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Abstract

This article is concerned with the problem of finding a regular and homogeneous partition of a Lipschitz
open set 2 of R?. This type of problem occurs in image classification which consists in assigning a label
(that is a class or a phase) to each pixel of an observed image. Such a problem can numerically be solved
by using a level set formulation. But this approach generally relies on heuristic arguments. We intend here
to give a theoretical justification in the two phases case. In the first part of the paper, we prove that the
partition problem we consider admits a solution. And in the second part, we justify the numerical approach
which is usually done to compute a solution.
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1. Introduction

This paper is concerned with the problem of finding a regular and homogeneous partition of a Lipschitz open set
Q of R%. A partitionning of ) consists in searching for a family of sets {E;},_, ; such that Q = Ule E; U, Ty
with E;(E; = @ if i # j, and where I'; = 0E; () 2 is the intersection of the boundary of E; with Q. In fact,
r; = Uj# I';;, where I';; = L', i # j, is the interface between E; and E;. By regular, we mean that I';’s are of
minimal length. We also want to get an homogeneous partition in the sense that each set E; is homogeneous
with respect to a given criterion. Typically this type of problem occurs in image classification which consists
in assigning a label (that is a class or a phase) to each pixel of an observed image. Here the feature criterion
is for example the spatial distribution of the intensity, e.g. each class is the set of pixels having the same
distribution. Other discriminant features can be used such as texture for instance. An efficient way to get an
optimal partition is to search for F;’s as minimizers of a partitionning functional of the form:

I I I
F(Ela7EI):{ZF1|+Z/317Q:UEZUF17E2mEj:®1fZ7éJ} (1.1)
i=1 i=1"9 i=1

where |T';| stands for the one-dimensional Hausdorff measure of T';, and B; is a given data term.

A difficulty in the above formulation comes from the fact that unknowns are sets and not functions. To
overcome this difficulty which is a real problem for numerical computations, we often use a level set formulation.
If we assume that we can write E; = {¢; > 0} for some Lipschitz function ¢;, with OE; = {¢; = 0}, then we
can rewrite (1.1) as:

I I I
F(Ey,...,Er) = {2/_0 ds—&-;/QBiH(qbi) DY H(di) = 1} (1.2)

i=1
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where H stands for the Heaviside function. In fact, in real applications, we relax the partionning constraint
Zle H(¢;) =1 by considering the functional:

F(By,...,E Z/ ds—s—Z/BH(bZ /(ZH@—I) (1.3)

or an approximated version of (1.3):

Fo(Ey, ... E; Z/(s (¢4) |V¢1|+Z/BH (¢) /(ZH (¢4) —1) (1.4)

where §, and H, are respectively smooth approximations of the Dirac measure and the Heaviside function.

Functionals of the kind (1.1),(1.2), (1.3) or (1.4) have been abundantly used in the image processing literature
[6, 8, 22, 21, 10, 24], but as far as we know, the theoretical study of such minimization problems has not been
adressed yet. The goal of this paper is to fill this gap in the two phases case (the case I > 2 is more technical
and will be adressed in a future work). Therefore, in this case, we only need one unknown function ¢ and (1.3),
(1.4) simplified:

¢61i:Iz'1£(Q) </¢_0 d5+/(ZBH(¢)> (1.5)
et o (/Q 5a(¢)IV¢+ABHa(¢)) (1.6)

where B € L*°(Q2). Such simplified functionals are used in [8, 22, 21, 10, 24]. But in all these works all the
computations are formal and we intend here to develop a theoretical justification.

The plan of the paper is as follows. We first recall a few basic facts about sets with finite perimeter in
Section 2. We are then in position to study (1.5): we prove the existence of a solution for problem (1.5) in
Section 3. In Section 4, thanks to a change of function ¢y = H,(¢), we get the existence of Lipschitz function for
problem (1.6). This jusitifies the numerical approach used in [8, 22, 21, 10, 24]. We end this paper by showing
some experimental classification results obtained by minimizing (1.6) in Section 5.

2. Sets with finite perimeter

For this section, we refer the reader to [4, 2, 14, 18, 13], our presentation being inspired essentially from [4]. We
first recall the definition of BV () (we suppose that 2, the domain of the image, is a bounded Lipschitz open
set of R?):

Definition 2.1. BV({) is the subspace of functions u € L'() such that the following quantity is finite:

J(u) = sup { | o)y ()i € CHE R, oy < 1} (2.1)

where C1(Q) stands for the set of functions in C'(Q) with compact support in Q. BV(Q2) endowed with the
norm |ul|gyv ) = |ullz1 (o) + J(u) is a Banach space. If u € BV(2), the distributional derivative Du is a
bounded Radon measure and (2.1) corresponds to the total variation |Du|(€).

We now come to the definition of a set with finite perimeter:

Definition 2.2. Let E be a measurable subset of R?2. Then for any open set 2 C R2, we call perimeter of E
in Q, denoted by P(E, ), the total variation of 1x in €, i.e.:

P(E.Q) = sup { [ divada/s € CHOE), [elumie) < 1} (2.2)

We say that E has finite perimeter if P(E, ) < oo



Remark: If F has a C'-boundary, this definition of the perimeter corresponds to the classical one. We then

have:
P(E,Q) =H'(OE(Q) (2.3)

where H! stands for the 1-dimensional Hausdorff measure [4]. The result remains true when E has a Lipschitz
boundary.
In the general case, if E is any open set in €, and if H(OE ) < +oo, then:

P(E,Q) <H'(OE[®) (2.4)

Definition 2.3. We denote by FFE the reduced boundary of E.

D18, @)

FE = {x € support <|D1E| ﬂQ) / vg = lim exists and verifies |vg| = 1} (2.5)

=0 | D1 (B, (2]

Definition 2.4. For all ¢t € [0, 1], we denote by E* the set

er? i ENB@I
{rem s SRR -] 2

of points where E is of density ¢, where B,(z) = {y / |z — y|| < p}. We set 0*E = R?\ (E°|J E") the essential
boundary of E.

Theorem 2.1. [Federer [4]]. Let E a set with finite perimeter in Q. Then:
FE(\QCE? CoE (2.7)
H(o\ (e UFEJE')) =0 (2.8)

Remark: If E is Lipschitz, then OFE C 9*E. In particular, since we always have FE C OF (see [13]):
P(E,Q) =H'(OE()Q) =H'(0"E( Q) = H(FE[ Q) (2.9)

and

Theorem 2.2. [De Giorgi [{]]. Let E a Lebesgue measurable set of R%. Then FE is 1-rectifiable.

We recall that E is l-rectifiable if and only if there exist Lipschitz functions f; : R2 — R such that
E Cc U fi(R).

3. The two phases problem

In this section, 2 will be a bounded Lipschitz open set of R?. We consider a functional involving two terms:
a length penalization term, and a data term. We denote by E a set in ) such that E and Q\F correspond
respectively to the two phases. We call a partitionning functional, the functional:

G(E):/ |D1g|+ | Blg (3.1)
Q Q
We assume that B € L>(2). Let us introduce the three following problems:
1.
inf ds+/ BH ) 3.2
int o ([ as+ [ B (32)
2.
inf (P(E,Q)—i—/ B) (3.3)
EeB(Q) E
3.
inf D B 34
st ([ 10w+ [ B0) (3.4

where B(2) stands for the set of Borel subsets in 2, and Lip(Q2) stands for the set of functions which are
Lipschitz in €.



Remark: The functional (1.6) can be seen as an approximated version of (3.2), in the sense that for all
Lipschitz function ¢, we have (see (4.5)):

timy [ 8,(0)IV0l+ [ (o) - /¢ s+ [ B (3.5)

In the sequel, we will show that these two problems are very close to each other. Problem (3.3) corresponds
to the classification problem with two phases that we have introduced with (3.1). It is a classical problem in
the theory of minimal sets with prescribed mean curvature [2, 17, 18]. The theory of sets with finite perimeter
has already been used many times in image processing [3, 11, 19, 20]. In (3.4), if ¢ is a characteristic function,
then we exactly get (3.1). The main result of this section is that there exists a characteristic function which
is a solution of (3.4) (Proposition 3.2). Then we will be in position to show that (3.2) admits a solution
(Proposition 3.3).

3.1 Study of problem (3.3)

Problem (3.3) has been completely solved by Massari in [17]. We use here the presentation of [2]. We have the
three following results (whose proofs are given in [2, 18]):

Proposition 3.1. Problem (3.3) admits at least one solution.
Theorem 3.1. Let E a solution of (3.3). Then FE = 0*E, and FE is C**.

Thanks to these results, we know that problem (3.3) has at least one solution E, and that moreover E has
a Ct!-boundary. In particular, we have: P(E,Q) = H'(OENQ) (see (2.9)).

3.2 Study of problem (3.4)
Proposition 3.2. There exists E € B(Q) solution of (3.3) such that 15 is a solution of (3.4).
Proof: We consider the following functional defined on {¢) € BV (Q), 0 < ¢ < 1}:
Gw) = [ Bu+ [ il (36)
Q Q
G is convex and l.s.c. on BV —weak *. Thanks to the condition 0 < 1) < 1 we can conclude that there exists a

solution 1 for (3.4).
Let us recall the co-area formula [4]:

/ |Dy| = / D150y ds = / :OP<{wzs}, Q) ds (3.7)

As we impose the condition 0 < ¢ < 1, we can rewrite (3.7):

/\D¢| / ‘D1{¢>S}‘ds—/ ({1p > s}, Q)ds (3.8)

We concentrate now on the second term of the functional. We first remark that, since 0 < ¢ < 1:

() 1
() = / ds = / Ly(z)>s ds (3.9)
0 0

/QBw = /QB(x) (/01 l{w(a:)ZS}dS) dx

(Fubini) =

1
= // B(z)dxds
0 J{y=s}

and thus:

B(I)l{w(w)zs}dl‘ ds

O\
2
o)



Hence:

G(w) = / (ID6| + By) = / (P({sz}, Q)+ /W }B) s (3.10)

which implies:

1
inf Dy|+ By) = inf P({y>s}, Q B|d 11
beBV(©), ngil/g 1D+ BY) PEBV(@), 0§w§1/0 < {y = s}, Q)+ /{wzs} ) s (3.11)

Let E a solution of problem (3.3). We denote by ¢ = 1. We want to show that 1 is a solution of (3.4). Let
s € (0,1).

e Let © € E. Then ¢)(z) = 15(z) = 1. Thus ¢(z) > s. Hence E C {1 > s}.
e Let z € {¢) > s}. Then () > s > 0. Thus ¢(z) = 1 (since ) = 0 or 1). Hence {¢ > s} C E.

We eventually deduce that, Vs € (0,1): E = {¢) > s}.
Now, we consider ¢ € BV (2) such that 0 <1 < 1. We have (thanks to (3.10)):

() = /Q (D] + By) = /0 (P({w>s}, Q) + /{ . B) s (3.12)

In the same way as above:

G()) /01 (P ({J} > s, Q) + /{1z>s} B> ds
/01 (P(E, Q)+/EB> ds
- P(E, Q) n /E B

As E is a solution of problem (3.3), we have:

P (E Q) +/EB <P{y>s}, Q)+ /{¢>s} B (3.13)

And by integrating (3.13) with respect to s, we get for any » € BV(Q), 0 < ¢ < 1:

P(E’, Q>+/@B</Ol <P({’§/J>8}, Q)+/{¢2S}B> ds (3.14)

=G(¥) =G(¢)

And v is therefore a solution of problem (3.4).
]

We have thus shown that problem (3.4) has at least one solution which is a characteristic function. We are
in position to treat problem (3.2).

3.3 Study of problem (3.2)

Proposition 3.3. Let E be a solution of problem (3.3), and let & be the Buclidean signed distance function to OF
(see Definition 3.1). Then ¢ is a solution of problem (3.2).

To show Proposition (3.3), we will need the two following lemmas:

Lemma 3.1. Let ¢ Lipschitz. We set 1» = H(¢). Then: f{¢:O} ds > [, Dyl



Proof: Thanks to the co-area formula [4], we have:
+00 1
/ Dyl :/ P({¢) > s},9) ds :/ P({¢) > s},9) ds (3.15)
Q —00 0

since 0 < ¢ < 1. Thus [, |Dy| = fol P({H(¢) > s},Q)ds. We set E = {¢ > 0} (E is an open set since ¢ is
continuous). We therefore have E = {H(¢) > s}, Vs > 0. We have:

1 1
/ P({H(¢) > s},Q)ds = / P(E,Q)ds = P(E,Q) (3.16)
0 0
Hence [, |Dy| = P(E, Q). Then we conclude by remarking that:
P(E,Q) < H (0E(9) < / ds (3.17)
{o=0}
]

The following lemma is straightforward.
Lemma 3.2. Let A € B(2). The Euclidean signed distance function u to A is 1-Lipschitz.

Definition 3.1. If A € B(Q2), we call Euclidean signed distance function to A the function v defined by:

() :{ d(z,A)  ifzeO\A

d(z,M\A) ifze A (3.18)

where d(., A) stands for the Euclidean distance to A.

Proof of Proposition 3.3: Thanks to Lemma 3.2, we know that ¢ is 1-Lipschitz. Let ¢ € Lip(2). We
denote by E = {¢ > 0}. Thanks to the proof of Lemma 3.1, we have: qu:o ds > P(E,Q). Thus:

/¢_O ds—&—/QBH(qb) zP(E,Q)—i—/QBlE ZP(E,Q)—&-/QBlé (3.19)
since E is a solution of (3.3). Hence:
/ ds + / BH(¢) > P(E,Q) + / BH(¢) (3.20)
¢=0 Q Q

But E being a solution of (3.3), we know, thanks to Proposition 3.1, that E has a C''-boundary, and we
therefore have: P(E,Q) = H}(OENQ) = f<5:0 ds. We thus conclude that:

/4)_0 d5+/QBH(¢) 2/&_0 ds+/QBH(q3) (3.21)

which shows that ¢ is a solution of problem (3.2).

Remark: In the proof of Proposition 3.3, we have shown the following result:

Lemma 3.3. Let E an open set with C'-boundary, and let ¢ the signed distance function to OE. Then:
Jy—o ds = P(E,Q).
3.4 Equivalence between problems (3.2), (3.3) and (3.4)

Now that we have studied problems (3.2), (3.3) and (3.4), and that we have seen that they present several
connections, we want to state a kind of equivalence result between them. To do so, we will need the following
result.

Proposition 3.4. Let ¢ a solution of problem (3.2). Then ¢ = H(¢) is a solution of problem (3.4).



Proof: According to Lemma 3.1, we have: f{¢:0} ds > [, |Dv|. Thus:

/M ds+/QBH(¢) /Q|D¢|+/QB¢ (322)
/Q|D7J’|+/QBQ/~J (3.23)

where E is a solution of problem (3.3), and =1 £ (thanks to Proposition 3.2, we know that 1 is a solution of
problem (3.4)). We denote by ¢ the signed distance function to OF. Thanks to Proposition 3.3, ¢ is a solution
of problem (3.2), and we thus have:

/{¢=0} ds+/QBH(¢)=/{$:0} d8+/QBH((;~S) (3.24)

But with Lemma 3.3, we have:

/M ds+/QBH(¢)=P(E,Q)+/QB1E:/J)_O ds+/QBH(q”s) (3.25)

We conclude that (3.22) and (3.23) are in fact equalities, and therefore that 1 is a solution of problem (3.4).

v

v

Remark: In particular, we have shown that:

inf ds+ | BH = inf ( D +/B> 3.26
¢€Lip(ﬂ)< $=0 Q (¢)> YEBV(Q), 0<y<1 Q| vl Q 4 ( )

We have also proved the following result:
Lemma 3.4. Let ¢ a solution of problem (3.2), and let 1) = H(¢). Then: [,_, ds= [, |Dy|.

We have shown an equivalence between problems (3.2), (3.3) and (3.4), equivalence that we sum up with
the following theorem:

Theorem 3.2.

1. If ¢ is a solution of problem (3.2), then E = {¢ > 0} is a solution of problem (3.3), and v = H(¢) is a
solution of problem (3.4).

2. If E is a solution of problem (3.3), then ¢ = 1g is a solution of problem (3.4), and ¢ the signed distance
function to OF is a solution of problem (3.2).

3. If 4 is a solution of problem (3.4), and if we can write v» = 1g, then E is a solution of problem (3.3),
and ¢ the signed distance function to OF is a solution of problem (3.2).

Proof: This a consequence of Propositions 3.2, 3.3 and 3.4, and of Theorem 3.1.
]

In order to have a complete equivalence between problems (3.2), (3.3) and (3.4), we would need that any
solution of (3.4) is a characteristic function, i.e. that it can be written ) = 15. Unfortunately, this result does
not hold in general.

Indeed, it is immediate to check that if B has zero mean, then any constant function (provided this constant
lies between 0 and 1) is a solution of problem (3.4).

In fact, even when fQ B # 0, problem (3.4) can have solutions which are not characteristic functions, as
shown by the following example.



1
Ya
0 B=-1 P B=21 Q B=-1 R «x
<t =< =< =
a 2 a

Figure 1: Example of solutions of problem (3.4) which are not characteristic functions

Example: We give here an example in dimension 1, of an open set (2 and of a data term function B such
that problem (3.4) has solutions which are not characteristic functions. We recall that the functional we want
to minimize in problem (3.4) is the following:

F) = [ Bo+ [ Dl (3.27)
Q Q

We consider the case depicted on Figure 1. We choose B = —1 on the segments [O, P] and [Q, R] which
have both the same length ¢ > 1. And we choose B = 1 on the segment [P, Q)] which has a length equal to 2.
Thanks to Proposition 3.2, we know that the infimum in (3.4) is a minimum, and that it is reached by at least
one characteristic function. If ¢ is a characteristic function, then: F'(v)) = nb+ fQ B, where nb stands for the
number of jumps of ¥ on 2.

We consider some particular characteristic functions:

[ lon{B=-1}

Yo = { Oon {B=1} (3.28)
as well as ¢ = 1 on Q, and 2 = 0 on 2. We have F(¢2) =0, and F(tpg) = 2—2a = F(1)1). As we have chosen
a > 1, we also have F(¢g) < F(12).

If ¢ is a characteristic function, then [, By > —2a. Thus F (1)) > nb — 2a. But F(¢)9) = 2 — 2a; therefore
if ¢ is a characteristic function and is a solution of (3.4), then we necessarily have: nb < 2. It is then easy to
check that in fact 19 and 1, reach the minimum of (3.4), and that the value of this minimum is equal to 2 — 2a.

Now, we consider the familly of functions defined for 0 < o < 1:

[ 1on{B=-1}

Vo = { aon {B=1} (3.29)

We have F(¢,) = 2(1 — ) — 2a + 20 = 2 — 2a = F(1pg). Thus v, is a solution of problem (3.4) Va € [0, 1].
And if 0 < a < 1, then 1), is not a characteristic function.

4. The approximated problems

We get interested here in the numerical model (1.6), as well as its link with the theoretical model of Section 3.
For the study of the numerical model, we need to state results about the existence of solutions, and we also
need to get information about the regularity of these solutions. Indeed, in the numerical method, we assume
the existence of continuous solutions. To do this, we are first going to regularize the problem. We will then pass
to the limit (o — 0) to come back to our initial problem, the main argument being a perturbation theorem by
R. Temam [23, 12].

When « is fixed, we will show the existence of a continuous solution of problem (1.6) (this is the main result
of this section).



4.1 Smooth approximations of H and J

We will use the following smooth approximations of the Heaviside function H and the Dirac distribution § .
We assume that 0 < o < 1.

1 s z
= (T4cosZ) if|s| <3
dals) = { a if |s| > 5 (4.1)
2(1+ 2+ LsinZ2) if [s| <5
H,(s) = %(l—i—gjl—%sin%g)ji—a(s—s) if s> 3 (4.2)
s+ =+1sin="%) +a(s+35) ifs<-—35
where: )
§= —aarccos(oz) (4.3)
7T

With this definition of §, we have (when o — 0): 0 < § < awand § ~ a. Moreover, 6,(5) = do(—3) = «,
lim, 0 Hy(3) =1, and limg_,0 Ho(—3) = 0.
As Q is bounded, we have when o — 0: 6, — 0 and H, — H (in the distributional sense).

Lemma 4.1. For all a, 0 < a < 1, H, is a C'-nondecreasing diffeomorphism from R to R. Moreover,
Vo = Hy (@) is Lipschitz if and only if the function ¢ is Lipschitz.

Proof: We have H, = 4,, thus: a < H, < And (H;'(y) = A 1 = 6a(H1a(y))‘ Therefore:

o< (H:Y <1

[}

Remark: We recall that the problem we want to solve numerically in the two phases case is:

¢€ Lip(2)

Jim { [ auorvely = [ as (4.5)

We easily deduce that (3.2) is the limit problem of (4.4) when o — 0%.
There remains to check if problem (4.4) admits a solution for o > 0. There exists a very simple link between
problem (4.4) and problem (3.4) which we recall here:

inf ( /Q 5u()| V| + /Q BHa(a;)) (4.4)

We can show that (see [6]):

wEBvGi?r)l,foswgl (/Q Dyl + /Q Bw) (46)
Indeed, if we set: ¥, = Hy (), than D, = 04(¢)V¢, and for all « > 0:
/Q BH.(6) + /Q 5(6)| V9] = /Q B + /Q V4l (4.7)

4.2 Locally continuous solutions

As we do not know how to show directly that (4.4) has solutions (when « is fixed), since it is difficult to get
some properties for minimizing sequences, we consider an approximated problem, as suggested in [12, 23]:

inf F¢ 4.
P o.3(0) (4.8)

where:
€

0 = ([ as6a@Ive + [ Ba0)+ [ natttaion) + 5 [ Gut@ve)? (49)

Q



where the function gg : R? — R is defined by:

95(8) = VIE1> + 52 (4.10)

and the function hg : R — R by:
: if 2 <0
hg(z) = 0 ifo<z<i1 (4.11)

@%ﬁ ifr>1

e

Here W? denotes the Sobolev space: {¢ € LP(Q); V¢ € LP(Q2); 1 < p < oo} [1]. The function hg is convex and
C? on R. When we compute the Euler-Lagrange equation associated to functional (4.8), the term coming from
Jo 9804 (4)|V @) corresponds to the one used in the numerical scheme (we indeed introduce a parameter 5 > 0
to avoid to divide by 0) (see [22]). The function hg will replace the condition 0 < ¢ < 1 in the approximation
of problem (4.6) (or (3.4)).

It is still unclear to show directly that (4.8) admits a solution on W12((Q), since Fy, 5(¢) is only coercive on
WhH(Q). Let us set

Yo = Ha(9) (4.12)
This implies Vi), = 0, (¢)V¢ (since ¢ € W12(Q)). This leads us to consider the problem:
Lot G (413
where:
€ _ € 2
G3(0) = ( [ asvub+ [ ot [ o)) +5 [ w0l (4.14)

In fact, we will show later (Proposition 4.2) that problems (4.8) and (4.13) are equivalent.
In all the sequel, parameter 8 will depend on parameter « by the relation:

40[3 %
Bla) = (m) (4.15)

(we will see the justification of this relation in the proof of Proposition 4.1).
We have introduced problems (4.13) and (4.8) in order to get existence and regularity results about their
solutions. We then want to let ¢ — 0 to get information about the solution of problems:

Fg 5(¢) (4.16)

inf
PEWLL(Q) N L2(Q)

and:

G () (4.17)

inf
PEeWLL(Q) N L2(Q)

Remark: In problems (4.13) and (4.17), there is no constraint 0 < ¢ < 1. This constraint comes from the
function hg (see 4.11).

4.3 A perturbation result

We are going to use a perturbation result due to R. Temam [23, 12] (theorem 1.1 page 125 of [23], [12] page
140). This theorem is itself based on results by Ladyzenskaya and Ural’Ceva [15, 16].

The result by Temam has already been used successfully in image processing in [7] in a slightly modified
form. This is this last result that we are going to use: we consider a functional of the form:

¢eviv‘%,f2(m{ /QQOWH /Qp@)w /Q h(W) + 5 /Q |w2> (4.18)

We assume that the following hypotheses hold:

(H1) The function ¢ — g(&) is convex and C® from R? into R.

10



(H2) The function  — g(g(x)) is measurable on (2 for all ¢ in L'(£2)2.

There exist some constants pu; > 0, i = 0,...,8, such that for all £ € R?:

(H3)
9(&) = polél —p1 5 po >0
(H4)
99 (€) < i =1,2
0&; =Hzo =
(H5)
2
dg 5
Zafg(f)fi > p3V/ 1+ €2 —pa, p3 >0
i=1 >
(H6)
psln' > g prln'|? >
§Z S (E)minj £ — ===V €R", pg, 7 >0
V14 [€]? i 0&;0¢; V1+€?
where |77/‘2 = |77\2 - 1(3_%2
(H7)
[pllwie~ < s
(H8)

(H9) The function ¢ — h(t) is convex and A/(0) = 0.

Theorem 4.1. [Temam [12, 23]]. Q is assumed to be C2. Then problem (4.18) has a smooth solution 1.
bounded independently of € in L>(Q) \W11(Q). This solution is unique up to an additive constant. Moreover,
for any relatively compact open set V in Q, there exists a constant K(V,Q) independent of € such that:

el vy < K(V,Q) (4.19)
el 2 vy < K(V,9) (4.20)

In particular, we can apply this theorem to problem (4.13).
We even have a maximum principle result for problem (4.13):

Proposition 4.1. The solution vg . of problem (4.13) given by Theorem 4.1 is such that:

—A(B) S vpe <1+ A(B) (4.21)
where )
5 3
A(B) = (W) (4.22)
and
[g,ellwii <19 (1+A@B) + B+ (1 + AB) Bl L= (@) (4.23)
In particular, if 3 < 1 (which is equivalent to o < %, see (4.15)):
—A(1) < ¥ < 1+ A1) (4.24)
and
[Vpellwriag) < 9] (AQ) +2+ (1 +AQ))[Bl = 0)) (4.25)

This result will help us to see what happens when o — 0.
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Proof of Proposition 4.1: We consider for € and A > 0, the problem:

w)+A/Q\¢|2 (4.26)

inf
PEWL2(Q) N L2(2)

where G is given by (4.14). The existence and the uniqueness of a solution wé 5 are standard. We then split
the proof into three parts.

Step 1: We are going to show that
||w;\7,8HL°°(Q) < My (4.27)

(we will set the constant My in the sequel). To do this, we are first going to show that:
;\B(x) < M ae. x €Q (4.28)

where M) is a constant to be also precised later. For all v € W2(Q) (N L*(Q), ¢ 5 verifies:

J

We then choose v = W? 5 — M)+ (where the function () is equal to z if > 0, and 0 otherwise). We then
get:

69[3 81)

(Vi g, V) + 2007 gu + Z + (h(¥25) + B)v| dz =0 (4.29)

/ e[V 512 + 20052 5 (25 — M) de
QN {¥) 5>M:} ’ -
>0
89,3 9 AB LA A
= \ 2 —(hg(¥ls) + B) (W25 — M) dz
/ﬂﬂ{wgle}[ = 9% (Vies) O (hg(Wep) + B)(ep = M)
<o thanks to (H 8)
Hence: ,
(=Ra(My) + 11 Bllie (@) ) (25 = M)y 20 (4.30)
If we impose )
hg(My) > || B L~ (o) (4.31)

we then have (w — Mi)+ = 0, which proves (4.28). We just need to set M; so that (4.31) be fulfilled. But:

— if £ <0
h(x) = 0 ifo<z<l (4.32)
3
el e >

We deduce that (4.31) holds if and only if (M; > 1):

4(]\4%45_1)3 > || B[z (0 (4.33)
i.e. if and only if: )
My >1+ <w>§ (4.34)
In the same way as above, we also get:
?B(x) > My a.e. 2 €S (4.35)
if )
M, < — (75%31“@(9)) i (4.36)
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By setting My = max(M;, —Ms) = M;, we deduce (4.27).

Step 2: We want to bound: ||V 4|11 () We have:

<%<2@+A1QMM2scam=ﬁM| (4.37)
where [ = [, dz. But (thanks to (4.27))
cﬁw@m+AAQm%Fznvw%mqm—nmuﬂmmma (4.38)
Hence
V62 sllre < 190 (B + Mol Bll = (o) (4.30)

We show in the same way as above that:

2Mo|| Bl L= () |€2|
V25l L2 () < \/ . «@ (4.40)
On the other hand, thanks to (4.27), we get:
c
102 5llwrg) < NG (4.41)

where c is a constant which does not depend from .

Step 3: By letting A — 0, we get the existence of 1. g € WH2(Q) (N L*>(), and v g vérifie (4.27). Moreover,
we show in the same way as in the preceeding step that Vi, g still verifies (4.39). We then have (thanks to
(4.27)):

142 gllwa @) < Mol + 19 (8 + Mo|| Bl = (s) (4.42)

1
3

where we recall that My > 1+ (%) ;

|
Corollary 4.1. We assume that parameter (3 is given by (4.15). We then have:
—a<ip<l+a (4.43)
Proof: This is an immediate consequence of Proposition 4.1.
|

Thanks to Theorem 4.1, we can let ¢ — 0 in problem (4.13). We thus get the following result (see [12, 23]):

Corollary 4.2. We assume that B € W1>°(Q), and Q is C?. Problem (4.17) admits a solution g in
L>®(Q)OAWLL(Q), and g is unique up to an additive constant. Moreover, for any relatively compact open set
V in Q, there exists a constant K(V,Q)) such that:

[Vsllwrvy < K(V,Q) (4.44)
lVsllazvy < K(V,Q) (4.45)

Remark: From (4.45), we deduce that 13 belongs to Lip(V) for any relatively compact open set V in Q
(thanks to Sobolev injections [1, 9]).

4.4 “Equivalence” between problems (4.8) and (4.13)

We can now show that when « is fixed, problems (4.16) and (4.17) have the same value.

Proposition 4.2. We have:
inf £y (o (¢) = inf G5 () (4.46)
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Proof: Let ¢ € WH1(Q) (N L3(2). We set ¢, = H,(¢). We have:

FQ () = Gj(va) > inf G3(v) (4.47)
And with Theorem 4.1, we know that problem (4.13) admits a solution ¢g. Therefore:

F9.5(6) 2 inf F2(6) > inf G3(v) (4.48)

—_———
=G%(¢¥p)

Thanks to Lemma 4.1, we can define ¢, g such that H,(¢a,g) = ¥3. We then get:

F 5(0a,8) 2 igf F () > inf Ga(v) (4.49)
:Gg (w,@) 0
:GB (¥s)
from which we deduce (4.46).
]

4.5 Back to ¢

We work here with o > 0 fixed. We have got (4.6) from (4.4) with ¢ = H,(¢). To come back to ¢, we just
need to do the reverse operation.

Corollary 4.3. Problem (4.16) has a solution ¢, € L>(Q)W11(2). Moreover, for any relatively compact
open set V in Q, we have: ¢, € Lip(V).

Proof: We consider 95 a solution of (4.13) given by Corollary 4.2. We set ¢, = H, (1) (which is possible
thanks to Lemma 4.1). And we conclude thanks to Proposition 4.2.

]
Corollary 4.4. [ being given by (4.15), we have:
—1-a<¢,<1+a (4.50)
Proof: This an immediate consequence of Corollary 4.1 and of the definition of H, (4.2).
[ ]

4.6 Letting o — 0

Proposition 4.3. There ezists ¢ € BV (Q) and a sequence (3, with 3, — 0 as n — +oo, such that ¥, — ¥ in

BV weak * (where g is a solution of (4.13) with 3 = (3, given by Corollary 4.2). Moreover, ¥ is a solution of
problem (4.6).

Proof: We just need to let (o) — 0 (i.e. & — 0) in (4.17) (with e = 0) thanks to Proposition 4.1.
]

Remark: Letting 5(a) — 0 does not preserve more regularity for ©. In this case, we do not know how to
come back to ¢.

In practice, we set « to a fixed value g in the numerical model. Indeed, if « is too small, the narrow band
introduced by the support of d, is then itself too small to make any discretization of the equations. In fact, as
a decreases to 0, we would also need to make the discretization step (of the evoluting equation) decreases (this
last one is equal to the pixel size) (see [5]).
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Classification (100 iterations)

o

Image to classify

Figure 2: Classification of a synthetic image composed of two classes (algorithm of [22])

Image to class1fy Classification (645 iterations)

Figure 3: Classification of a synthetic image composed of two textures (algorithm of [8])

5. Experimental classification results

In this final section, we want to show some experimental classification result. We follow the numerical approach
used in [8, 22, 21, 10, 24, 6]. To minimize (1.6), we consider the associated Euler-Lagrange equation ( we assume
that Neumann conditions are verified):

_ v
0=ba(0) (g + B@) (5.1)
We embed it in the following dynamical scheme:
o0 v
o = -0no) (av (55) + B@) (5.2)

We discretize this system with finite differences (see [22, 8] for more details).

We display here two examples. The first one (Figure 2) is obtained with the algorithm of [22]. This algorithm
deals with the classification of non-textured images. The second one (Figure 3) is obtained with the algorithm
of [8]. This algorithm deals with the classification of textured images.

In [22, 8], one can find examples of classification results in the case of T > 2 phases.
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