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Abstract: In this paper, we are interested in color image processing, and in particular color image
decomposition. The problem of image decomposition consists in splitting an original image f into
two components u and v. u should contain the geometric information of the original image, while v
should be made of the oscillating patterns of f , such as textures. We propose here a scheme based
on a projected gradient algorithm to compute the solution of various decomposition models for color
images or vector-valued images. We provide a direct convergence proof of the scheme, and we give
some analysis on color texture modeling.
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1 Introduction

Since the seminal work by Rudin et al [50], total variation based image restoration and decomposition
has drawn a lot of attention (see [25, 6, 48, 4] and references therein for instance). f being the original
image, we are interested in minimizing energies of the type:

∫

|Du| + µ‖f − u‖k
T (1)

∫
|Du| stands for the total variation; in the case when u is regular, then

∫
|Du| =

∫
|∇u| dx. ‖.‖T

stands for a norm which captures the noise and/or the textures of the original image f (in the sense
that it is not too large for such features) and k is a positive exponent.

The most basic choice for ‖.‖T is the L2 norm, and k = 2. From a Bayesian point of view, this is
also the norm which appears naturally when assuming that the image f has been corrupted by some
Gaussian white noise (see e.g. [25]). However, since the book by Y. Meyer [44], other spaces have
been considered for modeling oscillating patterns such as textures or noise. The problem of image
decomposition has been a very active field of research during the last past five years. [44], was the
inspiration source of many works, e.g. [54, 49, 7, 5, 53, 8, 15, 23, 33, 58, 59, 60, 38, 9, 37, 41]. Image
decomposition consists in splitting an original image f into two components, u and v = f − u. u is
supposed to contain the geometrical component of the original image (it can be seen as some kind of
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sketch of the original image), while v is made of the oscillatory component (the texture component in
the case when the original image f is noise free).

In this paper, we are concerned with color image processing. While some authors deal with color
images using a Riemannian framework, like G. Sapiro and D. L. Ringach [51] or N. Sochen, R. Kimmel
and R. Malladi [52], others combine a functional analysis viewpoint with the Chromaticity-Brightness
representation [10]. The model we use is more basic: it is the same as the one used in [19] (and
related with [18]). Its advantage is to have a rich functional analysis interpretation. Note that in [55],
the authors also propose a cartoon + texture color decomposition and denoising model inspired from
Y. Meyer, using the vectorial versions of total variation and approximations of the space G(Ω) for
textures (to be defined later); unlike the work presented here, they use Euler-Lagrange equations and
gradient descent scheme for the minimization, which should be slower than by projection methods.

Here, we give some insight into the definition of a texture space for color images. In [13], a
TV-Hilbert model was proposed for image restoration and/ or decomposition:

∫

|Du| + µ‖f − u‖2
H (2)

where ‖.‖H stands for the norm of some Hilbert space H. This is a particular case of problem (1). Due
to the Hilbert structure of H, there exist many different methods to minimize (2), such as a projection
algorithm [13]. We extend (2) to the case of color images.

From a numerical point of view, (1) is not straightforward to minimize. Depending on the
choice for ‖.‖T , the minimization of (1) can be quite challenging. Nevertheless, even in the simplest
case when ‖.‖T is the L2 norm, handling the total variation term

∫
|Du| needs to be done with care.

The most classical approach consists in writing the associated Euler-Lagrange equation to problem
(1). In [50], a fixed step gradient descent scheme is used to compute the solution. This method
has on the one hand the advantage of being very easy to implement, and on the other hand the
disadvantage of being quite slow. To improve the convergence speed, quasi-Newton methods have
been proposed [22, 56, 34, 1, 26, 46, 47]. Iterative methods have proved successful [17, 32, 15]. A
projected-subgradient method can be found in [28].

Duality based schemes have also drawn a lot of attention to solve (1): first by Chan and Golub
in [24], later by A. Chambolle in [20] with a projection algorithm, and then generalized in [29]. This
projection algorithm has recently been extended to the case of color images in [19]. Second order cone
programming ideas and interior point methods have proved interesting approaches [39, 36]. Recently,
it has been shown that graph cuts based algorithms could also be used [21, 31]. Finally, let us notice
that it is shown in [57, 12] that Nesterov’s scheme [45] provides fast algorithms for minimizing (1).

Another variant of Chambolle projection algorithm [20] is to use a projected gradient algorithm
[21, 12]. Here we have decided to use this approach which has both advantages of being easy to
implement and of being quite efficient.

The plan of the paper is the following. In Section 2, we define and provide some analysis about
the spaces we consider in the paper. In Section 3, we extend the TV-Hilbert model originally intro-
duced in [13] to the case of color images. In Section 4, we present a projected gradient algorithm to
compute a minimizer of problem (2). This projected gradient algorithm has first been proposed by A.
Chambolle in [21] for total variation regularization. A proof of convergence was given in [12] relying
on optimization results by Bermudez and Moreno [16]. We derive here a simple and direct proof of
convergence. In Section 5, we apply this scheme to solve various classical denoising and decomposition
problems. We illustrate our approach with many numerical examples.
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2 Definitions and properties of the considered color spaces

In this section, we introduce some notations, and we provide some analysis of the functional analysis
spaces we consider to model color textures.

2.1 Introduction

Let Ω be a Lipschitz convex bounded open set in R
2. We model color images as R

M -valued functions
defined on Ω. The inner product in L2(Ω, RM ) is denoted as:

〈u,v〉L2(Ω,RM ) =

∫

Ω

M∑

i=1

uivi.

For a vector ξ ∈ R
M , we define the norms:

|ξ|1 =

M∑

i=1

|ξi|, (3)

|ξ|2 =

√
√
√
√

M∑

i=1

ξ2
i , (4)

|ξ|∞ = max
i=1...M

|ξi|. (5)

We will sometimes refer to the space of zero-mean functions in L2(Ω, RM ) by V0:

V0 = {f ∈ L2(Ω, RM ),

∫

Ω
f = 0}.

We say that a function f ∈ L1(Ω, RM ) has bounded variation if the following quantity is finite:

|f |TV = sup

{
∫

Ω

M∑

i=1

fidivξi, ξ ∈ P

}

= sup
ξ∈P

〈f ,div ξ〉L2(Ω,RM )

where P is a subset of ξ ∈ C1
c (Ω, R2×M ). This quantity is called the total variation. For more

information on its properties, we refer the reader to [3]. The set of functions with bounded variation
is a vector space classically denoted by BV (Ω, RM ).

In this paper, we will consider the following set of test-functions, which is the classical choice
([3], [6]) :

B = {ξ ∈ C1
c (Ω, R2×M )/∀x ∈ Ω, |ξ(x)|2 ≤ 1}.
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Then, for f smooth enough, the total variation of f is: :

|f |TV =

∫

Ω

√
√
√
√

M∑

i=1

|∇fi|2dx.

As X. Bresson and T. Chan notice in [19], the choice of the set B is crucial. If one chooses:

B = {ξ ∈ C1
c (Ω, R2×M )/∀x ∈ Ω, |ξ(x)|∞ ≤ 1}

then one has :

|f |TV =

M∑

i=1

∫

Ω
|∇fi|dx =

M∑

i=1

|fi|TV .

These two choices are mathematically equivalent and define the same BV space, but in practice
the latter induces no coupling between the channels, which gives visual artifacts in image processing.

2.2 The color G(Ω) space

The G(R2) space was introduced by Y. Meyer in [44] to model textures in grayscale images. It was
defined as div

(
L∞(R2)

)
, but one could show that this space was equal to W−1,∞(R2) (the dual of

W 1,1(R2)). For the generalization to color images, we will adopt the framework of ([11], [5]; the color
space G(Ω) is also used in [55], as a generalization of [54] to color image decomposition and color
image denoising).

Definition 2.1. The space G(Ω) is defined by :

G(Ω) = {v ∈ L2(Ω, RM )/∃~ξ ∈ L∞(Ω, (R2)M ),∀i = 1, . . . ,M, vi = div ~ξi and ~ξi · ~N = 0 on ∂Ω}

(where ~ξi · ~N refers to the normal trace of ~ξi over ∂Ω). One can endow it with the norm :

‖v‖G = inf{‖~ξ‖∞, ∀i = 1, . . . ,M, vi = div ξi, ~ξi · ~N = 0 on ∂Ω}

with ‖~ξ‖∞ = sup ess
√

∑M
i=1 |

~ξi|2.

The following result was proved in [11] for grayscale images: it characterizes G(Ω).

Proposition 2.1.

G(Ω) =

{

v ∈ L2(Ω, RM )/

∫

Ω
v = 0

}

.

Proof: Let us introduce the grayscale G1(Ω) space:

G1(Ω) = {v ∈ L2(Ω)/∃~ξ ∈ L∞(Ω, R2), v = div ~ξ and ~ξ · ~N = 0 on ∂Ω}.

By the result proved in [11], Proposition 4.1.1, we have that

G1(Ω) =

{

v ∈ L2(Ω)/

∫

Ω
v = 0

}

.
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We now proceed component by component.

Let v ∈ L2(Ω, RM ). If
∫

Ω v = 0, then for each i ∈ 1, . . . ,M ,
∫

Ω vi = 0. The 1D result tells us

that vi ∈ G1(Ω), thus there exists ~ξi ∈ L∞(Ω, R2) with ~ξi · ~N = 0 on ∂Ω such that vi = div ~ξi. Then

the vector ~ξ =






~ξ1
...
~ξM




 ∈ L∞(Ω, (R2)M ) and v ∈ G(Ω).

Conversely, if v ∈ G(Ω), then there exists ~ξ ∈ L∞(Ω, (R2)M ), such that for each i ∈ 1, . . . ,M ,
with ~ξi · ~N = 0 on ∂Ω and that vi = div ~ξi. By integration component by component,

∫

Ω v = 0.

�

In L. Lieu’s PhD thesis [42], one can find the following property (generalized here to the vectorial
case):

Lemma 2.1. For f ∈ L2(Ω, RM ), let us consider the semi-norm :

‖f‖∗ = sup
u∈BV (Ω,RM ),|u|TV 6=0

〈f ,u〉L2(Ω,RM )

|u|TV
= sup

u∈BV (Ω,RM ),|u|TV 6=0

∑M
i=1

∫

Ω fiui

|u|TV

If ‖f‖∗ < +∞, then
∫

Ω f = 0.

Proof: Let i ∈ {1, . . . ,M}, and h ∈ L2(Ω, RM ), hj = 0 for j 6= i and hi = 1. Since the total
variation does not change by the addition of a constant, we have:

∀u ∈ BV (Ω, RM ) such that |u|TV 6= 0,∀c ∈ R,

〈f ,u + ch〉L2(Ω,RM )

|u + ch|TV
=

〈f ,u〉L2(Ω,RM )

|u|TV
+ c

〈f ,h〉L2(Ω,RM )

|u|TV
≤ ‖f‖∗

As c goes to ±∞, we notice that necessarily 〈f ,h〉L2(Ω) =
∫

Ω fi = 0.

�

Comparing this property to Proposition 2.1, we can deduce that any function f such that
‖f‖∗ < ∞ belongs to G(Ω). The converse is also true:

Lemma 2.2. Let f ∈ G(Ω). Then ‖f‖∗ < ∞.

Proof: Let f ∈ G(Ω). Since
∫

Ω f = 0, the quantity
〈f ,u〉

L2(Ω,RM )

|u|TV
does not change with the addition

of constants to u. Thus

sup
u∈BV,|u|TV 6=0

〈f ,u〉L2(Ω,RM )

|u|TV
= sup

u∈BV,
R

u=0

〈f ,u〉L2(Ω,RM )

|u|TV

≤ sup
u∈BV,

R

u=0

‖f‖L2(Ω,RM )‖u‖L2(Ω,RM )

|u|TV

≤ C‖f‖L2(Ω) < ∞
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where we used the Poincaré inequality : ‖u − uΩ‖L2(Ω,RM ) ≤ C|u|TV .

�

The following theorem completes the above two lemmas:

Theorem 2.2. The following equality holds :

G(Ω) = {f ∈ L2(Ω)/ sup
u∈BV (Ω,RM ),|u|BV 6=0

〈f ,u〉L2(Ω,RM )

|u|TV
< +∞}

and for all function f ∈ L2(Ω, RM ), ‖f‖∗ = ‖f‖G.

Moreover, the infimum in the definition of ‖ · ‖G is reached.

Proof:

(i) Let f be a function in the set on the right hand-side. Thanks to Lemma 2.1, we know that
∀i ∈ {1, . . . ,M},

∫

Ω fi = 0. By Proposition 2.1, f ∈ G(Ω).

Now let u ∈ BV (Ω, RM ) such that |u|TV 6= 0. By convolution with an approximation of
identity, one can find a sequence un ∈ C∞(Ω, RM )∩W 1,1(Ω; RM ) such that ‖u−un‖2 → 0 and
|un|TV → |u|TV .

Then, for all ~g such that f = div ~g and ~g · ~N = 0 on ∂Ω:

〈f ,un〉L2(Ω,RM ) =
M∑

i=1

∫

Ω
div ~g un

= −

∫

Ω
(

M∑

i=1

~gi · ∇ui,n)

≤

∫

Ω
|~g||∇un|

≤ ‖~g‖∞|un|TV

Since f ∈ L2(Ω), we can pass to the limit in both sides of the inequality, and by construction of
un, we get:

‖f‖∗ ≤ ‖f‖G.

(ii) For the converse inequality, the proof is standard (see e.g. [40], [2]).

Let f ∈ L2(Ω, RM ) such that supu∈BV (Ω,RM ),|u|TV 6=0

〈f ,u〉
L2(Ω,RM )

|u|TV
< +∞. Let us define :

T :

{
D(Ω̄, RM ) → L1(Ω, R2M )

ϕ 7→
(

∂ϕ1

∂x1
, ∂ϕ1

∂x2
, . . . , ∂ϕM

∂x1
, ∂ϕM

∂x2

)

To each vector
(

∂ϕ1

∂x1
, ∂ϕ1

∂x2
, . . . , ∂ϕM

∂x1
, ∂ϕM

∂x2

)

∈ T (D(Ω̄, RM )), we can associate
∫

Ω

∑M
i=1 f iϕidx

(without ambiguity since fi has zero-mean, and if two functions have the same gradient over Ω
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they only differ by a constant on the convex domain Ω). We have
∫

Ω

∑M
i=1 f iϕidx ≤ ‖f‖∗|ϕ|BV =

‖f‖∗‖(
∂ϕ1

∂x1
, . . . , ∂ϕM

∂x2
)‖1 thus we have defined a bounded linear form on T (D(Ω̄, RM )). Using

Hahn-Banach’s theorem, we can extend it to L1(Ω̄, R2M ) with the same norm ‖f‖∗. Since
L∞(Ω, R2M ) is identifiable with the dual of L1(Ω, R2M ), there exists g ∈ L∞(Ω, R2M ) with
‖g‖L∞(Ω,RM ) = ‖f‖∗, such that:

∀ϕ ∈ D(Ω̄, RM ),

∫

Ω

M∑

i=1

fiϕi = −

∫

Ω

M∑

i=1

2∑

j=1

∂ϕi

∂xj
gi,j = −

M∑

i=1

∫

Ω
~gi · ∇ϕi. (6)

This is true in particular for ϕ ∈ D(Ω, RM ), thus f = div ~g in the distribution sense, and since
the functions are in L2(Ω, RM ) there is equality in L2(Ω, RM ). Since div ~g ∈ L2(Ω, RM ), we can
then consider the normal trace of ~g.

If ϕ ∈ D(Ω̄, RM ), we have by (6):

M∑

i=1

∫

Ω
fiϕi = −

M∑

i=1

∫

Ω
gi · ∇ϕi.

But on the other hand, by integration by parts :

M∑

i=1

∫

Ω
div ~giϕi = −

M∑

i=1

∫

Ω
~gi · ∇ϕi +

M∑

i=1

∫

∂Ω
ϕi~gi · ~N

The equality f = div ~g in L2(Ω, RM ) shows that the edge contribution vanishes for ϕ ∈
D(Ω̄, RM ). Thus ~gi · ~N = 0 over ∂Ω.

Incidentally, we notice that the infimum in the G-norm is reached.

�

Remark 2.3. From the proof of Lemma 2.2, we can deduce that the topology induced by the G-norm
on G(Ω) is coarser than the one induced by the L2 norm. More generally, there exists a constant
C > 0 (depending only on Ω), such that:

∀f ∈ G(Ω), ‖f‖∗ ≤ C‖f‖L2(Ω,RM ). (7)

In fact the G norm is strictly coarser than the L2 norm:

Let us consider, for m ∈ N
∗, the sequence ∀k = 1 . . . M, f

(k)
m (x, y) = cos mx + cos my defined

on (−π, π)M . The vector field ξ(k) = ( 1
m

sin(mx), 1
m

sin(my)) satisfies the boundary condition, and its

divergence is equal to fm. As a consequence ‖fm‖∗ ≤
√

2M
m and limm→+∞ ‖fm‖∗ = 0.

Yet,

‖fm‖2
L2(Ω,RM ) = M

∫ π

−π

∫ π

−π

(cos mx + cos my)2dxdy

= 4Mπ2.

The sequence fm converges to 0 for the topology induced by the G-norm, but not for the one
induced by the L2 norm .
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The following result was proposed by Y. Meyer in [44]. It is still true for color images.

Proposition 2.2. Let fn, n ≥ 1 be a sequence of functions of Lq(Ω, RM ) ∩ G(Ω) with the following
properties :

1. There exists q > 2 and C > 0 such that ‖fn‖Lq(Ω,RM ) ≤ C.

2. The sequence fn converges to 0 in the distributional sense.

Then ‖fn‖G converges to 0 when n goes to infinity.

It means that oscillating patterns with zero mean have a small G norm.

3 Color TV-Hilbert model : presentation and mathematical analysis

3.1 Presentation

The TV-Hilbert framework was introduced for grayscale images by J.-F. Aujol and G. Gilboa in [13]
as a way to approximate the BV-G model. They prove that one can extend Chambolle’s algorithm to
this model.

In this section we show that this is still true for color images. We are interested in solving the
following problem:

inf
u

|u|TV +
1

2λ
‖f − u‖2

H (8)

where H = V0 (the space of zero-mean functions of L2(Ω, RM )) is a Hilbert space endowed with the
following norm :

‖v‖2
H = 〈v,Kv〉L2(Ω,RM )

with K : H → L2(Ω, RM )

• is a bounded linear operator (for the topology induced by the L2(Ω, RM ) norm on H)

• is symmetric positive definite

and K−1 is bounded on Im(K).

Examples:

• The Rudin-Osher Fatemi model
It was proposed in [50] by L. Rudin, S. Osher, and E. Fatemi for grayscale images. It was then
extended to color images using different methods, for instance by G. Sapiro and D.L. Ringach
[51], or Blomgren and T. Chan [18] . In [19], X. Bresson and T. Chan use another kind of color
total variation, which is the one we use in this paper.

The idea is to minimize the functional:

|u|TV +
1

2λ
‖f − u‖2

L2(Ω,RM ). (9)
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It is clear that the problem commutes with the addition of constants. If the (unique) solution
associated to f is u, then the solution associated to f + C is (u + C). As a consequence we can
always assume that f has zero mean.

Then this model becomes a particular case of the TV-Hilbert model with K = Id.

• The OSV model
In [49], S. Osher, A. Solé and L. Vese propose to model textures by the H−1 space. In order to
generalize this model, we must be cautious about the meaning of our notations but it is natural
to introduce the following functional :

inf
u

|u|TV +
1

2λ

∫

Ω
|∇∆−1(f − u)|2 (10)

where ∆−1v =






∆−1v1
...

∆−1vM




, ∇ρ =






∇ρ1
...

∇ρM




, |∇ρ|2 = |∇ρ1|

2 + |∇ρ2|
2 + . . . + |∇ρM |2 and

∫

Ω
|∇∆−1(f − u)|2 =

∫

Ω

M∑

i=1

|∇∆−1(f i − ui)|2 = −

∫

Ω

M∑

i=1

(f i − ui)∆−1(f i − ui)

= 〈f − u,−∆−1(f − u)〉L2(Ω,RM ).

The inversion of the Laplacian is defined component by component. For one component, it is
defined by the following proposition:

Proposition 3.1. Let X0 = {P ∈ H1(Ω, R) :
∫

Ω P = 0}. If v ∈ L2(Ω), with
∫

Ω v = 0, then the
problem:

−∆P = v,
∂P

∂n
|∂Ω = 0

admits a unique solution in X0.

Proof: This is a consequence of the Lax-Milgram theorem in the Hilbert space X0.

�

For K = −∆−1, the Osher-Solé-Vese problem is a particular case of the TV-Hilbert framework.

3.2 Mathematical study

Proposition 3.2 (Existence and Uniqueness). Let f ∈ L2(Ω, RM ). The minimization problem :

inf

{

|u|TV +
1

2λ
〈f − u,K(f − u)〉L2(Ω,RM ), u ∈ BV (Ω, RM ), (f − u) ∈ V0

}

has a unique solution u ∈ BV (Ω, RM ).

9



Proof:

• Existence :

Let E(u) denote the functional defined on L2(Ω, RM ) (with E(u) = +∞ if u /∈ BV (Ω, RM ) or
(f − u) /∈ V0).

Let us notice that E 6= +∞ since fΩ = 1
|Ω|

∫

Ω f belongs to BV (Ω, RM ) and (f − fΩ) ∈ V0.

The functional E is convex. Since K is bounded, we deduce that E is lower semi-continuous for
the L2(Ω) weak topology. E is coercive : by the Poincaré inequality :

∃C > 0, ‖u − uΩ‖2 ≤ C|u|TV

with uΩ = 1
|Ω|

∫

Ω u = 1
|Ω|

∫

Ω f for E(u) < +∞. Thus E has a minimizer.

• Uniqueness :

We notice that the second term of the functional is strictly convex: it is the square norm in a
Hilbert space.

Since the first term is convex, the functional is strictly convex : the minimizer is unique.

�

We introduce the notation v = f − u, when u is the unique minimizer of the TV-Hilbert
problem.

Theorem 3.1 (Characterization of minimizers). Let f ∈ L2(Ω, RM ).

(i) If ‖Kf‖∗ ≤ λ then the solution of the TV-Hilbert problem is given by (u,v) = (0,f).

(ii) If ‖Kf‖∗ > λ then the solution (u,v) is characterized by:

‖Kv‖∗ = λ and 〈u,Kv〉L2(Ω,RM ) = λ|u|TV .

Proof:

(i) (0,f) is a minimizer iff

∀h ∈ BV (Ω, RM ),∀ǫ ∈ R, |ǫh|TV +
1

2λ
‖f − ǫh‖2

H ≥
1

2λ
‖f‖2

H,

which is equivalent to |ǫ||h|TV +
1

2λ
ǫ2‖h‖2

H −
1

λ
ǫ〈f ,h〉H ≥ 0.

We can divide by |ǫ| → 0, and depending on the sign of ǫ we get :

±〈f ,h〉H ≤ λ|h|TV .

If (0,f) is a minimizer, we can take the supremum for h ∈ BV (Ω, RM ). By definition of the
*-norm, we have : ‖Kf‖∗ ≤ λ.

Conversely, if f ∈ L2(Ω, RM ) is such that ‖Kf‖∗ ≤ λ, the second inequality is true , thus (0,f)
is a minimizer.
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(ii) As before, let us characterize the extremum: (u,v) is a minimizer iff

∀h ∈ BV (Ω, RM ),∀ǫ ∈ R, |u + ǫh|TV +
1

2λ
‖v − ǫh‖2

H ≥ |u|TV +
1

2λ
‖v‖2

H,

or |u + ǫh|TV +
1

2λ
ǫ2‖h‖2

H −
1

λ
ǫ〈v,h〉H ≥ |u|TV .

By the triangle inequality, we have:

|u|TV + |ǫ||h|TV +
1

2λ
ǫ2‖h‖2

H −
1

λ
ǫ〈v,h〉H ≥ |u|TV

|h|BV ≥
1

λ
〈v,h〉H

Taking the supremum : ‖Kv‖∗ ≤ λ.

Moreover, choosing h = u, ǫ ∈] − 1, 1[:

(1 + ǫ)|u|BV ≥
1

λ
ǫ〈v,u〉H + |u|TV

For ǫ > 0 : |u|TV ≥
1

λ
〈v,u〉H

For ǫ < 0 : |u|TV ≤
1

λ
〈v,u〉H

We deduce that ‖Kv‖∗|u|TV ≥ 〈v,u〉H = λ|u|TV , and by the first upper-bound inequality, we
have ‖Kv‖∗ = λ.

Conversely, let us assume these equalities hold. Then :

|u + ǫh|TV +
1

2λ
‖v − ǫh‖2

H ≥
1

λ
〈(u + ǫh),Kv〉L2(Ω,RM ) +

1

2λ
‖v‖2

H +
1

2λ
‖h‖2

Hǫ2 −
1

λ
ǫ〈h, v〉H

≥ |u|TV +
1

2λ
‖v‖2

H.

�

The mapping v 7→ sup|u|TV 6=0
〈u,Kv〉2L(Ω,RM )

|u|TV
is convex, lower semi-continuous for the H strong

topology as a supremum of convex lower semi-continuous functions. As a consequence, for λ > 0 the
set

Gλ = {v ∈ L2(Ω, RM ), ‖v‖∗ ≤ λ}

is a closed convex set, as well as K−1Gλ. The orthogonal projection of this set is well-defined and we
can notice that Theorem 3.1 reformulates :

{
v = PH

K−1Gλ
(f)

u = f − v.

Indeed, if (u,v) is a minimizer of the TV-Hilbert problem, with f = u + v, we have v ∈ K−1Gλ and
for any ṽ ∈ K−1Gλ,

〈f − v, ṽ − v〉H = 〈u,Kṽ〉L2(Ω,RM ) − 〈u,Kv〉L2(Ω,RM ) ≤ ‖Kṽ‖∗|u|TV − λ|u|TV ≤ 0,
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thus by the equivalent definition of the projection on a closed convex set (see Ekeland-Témam [35]),
we obtain the desired result.

Consequently, v is the orthogonal projection of f on the set K−1Gλ where

Gλ = {λdiv ~p, |~p| ≤ 1}

(see Theorem 2.2), and the problem is equivalent to its dual formulation:

inf
|~p|≤1

‖λK−1 div ~p − f‖2
H. (11)

4 Projected gradient Algorithm

Fast algorithms can be obtained by solving the dual formulation (11). For grayscale images, the
famous projection algorithm by A. Chambolle [20] was the inspiration for all the following algorithms.
We present here a projection algorithm, and we provide a complete proof of convergence of this
scheme. We note that an independent work has just been reported in [43], where the authors M.
Zhu, S.J. Wright, and T.F Chan have also applied the projected gradient method for solving the dual
formulation of total variation minimization for image denoising They have a general framework also,
although applied only to scalar image denoising and not related to image decompositions.

4.1 Discrete setting

From now on, we will work in the discrete case, using the following convention. A grayscale image is
a matrix of size N × N . We write X = R

N×N the space of grayscale images. Their gradients belong
to the space Y = X × X. The L2 inner product is 〈u, v〉X =

∑

1≤i,j≤N ui,jvi,j.

The gradient operator is defined by (∇u)i,j = ((∇u)xi,j , (∇u)yi,j) with:

(∇u)xi,j =

{
ui+1,j − ui,j if i < N

0 if i = N
and (∇u)yi,j =

{
ui,j+1 − ui,j if j < N

0 if j = N.

The divergence operator is defined as the opposite of the adjoint operator of ∇:

∀~p ∈ Y, 〈−div ~p, u〉X = 〈~p,∇u〉Y

(div ~p)i,j =







px
i+1,j − px

i,j if 1 < i < N

px
i,j if i = 1

−px
i−1,j if i = N

+







px
i,j+1 − py

i,j if 1 < j < N

py
i,j if j = 1

−py
i,j−1 if j = N.

A color image is an element of XM . The gradient and the divergence are defined component by
component, and the L2 inner product is given by :

∀u,v ∈ XM , 〈u,v〉XM =
M∑

k=1

〈u(k), v(k)〉X

12



∀~p, ~q ∈ Y M , 〈~p, ~q〉Y M =

M∑

k=1

〈p(k), q(k)〉Y

so that the color divergence is still the opposite of the adjoint of the color gradient.

4.2 Bresson-Chan algorithm

Problem (11) for grayscale images was tackled in [20] in the case K = Id, then in [13] for a general K.
For color images, X. Bresson and T. Chan [19] showed that Chambolle’s projection algorithm could
still be used when K = Id. It is actually easy to check that it can be used with a general K for color
images as well.

Following the steps of [13], one can notice that, provided τ ≤ 1
8‖K−1‖

L2
, the fixed point iteration:

~p n+1 =
~p n + τ(∇(K−1div ~p n − f/λ)

1 + τ |∇(K−1div ~p n − f/λ)|
(12)

gives a sequence (~p n)n∈N such that λK−1div ~p n+1 → vλ, and f − λK−1div ~p n+1 → uλ when
n → +∞.

Notice that the upper bound on τ is the same as for grayscale images.

4.3 Projected gradient

It was recently noticed ([21], [12]), that Problem (11) for grayscale images could be solved using a
projected gradient descent. This is the algorithm we decided to extend to the case of color images.

Let B be the discrete version of our set of test-functions :

B = {v ∈ Y M ,∀ 1 ≤ i, j ≤ N, |vi,j |2 ≤ 1}.

The orthogonal projection on B is easily computed:

PB(x) =

(
x1

max{1, |x|2}
,

x2

max{1, |x|2}

)

.

The projected gradient descent scheme is defined by :

~pm+1 = PB
(
~pm+1 + τ∇(K−1div ~pm − f/λ

)
(13)

which amounts to:

pm+1
i,j =

pm
i,j + τ∇(K−1div pm − f

λ
)i,j

max
(

1, |pm
i,j + τ∇(K−1div pm − f

λ )i,j |2

) (14)

where τ = λ
µ
.

The convergence result for the projected gradient descent in the case of elliptic functions is
standard (see [27], Theorem 8.6-2). Yet in our case the functional is not elliptic, and the proof needs
a little more work.
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Proposition 4.1. If 0 < τ < 1
4‖K−1‖ , then algorithm (14) converges. More precisely, there exists

~̃p ∈ B such that :
lim

m→∞
(K−1 div ~pm) = K−1 div ~̃p

and

‖λK−1 div ~̃p − f‖2
H = inf

~p∈B
‖λK−1 div ~p − f‖2

H

Proof: Writing

‖K−1 div ~q−f/λ‖2
H = ‖K−1 div ~p−f/λ‖2

H+〈KK−1 div (~q− ~p),K−1 div ~p−f/λ〉L2 +O(‖~q− ~p‖2),

we begin by noticing that ~p is a minimizer iff:

~p ∈ B and ∀~q ∈ B,∀τ > 0, 〈~q − ~p, ~p − (~p + τ∇(K−1 div ~p − f/λ))〉L2 ≥ 0

Or equivalently:

~p = PB
(
~p + τ(∇(K−1 div ~p − f/λ)

)

where PB is the orthogonal projection on B with respect to the L2 inner product.

We know that such a minimizer exists. Let us denote it by ~p.

• Now let us consider a sequence defined by (13), and write A = −∇K−1 div . We have :

‖~pk+1 − ~p‖2 = ‖PB(~pk + τ∇(K−1 div ~pk − f/λ)) − PB(~p + τ∇(K−1 div ~p − f/λ))‖2

≤ ‖~p − ~pk + τ∇K−1 div (~p − ~pk)‖2 since PB is 1-Lipschitz [27]

≤ ‖(I − τA)(~p − ~pk)‖2

Provided ‖I − τA‖ ≤ 1, we can deduce :

‖~pk+1 − ~p‖ ≤ ‖~pk − ~p‖ (15)

and the sequence (‖~pk − ~p‖) is convergent.

• A is a symmetric positive semi-definite operator. By writing E = ker A and F = ImA, we have:

Y M = E
⊥
⊕ F

and we can decompose any ~q ∈ Y M as the sum of two orthogonal components ~qE ∈ E and
~qF ∈ F . Notice that by injectivity of K−1, E is actually equal to the kernel of the divergence
operator.

Let µ1 = 0 < µ2 ≤ . . . ≤ µa be the ordered eigenvalues of A.
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‖I − τA‖ = max(|1 − τµ1|, |1 − τµa|)

= max(1, |1 − τµa|)

= 1 for 0 ≤ τ ≤
2

µa

We can restrict I − τA to F and then define :

g(τ) = ‖(I − τA)|F‖ = max(|1 − τµ2|, |1 − τµa|)

< 1 for 0 < τ <
2

µa

• Now we assume that 0 < τ < 2
µa

. Therefore, inequality (15) is true and the sequence (~pk)

is bounded, and so is the sequence (K−1 div ~pk). We are going to prove that the sequence
(K−1 div ~pk) has a unique cluster point. Let (K−1 div ~pϕ(k)) be a convergent subsequence. By
extraction, one can assume that ~pϕ(k) is convergent too, and denote by ~̃p its limit.

Passing to the limit in (13), the sequence (~pϕ(k)+1) is convergent towards:

~̂p = PB
(

~̃p + τ∇(K−1div ~̃p − f/λ)
)

Using (15), we also notice that :

‖~̃p − ~p‖ = ‖~̂p − ~p‖

As a consequence:

‖~̃p − ~p‖2 = ‖~̂p − ~p‖2

= ‖PB
(

~̃p + τ∇(K−1div ~̃p − f/λ)
)

− PB
(
~p + τ∇(K−1div ~p − f/λ)

)
‖2

≤ ‖(I − τA)(~̃p − ~p)‖2

≤ ‖(~̃p − ~p)E‖
2 + g(τ)2‖(~̃p − ~p)F ‖

2

< ‖~̃p − ~p‖2 if (~̃p − ~p)F 6= 0

Of course, this last inequality cannot hold, which means that ‖(~̃p − ~p)F ‖ = 0. Hence

(~̃p − ~p) ∈ E = ker A and K−1 div ~̃p = K−1 div ~p

so the sequence (K−1 div ~pk) is convergent.

• The last remark consists in evaluating µa. We have:

µa = ‖∇K−1 div ‖ ≤ ‖∇‖‖K−1‖‖ div ‖

Since ‖ div ‖2 = ‖∇‖2 = 8 (see [20], the result is still true for color images), we deduce that

µa ≤ 8‖K−1‖

15



�

Since we are only interested in v = λK−1div ~p, Proposition (4.1) justifies the validity of algo-
rithm (13). Yet it is possible to prove that ~p itself converges.

Lemma 4.1. Let P orthogonal projection on a nonempty closed convex set K. Let Q = Id−P . Then
we have:

‖Q(v1) − Q(v2)‖
2 + ‖P (v1) − P (v2)‖

2 ≤ ‖v1 − v2‖
2 (16)

Proof:

‖Q(v1) − Q(v2)‖
2 + ‖P (v1) − P (v2)‖

2

= ‖v1 − v2 + P (v1) − P (v2)‖
2 + ‖P (v1) − P (v2)‖

2

= ‖v1 − v2‖
2 + 2‖P (v1) − P (v2)‖

2 − 2〈P (v1) − P (v2), v1 − v2〉

= ‖v1 − v2‖
2 + 2〈P (v1) − P (v2), P (v1) − P (v2) − v1 + v2〉

= ‖v1 − v2‖
2 + 2 〈P (v1) − P (v2), P (v1) − v1〉

︸ ︷︷ ︸

≤0

+2 〈P (v2) − P (v1), P (v2) − v2〉
︸ ︷︷ ︸

≤0

(using the characterization of the projection on a nonempty closed convex set [27]).

�

Remark: We have:

~p = PB(~p − τ(A~p + ∇f/λ)) = ~p − τ(A~p + ∇f/λ)) − QB(~p − τ(A~p + ∇f/λ))

And thus:

−τ(A~p + ∇f/λ)) = QB(~p − τ(A~p + ∇f/λ)) (17)

Corollary 4.1. The sequence ~pk defined by (13) converges to ~p unique solution of problem (11).

Proof: Using the above lemma, we have:

‖QB(~p − τ(A~p + ∇f/λ)) − QB(~pk − τ(A~pk + ∇f/λ))‖2

+‖PB(~p − τ(A~p + ∇f/λ)) − PB(~pk − τ(A~pk + ∇f/λ))‖2

≤ ‖~p − τ(A~p + ∇f/λ) − ~pk + τ(A~pk + ∇f/λ)‖2

≤ ‖~p − ~pk‖2 + τ2‖A(~p − ~pk))‖2 − 2τ〈~p − ~pk, A(~p − ~pk)〉

Hence:

‖QB(~p − τ(A~p + ∇f/λ)) − QB(~pk − τ(A~pk + ∇f/λ))‖2 + ‖~p − ~pk+1‖2

≤ ‖~p − ~pk‖2 + τ2‖A(~p − ~pk))‖2 − 2τ〈~p − ~pk, A(~p − ~pk)〉

16



But we have already shown that ‖~p − ~pk‖ converges, and that K−1div (~p − ~pk) → 0 (therefore
A(~p − ~pk) → 0). Hence, passing to the limit in the above equation, we get:

Q(~pk − τ(A~pk + ∇f/λ)) → QB(~p − τ(A~p + ∇f/λ))

We thus deduce from (17) that

QB(~pk − τ(A~pk + ∇f/λ)) → −τ(A~p + ∇f/λ)

Remembering that PB + QB = Id, we get:

~pk+1 = PB(~pk − τ(A~pk + ∇f/λ)) = (Id − QB)(~pk − τ(A~pk + ∇f/λ))

Hence:
~pk+1 − ~pk = −τ(A~pk + ∇f/λ)) − QB(~pk − τ(A~pk + ∇f/λ))

Passing to the limit, we get:
~pk+1 − ~pk → 0

We can now pass to the limit in (13) and get that ~pk → ~p.

�

5 Applications to color image denoising and decomposition

In this last section, we apply the projected gradient algorithm to solve various color image problems.

5.1 TV-Hilbert model

5.1.1 The color ROF model

As an application of (14), we use the following scheme for the ROF model (9):

pm+1
i,j =

pm
i,j + τ∇(div pm − f

λ )i,j

max
(

1, |pm
i,j + τ∇(div pm − f

λ )i,j|2

) (18)

5.1.2 The color OSV model

As for the OSV model (10), we use:

pm+1
i,j =

pm
i,j − τ∇(∆div pm + f

λ )i,j

max
(

1, |pm
i,j − τ∇(∆div pm + f

λ )i,j|2

) (19)
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5.2 The color A2BC algorithm

Following Y. Meyer [44], one can use the G(Ω) space to model textures, and try to solve this problem:

inf
u

|u|BV + α‖f − u‖G (20)

In [7], J.-F. Aujol and G. Aubert , L. Blanc-Féraud and A. Chambolle approximate this problem
by minimizing the following functional:

Fµ,λ(u,v) =

{
|u|BV + 1

2λ
‖f − u − v‖2

L2(Ω) if (u,v) ∈ BV (Ω, R) × Gµ

+∞ otherwise
(21)

or equivalently :

Fµ,λ(u,v) = |u|BV +
1

2λ
‖f − u − v‖2

L2(Ω) + χGµ(vn)

with χGµ(v) =

{
0 if v ∈ Gµ

+∞ otherwise

The generalization to color images was done by J.-F. Aujol and S. H. Kang in [10] using a
chromaticity-brightness model. The authors used a gradient descent in order to compute the projec-
tions, which is rather slow, and requires to regularize the total variation.

In [19], X. Bresson and T. Chan used the following scheme (but relying on Chambolle’s algo-
rithm) for color images in order to compute the projections. As in the grayscale case, the minimization
is done using an alternate scheme (but in the present paper we use the projected gradient descent
scheme described before to compute the projections):

• Initialization:
u0 = v0 = 0

• Iterations:

vn+1 = PGµ(f − un) (22)

un+1 = f − vn+1 − PGλ
(f − vn+1) (23)

• Stop if the following condition is true:

max(|un+1 − un|, |vn+1 − vn|) ≤ ǫ

In [11], it is shown that under reasonable assumptions, the solutions of Problem (21) converge
when λ → 0 to a solution of Problem (20) for a certain α.

5.3 The color TV-L1 model

The TV-L1 model is very popular for grayscale images. It benefits from having both good theoretical
properties (it is a morphological filter) and fast algorithms (see [30]). In order to extend it to color
images, we consider the following problem:
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inf
u

|u|TV + λ‖f − u‖1 (24)

with the notation:

‖u‖1 =

∫

Ω

√
√
√
√

M∑

l=1

|ul|2

(like for the total variation we have decided to have a coupling between channels).

Our approach is different from the one used by J. Darbon in [30], since it was using a channel by
channel decomposition with the additional constraint that no new color is created. As for the A2BC
algorithm, we are led to consider the approximation:

inf
u,v

|u|BV +
1

2α
‖f − u − v‖2

2 + λ‖v‖1

Once again, having a projection algorithm for color images allows us to generalize easily this
problem. In order to generalize the TV-L1 algorithm proposed by J.-F. Aujol, G. Gilboa, T. Chan
and S. Osher ([14]), we aim at solving the alternate minimization problem:

(i)

inf
u

|u|BV +
1

2α
‖f − u − v‖2

2

(ii)

inf
v

1

2α
‖f − u − v‖2

2 + λ‖v‖1

The first problem is a Rudin-Osher-Fatemi problem. Scheme (14) with K = Id is well adapted
for solving it. For the second one, the following property shows that a ”vectorial soft thresholding”
gives the solution:

Proposition 5.1. The solution of problem (ii), is given by:

v(x) = V Tαλ(f(x) − u(x)) =
f(x) − u(x)

|f(x) − u(x)|2
max (|f(x) − u(x)|2 − αλ, 0) almost everywhere

The proof of this last result is a straightforward extension of Proposition 4 in [14].

Henceforth, we propose the following generalization of the TV-L1 algorithm:

• Initialization:
u0 = v0 = 0

• Iterations:

vn+1 = V Tαλ(f − un) (25)

un+1 = f − vn+1 − PGα(f − vn+1) (26)

• Stop if the following condition is satisfied:

max(|un+1 − un|, |vn+1 − vn|) ≤ ǫ

19



0 50 100 150 200 250

10
6.1

10
6.2

10
6.3

Energy vs iterations

OSV 1/64
OSV 1/32
Projected OSV 1/32

0 50 100 150 200 250 300 350 400
10

4

10
5

10
6

10
7

10
8

Square distance to the limit vs iterations

Chambolle
Projected

Figure 1: Left: Energy vs iterations of the Osher-Solé-Vese model with Chambolle’s projection algo-
rithm (in green and blue - stepsize 1/64 and 0.031) and with the Projected gradient algorithm (in red
- stepsize 0.031). Right: L2 square distance (on a logarithmic scale) between the limit value (2000
iterations) vs the number of iterations, for OSV using 1/64 stepsize.

5.4 Numerical experiments

Figure 1 shows the decrease of the energy and the convergence of the projected gradient algorithm
for the OSV model (10). We compare scheme (14) with the projection algorithm of [8] (which is
a straightforward modification of Chambolle’s projection algorithm [20]). Both algorithms behave
similarly and it is hard to tell whether one converges faster than the other. Figures 2 and 3 display
denoising results using ROF (9) and OSV (10) models. The images look very similar but since the
OSV model penalizes much more the highest frequencies than the ROF model [14], the denoised image
still shows the lowest frequencies of the noise.

Figure 4 shows the noisy part using these experiments. As one could expect it is much more
oscillating in the OSV model.

Figures 5 and 6 display a cartoon-texture decomposition experiment using different kinds of
texture. The algorithm used were A2BC and TVL1. Both results look good.

On Figure 7, a denoising experiment was performed using salt-and-pepper noise. The denoised
picture looks quite good and surprisingly better than the original image! This is because the picture
we used had some compression artifacts that the algorithm removed.
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