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ABSTRACT

We study the problem of finding the characteristic scale of a
given satellite image. We want to define this feature so that it
does not depend on the spatial resolution of the image. Our
approach is based on the use of a linear scale space and the
total variation. The critical scale is defined as the one at which
the normalized total variation is maximum.

1. INTRODUCTION

In recent years, huge databases of remote sensing images
have been created (enlarged by gigabytes every day). One pro-
perty of these databases is that, most of the time, images come
from different satellites and therefore have different (usually
known) resolutions. It is therefore interesting to use features
which do not depend on the resolution to index such images.

In this paper, given an image, we aim at finding a charac-
teristic scale which does not depend on the spatial resolution
of the image. This work is inspired by the approach of Linde-
berg [1], who has suggested the use of a normalized derivative
operator in the linear scale space to get local scale informa-
tion. An alternative approach also using the linear scale space
is presented in [2]. In the literature, there are many works pro-
posing scale invariant features [1, 3, 4]. But as far as we know,
they do not take into account the acquisition process. Contra-
rily to such approaches, we explicitely consider the convolu-
tion and the sampling involved in resolution changes. As we
will see in this paper, this turns out to be essential with satel-
lite images. To deal with the convolution step, our method is
based on the use of a linear scale-space [5]. Moreover, since
we seek a characteristic scale related to the geometry of the
image, we use the total variation [6].

The plan of the paper is the following. We give a first de-
finition of the characteristic scale in Section 2. We adapt itin
Section 3 by taking into account the acquisition process. We
present some experiments with synthetic images in Section 4
and then with data provided by the CNES in Section 5. We
conclude in Section 6.

2. BASIC TOOLS AND SCALE DEFINITION

In this section, we recall the two main mathematical tools
to be used in this work. Let us denote byf : R

2 7→ R

the original image. The linear scale space [5] is defined as
ft(x, y) = kt ∗ f , where :

kt(x, y) =
1

2πt2
exp

(

−x2 + y2

2t2

)

(1)

The basic idea of the proposed approach is to quantify
the evolution of geometric structures of the image in the li-
near scale space. Therefore, we consider the total variation
of an image, defined (when the image is regular enough) as
TV (f) =

∫

|∇f |. This semi-norm is related to the geometry
of the image through the coarea formula (see [6]) , which im-
plies for instance that for a binary image,TV (f) is equal to
the perimeter of the objects in the image.

We then define the characteristic scale as the maximizer of
the normalised total variationNTV (f ; t) of the multi-scale
space representation off :

NTV (f ; t) = t TV (kt ∗ f) = t

∫

|∇kt ∗ f |. (2)

That is, the characteristic scale is defined as

tmax = argmax
R
∗

+
NTV (f ; t). (3)

Observe the normalization factort in Equation (2), which
is needed to have a maximum ofNTV (f ; t) as a function of
t. This is in fact equivalent to the normalization used by Lin-
deberg [1] with differential operators. Observe also that if f

is zoomed by a factorλ thentmax is multiplied byλ. Howe-
ver this property is not sufficient for our purpose (because of
blurring and sampling). The next section shows how to adapt
this normalization when dealing with resolution changes and
discrete images.

3. RESOLUTION INVARIANCE

In order to ensure that the computed characteristic scale
does not depend upon the resolution, we first have to model



the acquisition process. Recall thatf is a continuous function
corresponding to a given scene. We assume that the acquisi-
tion system performs a convolution followed by a sampling.
We approximate the convolution kernel by a Gaussian kernel
(kσ). The sampling rate (which is also the resolution of the
discrete image) isr = ασ. Theα parameter is a characteris-
tic of the acquisition process (the largerα, the more aliased
the image). In the numerical experiments presented in the pa-
per, we useα = 1. The following formula summarizes the
acquisition process :

gr
0 = Ψr(kσ ∗ f) (4)

wheregr
0 is the sampled version off at resolutionr (Ψ being

the sampling operator).
We denote bỹkt the discrete version of the gaussian ker-

nel with standard deviationt (t being given in pixels). We
therefore havẽkt ≈ krt (up to some normalization constant
which we can drop). Let us define the discrete scale space as :

gr
t = k̃t∗gr

0 = k̃t∗(Ψr (kσ ∗ f)) ≈ Ψr (krt ∗ (kσ ∗ f)) (5)

The last approximation means that (at least for non-aliased
images such askσ ∗ f ) inverting convolution and subsam-
pling is possible. In addition we can assume (for well-sampled
images) that the total variation of the continuous and discrete
versions are the same up to a normalization due to the zoo-
ming of factorr (this will be confirmed by the numerical ex-
periments in the following sections). This leads to :

TV (gr
t ) ≈ 1

r
TV (krt∗kσ∗f) =

1

r
TV

(

k√r2t2+σ2 ∗ f
)

(6)

Now we seek a normalization of the discrete total varia-
tion in order to easily relate it to the continuous normalized
total variationNTV (defined in Equation (2). Let us define :

Gr(t) = h(t)TV (gr
t ) (7)

The question is now how to choose the factorh(t).

Gr(t) ≈ 1

r
h(t)TV

(

k√r2t2+σ2 ∗ f
)

=
1

r

h(t)√
r2t2 + σ2

NTV
(

f ;
√

r2t2 + σ2
)

Hence :

Gr(t) ≈ 1

r2

h(t)
√

t2 + 1
α2

NTV
(

f ;
√

r2t2 + σ2
)

(8)

If we choose :h(t) =
√

t2 + 1
α2

then we have :

Gr(t) ≈ 1

r2
NTV

(

f ;
√

r2t2 + σ2
)

(9)

Recall thattmax = argmax
R
∗

+
(NTV (f ; t)). We denote

by tmaxr
the maximizer ofGr. We then have :

tmax =
√

r2t2maxr

+ σ2 (10)

For a discrete image of resolutionr we thus computetmaxr

and derive the value oftmax using Equation (10). Notice that
it is impossible to find a characteristic scaletmax smaller than
σ (which is comparable tor). More generally, when the re-
solution of the image is larger than the actual characteristic
scaletmax the computation becomes unreliable. Experiments
show thattmax is retrievable as long asr < tmax.

From now on, the values ofNTV will be deduced from
Equation (9).

Remark about the normalization : In view of equation
(2), the intuitive normalization would be :

Ar(t) = tTV (gr
t ) (11)

Nevertheless, if we settmaxr
= argmax

R
∗

+
(Ar(t)) andtmax =

r × tmaxr
, then we can check numerically thattmax depends

much more on the resolution than with the definition of equa-
tion (10) (see Figure 6 of Section 5).

Notice also that whent >> 1, then the definitions from
Equations (7) and (11) are equivalent. Our normalization choice
is important whenr approachestmax.

4. TESTS ON SYNTHETIC IMAGES

We test the method on spatial periodic images with per-
iod D, using different patterns such as squares, disks, Gaus-
sians . . .For instance, Figure 1(a) is made of periodic squares
with spatial periodD = 40. On Figure 1(b), we display the
graph of the discrete normalized total variation. By compu-
ting tmax on images with different patterns at different spatial
periods, we experimentally find that :tmax ∼ 0.15D, and that
neither the shape nor the size of the pattern seem to influence
much the value oftmax.

(a) Periodic function of squares
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(b) Graph ofNTV

Fig. 1. An image composed of squares with spatial periodD = 40 (the length of
each square being10 pixels) and the graph of the normalized total variation. The
maximum is reached fort = 6.1.



5. APPLICATION ON REAL IMAGES PROVIDED BY
THE CNES

The CNES (Centre National d’Etudes Spatiales) has pro-
vided us with images of several scenes (such as cities, forests
and fields, see Figure 2). For each scene, we have 33 images
at different resolutions ranging from 25 cm to 10.08 m (with
a geometrical progression). In particular, we thus have there-
solution of the following satellites : Orfeo (70.7 cm), Spot5
THR (252 cm), SPOT 5 (504 cm), SPOT 2 and 3 (1007.9 cm).
These images have been obtained by numerical simulations
performed by the CNES.

(a) Marseille (b)Toulouse

(c)Didrai (d) Roujan

Fig. 2. Aerial images provided by the CNES

On Figure 3, we display the graphs of the normalized total
variation for the images shown in Figure 2 (at resolutionr =
25cm). There is at least one local maximum in each case. In
the case of cities (Marseille or Toulouse), the characteristic
scale is related to the size of the buildings and of the streets.
In the case of the Didrai image (forest), the scale is related
to the vegetation. Notice that in the case of the Roujan image
(field), there are two local maxima, the small one (which is
zoomed in Figure 3(e)) being related to the furrows inside the
fields, and the large one being related to the fields themselves.

To check thattmax does not depend on the resolution, we
have made the following experiments. For a given scene, we
generategr, the image at resolutionr, and we computetmax

(we takeα = 1). Figure 4 shows the graph oftmax as a func-
tion of r. We can observe thattmax is almost constant (as long
asr < tmax). Remark that in the case of Roujan, there are two
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(a) Marseille
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(b) Toulouse
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(c) Didrai
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(d) Roujan
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(e) Roujan(zoomed)

Fig. 3. (a) NTV computed on the image of Marseille (r = 0.25m) ; tmax =
4.8m ; (b) NTV computed on the image of Toulouse (r = 0.25m) ; tmax =
2.4m ; (c) NTV computed on the image of Didrai (r = 0.25m) ; tmax = 1.2m ;
(d) NTV computed on the image of Roujan (r = 0.25m) ; there are two local
maxima. The first one appears at the resolution0.4m, the second one appears at
the resolution30m ; (e) Zoom around the first local maximum shown in (d).

different characteristic scales : this is coherent with theresult
shown in Figure 3(d). When the resolutionr is fine enough,
tmax is the characteristic scale corresponding to the furrows.
But whenr gets larger, then the furrows disappear (one no
longer sees them in the images), andtmax is then related to
the size of the fields.

We have also performed similar experiments on the images
provided by the CNES. Figure 5 shows the graph oftmax as
a function of the resolution. We get results that are very si-
milar to the ones of Figure 4. We observe thattmax is almost
constant (as long as the resolutionr < tmax). Notice that even
though the kernel used by the CNES for its simulations is not
Gaussian, the approximations made in Section 3 appear to be
still valid.

On Figure 6, we show the results of the same experiment
on the image of Toulouse with the intuitive normalization of
Equation (11) which does not take into account convolution
in the resolution change. As expected,tmax is very sensitive
to the resolution.
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(a) Marseille
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(b) Toulouse
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(c) Didrai
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(d) Roujan

Fig. 4. Characteristic scalestmax as a function of the resolution, on the four
scenes shown in Figure 2. The images at different resolutions are obtained using
the acquisition model presented in Section 3 (withα = 1), that is with a Gaussian
convolution kernel. Notice that the characteristic scale is almost independent from
the resolution.

6. CONCLUSION AND FUTURE PROSPECTS

We have proposed a new method to compute a characte-
ristic scale for a given image. Moreover, we have defined it
so that it does not depend on the resolution (as long as the
objects are bigger than one pixel).

In future works, we intend to use this scale as a feature
for the problem of satellite image indexing. It is indeed a
major asset that such a feature does not depend on the re-
solution. We are currently investigating the possibility to ex-
tend the approach to other characteristic scale definitionsand
scale invariant features. Moreover, we expect to find the tex-
ture/geometry behaviour of a scene [7], which indeed depends
on the resolution and can be related to the characteristic scale.
This could be useful for features selection. We also need to
understand more deeply the effect of sampling on total varia-
tion, especially when the resolution is close totmax.
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Fig. 5. Characteristic scalestmax as a function of the resolution, on the four
scenes shown in Figure 2. The images at different resolutions are obtained by the
simulations of the CNES. The convolution kernel is no longerGaussian. Notice that
the characteristic scales are almost invariant when the resolutions change.
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Fig. 6. Characteristic scalestmax as a function of the resolution, on the scene
of Toulouse. The scaletmax is computed with the naive normalization of Equation
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with the naive normalization
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