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ABSTRACT

We present a supervised classification model based on a
variational approach. This model is specifically devoted
to textured images. We want to get a partition of an im-
age, composed of texture regions separated by regular in-
terfaces. Each kind of texture defines a class. We use a
wavelet packet transform to analyze the textures, charac-
tized by their energy distribution in each sub-band. In order
to have an image segmentation according to the classes, we
model the regions and their interfaces by level set functions.
We define a functional on these level sets whose minimiz-
ers define the optimal classification according to textures.
A system of coupled PDEs is deduced from the functional.
By solving this system, each region evolves according to its
wavelet coefficients and interacts with the neighbour region
in order to obtain a partition with regular contours. Experi-
ments are shown on synthetic and real images.

1. INTRODUCTION

Image classification consists in assigning a label to each
pixel of an observed image. This label indicates to which
class belongs a pixel. Classification is one of the basic prob-
lem in image processing. It concerns many applications as
for instance landscape management in teledetection. The
classification problem is closely related to the segmentation
one, in the sense that the goal is to get a partition of the
image composed of homogeneous regions. In the classifi-
cation problem, each partition is assigned to a class. Many
classification models have been developed, especially from
regions growing algorithms [1], or by a stochastic approach
[2], and most recently by a variational approach [3, 4].
Our model is inspired by the work of C. Samson �����
	�� who
have developed a supervised classification algorithm for non
textured images in [3]. In this model, a complete segmen-
tation of an image is obtained through level set evolution,
where each level set represents the regions of a given class.
The number of classes  present in the image is supposed
to be known, as well as the charactistics of each class. The
goal is then to assign a class to each pixel of an image in

order to define a classified image. Regularization is needed
to avoid isolated pixels or too oscillatory boundaries.

The paper is organized as follows. Section 2 presents the
framework of our classification algorithm. We then charac-
tize textures through their wavelet expansion in section 3.
We deduce our data term from this study in section 4, and
we present the algorithm we use to minimize it. We then
present some numerical results on both synthetic and real
textured images in section 5. We refer the reader to [5] for
a complete insight of our model.

2. CLASSIFICATION

2.1. Partition, level set approach

The observed image is considered as a function �����������
(where � is an open subset of

���
). We denote ������ ��!"�$#&% 	'�)( , where

% 	'� is class number * , +�,�*-,� .
The collection of open sets

� ���
( must form a partition of� . We denote ."�/�10��2�435� the boundary of ��� (except
points belonging also to 0�� ).

In order to get a functional formulation rather than a
set formulation, we assign to each �6� a lipschitz function7 �8�9��� �

such that::; < 7 �>= �@?BADC
if
�$# �2�7 �>= �@? � C

if
�$# ."�7 �>= �@?BEDC

otherwise�2� is thus completely determined by
7 � .

To define the classification problem as a functional min-
imization, we use Dirac and Heaviside distributions F andG

, or more precisely classical regular approximations of
these distributions.
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When ]d� C
, we have F H � F and

G H � G
(in the

distributional sense).

2.2. Functional

Our functional is composed of three terms:

1. ���H = 7 N � � � � � 7�� ? ��� 	�
� ����� N G H = 7�� ? c +�� �
(1)

This energy term ensures that the result of the func-
tional minimization is indeed a partition of the image
support � , then defines a complete segemntation of
the observed image �@� .

2. ��� = 7 N � � � � � 7�� ? ��� ����� N \ . � \ (2)

This term penalizes the contour length, which prevent
from having too irregulars contours. By using the co-
area formula, it is possible to show that (the proof is
given in [3]):� _��H�� � 	 
 F H = 7 � ? \ � 7 � \ � � ��\ . � \ (3)

In practice, we seek to minimize:� �H = 7 N � � � � � 7�� ? ��� ����� N
	 
 F H = 7 � ? \ � 7 � \ (4)

3. ��� = 7 N � � � � � 7 � ?
(5)

This last term stands for the data term, and we will get
it from our texture modelization and the maximum
likelihood principle (see section 3 below).

3. TEXTURE MODELIZATION

3.1. Idea

We consider that a texture is charactized by the energy of
its wavelets coefficients. If we note � � the function which
represents this texture, we can write:� � � � � �"!$# �&% !$# � P ' N�( � ' !

� �*) ( # �&+ ( # � (6)

where

+
is the mother wavelet,

%
the scaling function and,

the order of the decomposition (see [6]). As in [1], we
consider that a texture is characterized by the sequence:O = \ �"!$# � \ � �.- #0/6? � = \ ) ( # � \ � �.- #0/ � c , ,21 , c + ? Z (7)

3.2. Probability distribution

S.G. Mallat checked experimentally (see [6]) that the dis-
tribution of the modulus of the wavelets coefficients in a
sub-band follows a generalized gaussian law of the form:354 = �@? �7698;:�<0= c?> �]A@5BDCFEHGJI � (8)

As we consider that textures are characterized by their
energy, we compute the distribution law of the square of the
wavelet coefficients in a sub-band.3 4LK =NM ? � 6OQP M 8;:�< � c = P M] C B � EJR I � (9)

The parameters ] and S can be computed from the first
and second order moments. We recall that the function .
is defined on

�UT
by .Q='� ? �WV TYX� � '[Z �]\ ' N �Y� . By using

the fact that V;^ 3]4 = � ? � � � + , we get 6 � BH`_ =Qab ? . Let

us denote cM�ed �
. We compute the first and second order

moments of c , f N �hg =ic ?
and f � �jg =ic � ?

. We then

deduce: ] �lk _ =Jmb ?_ =Jnb ?po Ko a and S � � ' N > o Kao K @ with
� = � ? �_ K = mq ?_ = aq ? _ = nq ? .

4. COMPLETE FUNCTIONAL

4.1. Hypotheses

From the modelization we made in the previous section, we
now deduce the data term we use in our algorithm. We com-
pute a wavelet packet decomposition of the image (up to the
second order in practice): we get r channels ( r � +$s in
practice).

In what follows, we call the energy at pixel J the vectort =^J ? � = � N =KJ ? � � � � � �[u9=^J ?`? , where � � =KJ ? is the square of
the wavelet coefficient in the sub-band v at pixel J . We also
make the two following hypotheses:

(H1) We assume that, for each texture * � +4� � �` , in
each channel v � +4� � �.r , the square of the wavelet coeffi-
cients follows a law of the type (9) of mean f � # �N and of
second order moment f � # �� . This is obtained by a prepro-
cessing.

(H2) We consider that the different channels are inde-
pendent. This is an approximation but it allows simple mod-
eling.

4.2. Data term

The goal is to find for each pixel the class which makes the
observed energy

t
the most likely. In other words, we use

the maximum likelihood estimator for the data term. In or-
der to write the energy in terms of probability, we discretize



the set � . We denote by � the set of the pixels. From the
observations

t
, the class

% 	 is the one which maximizes
the likelihood � = t \ % 	 ? . According to hypotheses (H1) and
(H2), the likelihood probability density is:� = � \ % 	�� * ? � u�� � N 6 � �O P � � 8�:&< � c = P � �] � � C B �� � (10)

The parameters 6 � � , ] � � and S �� are computed from the
first and second order moments. In fact, we are going to
maximize the log-likelihood, which amounts to minimize:c � a =�� = t \ % 	 ?`? � c ����� N �X��
	 � a =�� = t X \ % 	 X � * ? ? F��>= % 	 X ?

(11)
where F � =KJ ? � + if J belongs to the class * ,

C
otherwise.

By using (10), it can be deduced:c � a�=�� = t \ % 	 ?`? � c ����� N �X��
	
u� � � N �

�� =KJ ? F � = % 	 X ? (12)

where� �� =KJ ? � c � a 6 � � P � a O P +O � a2� � =KJ ? P �� � � =KJ ?] � � � B �� (13)

We rewrite now (12) in a continuous framework. We
get: c � a�=�� = t \ % 	 ?`? � ����� N

u� � � N
	 
 � � �� = �@? � � (14)� ��� = 7 N � � � � � 7�� ?

Using
7 � and

G H , we have:� �H = 7 N � � � � � 7�� ? � ����� N
u� � � N

	&
 G H = 7 � ? � �� = �@? � � (15)

4.3. The functional

We are now able to completely write the functional which
models the classification problem for textured images:

� = 7 N � � � � � 7 � ? � ����� N
u� � � N

	 
 G HI= 7 � ? � �� = �@? � �
P � O 	 
� ����� N G H = 7 � ? c +�� � P2� ���;� N

	 
 F H = 7 � ? \ � 7 � \

4.4. Dynamical scheme

Assuming that Neumann conditions are verified, the associ-
ated Euler-Lagrange equations to

�
(see [7]) give a system

composed of  -coupled PDE’s. To solve this system, we
embed it in the following dynamical scheme ( * � +4� � �` ):0 7 �0 � � c F H�= 7 � ?�� � � �� � � N G H = 7 � ? c + � (16)

c � div = � 7 �\ � 7 � \ C P � u� � � N �
�� = � ? ���

with as initial condition
7 �>= C � � ? the Euclidean signed dis-

tance function to the zero level set of
7 � (see section below

for the initialization of these zero level sets). We discretize
this system with finite differences (see [3]).

5. NUMERICAL RESULTS

5.1. Choice of parameters

Wavelets: As we deal with texture, we use undecimated
wavelets so that our data term is translation invariant. We
use a wavelet packet decomposition, because texture domi-
nant frequencies also lie in median frequencies channels. As
the mean of the gray level must not be a feature for a texture,
we modify the low frequency block of the wavelet packet
decomposition by setting its mean to zero. We have tested
different kinds of wavelets, and we have chosen to use the
Daubechies wavelet with ten vanishing moments (see [6]).
Information given by the user: As the classification is
here supervised, the user has to give the number of classes
(textures), as well as the parameters of each class (the first
and second order moments of the energy distribution in each
sub-band of the packet wavelet decomposition).
Parameters: The functional contains three terms, we have
two parameters to tune. First, the partition parameter � .
This parameter is first determined with a value large enough
in order to ensure at the end of the algorithm that the parti-
tion constrainst is satisfied. The results are not sensitive to
variations of � , provided it is large enough. Second, the reg-
ularization parameter � . Variations of � give more or less
regular solutions. This parameter is tuned by trial and error.
Initialization: To get an automatic initialization, and to
make it independent of the user, we have used “seeds”: we
split the initial image into small sub-images (in practice 5*5
images). In each sub-image, for each class * , we compute
the data term by assuming that all the pixels of the sub-
image belong to the same class * . We set all the pixels in the
sub-image to the class * for which the whole sub-image’s
energy is the smallest. We have used this initialization in
the examples presented here-after.



5.2. Examples:

In case (a) of figure 1, one sees clearly that our model can
handle with triple junctions (whereas for instance [4] shows
no result of this type). The other cases show that our model
can handle with any kind of geometrical shape.

6. CONCLUSION

We have presented a variational model based on a level set
formulation to classify textured images. The proposed al-
gorithm produces segmention of an entire image according
to a piori known texture parameters, by using level sets al-
lowing multiple junctions. The level sets evolve according
to wavelet coefficients and interacts between each other.
In a future work, we plan to do a complete theoretical study
of our model, and to combine textured and non textured re-
gions in a single classification process.

7. REFERENCES

[1] M. Unser, “Texture classification and segmentation us-
ing wavelet frames,” IEEE Transactions on Image Pro-
cessing, vol. 4, no. 11, pp. 1549–1560, November 1995.

[2] M. Berthod, Z. Kato, S. Yu, and J. Zerubia, “Bayesian
image classification using markov random fields,” Im-
age and Vision Computing, vol. 14, no. 4, pp. 285–293,
1996.

[3] C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia,
“A level set method for image classification,” IJCV, vol.
40, no. 3, pp. 187–197, 2000.

[4] N. Paragios and R. Deriche, “Geodesic active regions
and level set methods for supervised texture segmenta-
tion,” International Journal of Computer Vision, vol.
46, no. 3, 2002.

[5] J.F. Aujol, G. Aubert, and L. Blanc-Fraud, “Supervised
classification for textured images,” 2002, INRIA Re-
search Report 4640.

[6] S.G. Mallat, A Wavelet Tour of Signal Processing, Aca-
demic Press, 1998.

[7] G. Aubert and P. Kornprobst, Mathematical Problems
in Image Processing, vol. 147 of Applied Mathematical
Sciences, Springer-Verlag, 2002.

(a) Image to classify (b) Classification

(c) Image to classify (d) Classification

(e) Image to classify (f) Classification

(g) Image to classify (*) (h) Classification

Fig. 1. Examples of classification of textured images
(*) Copyright c
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Corel. All rights reserved.


