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Abstract

In this paper, we propose a new mathematical model for detecting in an image singularities of codimension
greater than or equal to two. This means we want to detect points in a 2-D image or points and curves in a 3-
D image. We drew one’s inspiration from Ginzburg-Landau (G-L) models which have proved their efficiency
for modeling many phenomena in physics. We introduce the model, state its mathematical properties and
give some experimental results demonstrating its capability.
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1. Introduction

The goal of this paper is to propose a new mathemat-
ical model for detecting in an image singularities of
codimension greater than or equal to two. This means
we want to detect points in a 2-D image or points and
curves in a 3-D image. To the best of our knowl-
edge there exist in the literature few works tackling
this problem. Most of existing models are devoted to
the detection of singularities of codimension-one, e.g.
curves in R? or surfaces in R3. Recently Lorigo et al
[16] have developed a codimension-two geodesic active
contour scheme for the segmentation of thin structures.
Their algorithm is based on work in differential geom-
etry [3] concerning the evolution of arbitrary dimen-
sional manifolds in arbitrary dimensional space. See
also [19] for a diffusion-generated motion scheme for
codimension-curves. Lorigo et al have applied their al-
gorithm for automatically segmenting blood vessels in
volumetric resonance angiography images.

Here our approach is quite different.We drew one’s
inspiration from Ginzburg-Landau (G-L) models which
have proved their efficiency for modeling many phe-
nomena in physics and in particular in the theory of
superconductors. Though our final objective is to treat
3D-images we focus in this paper on 2D-images. We
introduce the model, state its mathematical properties
and give some experimental results demonstrating its
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capability. Actually there exists a general theory of
G-L models involving functions u from R"** into R*
for the study of singularities of codimension-k in an
ambient space of dimension n + k (see [2]).

Here we will mainly examine the case k = 2 and
n = 0. However we will also show some experiments in
the case k = 1 and n = 1. In the latter situation we will
see that our algorithm is able to detect curves which
are not necessarily closed and that we can also capture
certain quadruple junctions. Moreover our approach is
quite general since we could treat noisy images. The
plan of the paper is organized as follows.

In section 2 we introduce the G-L model and give
its main physical and mathematical properties. Then
in section 3 we show how such a model can be adapted
to the detection of points in 2-D images. In section 4
we display some numerical results demonstrating that
our algorithm also applies for the detection of curves in
2-D images and in particular its capability to process
the detection of non-closed curves.

2. The Ginzburg-Landau model

In this section we introduce the Ginzburg-Landau
model. We first present the origin of the model, then
we give its main mathematical properties and finally
we show how this model can be used for detecting in
an image singularities of codimension-two. For the in-



troduction of the model we follow [20].

The Ginzburg-Landau was designed in the fifties
by Ginzburg and Landau [13] to modelize phenomeno-
logical patterns in superconductor material near their
critical temperature. Semiconductors have the particu-
larity that when they are cooled down below a critical
temperature they become “ superconducting ” which
means that there can be permanent currents without
dissipation. A common simplification is to restrict
to the two-dimensional case by considering a section
2 C R? of an infinite cylindrical domain of R3. The
behaviour of the material submitted to an external field
hey is modeled through the minimization of an energy
which is, after renormalization:

J(u,A) = %/(|Vufz'Au|2 (2.1)
Q
1

+2—52(1— |u\2)2)dx+/|h—hex|2)dx
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where A is the vector potential, and A = curl A the
induced magnetic field. The parameter ¢, called the
coherence length, is a small dimensionless constant de-
pending only of the material and of the temperature.
u is a complex-valued function which indicates the lo-
cal state of the material: if |u(x)| ~ 1 the material
is in a superconducting phase while if |u(x)| ~ 0 it
is in its normal phase (with no superconducting prop-
erty). A rigorous mathematical study of the behav-
ior of the minimizers of the G-L functional shows that
there exists a phase-transition between these two previ-
ous states. This transition depends on two critical val-
ues hy = O(|loge|) and hy = O( Z%). If hey < hy the
material is superconducting: |u(z)| ~ 1. If hey = hy
there is a phase transition where coexist normal and
superconducting phases. The normal phase is local-
ized in small regions of characteristic size ¢ called *
vortices 7 surrounded by superconducting regions. At
the center of the vortex |u| ~ 0. When h., = hs the
superconductivity disappears |u|~ 0 and h = he,.

At this stage the reader could think we are far
from image analysis problems. In fact G-L functionals
have been used in many areas of physic or chemistry.
Moreover G-L models have already been used for im-
age inpainting tasks [15, 14]. Let us note incidentally
that there exist other works in image processing using
complex-values functions (see for example [12]). May
be what it is important to keep in mind is that G-L
models are able to capture singularities, e.g. vortices
or singularities of codimension 2 in R? or R?. To bet-
ter understand such a phenomenon it would be timely
to state some mathematical results. There exists an
important literature concerning G-L models. It is not
the place here to review all these results. We will only
give those which are the most linked to our purpose.
Most of them rely on the simplified energy:

E.(u) =

N =

1 2
Q/(|w2+ (L=l de  (22)

or on the associated flow governed by the evolution
equation:

1 2
S = Aut u(1-[u) (2.3)

ot

In order to avoid trivial solution and to get singu-
larities we need to add some (singular) data. With
the functional (2.2) Dirichlet data u(z) = up(z) on the
boundary 0} are often associated, but Neumann con-
ditions can also be used. Instead of Dirichlet conditions
we can incorporate in (2.2), as we will do later, a data
term of the type [ |u — uo|” dz. For (2.3) we need to

Q

define an initial condition at ¢t = 0 : u(z,0) = ug(x) as
well as boundary conditions.

We now state some typical mathematical results for
(2.2). We give a result due to Bethuel-Brezis-Helein
[8]. It concerns functional (2.2) with a Dirichlet con-
dition. Though Dirichlet condition is not very realistic
in physical situations, this case reflects well the gen-
eral behavior of minimizers of the G-L functional. We
denote by d = deg(ug, 092) the Brouwer degree) (see
Appendix A for the definition of the Brouwer degree)
of ug around 052 .

We will identify the Sobolev space H'(2;C) to
HYQ;R?) = {u: Q — R?% u € L?(Q)? and Vu €
L?()*} where Vu stands for the distributional Jaco-
bian of u [1]. We will denote by H;_ (£2;R?)) the set of
functions u in H'(;C) such that u = uy on 9.

We first state the result and then we will try to give
an intuitive explanation of it.

Theorem 2.1. [8]
Assume that Q@ C R? is conver, |ug] = 1 and
d = deg(ug, Q) > 0, then

1. Functional (2.2) has a minimizer u. in
H} (Q;R?)).  Moreover u. has ezxactly d
zeroes in () and each one is of degree 1.

2. There is a subsequence ¢, — 0 and ezactly
d points ay,as,...,aq in @ and a smooth func-

tion w. from Q\{ai,as,...,aq} with |u. = 1,
— AU, = U, \Vu*|2, and u = ug on 9 such
that

uEn — Ux in Ol]f)(,(Q\ {a15a27---7ad})a Vk

In fact in [8] there are many other results concern-
ing for example bounds for the energy or the localiza-
tion of singularities.



Let us now comment the above result. Roughly
speaking the theorem tells us that we are able to con-
struct a sequence u., such that for e, small enough
|ue|] &~ 1 almost everywhere and w., has d zeroes
which could be understood as singularities. These
singularities are the consequence of the assumption
d = deg(up,0Q) > 0. Brouwer or topological degree
is a mathematical tool which is used to prove the ex-
istence of solutions for equations in R™ or in Banach
spaces. By using the notion of degree we can prove the
following result which is closely related to our purpose
: let us consider a bounded and simply connected do-
main  in R? and a smooth mapping g : 90 — S' |
where S' = {z € R% |z| =1}. If deg(g,09,0) # 0,
then there does not exist u € H!(Q; C) such that
u/9q = g which implies that H,(€; C) = (. When
O = {z; || < 1} and g(x) = = this result means that
there is no retraction of the disc onto its boundary.
Geometrically this also means there is a topological
obstruction and this may be the cause in Theorem 2.1
of the creation of singular points.

Of course in image analysis we generally do not use
Dirichlet conditions and the previous theorem does not
apply directly but it tells us that singularities in data
can be detected by such a model.

3. Detection of singularities of

codimension-2 in 2-D images

Let us now go back to the problem of detecting sin-
gularities of codimension-two in a 2-D image. First,
we have from an initial 2-D image f(x) to construct
a complex-value image ug (we only consider gray-level
image). There are many ways for doing it. We choose
the one’s proposed by [15]. We first rescale the inten-
sity image f(z) to the interval [—1, 1], then f(z) is iden-
tified with the real part of a complex valued function
ug: 2 — C by defining I'm(ug) = /1 — f(x)?, so that
|up| = 1. For detecting singularities of codimension-
two (points) we propose to search for minimizers u. €
H'(Q; C) of the following G-L functional :

p [ al@) 9P+ 5 [ (=)
/|u—u0| (3.1)

where a(z) is a diffusion coefficient. If we denote by
u (for the sake of clarity, we omit the ¢ dependence) a
minimizer of E.(u) then it satisfies the Euler-Lagrange
system :

F.(u) =

—pdiv (a(z) Vu)— (1—|u|)—|—)\(u—u0)=OinQ
(3.2)
and 2% =0 on 9 (where N is the outward unit nor-

mal to 09).

In the original Ginzburg-Landau functional, there
is no diffusion coefficient. The main reason for which
we introduce a(x) comes from the fact that we do not
impose Dirichlet condition on the boundary 0 of €,
and then the natural boundary condition associated to
the minimization of F is a Neumann boundary condi-
tion: 3 ~ = 0 on 9Q. In this case, as pointed out by
[11], it may happens that vortices of initial data can
eventually disappear from the domain (for example a
vortex can merge with other vortices). Hence to sta-
bilize each vortex we need to create an energy barrier
around the vortex by choosing an appropriate diffusion
coefficient a(x). Here as vortices are essentially created
by discontinuity points, we choose a(x) as follows:

a() = W(AS)

where f is the initial gray level image and W is a non-
increasing function with W(0) = 1 and W (+o0) = 0.
Typically, we choose

(3.3)

1

O = T e

(3.4)

where « is a parameter modelling the size of the dis-
continuity. Moreover, since f may not be twice differ-
entiable (in fact f is not continuous at points we want
to detect), we first smooth it by convolution with a
Gaussian kernel before computing W.

3.1 Evolution equation

As it is often used, to solve (3.2), we embed it into a
dynamical scheme :

ou

5 = Hdiv(a(z) Vu) +

(1 — |ul ) A (u — up)
(8.5)
with Neumann boundary conditions and initial condi-
tion u(t = 0,z) = up(z).
We write u = (u1,uz), so that we can rewrite (3.5)
as:

%: pdiv (a(z) Vur) + Sug (1— (uf 4 ud))
—A(u1 = (uo)1)

%: pdiv (a(z) Vug) + Sug (1 — (uf + ud))
—A (uz — (uo)2)

(3.6)
(ug)1 is the original image, after it has been rescaled
between -1 and 1. We take (ug)2 = /1 — (ug)? (so
that (uo)f + (uo)3 = 1).

3.2 Discretization of the model

The image is a two dimension vector of size N x N.
We denote by X the Euclidean space RV*Y and Y =
X x X. The space X will be endowed with the scalar
product (f,g9)x = > i<, j<n fi,j9i,; and the norm

Ifllx = /(f, f)x. We introduce a discrete version



of the gradient operator. If f € X, the gradient Vf
is a vector in Y given by: (Vf)i; = (Vf)i;, (Vi)

. i —fi ifi<N
with (Vf);; = { (J;-H,J fi o
2 fi,j+1 — fi,j lf_] <N
and (Vf)w‘_{ 0 if j =N

We also introduce a discrete version of the diver-
gence operator. We define it by analogy with the con-
tinuous setting by div = —V* where V* is the ad-
joint of V: that is, for every p € Y and f € X,
(=divp, f)x = (p,Vf)y. It is easy to check that:

Pij—Pii,; if1<i<N
. 1 i
(div(p))i; = Pij if i=1 (3.7)
—Pi_1; if i=N
2. —p? ifl1<j<N
Pij —Pij-1 Ml<j<
+ Pi; if j=1
p?,jq if j=N

Finally, we define a discrete version of the Laplacian
operator by setting Af =div (Vf) if f € X.

Time discretization: We use an explicit Euler

scheme with respect to the time variable ¢, that is we
ntl_n

approximate % by u”(s% (where n stands for the

iteration time).

To solve (3.5), we use an explicit scheme:

fjl = u:'J + ot (u(div (ai)ju?;j)

1
+tui; (1 - ‘“?,j’Q) = A(ug; - “Om‘))

with u'(i),j = (UJO)Z‘J‘ V(Z,j)
We thus get the following system (we omit
subindices 4, j refering to the pixel location):

u (3-8)

ul ™t = uf + 8t (pu(div (auf)
bt (1= () +)°))

uptt = 1:’;&116 @Efifv) 1()3 ) (3.9)
+4up (1 - ((U?H)? + (ug)2)>
—A (u2 — (up)2))

3.3 Numerical results
3.3.1 Parameters

We need to fix several parameters before running our
algorithm. Fortunately, they have an intuitive expla-
nation which make them easy to fix. We first need to
fix the parameters )\, u and € used in (3.6).

4, Detection of codimension-1
structures in 2D-images

As we mentionned in the introduction, in this case,
we do not work with complex-values function but with

1. € is to be small. We use values ranging from 0.1
to 1.0 (we have mainly used € = 0.1 and € = 0.5).
It controls the critical size of the points our algo-
rithm detect, i.e. the resolution of the segmented
image. The smaller it is, the finer the resolution
is. Nevertheless, one must not set it too small,
because the spatial discretization of the image is
fixed. Moreover, the smaller e is, the smaller the
time discretisation step 0t has to be fixed (other-
wise, the numerical algorithm does not converge).

2. X is the fidelity parameter to the initial data.
Since we initialize u to ug, we do not need to
use a large value. In our numerical experiments,
we have almost always used A = 0.1.

3. p is the regularization parameter. We use val-
ues ranging from 0.1 to 50.0 (but we have mainly
used g = 1). It mainly depends on how noisy
the initial image is. The larger the noise is, the
larger p should be.

We also need to fix the parameter « in (3.4). It rep-
resents the critical size of the step of the discontinuity
that our algorithm detects. The larger it is, the larger
the detected steps are.

And as we had said, before computing A f in (3.3),
we regularize f by convolution with a Gaussian kernel
of standard deviation 0. We use values ranging from 3
to 7. The larger the noise is, the larger we set o (in the
case when the original image has not been degraded by
some noise, we sometimes do not regularize f).

3.3.2 Commentaries

On Figure 1, we show an example on a synthetic im-
age: our algorithm catch the points very well. On Fig-
ure 2, we have added a Gaussian noise (respectively
with standard deviation o = 10, 30 and 50). And the
algorithm still performs well.

On Figure 3, we show what happens on a real im-
age: we catch the dashes of the leopard. Figure 4 is
the same example, but with an additive Gaussian noise
with standard deviation 0 = 20. On both examples,
the shape of the leopard is given by its dashes.

Figure 5 shows an example of a biologic image. Al-
though we use the model (3.1) which is designed to
catch points, we nevertheless detect lines as sequence
of points.

Finally, Figure 6 shows an application to SAR in-
terferometry [6]. In this case too, the lines are formed
by sequences of points. We will come back to this ap-
plication in the next section.

scalar-values functions and we search for a minimizer
of (3.1) as a function u. € H'(Q; R).
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Figure 1: Synthetic image

Noisy image (o = 10)

Noisy image (o = 30)

Noisy image (o = 50)

Points detection
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Points detection

Original image

Figure 2: Noisy synthetic images

Points detection (u = 0.5, € = 0.1)

Figure 3: Detecting points

Points detection (u = 0.1, e = 0.1)




Points Detection

Noisy image (o = 20)

Figure 4: Detecting points in a noisy image (o = 20)

Original image Points Detection

Figure 5: Biological points
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In the existing literature, there are many ap-
proaches to detect lines in an image. For instance,
based on the gradient, there is the classical Canny-
Deriche approach [7]. There has also been a lot of
approaches using snakes and active contours [9, 7, 10,
4, 21, 18, 17].

We propose here a powerfull algorithm to catch
curves in a 2-D image. Comparing with active con-
tours methods, our new algorithm can catch nonclosed
curves, and the initilization is completely automatic.

4.1

As before, we embed PDE (3.2) into a dynamical
scheme :

Evolution equation

Ju ) 1
i pdiv (a(z) u) + S (1—uf) (41)
—A(u—ug) in Q
with g—;{, = 0 on 9. Moreover, we impose u(t =

0,2) = up(z). A and p are positive weighting parame-
ters. We then discretize (4.1) with finite differences.

In Section 3 we had chosen a(x) = W(Af) (see
(3.3)). As the singularities we seek are no longer points
but lines, we now choose:

a(e) = W(V]) (4.2)

where f is the initial gray level image and W is the
same function as in Section 3 (see 3.4).

We use the same numerical scheme as in Section 3
(see (3.8), but now the unknown u is a scalar function.

n-@-l

1
;'] = ui;+ 6t (uAuﬁj + Ui (1 — u?j|2)

2
A (ufly — ;)

The initialization ug is the original image which has
been rescaled between -1 and 1.

(4.3)

4.2 Numerical results

We set the parameters in the same way as in the
preceeding section. We have decided to compare
our model with the classical Canny-Deriche algorithm.
We have used the implemantation in Megawave2
(http://www.cmla.ens-cachan.fr/Cmla/Megawave/).
Figure 7 is an example of segmentation of an image
without any noise. One can see that it gives very good

Conclusion and future

prospects

5.

In this paper, we have displayed some experimental
results using Ginzburg-Landau functionals for the de-
tection of objects of codimension 2 or 1 in a 2-D im-
age. We got a new model to carry out such tasks. We

edges (comparing with the Canny-Deriche edge detec-
tor). The only problem is that our algorithm does not
detect the square. We illustrate more precisely this
problem on Figures 8 and 9. Figure 8 gives an exam-
ple of segmentation with a quadruple junction. In this
case, the algorithm performs very well. But on can see
on Figure 9 that our model cannot handle any quadru-
ple junction. In fact, in many situations, one needs
more than two phases. Here, for quadruple junctions
we need four phases. In other words, the attracting
term in the G-L functional must have four potential
wells. Notice that for n-junctions, n > 4, we only need
four potential wells thanks to the four colors theorem.
We are currently working on modifying our functional
in this direction.

Figure 10 is an example of segmentation of the im-
age of Figure 7 with some Gaussian noise (with stan-
dard deviation o = 20). The result is still a very good
one (because the noise is quite strong).

On Figure 11, we have tested our algorithm on a
non-closed curve. We can see that we can detect it,
even when there is a strong Gaussian noise (with stan-
dard deviation o = 80).

Figure 12 is to be compared with Figure 5. One
clearly sees that both models do not perform the same
way. The model of this section tries to find lines in an
image, whereas the model of the previous section aims
at finding points. Therefore, in this case, the points
are represented by circles, and the lines by their edges
(since they have a too large width with respect to the
parameter ¢ which has been used).

Figure 13 shows a segmentation result on a biolog-
ical image. Contrary to Figure 12, the line are repre-
sented by a single curve (as in Figure 11). This comes
from the width of the lines to be detected and the val-
ure of € (¢ = 0.5 in this case). If we set e smaller, than
the lines are considered as objects with non-negligeable
width (as in Figure 12 or 7).

We come back to SAR image application [6]. We
use our algorithm on the same interferometric image as
in Figure 6 (where the original image is displayed). On
Figure 14, we see that we get too many lines (in fact,
we get twice as many line as we should want). One way
to correct this problem is to use the result we get with
the point version of the algorithm (Figure 6). Thanks
to the previous result, we know which lines we should
keep, and which ones we should drop. This give us the
result displayed on Figure 15.

have also stated some mathematical results about GL
models. However these results are not directly applica-
ble to our functional since we do not impose Dirichlet
boundary conditions. Therefore it remains to make the
complete theoretical study of our model. This will be
made in a future work. Our numerical results confirm
the ineterest in using such an approach. From a nu-
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Figure 15: SAR image segmentation using both models

merical point of view, we also have to go further into
the tuning of the parameter e. It is closely related to
the mesh-size h. We conjecture that a relation of the
type h = O(e) must hold for ensuring the convergence
of the discrete functional to the continuous one’s. That
is why we choose ¢ close to 1 in our experiments since
classically in image processing h = 1. This type of
results have been pointed out for similar problems in

[5].

A . Brouwer degree

There are many ways for defining Brouwer degree (see
for example [22]). An intuitive one is the following :
let us consider a continuous mapping F' on the closed
disk D(O, R) centered at the origin in R? :

F:D(O,R) — R?

As z travels along 0D (O, R) once around the origin in
a positive sense, the image points F'(z) travel along an
oriented curve C. We suppose that O ¢ C. If n, and
n_ denote the number of windings around the origin in
a positive and negative sense then the degree is defined
as

deg (F,D,0) =n4 —n_

A  consequence of this definition is that if
deg (F,D,0) # 0 then there exists zp € D(O,R)
such that F(zg) = 0.

14

An equivalent analytical definition of the degree can
be stated as follows :

Assume that 2 is a bounded domain of R™ ,
F e CYQ; R") and y ¢ F(0Q) U F(S) where S =
{r €Q; F'(z) =0} (F' is the Jacobian matrix) then
the Brouwer degree of the mapping F' relatively to (2
and y is defined as

deg (F,Qy) = Y signF'(x)

z€EF~1(y)
If F:[a,b] — R with F(a) and F(b) # 0 then an easy
computation leads to

0
1
-1

if F(a)F(b) >0
if F(a) <0 and F(b) >0
if F(a) >0 and F(b) <0

Thus deg (F,]a,b],0) # 0 always implies the existence
of a solution of F(z) = 0in | a,b[. This is nothing less
than the classical intermediate-value theorem and the
degree is a useful tool for generalizing this property.

deg (F, Ja,b],0) =
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