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Abstract. We examine the general regularization model which is based on total-variation for the structural part and

a Hilbert-space norm for the oscillatory part. This framework generalizes the Rudin-Osher-Fatemi and the Osher-

Sole-Vese models and opens way for new denoising or decomposition methods with tunable norms, which are

adapted to the nature of the noise or textures of the image. We give sufficient conditions and prove the convergence

of an iterative numerical implementation, following Chambolle’s projection algorithm.

In this paper we focus on the denoising problem. In order to provide an automatic solution, a systematic

method for choosing the weight between the energies is imperative. The classical method for selecting the

weight parameter according to the noise variance is reformulated in a Hilbert space sense. Moreover, we gen-

eralize a recent study of Gilboa-Sochen-Zeevi where the weight parameter is selected such that the denoised

result is close to optimal, in the SNR sense. A broader definition of SNR, which is frequency weighted, is

formulated in the context of inner products. A necessary condition for maximal SNR is provided. Lower and

upper bounds on the SNR performance of the classical and optimal strategies are established, under quite general

assumptions.
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1. Introduction

Regularization of images by variational methods has

shown to achieve impressive results and is today an

increasing field of interest in image processing. In this

paper we are concerned with the classical denoising

problem of image degraded by additive white noise.

We assume that the input image f is composed of the

original image s and additive uncorrelated noise n with

zero mean and of variance σ 2:

f = s + n. (1)

The aim is to find a decomposition u, v such that u
approximates the original signal s and v is the residual

part of f :

f = u + v. (2)

Our regularization is based on finding u that minimizes

the following energy

E(u, f ) =
∫

�

|Du| + λ

2
‖ f − u‖2

H, (3)

where the left term on the right-hand-side is the total-

variation energy and the right term is the square norm
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of a Hilbert space H. The specific definition of the

spaces appears in Section 2.

In the following we explain the basic concept

of variational denoising and review the recent main

contributions. Classically, there are two basic mea-

sures, often referred to as energy terms, that are to be

jointly minimized:

E(u, f ) = Esmooth(u) + λEfidelity(u, f ). (4)

Esmooth is a smoothing term which rewards smooth

signals and penalizes oscillatory ones. Efidelity ac-

counts for fidelity, or closeness, to the input image

f . This type of formula dates back to Tikhonov regu-

larization [45] (with an identity blur operator). In the

image-processing field, however, the more successful

approaches are based on nonlinear methods. A main

contribution made by Rudin, Osher and Fatemi (ROF)

[42] was to consider the total-variation energy, which

does not penalize sharp edges over any other mono-

tone signals, thus allowing piecewise smooth solutions,

which considerably reduces image blurring in the de-

noising process. Most of the research in the 90’s was

focused on the smoothness term. One should note that

similar results were obtained at the time by Perona and

Malik using a closely related PDE method of nonlin-

ear diffusion processes [40]. However, the method was

not related to a norm, and in the original paper was not

convex. Many variations of such smoothness terms

followed. The fidelity term, though, was mostly based

on the L2 norm.

Following Meyer’s work [32] the attention to the

role of the fidelity term has increased. In [32], the

author has analyzed the mathematical properties of

the ROF model [42]. He has suggested the use of

other functional spaces which would suit more the os-

cillating patterns of an image (and which would thus

capture the noise more efficiently). This has led to

new image decomposition and denoising algorithms.

The first work in this direction was [46], followed by

[38, 4, 5, 9, 44, 21, 36]. [32] has also raised new theo-

retical issues [2, 37, 35, 30, 20].

Also, other types of fidelity terms for impulsive noise

models were suggested [34, 14].

One significant contribution of this paper is to sug-

gest a large family of fidelity terms, which can be de-

signed for various purposes and noise models by se-

lecting a proper linear operator. Once it is chosen, this

framework guarantees a unique solution, offers the nu-

merical way to implement the regularization, and sug-

gests how to select the weight parameter between the

energies.

Another important matter is the way the solution of

(3) is computed. In the standard method, one derives

the associated Euler-Lagrange equations, embeds them

into a dynamical scheme which is iterated to a steady-

state. A more accurate way to compute the ROF solu-

tion is to use dual formulations [15, 11] or projections

onto convex sets [18, 17]. Recently, Chambolle has

proposed a projection algorithm based on duality to

solve the ROF problem [12]. In [5] the authors have

proposed a modification of the projection algorithm to

solve the Osher-Sole-Vese (OSV) problem [38]. In

this paper, we generalize Chambolle’s projection al-

gorithm to a large class of functionals. For a new

computational approach based on second-order cone

programming see [49].

For a detailed overview of PDE-based restoration

methods see [3]. For a recent review on denoising

methods we refer the reader to [10].

We focus our attention on finding the weight param-

eter λ, an important component of the basic regular-

ization equation (4). By minimizing both terms of (4)

we seek a compromise between a non-oscillatory so-

lution and one which is “close enough” to the original

image. Any minimization of one of the terms by itself

leads to degenerate solutions which are not interesting

(a constant or the input noisy image). The appropri-

ate compromise then highly depends on λ, the weight

between these two energies. When it is too low, the

restored image is over-smoothed. When it is too high,

u still contains too much noise. Finding the right value

of λ is therefore an important part of solving the de-

noising problem.

Less attention was given to this aspect of the prob-

lem in variational image processing, and many times

the parameter was chosen manually by trial and error.

Aiming at achieving automatic denoising algorithms,

systematic methods for choosingλ are required. A sim-

ilar problem has been investigated in regularization the-

ory, in the context of operator inversion by Tikhonov-

type methods. As we are concerned with denoising of

images (therefore our operator is the identity and the

regularization preserves edges) many of the techniques

do not apply for our purpose. In this paper we gener-

alize for our framework two methods, that fit image

denoising. The first one is very classical, came from

regularization theory and was used in [42]. The second

one is very recent, less simple but more accurate, and

was proposed for an L2 fidelity in [28, 29].

Many statistical approaches have been proposed

(see [22, 3] and references herein), but in this paper

we focus on deterministic approaches. The classi-

cal algorithm for choosing λ dates back to Morozov
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discrepancy principle [33] and for the T V − L2 min-

imization is often referred to as the ROF constrained

formulation [42]. See [19] for a general approach on

the use of noise properties in set theoretic estimation.

For approaches such as generalized cross validation

and the L-curve, we refer to Vogel’s survey of regular-

ization parameter selection methods in [47]. We give a

generalization to the ROF constrained formulation for

the broader minimization problem:

inf
u

∫
�

|Du| subject to ‖ f − u‖2
H = |�|ρ2

H, (5)

where ρ2
H is the normalized square H-norm (“H-

variance”) of the noise. A generalization of Cham-

bolle’s projection algorithm is used to compute the so-

lution. λ is being iteratively updated such that the H-

norm of v = f − u equals that of the noise. To this

end, we need to compute the H-norm of white Gaus-

sian noise from its standard deviation σ . Notice that

the constrained problem has recently been addressed in

[5] in the case of Meyer’s G norm. The closely related

problem of criteria for the stopping time of nonlinear

diffusions was examined by [39] and to some extent by

[48]. Physical considerations for solving the stopping

time problem for the visco-plastic fluid model were

suggested in [24].

The underlying assumption of the classical algo-

rithm is that the denoising process works well, there-

fore what is filtered is mostly noise: v ≈ n. A natural

condition is then to impose var(v) = var(n) = σ 2.

When the image is partly textured, though, parts of the

textures are also filtered out and v contains both noise

and texture. Imposing the above condition in these

cases often causes oversmoothing of textures. The cri-

teria of [39] and [48] rely on similar assumptions and

“confuse” texture with noise, as shown in [28]. Gilboa-

Sochen-Zeevi (GSZ) [28, 25] addressed this problem

recently. Their method was to base the selection of λ

on the Signal to Noise Ratio (SNR) criterion. The op-

timal solution was defined as the one that maximizes

the SNR. A necessary condition for optimal SNR was

formulated. Note that this condition is equivalent to

minimizing the L2 error. This condition was then es-

timated, reaching close results to the optimal solution.

This method can work also on textured images, when

the denoising is not very good. In our examples we ap-

ply the algorithms to the OSV model, where currently

the authors are not aware of any suggested mechanism

for selecting λ.

Under some general assumptions related to the de-

noising process and the non-correlation of signal and

noise, GSZ provide bounds for the T V −L2 model. We

generalize these results, both with respect to the max-

imum SNR estimations and with respect to the SNR

performance bounds.

The plan of the paper is as follows: We first introduce

notations in Section 2. We propose a generalization of

Chambolle’s projection algorithm to solve (3) in Sec-

tion 3. We can then generalize Chambolle’s approach

[12] for solving the constrained problem (5) in Sec-

tion 4. This provides us with a new automatic restora-

tion algorithm based on the variance of the noise. We

propose another automatic restoration algorithm based

on SNR like optimum condition in Section 5. This im-

proves the numerical results of Section 4. In Section

6 we provide theoretical estimates on the SNR per-

formance of the methods. Experimental results com-

paring the two selection criteria for λ are presented

in Section 7. We conclude the paper with some final

remarks in Section 8.

2. Notations

In this section we introduce the main definitions and

mathematical spaces that are used in the paper.

2.1. L2 Inner Product

Definition 1. In this paper, we consider only the dis-

crete case (for the sake of clarity). The image is a two

dimension vector of size N × N . We denote by X the

Euclidean space RN×N . The space X is endowed with

the L2 inner product: 〈u, v〉L2 = ∑
1≤i, j≤N ui, jvi, j ,

and the norm ‖u‖L2 = √〈u, u〉L2 . We shall often con-

sider the following subspace of X :

X0 = {x ∈ X /
∑
i, j

xi, j = 0} (6)

2.1.2. Discrete Fourier Transform We recall that the

DFT of a given discrete image ( f (m, n)) (0 ≤ m ≤
N −1 and 0 ≤ n ≤ N −1) is given by (0 ≤ p ≤ N −1

and 0 ≤ q ≤ N − 1):

F( f )(p, q) = F(p, q)

=
N−1∑
m=0

N−1∑
n=0

f (m, n)e−j (2π/N )pme−j (2π/N )qn (7)
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and the inverse transform is:

f (m, n) = 1

N 2

N−1∑
p=0

N−1∑
q=0

F(p, q)ej (2π/N )pmej (2π/N )qn

(8)

Moreover, we also have ‖F( f )‖2
L2 = N 2‖ f ‖2

L2 and

〈F( f ),F(g)〉L2 = N 2〈 f, g〉L2 .

We have � f (m, n) = f (m + 1, n) + f (m − 1, n) +
f (m, n +1)+ f (m, n −1)−4 f (m, n). Standard com-

putations lead to:

F(� f )(p, q)

= 2

(
cos

(
2π

N
p

)
+ cos

(
2π

N
q

)
− 2

)
F( f )(p, q) (9)

We deduce that, if f has zero mean, then for (p, q) 	=
(0, 0)

F(�−1 f )(p, q)

= 1

2
(
cos

(
2π

N p
) + cos

(
2π

N q
) − 2

)F( f )(p, q) (10)

These basic results are proved to be useful when

applied to the H−1 case of section 2.3.2.

2.1.3. H Hilbert Space In what follows, we will con-

sider a general family of Hilbert spaces. We consider

K a linear symmetric positive operator from A to L2,

where A is either X0 or L2 (we recall that X0 is de-

fined by (6)). In the case when A = X0, then we

extend K to the whole L2 by setting K (x) = +∞ if

x ∈ L2\X0. Notice that under these assumptions we

can define K −1 on I mK = {z ∈ L2 such that ∃x ∈
A with z = K (x)}.

If f and g are in X0, then let us define:

〈 f, g〉H = 〈 f, K g〉L2 (11)

This defines an inner product on X0 = {x ∈
X /

∑
i, j xi, j = 0}.

Examples

1. When K = I d, thenH = L2.

2. When K = −�, then H = H (see subsec-

tion 2.3.1).

3. When K = −�−1, then H = H−1 (see subsec-

tion 2.3.2).

For other choices of K (based on Gabor functions),

and an application to image decomposition, we refer

the reader to [8, 7].

2.2. Total Variation Regularization

Up to now, we have focused only on the fidelity term.

Here we are interested in the smoothing term.

Definition 1. To define a discrete total variation,

we introduce a discrete version of the gradient operator.

∇u is given by: (∇u)i, j = ((∇u)1
i, j , (∇u)2

i, j ) with

(∇u)1
i, j =

{
ui+1, j − ui, j if i < N
0 if i = N

(12)

and

(∇u)2
i, j =

{
ui, j+1 − ui, j if j < N
0 if j = N

(13)

The discrete total variation of u is then defined by:

J (u) =
∑

1≤i, j≤N

|(∇u)i, j | (14)

We also introduce a discrete version of the diver-

gence operator. We define it by analogy with the con-

tinuous setting by div = −∇∗ where ∇∗ is the ad-

joint of ∇: that is, for every p ∈ X × X and u ∈ X ,

〈−div p, u〉L2 = 〈p, ∇u〉L2 . It is easy to check that:

(div (p))i, j =
⎧⎨⎩

p1
i, j − p1

i−1, j if 1 < i < N

p1
i, j if i = 1

−p1
i−1, j if i = N

(15)

+
⎧⎨⎩

p2
i, j − p2

i, j−1 if 1 < j < N

p2
i, j if j = 1

−p2
i, j−1 if j = N

By analogy with the continuous setting, we define a

discrete Laplacian operator by setting �u = div (∇u).

From now on, we will use these discrete operators.

2.2.1. G Space We are now in position to introduce

the discrete version of Meyer’s space G [32, 4, 2].
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Definition 1.

G = {x ∈ X / ∃g ∈ X × X such that x = div (g)}
(16)

and if x ∈ G:

‖x‖G = inf {‖g‖∞ / x = div (g),

g = (g1, g2) ∈ X × X, |gi, j |
=

√
(g1

i, j )
2 + (g2

i, j )
2

}
(17)

where ‖g‖∞ = maxi, j |gi, j |. Moreover, we will de-

note:

Gμ = {x ∈ G / ‖x‖G ≤ μ} (18)

Remark The following result is proved in [4]:

Proposition 1. The space G identifies with the fol-
lowing subspace: X0 = {v ∈ X /

∑
i, j vi, j = 0}.

2.2.2. Convex Analysis We recall that the Legendre-

Fenchel transform of J is [23, 12]:

J ∗(v) = sup
u∈X

(〈u, v〉L2 − J (u)) (19)

Since J defined by (14) is homogeneous of degree one

(i.e. J (λu) = λJ (u) ∀u and λ > 0), it is then standard

(see [23]) that J ∗ is the indicator function of some

closed convex set, which turns out to be the set G1

defined by (18):

J ∗(v) = χG1
(v) =

{
0 if v ∈ G1

+∞ otherwise
(20)

This result is the key to Chambolle’s projection al-

gorithm [12], and it had first been noticed in [13].

We close this section by giving examples of classical

Hilbert spaces which are in the class ofH.

2.3. H and H−1 Inner Product

2.3.1. H Space We use the following norm:

‖∇u‖L2 =
√∑

1≤i, j≤N |∇ui, j |2. We can now intro-

duce the H norm:

‖u‖H = ‖∇u‖L2 (21)

This is a norm on the space X0 ={
u ∈ X,

∑
i, j ui, j = 0

}
. It is associated with the

inner product: 〈 f, g〉H = 〈 f, −�g〉L2 .

2.3.2. H−1 Space We consider the polar semi-norm

associated with (21):

‖v‖H−1 = sup
‖u‖H =1

〈v, u〉L2 = sup
‖∇u‖L2 =1

〈v, u〉L2 (22)

This is a discrete version of the H−1 norm. The fol-

lowing result is proved in [5]:

‖ f ‖H−1 =
√

〈− f, �−1 f 〉L2 (23)

Using Parseval identity, one sees that:

‖ f ‖2

H−1 = 1

N 2
〈−F( f ),F(�−1 f )〉L2

= 1

N 2

∑
(p,q)	=(0,0)

1

2

(
2 − cos

(
2π
N p

)
− cos

(
2π
N q

)) (F( f )(p, q))2 (24)

We can thus define a inner product on H−1 by setting:

〈 f, g〉H−1 = (− f, �−1g)L2 (25)

Frequency Understanding of H−1

1. Using (24), one sees that the H−1 norm differs from

the L2 norm by the fact that the frequencies are

weighted: therefore, H−1 owes much more impor-

tance to the low frequencies. This is the reason

why an oscillating pattern has a small H−1 norm (as

shown in [32] in a more general framework). See

also Figure 1 for an intuitive idea of H−1 filtering in Fig. 2

1 dimension. Although naive, this explains why the

OSV model [38] is very good at denoising piece-

wise constant images. This is also the reason why

the OSV model cannot split an image into its geo-

metric component and its texture component when

the texture contains some low frequencies. These

two properties have been checked numerically in

[5].

2. The H−1 inner product is easily computed thanks

to the discrete Fourier transform.

Now that we have presented the different notations,

we are in position to introduce our model and a method

to solve it.
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Figure 1. Frequency weight of the H−1 norm in one dimension. The exact weight function is 1
2(1−cos(2πp/N ))

, which can be approximated,

using Taylor expansion, by 1

(2πp/N )2 . On the left both functions are plotted in linear scale. As the difference is quite small, a log scale plot is

shown on the right. It is apparent that the approximation is quite accurate for the low frequency range. For this graph we used N = 64.

3. A Projection Algorithm

In this section, we are interested in solving the follow-

ing problem.

inf
u

(
J (u) + λ

2
‖ f − u‖2

H

)
(26)

All the results of this section have already been

proved in the case H = L2 in [12], and we will draw

our inspiration from this paper.

Proposition 2. Problem (26) admits a unique solu-
tion û.

Proof: This is a very standard result [13]. The ex-

istence comes from the convexity of the functional,

and the uniqueness from the fact that K is positive on

X0.

Although the next result can be seen as an ap-

plication of the Fenchel-Rockafellar duality for-

mula (see [41]), we give below an elementary

proof.

Proposition 3. If û is the solution of problem (26),
then v̂ = f − û is the solution of the dual problem:

inf
v

(
‖v − f ‖2

H + 1

λ
J ∗(λKv)

)
(27)

Proof: We first recall that ‖ f − u‖2
H = 〈 f −

u, K ( f − u)〉L2 . If û is a minimizer of (26), then:

0 ∈ λK (û − f ) + ∂ J (û), i.e.: λK ( f − û) ∈ ∂ J (û).

Hence û ∈ ∂ J ∗ (λK ( f − û)). We then set ŵ =
K ( f − û), and we get:

0 ∈ K −1ŵ − f + ∂ J ∗ (λŵ) (28)

We then deduce that ŵ is the minimizer of:

inf
w

(∥∥K −1w
∥∥2

H − 2 〈 f, w〉L2 + 1

λ
J ∗ (λw)

)
(29)

Since 〈 f, w〉L2 = 〈
f, K −1w

〉
H, we have:

∥∥K −1w
∥∥2

H − 2 〈 f, w〉L2 = ∥∥K −1w − f
∥∥2

H − ‖ f ‖2
H

(30)

Thus ŵ is the minimizer of:

inf
w

(∥∥K −1w − f
∥∥2

H + 1

λ
J ∗ (λw)

)
(31)

We now set v̂ = K −1(ŵ) = f − û. we therefore get

that v̂ is a minimizer of (27).

Since J ∗ is given by (20), we deduce that v̂ =
PHK −1G1/λ

( f ), where PHK −1G1/λ
( f ) is the orthogonal pro-

jection of f over K −1G1/λ with respect to theH inner

product. Hence, the solution û of problem (26) is sim-

ply given by:

û = f − PHK −1G1/λ
( f ) (32)

A possible algorithm to compute û is therefore to

compute PHK −1G1/λ
( f ).

We now describe our method to compute this projec-

tion (this is just an adaptation of Chambolle’s method
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[12]). Computing PHK −1G1/λ
( f ) amounts to finding:

min

{
‖ 1

λ
K −1div (p) − f ‖2

H : p / |pi, j |2

−1 ≤ 0 ∀i, j = 1, . . . , N

}
(33)

The Karush-Kuhn-Tucker [16, 31] conditions yield

the existence of Lagrange multipliers βi, j ≥ 0 associ-

ated to each constraint in problem (33), such that we

have for each i , j :

−
(

∇
(

1

λ
K −1div (p) − f

))
i, j

+βi, j |pi, j | = 0 (34)

with either βi, j > 0 and |pi, j | = 1, or βi, j = 0 and

|pi, j | < 1. In any case, we get:

βi, j =
∣∣∣∣∣
(

∇
(

1

λ
K −1div (p) − f

))
i, j

∣∣∣∣∣ (35)

We then propose the same kind of semi-implicit gra-

dient descent scheme as in [12]:

p0 = 0 (36)

and

pn+1
i, j = pn

i, j + τ (∇(K −1div (pn) − λ f ))i, j

1 + τ |(∇(K −1div (pn) − λ f ))i, j | (37)

We can now state the following result.

Theorem 1. If τ ≤ 1

8‖K −1‖L2
, then 1

λ
K −1div pn → v̂

as n → ∞, and f − 1
λ

K −1div pn → û as n → ∞.

Proof: It is very similar to the proof of Theorem 3.1

in [12]. The main difference is that here we work with

the H norm instead of the L2 norm. For the detailed

proof, we refer the interested reader to [6]. Notice that a

similar result has recently been obtained independently

in [1].

We have therefore shown how to solve problem (26)

when we know the correct value of the Lagrange mul-

tiplier λ. We now focus on how to automatically tune

λ in the case of image denoising.

4. The Constrained Problem

The idea of minimizing the total variation for image de-

noising, suggested in [42], assumes that the observed

image f is the addition of an image with little oscil-

lations (typically piecewise smooth) s and a random

Gaussian noise n, of estimated variance σ 2. It is then

suggested to recover the original image by trying to

solve the problem:

min
u

{
J (u) / ‖u − f ‖2

L2 = N 2σ 2
}

(38)

where N 2 is the size of the image. The equivalent

problem we are interested in when restoring an image

with our model (26) is then:

min
u

{
J (u) / ‖u − f ‖2

H = αN 2(ρ(H, N , σ ))2
}

(39)

where Nρ(H, N , σ ) is theH norm of an image (of size

N 2) of a white Gaussian noise with standard deviation

σ . The classical (ROF) case is with α = 1. We give

an estimation of Nρ(H, N , σ ) in the following subsec-

tion.

4.1. H Norm of a White Gaussian Noise

We will need the following lemma (which is a standard

result in convex analysis [41]):

Lemma 1. If f ∈ H⋂H∗, then

(‖ f ‖H)∗ = ‖ f ‖H∗ (40)

where H∗ is the Hilbert space whose inner product is
defined by 〈u, v〉H∗ = 〈u, K −1v〉 and (‖ f ‖H)∗ is the
Legendre-Fenchel transform (see (19)) of ‖ f ‖H.

Proof: Let us denote by L(u) = 1
2
‖u‖2

H. Then we

have:

L∗(v) = sup
u∈X

(〈u, v〉L2 − L(u))

= sup
u∈X

(
−1

2
‖K u − v‖2

H∗ + 1

2
‖v‖2

H∗

)
= 1

2
‖v‖2

H∗

For the sake of clarity, we will assume periodic

boundary conditions in the rest of this subsection. We

assume that n is an image of white Gaussian noise; i.e.
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for all (i, j), ni, j follows a Gaussian probability den-

sity function: p(x) = 1√
2πσ 2

exp

(
−x2

2σ 2

)
where σ 2 is the

variance of the noise. We recall that if Z has a probabil-

ity density function pZ , than we denote its expectation

by E(Z ) = ∫
zpZ (z) dz. The following proposition is

a straightforward generalization of a result proved in

[5]:

Proposition 4.

E(‖n‖2
H) = CHE(‖n‖2

L2 ) = CHN 2σ 2 (41)

with CH = ‖P L2

I m(K )(δ)‖2
H, where δ is defined by δ0,0 =

1 and δi, j = 0 otherwise.

We recall that I m(K ) = {y ∈ X such that ∃x ∈
X such that y = K x}, and that P L2

I m(K )(δ) is the or-

thogonal projection of δ over I m(K ) with respect to

the L2 inner product.

Remarks

1. WhenH = L2, then CL2 = 1.

2. WhenH = H−1, then it is shown in [5] that:

CH−1 = 1

N 2

∑
(p,q)	=(0,0)

1

2
(
2 − cos

(
2π

N p
) − cos

(
2π

N q
))
(42)

3. WhenH = H , then CH = 2.

Moreover, it is also shown in [5] that

Var(‖n‖2
H−1 ) << E(‖n‖2

H−1 ). In the rest of the

paper, we will therefore make the following approxi-

mation:

‖n‖2
H−1 = CH−1‖n‖2

L2 (43)

And more generally, we will assume that:

‖n‖2
H = CH‖n‖2

L2 (44)

Equations (43) and (44) are consequences of the sta-

tistical law of large numbers and hold asymptotically,

when N → +∞.

Proof of Proposition 4. The proof is similar to the

one of Proposition 3.5 in [5], but it is more technical in

this general framework. We refer the interested reader

to [6] for a detailed proof.

4.2. Solving the Constrained Problem

The problem we are therefore interested in when restor-

ing an image with our model (26) is:

min
u

{
J (u) / ‖u − f ‖2

H = CHN 2σ 2
}

(45)

where CH is the constant given in Proposition 4. Since

σ is less difficult to estimate than λ in (26), it is of

practical interest to know how to solve (45) directly.

The task is to find λ > 0 such that ‖PHK −1G1/λ
( f )‖2

H =
CHN 2σ 2. For s > 0, let us set

g(s) = ‖PHK −1G1/s
( f )‖H (46)

The following lemma states the main properties of

g (we denote by f̄ the mean of f ).

Lemma 2. The function g(s) maps [0, +∞) onto
[0, ‖ f − f̄ ‖H]. It is non-increasing, while the function
s �→ sg(s) is non-decreasing.

Proof: The proof is very close to the one of Lemma

4.1 in [12]. The main difference relies in the use of the

H inner product instead of the L2 inner product. For a

detailed proof, we refer the reader to [6].

Thanks to Lemma 2 we can propose the following

algorithm, in order to solve (45) (similar to the one

proposed in [12] to solve (38)). We assume
√

CHNσ

is between 0 and ‖ f − f̄ ‖H. We need to find a value

λ̃ for which g(λ̃) = √
CHNσ .

Algorithm

1. Initialization: Choose any arbitrary λ0 > 0, and

compute

v0 = PHK −1G1/λ0

( f ) (47)

with the algorithm described in the previous section,

as well as g0 = g(λ0) = ‖v0‖H.

2. Iterations: Given λn and gn , then let λn+1 =
gn√

CHNσ
λn and compute

vn+1 = PHK −1G1/λn+1

( f ) (48)

as well as gn+1 = g(λn+1) = ‖vn+1‖H.

From Lemma 2, it is easy to deduce the following

result (the proof is exactly the same as the one of The-

orem 2 in [12]).
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Theorem 2. As n → +∞, we have gn → √
CHNσ

while un = f − vn converges to the unique solution of
(45).

This closes the generalization of Chambolle’s results

[12] to our new model. We now turn our attention to a

particular case when these new general results lead to

a new automatic denoising algorithm.

4.3. Application to the Osher-Sole-Vese Algorithm

In the specific case when K = −�−1, i.e. when H =
H−1, then our model (26) is the Osher-Sole-Vese model

[38].

inf
u

(
J (u) + λ

2
‖ f − u‖2

H−1

)
(49)

In [38], the authors write the associated Euler-

Lagrange equations, and then compute the solution by

solving a fourth order PDE.

Our algorithm (36)–(37) reduces in that case to

the one that has been proposed in [5] to solve (49).

We therefore reformulate Theorem 1 in the following

proposition:

Proposition 5. If τ ≤ 1
64

, then f − λ�div pn → û
(solution of (49)) as n → ∞.

In fact, we have checked numerically that the algo-

rithm converges as long as τ < 1
32

(which is twice the

theoretical bound, and which has already been noticed

in the caseH = L2 in [12]).

Up to now, there have not been proposed any method

to solve problem (45) in the case H = H−1, although

it has been noticed in [5] that the Osher-Sole-Vese is

a very good denoising model. This issue is now ad-

dressed by algorithm (47)–(48) (remembering that CH
is given by (42)).

In practice, we have checked numerically that we

can considerably increase the convergence speed of

the algorithm by choosing λ0 = 1 and by updating λ

each 20 iterations.

Numerical examples. We give some numerical ex-

amples on Figures 2 to 4.

In practice, we have checked that using the right σ

leads to a too strong denoising: the denoised image is

then oversmoothed. In fact, as it is also the case with the

ROF model [42], the value of λ computed from σ leads

to a residual which has the sameH norm as the original

noise (see for instance [17] where the authors address

this problem by imposing the value of the total variation

of the restored image instead of the norm of the noise).

Unfortunately, as always, the denoising model is not

perfect: therefore, before getting rid of all the noise,

our algorithm also removes some of the textures and

edges. Visually, we prefer a less denoised image with

more details. This question will be addressed in the

following section. Anticipating on these results, we

will see that a good numerical choice is to use α = 1/2

instead of α = 1 in (39).

In the next section, we derive a different algorithm

for automatic denoising.

5. SNR-Based Parameter Selection

5.1. Definitions

In this section we use a slightly different definition

of the inner-product and norm. We also treat these

quantities as continuous functions with respect to the

parameter λ. Therefore, different notations are used.

We omit the dependency on λ for brevity. We define

I(·, ·) to be the normalized, zero-mean inner-product
(we recall that p̄ stands for the mean of p):

I(p, q)
.= 1

|�| < p − p̄, q − q̄ >H, (50)

and consequently we defineN (·) to be the normalized,

zero-mean square of a norm:

N (p)
.= I(p, p) = 1

|�| ‖p − p̄‖2
H. (51)

The above measures become the standard notions of

empirical covariance and variance, respectively, for

H = L2. In the following we refer to N for short as

“norm” and not “the square of the normalized norm”.

Note that in the discrete setting of this paper |�| = N 2.

Our problem can be written as

inf
u,v

(
J (u) + λ

2
N (v)

)
, subject to f = u + v. (52)

We prefer to specifically write v in the minimization

problem, though it is implied by u and f , as it turns

out to have a significant part in our analysis below.
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Figure 2. Automatic restoration of a synthetic image. First column: noisy image (corrupted by white gaussian noise with standard deviation

σ = 45) and original image. Second column: automatic restoration with α = 1 (one sees that the noise component contains more information

than just the noise). Third column: : automatic restoration with α = 1/2 (one sees that such a value is large enough to remove the noise).

The H Signal-to-Noise Ratio (SNRH) of the recov-

ered signal u is defined as

SNRH(u)
.= 10 log

N (s)

N (u − s)

= 10 log
N (s)

N (n − v)
, (53)

where log
.= log10. We usually omit theH superscript.

The (square) norm of the noise is

N (n) = ρ2. (54)

ForH = L2 we have ρ2 = σ 2. The initial SNR of the

input signal, denoted by SN R0, where no processing

is carried out (u = f , v = 0), is according to (53), (54)

and (1):

SNR0
.= SNR( f ) = 10 log

N (s)

N (n)

= 10 log
N (s)

ρ2
. (55)

For H = L2 we reach the standard SNR definition:

SNR0 = 10 log(var(s)/σ 2), where var denotes the

variance.

Let us define the optimal SNR of a certain process

applied to an input image f as:

SNRopt
.= max

λ
SNR(uλ) (56)

where u = uλ attains the minimal energy of (52) with

weight parameter λ for a given f . We denote by

(uopt , vopt ) the decomposition pair (u, v) that reaches

SNRopt , and define Nopt
.= N (vopt ).

5.2. Condition for Optimal SNR

We now develop a necessary condition for the opti-

mal SNR. Imposing a specific value for the norm of

v, N (v) = P , in the constrained problem amounts to

choosing λ in (52). This was proved by Chambolle-

Lions [13] in the caseH = L2 and could be generalized

to our framework by using Proposition 2 and Lemma 2.

We therefore regard the SNR as a function SNR(N (v))

and assume that it is smooth. A necessary condition

for the maximum in the range N (v) ∈ (0,N ( f )) is:

∂SNR

∂N (v)
= 0. (57)
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Figure 3. Automatic restoration of a zebra image. First line: original image and noisy image (corrupted by white gaussian noise with standard

deviation σ = 20). Second line: automatic restoration with α = 1 (one sees that the noise component contains more information than just the

noise). Third line: : automatic restoration with α = 1/2 (one sees that such a value is large enough to remove the noise).

Rewriting N (n − v) as N (n) +N (v) − 2I(n, v), and

using (57) and (53), yields

∂I(n, v)

∂N (v)
= 1

2
. (58)

More specifically, as long as
∂I(n,v)

∂N (v)
> 1

2
, the SNR

increases. When the condition of (58) is reached, noise

and signal are equally filtered and the SNR is at a local

maximum. If filtering is continued, more signal than

noise is filtered (in the H-norm sense) and the SNR

decreases.
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Figure 4. Automatic restoration of Barbara First line: original image and noisy image (corrupted by white gaussian noise with standard

deviation σ = 20). Second line: automatic restoration with α = 1 (one sees that the noise component contains more information than just the

noise). Third line: : automatic restoration with α = 1/2 (one sees that such a value is large enough to remove the noise).

There is also a possibility that the maximum is at

the boundaries: If the SNR is dropping from the be-

ginning of the process we have
∂I(n,v)

∂N (v)
|N (v)=0 < 1

2
and

SNRopt = SNR0. The other extreme case is when the

SNR increases monotonically and is maximized when

N (v) = N ( f ) (the trivial constant solution u = f̄ ).

We see in the following (Proposition 8) that this can

only happen when SNR0 is negative or, equivalently,

when N (s) < ρ2.

In light of these considerations, provided that one

can estimate I(n, v), our basic numerical algorithm

should be as follows:
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Figure 5. Precomputed term ∂I(ñ, v)/∂λ as a function of λ (log

scale), H = H−1. Graphs depict plots for different proportion of

ρ2− 1 : 4 : 16 : 64, from upper curve to lower curve, respectively.

1. Set I0(n, v) = 0, N 0(v) = 0, i = 1.

2. N i (v) ← N i−1(v) + dN (v). Compute I i (n, v).

3. If
I i (n,v)−I i−1(n,v)

dN (v)
≤ 1

2
then stop.

4. i ← i + 1. Goto step 2.

In the next section we suggest a method to approximate

the inner product term.

5.3. Estimating I(n, v)

The term I(n, v) is unknown, as we do not know the

noise, and therefore should be estimated. We show be-

low a representation of denoising by a family of curves

which connects the norm of the noise, λ and I(n, v)

of pure noise. This can be regarded as some sort of

nonlinear statistics of noise with respect to a specific

energy functional.

Our observation is that the extent of filtering of ad-

ditive noise, with respect to λ, is not affected much

by the underlying image s. What mainly affects the

denoising performance is the extent of filtering of s.

In the linear case, the decoupling of the filtering of

s and n, in the case of additive noise, is very clear:

h ∗ f = h ∗ (s + n) = h ∗ s + h ∗ n, where h is the

filtering kernel, and ∗ denotes convolution. The filter-

ing of n depends solely on the filtering kernel h and

not on s. We follow a significant observation made in

[25] for the L2 fidelity term in which this decoupling

property can well approximate ROF-type regulariza-

tions. Here this concept is extended to the general

case of Hilbert space fidelity terms. Note that one may

view a wide range of nonlinear scale-spaces as a con-

catenation of short time filtering kernels (with some

small error) [43]. Here a relatively simple decoupling

mechanism is applied successfully also to our nonlinear

framework. Currently, we investigate the possibility to

obtain an analytic expression for the approximation

error.

In the proposed decoupling technique, we measure

in advance the extent of filtering of noise with the same

variance. As all our quantities (norm, inner-product,

SNR) are computed by averaging over many pixels

(“measurements”), one is not restricted to the original

noise, and can alternatively use a generated noise with

similar statistics, which is denoted in the following as

ñ.

First, we need to compute the “statistics” by process-

ing a patch of pure noise ñ while measuring I(ñ, v)

with respect to λ. As the instance of ñ is generated

by us it is completely known. This is done a single

time for each noise norm ρ2 and can be regarded as a

look-up-table (see Fig. 5). In general one may repeat

this procedure several times for each ρ2 and average

the results to increase accuracy (reduce the variance of

the error), however we observed that for a patch of a

few thousands pixels a single iteration can suffice. For

each processed image the behavior of λ with respect

to N (v) is measured. Combining the information, it

is possible to approximate how I(n, v) behaves with

respect to N (v). The connection is done through the

chain-rule for differentiation:

∂I(n, v)

∂N (v)
= ∂I(n, v)

∂λ

∂λ

∂N (v)

≈ ∂I(ñ, v)

∂λ
| f = ñ

∂λ

∂N (v)
| f = s+n.

(59)

In the next section we provide performance bounds,

based on SNR analysis, for the constrained problem

presented in Section 4 and for the optimal parameter,

which is estimated in Sections 5. Experimental results

comparing the suggested methods are shown in Section

7.

6. SNR Performance Bounds

Let us denote uz as the solution of (52) for f = z. For

example, us is the solution where f = s.

For the purpose of this analysis, two assumptions

are made with respect to s, n and the regularization

process. They were tested numerically for the cases

H = L2 and H = H−1 for different signals s and

white Gaussian noise n.
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First we have an orthogonality assumption of s and

n which is taken with respect to the regularization:

I(us, n) = 0, I(un, s) = 0, ∀λ ≥ 0. (60)

We further assume the process applied to f = s + n
does not amplify or sharpen either s or n. This can be

formulated in terms of inner product as follows:

I(us+n, s) ≤ I( f, s),

I(us+n, n) ≤ I( f, n),

∀λ ≥ 0. (61)

The above assumptions could be understood as some

extension of the linear case. In fact, for linear filtering

Assumption (60) and the fact that the regularizing filter

is not amplifying the signal (in theH sense) is sufficient

to prove Assumption (61): Let us assume that our reg-

ularizer is a linear filter h such that: u = f ∗ h = Th f ,

where ∗ denotes convolution and Th is the associated

linear operator. Commonly this would be some low-

pass filter which attenuates high frequencies. The re-

quirement for not amplifying the signal in theH sense

can be compactly stated by a unit bound on the norm of

the linear operator: ‖Th‖H ≤ 1. In the linear case As-

sumption (60) reads: I(h ∗ s, n) = 0, I(h ∗n, s) = 0.

Statistical independence between s and n (which is a

standard assumption regarding additive noise) is a suf-

ficient condition for these relations to hold. As in our

more general nonlinear case h is controlled by a pa-

rameter (such as λ) which defines the extent of filter-

ing and can degenerate to the identity filter (λ → ∞)

and therefore this assumption implies also I(s, n) = 0.

The relations stated in Assumption (61) can be shown

by:

I(us+n, s) = I(h ∗ (s + n), s) = I(h ∗ s, s) + I(h ∗ n, s)

= I(h ∗ s, s) ≤ ‖Th‖HN (s)

≤ N (s) = I(s + n, s)

= I( f, s).

Similarly the relation I(us+n, n) ≤ I( f, n) can be

shown. This analysis holds, for instance, for the cor-

responding linear case of our framework, in which the

functional to be minimized is J̃ (u) + λ
2
N (v), where

J̃ (u) = ∑
1≤i, j≤N |(∇u)i, j |2.

We have strong indications that (60) and (61) are

general properties which may hold in the nonlinear

case for any H within our framework whenever n is

an independent noise (not necessarily Gaussian). Yet,

this is only a conjecture at this stage. In this paper

the question is left open and we resort to the following

definition:

Definition 2 ((s, n) pair). An (s, n) pair consists of

two signals s and n which obey assumptions (60) and

(61).

Theorem 3. For any (s, n) pair the inner product
matrix of U = ( f, s, n, u, v)T has only non-negative
elements.

For proof see [6]. Theorem 6 implies that the denoising

process has smoothing properties and consequently,

there is no negative correlation between any two el-

ements of U . This basic theorem is used to establish

several bounds in our performance analysis.

The constrained problem of Section 4 can be formu-

lated in our context as imposing

N (v) = ρ2. (62)

We define

SNRρ2
.= SNR(u)|N (v) = ρ2 . (63)

We denote by (uρ2 , vρ2 ) the (u, v) pair that obeys (62)

and minimizes (52). We now analyze this method for

selecting u in terms of SNR.

Proposition 6 (SNR lower bound). Imposing (62),
for any (s, n) pair SNRρ2 is bounded from below by

SNRρ2 ≥ SNR0 − 3d B, (64)

where we use the customary notation 3d B for

10 log10(2).

Proof: From Theorem 6 we have I(n, v) ≥ 0, there-

fore,

SNRρ2 = 10 log
N (s)

N (n−v)

≥ 10 log
N (s)

N (n) +N (v))

= 10 log
N (s)

2ρ2

= SNR0 − 3d B.

The lower bound of proposition 6 is reached only

in the very rare and extreme case where I(n, v) = 0.

This implies that only parts of the signal were filtered

out and no denoising was performed.
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Proposition 7 (SNR upper bound). Imposing (62),
then there does not exist an upper bound 0 < M < ∞,
where SNRρ2 ≤ SNR0 + M, that is valid for any given
(s, n) pair.

Proof: To prove this we need to show only a single

case where the SNR cannot be bounded. Let us assume

N (s) = hρ2, 0 < h < 1. Then SNR0 = 10 log h. As

signal and noise are not correlated we have N ( f ) =
N (s) + N (n) = (1 + h)ρ2. We can write N ( f ) also

as N (u + v) = N (u) +N (v) + 2I(u, v). From (62),

N (v) = ρ2, and from Theorem 6, I(u, v) ≥ 0, there-

fore N (u) ≤ hρ2. Since I(u, s) ≥ 0 (Theorem 6) we

get N (u − s) ≤ 2hρ2. This yields SNRρ2 ≥ 10 log 1
2

and

SNRρ2 − SNR0 ≥ 10 log
1

2h
.

Thus, for any M we can choose a sufficiently small h
where the bound does not hold.

Definition 3 (Regular SNR). We define the function

SNR(N (v)) as regular if (58) is a sufficient condition

for optimality or if the optimum is at the boundaries.

Regular SNR basically means that the denoising pro-

cess has two phases (where the evolution is with respect

toN (v)). First the regularization improves the quality

of the image as mostly noise is being filtered (SNR in-

creases). At some point any additional regularization

causes degradation of the result as more signal than

noise is being filtered. This definition permits either of

these phases to be of “zero duration” but not to have

multiple switches between phases (meaning the SNR

function would have more than a single local maxi-

mum). In Figs. 8, 10 and 12 one can observe that this

regularity is valid for the synthetic and natural image

examples (see SNR plot as a function ofN (v)/ρ2). Our

next proposition and theorem on the range and bound

of SNR, analyze the case of a regular SNR.

Proposition 8 (Range of optimal SNR). If SNR is
regular, then for any (s, n) pair 0 ≤ Nopt ≤ 2ρ2.

Proof: Let us first show the relation I(n, v) ≤ ρ2:

I(n, f ) = I(n, n + s) = N (n) + I(n, s) = ρ2, using

(60). On the other hand I(n, f ) = I(n, u + v) =
I(n, u) + I(n, v). The relation is validated by using

I(n, u) ≥ 0 (Theorem 6).
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Figure 6. Visualization of Theorem 6: Upper bound of SN Ropt −
SN R0 as a function of Nopt/ρ

2. For Nopt → ρ2 the bound ap-

proaches +∞.

Table 1. Denoising results in terms of SNRH−1
of the exam-

ples presented in Figures 7, 9 and 11. SNRρ2 is the result of

imposing N (v) = ρ2 (Section 4). SNRest is the result of our

estimation of the optimal result (Section 5).

Image SNR0 SNRopt SNRρ2 SNRest

Synthetic 24.97 27.60 25.19 27.52

Lena 28.25 29.64 28.13 29.60

Cameraman 38.90 40.34 38.75 40.34

Average

difference

from SNRopt 1.82 0.00 1.84 0.04

We reach the upper bound by the following inequal-

ities:

ρ2 ≥ I(n, v)|v=vopt

=
∫ Nopt

0

∂I(n, v)

∂N (v)
dN (v) ≥

∫ Nopt

0

1

2
dN (v)

= 1

2
Nopt .

The inequality on the right is based on that
∂I(n,v)

∂N (v)
≥ 1

2

for N (v) ∈ (0,Nopt ).

The lower bound Nopt = 0 is reached whenever
∂I(n,v)

∂N (v)
|N (v)=0 < 1

2
.

Theorem 4 (Bound on optimal SNR). If SN R
is regular, then for any (s, n) pair and Nopt ∈
{[0, ρ2), (ρ2, 2ρ2]},

0 ≤ SNRopt − SNR0

≤
{ −10 log(1 +Nopt /ρ

2 − 2
√Nopt /ρ2), 0 ≤ Nopt < ρ2

−10 log(Nopt /ρ
2 − 1), ρ2 < Nopt ≤ 2ρ2 (65)
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Figure 7. Denoising of a synthetic image (σ = 45). Middle column: solution of the constrained problemN (v) = ρ2. Right column: solution

of SNR based result.

Figure 8. Denoising of a synthetic image (Fig. 7) - SNR and inner-product plots. Top (left): SNRH−1
as a function of N (v) with plots of the

optimal, constrained and SNR-based selections (“Ours”). Top (right): a plot of the standard SNRL2
, which behaves quite similarly to SNRH−1

.

Bottom row: estimated ∂I(n, v)/∂N (v) vs. the ground truth.
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Figure 9. Denoising part of Lena image (σ = 20). Middle column: solution of the constrained problem N (v) = ρ2. Right column: solution

of SNR based result.

Figure 10. Denoising part of Lena image - SNR and covariance plots. Left: SNRH−1
as a function ofN (v) with plots of the optimal, constrained

and SNR-based selections (“Ours”). Right: estimated ∂I(n, v)/∂N (v) vs. the ground truth.

Proof: By the SNR definition, (53), and expanding

the norm expression, we have

SNRopt − SNR0

= 10 log

(
ρ2

ρ2 +Nopt − 2I(n, vopt )

)
. (66)

For the lower bound we use the relation shown in

Proposition 6: I(n, vopt ) ≥ 1
2
Nopt . For the upper

bound we use two upper bounds on I(n, vopt ) and take

their minimum. The first one, I(n, vopt ) ≤ ρ
√Nopt , is

the Cauchy-Schwartz inequality. The second relation,

I(n, vopt ) ≤ ρ2, is outlined in Proposition 8.

A plot of the upper bound of the optimal SNR with

respect to Nopt/ρ
2 is depicted in Fig. 6.

In practice, the flow is not performed by directly

increasing N (v), but by decreasing the value of λ.

Therefore, it is instructive to check the vary of N (v),

as well as the other energies, with respect to a vary

in λ. In the next proposition we show that as λ de-

creases the total energy EJ
.= Eu + λ

2
Ev strictly de-

creases, Eu(u)
.= J (u) decreases and Ev(v)

.= N (v)

increases.
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Figure 11. Denoising Cameraman image (σ = 20). From left to right. Top: original s, input image f . Bottom: u of constrained problem

N (v) = ρ2, u of our SNR based selection.

Figure 12. Denoising Cameraman image - SNR and covariance plots. Left: SNRH−1
as a function ofN (v) with plots of the optimal, constrained

and SNR-based selections (“Ours”). Right: estimated ∂I(n, v)/∂N (v) vs. the ground truth.

Proposition 9 (Energy change as a function of λ).
The energy parts of Eq. (52) vary as a function of λ as
follows:

∂ EJ

∂λ
> 0,

∂ Ev

∂λ
≤ 0,

∂ Eu

∂λ
≥ 0. (67)

The proof is a consequence of Lemma 2.

We have given a mathematical analysis of our ap-

proach and shown performance bounds with respect to

the H-SNR criterion. In the next section we illustrate

the proposed methods with numerical examples.

7. Experimental Comparison of the Methods

We have tested our algorithms for automatic parameter

selection on both synthetic and natural images. To

each original image white Gaussian noise of standard

deviation σ was added (σ = 45, 20, 20 for Figs. 7,

9, 11, respectively). We display the result of imposing
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N (v) = ρ2 and our estimated optimal denoising result

(in theH-SNR sense).

In Fig. 7, a synthetic image with a large square

and stripes is processed. The stripes are better pre-

served with the estimated optimal approach. In Fig.

8 plots of SNRH−1

, SNRL2

and estimated and real

∂I(n, v)/∂N (v) are shown as a function of N (v)/ρ2.

As seen also visually, the result of imposingN (v) = ρ2

is not very close to the optimal parameter choice. This

phenomenon is observed also in the case of natural im-

ages (Figs. 10 and 12). A better choice of imposing

a specific value for N (v) is about 1
2
ρ2. See the ex-

amples in Section 4. In Fig. 8 one can observe that

the behavior of SNRH−1

is similar to that of the clas-

sical SNRL2

. Specifically, the maximum is obtained

in similar values of N (v). At the bottom of Fig. 8 it

is shown that the estimated value of ∂I(n, v)/∂N (v)

is quite similar to the real value. We plot the 1
2

mark

(dash-dot line), that indicates optimal SNR (see Eq.

(58)). This behavior is similar to our experience with

H = L2 (see [28]).

Similar results are obtained with a part of Lena im-

age, Figs. 9, 10, and with the Cameraman image, Figs.

11, 12.

Table 1 summarizes the performance results, in

terms of SNRH−1

, of the processed images.

8. Discussion and Conclusion

In this paper the ROF [42] model is generalized into

a BV -Hilbert space model, where the total-variation

semi-norm is used for the structural part and a tunable

Hilbert-space norm, controlled by a liner operator K,

is used for the oscillatory part. Provided K is symmet-

ric and positive, the model attains a unique solution.

We proposed numerical implementations to solve the

model, as well as the constrained problem, based on the

projection algorithm of [12] and using some results of

[5]. We have proved convergence of the corresponding

algorithms.

This type of regularization method can be used

for different purposes. In modern variational image-

processing it is widely accepted that the total-variation

energy is highly adequate to capture the structural part

of an image. However, for the complementary energy

of the oscillatory part there are many models which de-

pend on the class of the image, type of the noise and/or

texture, and the purpose of the regularization. Our

general model allows a mathematically well-founded

way to design and implement new types of such ener-

gies, by using different K operators. In this paper we

based our numerical examples on the Osher-Sole-Vese

model [38], where the H−1 norm is used (K = −�−1).

As part of a larger study of the decomposition prob-

lem [8], the authors, together with Chan and Osher,

proposed a TV-Gabor model for structure-texture de-

composition, based on the ideas and theory presented

here.

In this paper, however, our focus was given to the de-

noising problem, and more specifically, how to choose

automatically λ, the weight parameter between the TV

and Hilbert-space energies. We have suggested two

basic methods for this. The first one relies on the

constrained problem, where one imposes a norm con-

straint on the oscillatory part. For the OSV model,

our experiments show that imposing the square norm

of the residual to be equal to the square norm of the

noise (as in the ROF model) gives too strong denois-

ing. This is due to the high penalty of the H−1 norm for

the very low frequency components of the noise (see

Fig. 1). A better choice, which fits most images, is to

choose half of the square norm. This gives a fast and

automatic denoising with quite good results in most

cases.

We have also been able to extend the work of [28] to

our new framework. This has given us a more accurate

algorithm to automatically denoise an image, based

this time on SNR like optimum criterion. The basic

idea is to aim at finding λ which maximizes the SNR

of the denoised image. This is achieved by using an

optimality condition which is based on the H inner

product of the oscillatory part and an estimate of the

noise. This method is more computationally intensive

but gives higher quality results, which are very close to

the optimal that could be obtained. Some SNR bounds

and performance analysis, are given with respect to the

classical constrained problem and the optimal strategy.

A more detailed version of this paper can be found in

[6].

In a future work, other H-Hilbert spaces may be

proposed, different than the ones considered in this pa-

per for denoising purposes. Choosing a well-suited

kernel for colored noise, for instance, could lead us

to new and better adaptive frequency denoising algo-

rithms. Another direction we want to explore is spatial

adaptivity as it was recently done in [27, 26].
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