t—aj)>cj aj<t<b, 1<j<n
G(0) =0.

Defining dual variablewvj ;4 for all t, j with t —a; > 0, the linear programming dual is

b—a;
n RYYE
maxy i1 3o CjWit

ZJWIt = +1 t=0
“IiWita tYjwip = 0 aj<t<b 77
—ijj.’tfaj = _1 t:b

wip > 0,t=01---,b—aj,j=1,---,n

The resulting problem can be viewed as a longest path proibl@metworkD = (V, A) with nodesv = {0,1,...,b} and
arcs(t,t+aj) e Aforallt € {0,1,--- ,b—a;j} with weightc; for all j. Any path from O tob corresponds to a feasible
solution of the knapsack problem. Adding the equatigns: zt;(?j wijt that count the number of timgstype arcs are
used, one has that the polyhedron is a tight extended fotiomltor Z = {x € Z1 : 3], ajxj = b}.

An instance of the network corresponding to this extendeahditation is shown in Figure 5.4.

For this instance, the optimal linear programming solutipa- %xz =x3 = 0 is not integral and provides an upper
bound onz of 17.5. The linear programming relaxation of the extendedhfilation has an optimal soluti(w% = w% =
wﬁ = 1,Wtj = 0 otherwise, giving the optimal solutio = 2,x, = 1 of value 17.
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Optimal cardinality constrained subtrees of a tree

The second example involves a somewhat different dynamigram. One is given a rooted directed tiiee- (V,A)
with node weights € RVl Node 1 is the root. The problem is to find an optimal rootedregbwith 1 as the root
containing at mosK nodes. A natural IP formulation is given by

maxZ/c\,xv Xpy) =Xy VEV, ;x\, <K,xe {01}V,
ve ve

wherex, = 1 if v forms part of the subtregy(v) is the predecessor efon the path fronv to the root andy1) = 1 by
definition. For simplicity, we suppose that it is a binaryetiand the left and right sons of nodere the nodes\w2and
2v+1 respectively.

LetH (v, k) denote the maximum weight subtree with at nfasbdes rooted at The dynamic programming recursion

H(v,k) = max{H(v,kfl),chrt:gmél[H (2vt)+H(2v+1,k—1-1)]},

where the first term in the maximization can be droppedvigrl. Replacing the max by appropriate inequalities and
taking the optimal valuél (1,K) as the objective function leads to the linear program:

minH (1, K)
H(Lk)—H(1,k—1) >0 1<k<K
H(v,k)—H(2vt)—H(2v+1,k—1—-t) >¢c, veV, 0<t<k<K
H(v,k) >0WeV, 0<k<K.

Takingy x andwyt k—1—t as dual variables, we obtain

Maxyey v S K_g 55 Wkt k-1t
YtWLKtK-1-t Y1k <1
StWiktKk—1-t Yk —Yikt1 <1 I<Kk<K-1
310 Wek k1t — Y k>kWpv)kkk—-1-k <O v>1leven 1<k<K
Z{:&Wv,k,t,k—l—t = Y k>kWpw) .k k—1-kk <0 V>1odd 1<k<K
wy>0.
wherep(v) = L%j. Herewyt k-1t = 1 means that the optimal tree contains a subtree rooted@tainingk nodes

with t (respk — 1—t) nodes in the subtrees rooted in its left (resp. right) ssmwmes, angx = 1 indicates thaH (1,k) =
H(1,k—1). Settingx, = zle Z{(;éw\,,kﬂt,k,l,t allows us to complete the extended formulation.

5.5 The Union of Polyhedra

One of the very basic polyhedral results of relevance tgit@rogramming concerns the union of polyhedra. As-
sumeP = cony(P1 U --- U PK) wherePk = {x € R": Ax < b*} andCX = {x € R": Akx < 0} is the recession cone 8K
for all k.

Theorem 6 (Balas) If F* £ @ and C= CX for 1 < k < K, then

con(UE_, PX) = proj, { (x,w, 8) € R" x R™ x RK : Akwk < p*gk 1 <k <K
Sle1 8¢ =1x= 3w

Disjunctions arise frequently in integer programming. &siva 0-1 seX = PNZ" whereP = {x e R": Ax<b, 0 <
x < 1} itis natural to select some variabjend consider the disjunction

P=PYUP] whereP| = {xe P:xj =i} fori=0,1.
One use of extended formulations is to give tightened foatmmhs that are then projected back into the original space.

One example using the above disjunction is the lift-andgatoapproach presented in Chapter ??.
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Here we consider situations in which a problem becomes easy the value of one variable is fixed. Then, if one
can describe the convex hull of solutions when this variébfixed, an extended formulation is obtained for the origina
set by taking the convex hull of the union of the convex hulls.

1 -k Configurations

A 1—k configuration is a special 0-1 knapsack set of the form
n
Y = {0, € {0, 3" tko+ ¥ x; <n}.
=1

To describe its convex huld(n¥) valid inequalities are needed. Now observe thatYOUY! whereY? = {x e {0,1}"1:
¥ =0} andY! = {x e {0,1}™ 1% = 1,3]_; x; < n—k}. To obtain the convex hulls of® andY?, it suffices to drop
the integrality constraints in their initial descriptioriEheorem 6 then gives the extended formulatin

Xj =Xjo+Xj1 0<j<n
X0=0,0<Xjp<d 1<j<n
X01=01, 0<xj1<9 1<j<n

n

> Xjp<(n=k)d

=1
&H+0=103€cR?.

After renamingx;; aswj, and replacingy by xg andxjo by xj —w;j for j = 1,...,n, the resulting tight extended formu-
lation is:

0<xj—wj<1-% 1<j<n

0<wj<x 1<j<n
n
> wj < (n=Kkxo
=1

x e [0,4™1 we [0,1".

Circular Ones Matrices

Consider the seX = {x € {0,1}" : Ax< b} whereA is acircular onesmatrix, i.e, each row is either of the form
0 00111100
with Q’s followed by 1's followed by O's, or of the form
110011111
with 1's followed by 0’s followed by 1's.
Let PX= {x € [0,1]": Ax< b,z’j‘:lxj =k} for k=0,...,n. Observe first that subtracting a row of the second type
from a row of all 1's gives a row of the first type. Secondly a @ratrix with only rows of the first type is known as a
consecutive 1's matrpand is known to be totally unimodular. It follows tHalt = conyPknZ") and

conv(X) = con(UR_oP¥),

so a tight extended formulation is obtained immediatelynffbheorem 6.

5.6 From Polyhedra and Separation to Extended Formulations

Given the seX C Z", suppose that a family of valid inequalities féris known. This family explicitly or implicitly
describes a polyhedrda containing the feasible regiok. A first possibility is that the inequalities directly suggen
extended formulation.
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Uncapacitated Lot-Sizing

Let X-5-Y be as described in (63)-(65). It has been shown that everytrivia facet-defining inequality for
cony(X-S5Y) is of the form

Xj+ djiyj > dy (78)
JgS jeL\S

wherel = {1,...,1}, SCL,I =1,...,nanddy = 5|_,d;.

Letuj = min{xj,d;yj} for 1< j <1 <n. One sees that (78) is satisfied for&if and only ifz']-:l min{x;,d; yj} >
dy. It follows immediately that a tight and compact extendedhfalation is given by the polyhedron consisting of the
original constraints (63)-(65) less the integrality coastts, plus the constraints

SiaHp>dy 1<I<n
Hj <x5 1<j<I<n

My <djyj 1<j<I<n

A second possibility is that the separation problemRaran be formulated as an optimization problem that can be
reduced to a linear program. Specifically supposeRhat{x ¢ R": ritx > n(‘) t=1,...,T}. Nowx* € Pif and only if

{=min{gx’ +hw—do: GX' +Hw > d,we RP}.
By LP duality,{ > 0 if and only if there exists a dual feasible solution with aafregative value, namely
{ueRP:ud—uGx >dy—gx',uH <hueRT}#0.
Finally lettingx vary, this gives us an extended formulation
Q={(xu) e R"xRP:ud—uGx>dp—gx uH < h,ue R}}

for which P =projx(Q).

Subtour Elimination Constraints

Consider the relaxation of the set of forests or symmetaiediing salesman tours consisting of theselefined by
the exponential family of subtour elimination constrairBpecially seZ = NK_, ZK wherezX = Ps N Z/El and

Ps={xe[0UF: § x<|§-1SCVwithkes}.
ecE(S)

Now consider the separation problem fore [0,1]/El. One sees that* ¢ Pé‘ if and only if

[y x-Is\{k}<o.

max
SkeScV ecElS)

Lettingv; =1if j € Sandue =1if e= (i, ]) € E(S), this optimization problem can be formulated as the IP

{ = max EEx;uef ' vj (79)
ec jevVi{k}

Ue <Vi,Ue <Vj e=(i,]) €E (80)

Ue>Vi+Vvi—1le=(i,j)cE (81)

ue{0,1}Mve {0,1}" v =1 (82)

It can then easily be shown that the constraints (81) candygpéd, and in addition that the integrality and bounds can
be relaxed. It follows thaf < 0 if and only ifn < 0 where
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n=max$ XgUe— vj
egE ie\%{k}

Ue<Vj,Uue<vj e=(i,j) €E

ueRMveR].

In this last linear program, eitheyr = 0 or it is unbounded, so the dual of this linear program isib¢asf and only if
n < 0. In other words¢* € [0,1]" is in P if and only if QX(x*) # 0, whereQX(x) is the polyhedron:

Wijk +Wijik =Xe e= (i,j) €E
> Wikt Y Wik <1i#k

jiI<i ji>i
> Wik + Y Wi <0i=k
jir<i jir>i

xe R™ wij,wijik >0 e=(i,]) €E.

5.7 Miscellaneous

There are several other reasons that might lead one to trjtenatave formulation. An important one, already
discussed in Section 3, is the problem of symmetry. A secenal find good branching directions for use in the context
of branch-and-bound and branch-and-cut, and a third asebisfto derive stronger linear programming bounds.

Symmetry-Breaking in Vertex Coloring

Given a graphG = (V,E) with V| = n and |E| = m, the textbook formulation for vertex coloring is based oa th
variables:
yk = 1if colorkis used
Xix = 1 if vertexi receives colok, wherek =1, ... ,K are the permissible colors.

This leads to the formulation:

min Y
SkXk=11i€eV
Xk +Xjk <yk 1<k<K, (i,j) €E
Xk <Yk 1<k<K, ieV
Xk €{0,1} 1<k<K, ieV,ye{0,1} 1<k<K.
Clearly given any coloring, any permutation of the colorade to essentially the same solution independently of the
structure of the graph. To avoid this symmetry and also tateig the formulation, it suffices to observe that, given any
feasible coloring, each stable set can be assigned the @hiisrnode of minimum index. Hence one can eliminate all

variablesg with k > i, and also eliminatgy by settingyx = xxk. Note that a similar approach applies for the bin packing
problem of Example 5.

Boolean Reformulation: 0-1 Knapsack
Given two 0-1 knapsack sets of the form
: no :
X'={xe {0,1}": Y dixj<a} i=12
=1

with {aij} positive integers, it is natural to ask wh&rt = X2, or the two sets are equal. In particular one might be
interested in finding the set of integer coefficients for wahibe right-hand side valua{) or the sum of the weights
zrj‘:l aij is minimum. It also seems likely that the corresponding falationPyi is typically tighter when the coefficients
are smaller.
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Example 12 Consider the knapsack set
X = PN Z" whereP! = {x € [0,1]% : 97xq + 65%, -+ 47x3 + 46x4 + 25x5 < 136}.
It can be verified that X can also be expressed as
X = P2NZ" whereP? = {x € [0,1]° : 5x; + 3xp + 3x3 + 2x4 + 1x5 < 6}

and this is the reformulation with integer coefficients vitth minimum possible right hand-side value.
In addition it is easy to check that the extreme points®élPlie in P1 and thus B c PL.

Improved Branching Variables for an Equality Integer Progr am.

Consider the set
X={xeZ]:Ax="b}

with A€ Z™"N andb € Z™M. “Integer programming in a fixed number of variables is polymally solvable” is one of
the most fundamental results in integer programming. tatteformulations and the calculation of a reduced basis of a
lattice play an important role in the proof of this result.releve indicate briefly how a lattice reformulation can be used
as a heuristic to look for effective branching variablese 8e= references cited in Section 7 for the appropriatecéatti
definitions.

Suppose that® € Z" with AX’ = b, thenX can be rewritten aX = {x € Z : x=y+x°, Ay= 0}. Now given a matrix
T € Z™(=M sych that{y € Z": Ay=0} = {y € Z" : y = Tww € Z"™}, thenX =projx(W) where

W= {(xw) € RT x Z""™: x=x° - Tw}.

Here the extended IP-formulation does not provide tightemidls. However it is possible to find an appropriate matrix
T in polynomial time using a “reduced basis” algorithm, anddertain instances the new integer variateare much
more effective variables for branching than the originalalaesx.

Example 13 Consider the seX = {x € Zi : ax= b} where
a= (11737 7263 9086 32560 20828 = 639253

This has the extended formulation

X1 28 -1 -1 7 239
X2 51 0 0 -11 616
x3 =] —40 [+ -1 0 -10 -445 [w xeR3, weZzZ*
X4 17 o 1 4 33
Xg -12 1 -1 -2 -207

Here branching oy, it is easily verified thaX = 0, whereas this is very hard to detect when branching orvheables.
In fact that the best MIP solvers all require millions of nede prove infeasibility for this tiny instance when using th
original formulation.

5.8 Existence of Polynomial Size Extended Formulations

Yannakakis has shown that for the perfect matching polytbpee is no extended formulation that is “symmetric”
in a very general sense. This includes formulations in wisicl chooses a root, such as the extended formulation for
the subtour polytope in Subsection 5.2. Thus it appears welilely that every family of IPs: mifcx: x € X} that is
polynomially solvable has a polynomial size extended fdation whose projection in the original variables provides
conv(X). It remains a major challenge to discover necessary andfficient conditions for the existence of polynomial
size extended formulations for such problems.

On the other hand it has very recently been shown that for-thkrtapsack problem= min{cx: ax>b,x € {0,1}"},
given anye > 0, there exists a polynomial size extended formulation dasedisjunctions for which the valugp of the
linear programming relaxation is such tlzat (1+ €)z p.
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6 Hybrid Algorithms and Stronger Dual Bounds

Here we consider ways to obtain stronger dual bounds for riblelgmz = min{cx: x € Y N Z} by using properties
of both the set¥ andZ. Thus we assume as before that optimizing &és relatively easy, and now we assume also
that we can either optimize ov¥rrelatively easily, or that we have a cut generation routaré’for some polyhedrofy
containing con{Y).

6.1 Lagrangean Decomposition or Price-and-Price

Here we assume that we can optimize efficiently over theZsahd also over the sé&f. We reformulatelP by
duplicating thex variables giving the new formulation:

mincy
y—z=0
yey
ze Z.

Applying Lagrangean relaxation, the subproblem with daalablesu € R" gives two subproblems miic—u)y:y Y}
and miffuz: ze Z}, and by Theorem 5 the value of the resulting Lagrangean duairi{cx: x € con\(Y) nconv(Z)}.
This model can be solved either by dual methods such as a salsgradient approach, or by a column generation
approach (called Price-and-Price in this context).

In the latter casehe restricted master problem at iteratiotstconstructed from a segyi }ient-1 of extreme points of
con\(Y) and a Se{(zj)}je\]l—l of extreme points of corfZ) giving the linear program:

min cx
X— z )\iyi:O
ielt-1
(RMPP) z Ai=1
ielt-1
Xx= 3 Bz =0
jedit
> Pi=1
jey-1

AeRl T Ber T,

where thex variables can be easily eliminated.(If, o, U, Lp) are optimal dual variables, one can solve the two pricing
subproblems

2t = min{rmx— m, xe Y}
and

2% = min{ux— po,x € Z}.

If 1 < 00rZ? < 0, then the corresponding optimal solution provides a nedunsn to be added, and one updates RMPP.
If Z1 = ¢2 =0, the algorithm terminates. In practice, convergence (aral instability) require an even more careful
treatment in price-and-price than in branch-and-price.

6.2 Cut-and-Price

Here we assume that we can optimize efficiently over th&set{x € Z' : Bx> b} and that there is a cut generation
algorithm forY = {x € Z!} : Dx > d}, or more realistically for some polyhedrék containing conyY).

The restricted master problem at iteration t.
This problem is constructed from a gat }; .1 of extreme points of corfZ) and a se{(a/, aé)}jdfl of valid inequal-
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ities for R, (orY), including the constraint®x > d, giving the linear program:

min cx

(RMCP) S A=

Let (x,A) be a primal optimal solution andr(rp, t) € R" x R x thill a dual optimal solution. Here again, one can
eliminate thex variables, observing that=c— 3 jc 1 u}ai from dual feasibility.

The order in which the two subproblems are solved below igrarl. We have chosen to give priority to column
generation.

The Optimization Subproblem — Adding Columns

Solvelt = min{mx— 1 : x € Z} with solutionx'.

If ¢' <0, the column corresponding # has negative reduced cost. $et= I'"1U {t}, sett «—t + 1, and reoptimize
RMCP.

Otherwise go to the (Constraint) Separation Subproblem.

The Separation Subproblem — Adding Constraints
Solve the separation problem to see if the paiat 3¢, , AiX can be cut off.
If acut(a',al) is generated, set = J-1U{t}, sett — t+1, and reoptimize RMCP.
Otherwise stop.
On terminatiorx = -1 AiX € By Ncony(Z). If the separation routine is exact for cqiy, the optimal value on
termination is migcx: x € con\Y) Nnconv(Z)} as with the other hybrid approaches.

Example 14 (The Vehicle Routing Problem)

Given afleet of K identical vehicles of capacity C, and cBemith demands;dori=1,...,n, the problem is to determine

a delivery route for each vehicle starting and ending at tepat, so that the demand of each client is satisfied by exactly
one vehicle, the total amount delivered by a vehicle doesxaed its capacity and the total travel costs are minimized
Consider a complete graph H (V, E), where the nodes ¥ {0,...,n+1} correspond to departure from the depot (node
0), the n customers and arrival at the depot (nodel). The travel cost on edge e is.c

One possibility is to formulate the problem with K distineticles based on the variableé such that 5: 1if
edge e is traversed by vehicle k. However as the vehicleslargical, one can attempt to build a formulation using the
variables x specifying the number of vehicles traversing edge e. Nate¢he {0, 1} for all e. This leads to a standard
formulation

i 83
mlneglzcexe (83)
Y X = 2iev\{on+1} (84)
ecd(i)
xe = Kie{0n+1} (85)
ecd(i)
Xe > 2B(S) SCV\{0,n+1} (86)
eco(9
xe € {01} ecE, (87)

where BS) denotes the minimum number of vehicles required to visis¢hé& of clients. The value of$ is in fact the
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solution of a bin-packing problem, but a valid formulati@mbtained if one ensures that the number of vehicles trayeli
through S is sufficient to satisfy the sum of the demandsy i&y(s) Xe > 2(Jicsdi)/C.

On the other hand the price decomposition approach leadsitexdended formulation in which one must select K
feasible routes in such a way that each client is visited xance, leading to the master problem

i Ag: DAg=2ieV\{0,n+1}, § Ag<K, A €{0,1}/C 88
mm{gé(g%xg) g gé(ee%(i)xe)g ieV\{0,n+1} g; g € {0,111} (88)

where Z= {x8}4cc is the set of edge incidence vectors of feasible routes.

Unfortunately optimizing over this set Z is a hard problerattts not tractable in practice. This suggests using a
relaxation of the set Z in which feasible routes are replabgdqg-routes”, where a g-route is a walk beginning at node
0 and ending at node-h 1 (possibly visiting some client nodes more than once) focktiie sum of the demands at the
nodes visited does not exceed the capacity. It is easilythegif the union of K g-routes satisfies the degree condsain
(84)-(85), then one has K feasible routes. However, in theeldxation of (88), inequalities (86) are useful cuts. Thas
hybrid cut-and-price approach can be implemented wherartaster is

min EEce Xe
ec

x satisfieq84) — (86)
Xe = Z:qg)\p ecE

pe
ZPAP == K7
pe

xeRE A e{o1}P

in a form ready to be tackled by a cut-and-price algorithmeTlegree constraints are kept throughout, the constraints
(86) are generated by cutting planes, and the g-routes aneigaed by column generation. Branching is dealt with by
branching on the original xvariables.

In practice one may choose to eliminate the originalvariables by substitution, the cut generation problem is
tackled using a heuristic because the calculation of theebim-packing value BS) is hard. Cuts of the form (86) can be
generated by identifying small sets S that require more tr@nvehicle, or else inequalities are generated in whic8)B
is replaced by a lower boungjcsdi)/C or [(Ticsdi)/C]. The separation problem for the inequalities with right Han
side(Tjesdi)/C is solvable by maximum flow algorithms. For the column geti@r problem, a dynamic programming
algorithm is used to find g-routes of minimum reduced cost.

7 Notes

Here we present notes providing some basic historical enfers, some references for results or applications men-
tioned in the chapter, and a few recent references conggimtieresting extensions or examples of the ideas presanted
the different sections.

7.1 Basics of Reformulation

The result (Theorem 1) that every polyhedron is finitely gatezl by extreme points and extreme rays is due to
Minkowski [74] and its converse, Theorem 4, to Weyl [96]. Mey73] showed that for integer programs and mixed
integer programs with rational data the convex hull of Sohs is a polyhedron. Theorem 2 on the representation of
integer sets is proved in Giles and Pulleyblank [47]. Fok&srlemma, see [36], and for the projection procedure of
Fourier-Motzkin, see [41].

7.2 Dantzig-Wolfe and Price Decomposition

The first use of an optimization subproblem to price out aroagptial number of non-basic variables can be found
in a paper of Ford and Fulkerson [39] on multi-commodity flo&pecifically they used a path-flow formulation, and
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then using the LP dual variables on the arcs, they solvedestgrath problems for each commaodity to find a path with
negative reduced cost to enter the basis. This was closiédywird by the Dantzig-Wolfe decomposition algorithm [22].
The first applications to discrete problems are the two maparthe cutting stock problem of Gilmore and Gomory
[48, 49], introduced in Example 7, in which the subproblenswa&napsack problem, as well as the model of Dzielinski
and Gomory [28] on multi-item lot-sizing in which the subptem was a single item lot-sizing problem.

Lagrangean Relaxation

Early work showing the effectiveness of Lagrange multigli@ optimization can be found in Everett [35]. The first
demonstration of the effectiveness of Lagrangean relaxatnd the subgradient algorithm were the seminal papers of
Held and Karp [55, 56] on the symmetric traveling salesmablem, based on the 1-tree relaxation that can be solved by
a greedy algorithm. The survey of Geoffrion [45] clarifie@ throperties of Lagrangean relaxation as applied to integer
programs, including the integrality property, and Fist8at][was one of several researchers to popularize the agproac

Later dual heuristics, or approximate algorithms for thgramgean dual, were proposed by numerous authors, in-
cluding Bilde and Krarup [12] and Erlenkotter [33] for uneafiated facility location, Wong [98] for directed Steiner
trees and Balakrishnan, Magnanti and Wong [3] for multicaxdity uncapacitated fixed charge network flows.

Solving the Lagrangean dual

The subgradient algorithm was proposed in Uzawa [87], BEemn{B4] and Polyak [79]. Its variant, the volume
algorithm, is due to Barahona and Anbil [5]. The cutting gahgorithm applied to the LP form of the Lagrangean dual
is known as the method of Kelley [61] or Cheney-Goldsteir] [18s the equivalent of the column generation approach
but carried out in the dual space. The piece-wise lineailation of column generation is studied in du Merle et al.
[27] and Ben Amor et al. [8]. Stabilization based on smodaghitual prices was introduced by Neame [75] (using a
convex combination of the current master dual solution Aatiaf the previous iterate) and Wenges [95] (using a convex
combination of the current dual solution and the dual soluthat yielded the best Lagrangean bound). Recently Pessoa
et al (2009) [77] have proved that at each iteration eitherablumn generated with the smoothed prices has a strictly
negative reduced cost for the restricted master, or oneaggttictly improving dual bound and a new associated stgbili
center.

The Bundle method, in which a quadratic term is introducethanrestricted master dual problem to penalize the
deviation from a stability center, was developed by Leroaaé [64], see also [65, 62]. There has been a large amount
of research on such methods in the last few years. In manys,case particular for very large problems in which
the column generation approach is much too slow, the prdximadle method has been effective. See Borndorfer et
al. [13, 14] for applications to vehicle and duty schedulingoublic transport and airline crew scheduling. Bundle’s
numerical performance is compared to LP based column gaoeia [16], and many references can be found in the
thesis of Weider [94].

The analytic center cutting plane method (ACCPM) is due téiGand Vial [52].

Branching and Column Generation

For some of the first successful applications of integer iEnogning column generation to routing problems, see
Desrochers, Soumis et al. [26] and Desrochers and SouniisT&8 branching rule of Ryan and Foster appears in [84].
Vanderbeck and Wolsey [89, 88] discuss different branchtregegies (extending the scheme of Ryan and Foster to cases
where the master is not a set partitioning problem) and thearent difficulties. Villeneuve et al. [93] suggest thato
can always proceed by using standard branching in an “@aiigfarmulation and re-apply Dantzig-Wolfe reformulation
to the problem augmented with branching constraints, hatléads to problems of symmetry in the case of multiple
identical subproblems. Examples of branching on auxilismiables, implicitly using an extended formulation as-pre
sented in Options 3 and 4 can be found in Belov et al. [7], Gdmef al. [17] and Carvalho [23]. The scheme presented
in Option 2 and its extension presented in Option 5 has begpoped as a generic all-purpose scheme by Vanderbeck
[90] (although it normally assumes a bounded subprobleis cian also be used in some application specific contexts in
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which the subproblem is unbounded).

7.3 Resource Decomposition

The resource decomposition approach that became knownreteBé algorithm was proposed by Benders [9]. Ge-
offrion [43] produced the first important surveys on differevays to create decomposition algorithms. Geoffrion and
Graves [46] reported a successful application of Benddgsridhm to a large distribution problem. Magnanti and Wong
[69] studied ways to obtain strong Benders cuts. Since brand-cut algorithms became a practical possibility, this
allows one to solve the Benders’ reformulation directly biwig LP subproblems to generate cuts at the nodes rather
than having to solve an integer program at each iteratiopr@sosed originally. Applications of Benders’ algorithm t
two stage stochastic programs are numerous, see for exafapl8lyke and Wets [91]. The case with integer variables
at both stages was treated by Laporte and Louveaux [63] amtbiegs. The multi-machine job assignment problem was
first treated by Jain and Grossman [58]. The importance aghabzation and the computational effectiveness of using a
modified linear program to solve the separation problem msadestrated in Fischetti et al. [38].

7.4 Extended Formulations

Apart from Minkowski's representation of a polyhedron,ended formulations were not considered systematically
as a tool for modeling integer programs until the 70's.

Grotschel, Lovasz and Schrijver’s paper on the equivaefoptimization and separation [51] implies that, unless
P = NP, one can only hope to find tight and compact extended formonlafor integer programs if the corresponding
optimization problem is polynomially solvable. Balas andl&blank [4] gave an extended formulation for the per-
fectly matchable subgraph polytope of a bipartite grapheridnded formulations have been proposed for a variety of
combinatorial optimization problems in the last twentyngea

Variable Splitting I: Multi-Commodity Extended Formulati ons

Rardin and Choe [82] explored the effectiveness of multimsmdity reformulations, and Wong [97] showed that the
multi-commodity reformulation gives the spanning treeypmbe. For the Steiner problem on series parallel graples, se
Prodon et al. [81]. Bilde and Krarup [11] showed that the edesl facility location reformulation for uncapacitated
lot-sizing was integral, and later Eppen and Martin [32]gmeed an alternative formulation. The book of Pochet and
Wolsey [78] contains numerous reformulations for différgingle and multi-item lot-sizing problems.

Variable Splitting Il

Pritsker et al. [80] contains one of the first uses of a tindeked formulation for a scheduling problem. Gouveia [53]
demonstrates the use of capacity indexed variables. Thamafation of network dual MIPs was studied in Conforti et
al. [19], and the specific formulation proposed here is froomfGrti et al. [21]. The first compact extended formulation
for the constant capacity Wagner-Whitin relaxation witleldegging is due to Van Vyve [92].

Extended Formulations based on Dynamic Programming

Martin [70] and Eppen and Martin [32] show how dynamic pragsacan be used to derive extended formulations.
The longest/shortest path formulations for knapsack prablwere known in the early 70’s and probably date from the
work of Gilmore and Gomory [48] on knapsack functions or Goyran group problems. For dynamic programs that are
not of the shortest path type, see Martin et al. [72]. Theinalitly constrained problem is a natural generalizatiothef
problem of finding an optimal subtree of a tree.

The Union of Polyhedra

The characterization of the convex hull of the union of pelgta is due to Balas [2]. Recently Conforti and Wolsey
[20] show how the union of polyhedra can be used to developpesinand tight extended formulations for several
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problems whose complexity was not previously known.
1 -k configurations are studied by Padberg [76]. Circular onesicea are treated in Bartholdi et al. [6], see also
Eisenbrand et al. [29].

From Polyhedra and Separation to Extended Formulations

Martin [71] demonstrates how LP separation algorithms ead to extended formulations.

Miscellaneous

Equivalent knapsack problems are studied in Bradley eti8]. [The polynomiality of IP with a fixed number of
variables is due to H.W. Lenstra, Jr., [68] and the lattiderraulation demonstrated in the example was proposed by
Aardal and A.K. Lenstra [1]. See Lenstra, Lenstra and Loy&g} for properties of reduced bases and a polynomial
algorithm to compute a reduced basis.

Existence of Polynomial Size Extended Formulations

Yannakis [99] presents lower bounds on the size of an extefudeulation for a given class of problems, and shows
that even though weighted matching is polynomially soleattlis most unlikely that there is a tight and compact exéehd
formulation. The existence of polynomial size extendednfidations approximating the convex hull of the 0-1 knapsack
polytope is from Bienstock and McClosky [10].

7.5 Hybrid Algorithms and Stronger Dual Bounds

For Lagrangean decomposition, see Jornsten and Nasbé@an@Guignard and Kim [54]. For cut-and-price, recent
papers include Fukasawa et al. [42] on vehicle routing antb@et al. [86] on capacitated spanning trees. In the latter
paper use was also made of the capacity-indexed varialdes Subsection 5.3. Jans and Degraeve [59] combine an
extended formulation and column generation for a multiitet-sizing problem.
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