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1. Generalities
For this introductory section, we refer the reader to [5, 4, 6, 3].

1.1 Introduction

We consider a function J : U → R, with U ⊂ RN . We aim at minimizing it, i.e. at finding
some v ∈ U such that J(v) = argminu∈U J(u).

Principle As we will see, all the methods are iterative ones. Starting from u0, a sequence un

is built. If the method works, un → u minimizer of J .
Some basic questions:

1. J is differentiable on U ?

2. N = 1 or N > 1 ?

3. Is U an open set in RN ?

Differentiability: If J is not differentiable, then the problem is much harder to handle.

Number of variables: The case N = 1 is much simpler. In particular, we can make use of
the fact that R is ordered.

In theory, there is no difference between N = 2, N = 3, . . . . Notice however that the larger
N , the most time consuming the minimization algorithm is.

The general idea in the case when N > 1 is to try to boil down to the case N = 1. Starting
from u0, one tries to find a good descent direction v, and then minimize t 7→ J(u+ tv).

Topology of U : This is also a major issue. The easiest case is the one when U is an open
set of RN .

Indeed, we have the following standard result:

Theorem 1.1. Let J a differentiable function on an open set U . If u ∈ U is a minimizer of
J , then ∇J(u) = 0.

1.2 Existence of a minimizer in finite dimension

J is defined on U ⊂ RN . We denote by E = RN .
In this lecture, we will always assume that E = RN . Notice however that all the results

hold if E is a separable Hilbert space.
We remind the reader that RN is embeded with the standard euclidean inner product.

〈u, v〉 =
N∑

i=1

uivi (1.1)

and ‖u‖2 = 〈u, u〉.
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We have the Cauchy Scwhartz inequality:

〈u, v〉 ≤ ‖u‖‖v‖ (1.2)

We remind the reader that in RN , a set is compact iff it is closed and bounded.

Theorem 1.2. Assume U a closed non empty set in E. If U is not bounded, then we also
assume that J is coercive on U . Then there exists û ∈ U such that

J(û) = argmin
u∈U

J(u) (1.3)

The proof is straightforward using compacity and a minimizing sequence.

1.3 Differentiability

First derivative: We consider here J : U ⊂ X → R where E = RN . J is differentiable at
some point u ∈ U iff there exists v ∈ E ′ which we denote by ∇J(u) such that:

J(u+ h) = J(u) + 〈∇J(u), h〉+ ‖h‖ε(h) (1.4)

with limh→0 ε(h) = 0. If v exists, it is then easy to show that it is unique (Riesz representation
theorem). 〈., .〉 stands for the duality product. In the case when E = RN , then 〈., .〉 is simply
the usual euclidian inner product.

Notice that if J is differentiable, then J admits partial derivative with respect to each of
its variables. But the controverse does not hold. Cosider for instance f(x1x1) = 0 if x1x2 = 0,
and 1 otherwise.

We have the following basic result:

Proposition 1.1. J differentiable on U . If the segment [u, v] ⊂ U :

‖J(u)− J(v)‖ ≤ sup
[u,v]

‖∇J‖‖u− v‖ (1.5)

Proposition 1.2. Taylor formula (order 1):

J(u+ v) = J(u) +

∫ 1

0

〈∇J(u+ tv), v〉 dt (1.6)

Second derivative If ∇J : X → X ′ is differentiable in u, then we denote by ∇2J(u) its
derivative, which belongs to L(X;X ′). Since this last space is isomorphic to L2(X; R) of bi-
linear continuous applications from X to R, the second derivative of J is identified with a
continuous bilinear application. Moreover, it is easy to see that ∇2J(u) is a symetric bilinear
application (using theoreme des accroissements finis).

The Taylor expansion to the second order is

J(u+ h) = J(u) + 〈∇J(u), h〉+
1

2
〈h,∇2J(u)h〉+ o(‖h‖2)ε(h) (1.7)

with limh→0 ε(h) = 0.
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Proposition 1.3. Taylor formula (order 2):

J(u+ v) = J(u) + 〈∇J(u), v〉+

∫ 1

0

(1− t)〈∇2J(u+ tv)v, v〉 dt (1.8)

Stokes fomula We define div = ∇T . We thus have:

〈∇u,∇v〉 = 〈∆u, v〉 (1.9)

Typical funtional

J(u) =
1

2
〈Au, u〉 − 〈b, u〉 (1.10)

with A symmetric.
We have ∇J(u) = Au− b, and ∇2J(u) = A.
Remember Tychonov regularization:

J(u) =
1

2
‖Au− f‖2 + ‖∇u‖2 (1.11)

We have: ‖∇u‖2 = −〈∆u, 〉 and ‖Au− f‖2 = ‖Au‖2 − 2〈Au, f〉+ ‖f‖2. Hence:

J(u) = 〈1
2
(ATA−∆)u, u〉 − 〈u,ATf〉+ Cste (1.12)

1.4 Conditions

Necessary condition:

Theorem 1.3. Let J a differentiable function on an open set U . If u ∈ U is a minimizer of
J , then ∇J(u) = 0.

The proof is straightforward with Taylor expansion (order 1).

0 ≤ J(u+ h)− J(u) ≤ 〈∇J(u), h〉+ o(‖h‖) (1.13)

and then with −h.
Necessary condition:

Theorem 1.4. Let J : U → R a twice differentiable function on an open set U . If u ∈ U is a
minimizer of J , then ∇2J(u)(w,w) ≥ 0 for all w ∈ U .

The proof is straightforward with Taylor-Young expansion (order 2) and the previous result.

0 ≤ J(u+ h)− J(u) ≤ 〈∇J(u)︸ ︷︷ ︸
=0

, h〉+
1

2
〈h,∇2J(u)h〉+ o(‖h‖2) (1.14)

Sufficient condition:

Theorem 1.5. Let J : U → R a twice differentiable function on an open set U . We assume
that there exists u ∈ U such that ∇J(u) = 0. Let us assume that there exists α > 0 such that
∇2J(u)(w,w) ≥ α‖w‖2 for all w ∈ U . Then J admits a strict minimum in u.

The proof is straightforward with Taylor expansion (order 2).
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1.5 Convexity

1.5.1 Characterization

Definition 1.1. U ⊂ E is convex if

λx+ (1− λ)y ∈ U (1.15)

for all x, y in U and λ ∈ [0, 1].

Necessary condition:

Theorem 1.6. Let J : U → R a differentiable function on a convex set U . If u ∈ U is a
minimizer of J , then 〈∇J(u), (v − u)〉 ≥ 0 for all v ∈ U .

Proof: Remark that if u and v = u+w in U convex, then u+ tw is in U for all t ∈ [0, 1]. We
then apply Taylor formula:

0 ≤ J(u+ tw)− J(u) = t〈∇J(u), w〉+ o(t‖w‖) (1.16)

and w = v − u.

�

Notice that if U is a subspace of E, then the necessary condition becomes: 〈∇J(u), v〉 = 0
for ll v ∈ U .

Notice also that if U = E, then the condition is the classical Euler equation ∇J(u) = 0.

Definition 1.2. J : U → R is convex if

J(λx+ (1− λ)y) ≤ λJ(x) + (1− λ)J(y) (1.17)

for all x, y in E and λ ∈ [0, 1].

Recall also the notion of strict convexity, and of concavity.

Theorem 1.7. Let J : U → R a differentiable function on a convex set U .

• J is convex iff
J(v) ≥ J(u) + 〈∇J(u), v − u〉 (1.18)

for all u, v in U .

• J is strictly convex iff
J(v) > J(u) + 〈∇J(u), v − u〉 (1.19)

for all u 6= v in U .

Theorem 1.8. Let J : U → R a twice differentiable function on a convex set U . J is convex
iff

〈∇2J(u)(v − u), v − u〉 ≥ 0 (1.20)

for all u, v in U .
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Example:

J(u) =
1

2
〈Au, u〉 − 〈b, u〉 (1.21)

with A = AT (i.e. A symmetric).
J is convex iff A is positive.
J is strictly convex iff A is strictly positive.

1.5.2 Global minimizer

Convex function: local minimizer is a global minimizer!

Theorem 1.9. Let J : U → R a convex function defined on a convex set U .

1. If J admits a local minimum in u ∈ U , then this is in fact a global minimum in U .

2. If J is strictly convex, then it has at most one minimum and it is strict.

3. Assume J is differentiable in u ∈ U . Then J admits a minimum in u iff

〈∇J(u), (v − u)〉 ≥ 0 (1.22)

for all v in U .

4. If U is open, then the previous condition is equivalent to the Euler equation ∇J(u) = 0.

1.6 Ellipticity

Definition 1.3. J : E → R is said to be elliptic if it is continuously differentiable on U , and if
there exists a constant α > 0 such that:

〈∇J(v)−∇J(u), v − u〉 ≥ α‖v − u‖2 (1.23)

for all u, v in U .

Theorem 1.10.

1. If J : E → R is elliptic, then J is strictly convex and coercive, and satisfies:

J(v)− J(u) ≥ 〈∇J(u), v − u〉+
α

2
‖v − u‖2 (1.24)

2. If U is a non empty convex closed set in E, and if J is elliptic, then J admits one and
only one minimizer on U .

3. If J is elliptic, and U convex, then u ∈ U is a minimizer of J iff for all v ∈ U :

〈∇J(u), v − u〉 ≥ 0 (1.25)

or if E = U :
∇J(u) = 0 (1.26)
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4. If J is twice differentiable on E, then J is elliptic iff

〈∇2J(u)w,w〉 ≥ α‖w‖2 (1.27)

for all w ∈ E.

Indeed:

J(v)−J(u) =

∫ 1

0

〈∇J(u+t(v−u)), v−u〉 dt = 〈∇J(u), v−u〉+
∫ 1

0

〈∇J(u+t(v−u))−∇J(u), v−u〉 dt

(1.28)
Hence:

J(v)− J(u) ≥ 〈∇J(u), v − u〉+

∫ 1

0

αt‖v − u‖2 dt = 〈∇J(u), v − u〉+
α

2
‖v − u‖2 (1.29)

In particular, we have if u 6= v:

J(v)− J(u) > 〈∇J(u), v − u〉 (1.30)

And
J(v) ≥ J(0) + 〈∇J(0), v〉+

α

2
‖v‖2 ≥ J(0)− ‖J(0)‖‖v‖+

α

2
‖v‖2 (1.31)

1.7 Algorithm

Definition 1.4. x0 ∈ E = RN .
xk+1 = A(xk) (1.32)

Definition 1.5. The algorithm A is said to be convergent if the sequence xk converges towards
some x ∈ E.

Definition 1.6. Convergence rate:
Let xk a sequence defined by an algorithm A and convergent towards some x ∈ E. The

convergence of A is said to be:

• Linear if the error ek = ‖xk − x‖ is linearly decreasing, i.e. ek+1 ≤ Cek

• Supra-linear if the error ek = ‖xk − x‖ decreases as ek ≤ αkek with αk a non-negative
sequence decreasing to 0. If αk is a geometric sequence, then the convergence is said to
be geometric.

• Of order p if the error ek = ‖xk − x‖ decreases as ek ≤ C(ek)
p. If p = 2, the convergence

is said to be quadratic.

• Local convergence if x0 needs to be close to x; otherwise global convergence.

Fixed point theorem F : X → X is said to be a contraction if there exists γ ∈ (0, 1) such
that: ‖F (u)− F (v)| ≤ γ‖u− v‖.

Theorem 1.11. Let X a Banach space. If F : X → X is a contraction, then F admits a
unique fixed point û such that F (û) = û.
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2. Unconstrained optimization
2.1 The 1 dimensional case

For this subsection, we refer the reader to [6].
Here, we will denote the function J by f .

2.1.1 Basic algorithms

These algorithms do not require to estimate the derivative of f .
Assumption: f unimodal on [a, b], i.e. f strictly decreasing on [a, x∗[ and strictly increasing

on ]x∗, b].

Dichotomie algorithm Two points a and b such that f(a)f(b) < 0. The aim is the to find
a 0 of f .

Computation of 5 values of f in a = x1 < x2 < x3 < x4 < x5 = b.
Depending on f at least two points among the xi can be removed. We are then in the

situation: a ≤ y1 < y3 < y5 ≤ b and f(y1) > f(y3) < f(y5). Thus x∗ lies in ]y1, y5[.
The Dichotomie method consists in dividinc by 2 the intervall at each iteration. To this

end, one just needs to divide the original intervall in 4 equal segments.

Golden section search It is the same principle as before, excpet that the intervall is divided
in 3 at each iterations (and not in 4) (and thus only oneevaluation of f is needed at each
iteration).

To find the minimizer of a function, 3 points a required: a, b, c, with f(b) < min(f(a), f(c)).
Look at x in (a, b) or (b, c). It is possible to choose the new point x such that the length of the
new interval is γ|a− c| where γ = (

√
5− 1)/2 (inverse of the golden number). This is a linear

convergent algorithm.
More concretly: Computation of 5 values of f in a = x1 < x2 < x3 < x4 = b.
Depending on f , x∗ will lie either in ]x1, x3[ or in ]x2, x4[. Assume for instance that x∗ is in

]x2, x4[. If x3 is the middle of [x2, x4], then the next intervalls cannot all have the same size.
To fix this problem, the idea is to make the whole length of the intervall Lk decreases at

each iteration k. One wants to have: Lk+1

Lk
= γ < 1. This implies that Lk = Lk+1 + Lk+2.

Divided this last equation by Lk, one gets the value of γ.

2.1.2 Steepest gradient descent method

Let us consider f : R → Assume a < b < c, and f(b) < min(f(a), f(c)) . The next point to
test is of the type: b− αf ′(b) whith α > 0.

Algorithm: Given x0 ∈ Ω, define the sequence:

xk+1 = xk − αf ′(xk) (2.1)

2.1.3 Newton method

Basic idea: use of the condition f ′(u) = 0. To find a minimum of J , one looks for a zero of f ′.
Notice that then it is needed to check that indeed the zero of f ′ is a minimizer of f .
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Finding a zero of g Let us consider g : Ω → R where Ω ⊂ R.
The principle of Newton method is to linearise the equation g(x) = 0 around xk the current

iteration:
g(xk) + g′(xk)(x− xk) = 0 (2.2)

If g′(xk) = 0 then one needs to use a higher order Taylor expansion. Otherwise, the solution is

x = xk −
g(xk)

g′(xk)
(2.3)

And we thus choose xk+1 = xk − g(xk)
g′(xk)

.
Given x0 ∈ Ω, define the sequence:

xk+1 = xk −
g(xk)

g′(xk)
(2.4)

It has an immediate geometric interpetation: xk+1 is the intersection of the horizontal axis and
the tangent to g in xk.

To be well defined, xk is to remain in Ω for all k, f is to be derivable in Ω, and g′ 6= 0.
When it converges, Newton method has a quadratic convergence speed.
It is interesting to notice that such a method is immediate to generealize to the N dimen-

sional case.

Finding a minimum of f One just applies the above algorithm to f ′.
Given x0 ∈ Ω, define the sequence:

xk+1 = xk −
f ′(xk)

f ′′(xk+1)
(2.5)

To be well defined, xk is to remain in Ω for all k, f is to be twice derivable in Ω, and f ′′ 6= 0.

2.1.4 Secant method

Finding a zero of g Let us consider g : Ω → R where Ω ⊂ R. We look for the zeros of a
linear approximation of g.

Given x0, x1 ∈ Ω, define the sequence:

xk+1 = xk −
xk − xk−1

g(xk)− g(xk−1)
g(xk) (2.6)

2.2 Unconstrained problems

For this subsection, we refer the reader to [5, 6, 1].

2.2.1 Introduction

J functional defined on E = RN . Problem: find u ∈ E such that:

J(u) = inf
v∈E

J(v) (2.7)

=⇒ Iterative methods:
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From an arbitrary u0 ∈ E, a sequence uk is built. uk is expected to converge to a solution
of problem (2.7).

To build uk+1 from uk, we get back to a problem which is easy to solve numerically, i.e. to
a problem with only one single real variable. To do so:

• A descent direction dk is chosen from uk.

• The minimum of J on the line passing in uk parallel to dk is computed. This defines uk+1

if there exists a unique solution ρ(uk, dk) minimizing: ρ 7→ J(uk + ρdk).

Notice that in the case of a quadratic functional, finding ρ amounts to solving a second
order polynomial.

2.2.2 Relaxation method

The simplest choice to define the successive descent directions consist in choosing them in
advance. A canonical choice is the directions of the coordinates axis, taken in a cyclic way.

Algorithm: u0 fixed in RN . uk=1 is computedfrom uk by sucessively solving the following
minimizationproblems:

J([uk+1
1 ], uk

2, . . . , u
k
N) = infξ∈R J(ξ, uk

2, . . . , u
k
N)

. . .
J(uk+1

1 , . . . , uk+1
N−1, [u

k+1
N ]) = infξ∈R J(uk+1

1 , . . . , uk+1
N−1, ξ)

(2.8)

We set:
uk = uk,0 =

(
uk

1, . . . , u
k
N

)
(2.9)

and 
uk,1 =

(
uk+1

1 , uk
2, . . . , u

k
N

)
. . .

uk,N−1 =
(
uk+1

1 , . . . , uk+1
N−1, u

k
N

) (2.10)

and
uk+1 = uk,N =

(
uk+1

1 , . . . , uk+1
N

)
(2.11)

The minimization problems are thus (denoting by ei the canonical basis of RN):
J(uk,1) = infρ∈R J(uk,0 + ρe1)

. . .
J(uk,N) = infρ∈R J(uk,N−1 + ρeN)

(2.12)

Theorem 2.1. If J is elliptic on E = RN , then the relaxation method converge.

Remark: The differentiability of the functional is essential. Consider for instance:

J(v1, v2) = v2
1 + v2

2 − 2(v1 + v2) + 2|v1 − v2| (2.13)

Exercice:
J is coercive, strictly convex, almost quadatric, but non differentiable.
If one chooses u0 = (0, 0), then the relaxation method leads to a stationary sequence uk = u0

for all k, although infv∈R2 J(v) = J(1, 1).
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Nevertheless, the relaxation method works for function of the type:

J(v) = J0(v) +
N∑

i=1

αi|vi| (2.14)

with αi ≥ 0 and J0 elliptic.

Computation time: In general, the relaxation method is N times slower then the optimal
step gradient method.

2.2.3 Optimal step gradient method

Intuitively, the metod will perform better if the differences J(uk) − J(uk+1) are large. The
choice of the coordinates axis is thus not optimal. The idea to choose the descent direction
is to use the opposite direction to the gradient (since it is locally the steepest descent) (clear
using Young formula at first order: J(uk + w) = J(uk) + 〈∇J(uk), w〉+ o(‖w‖)).

Algorithm u0 in E.{
J(uk − ρ(uk)∇J(uk) = infρ∈R J(uk − ρ∇J(uk))
uk+1 = uk − ρ(uk)∇J(uk)

(2.15)

Theorem 2.2. Assume J to be elliptic. Then the optimal step gradient method converges.

Sketch of the proof:

(i) We can assume that ∇J(uk) 6= 0 for all k (otherwise, convergence in a finite number of
iterations.

φk(ρ) = J(uk − ρ∇J(uk)) (2.16)

φk : R → R. It is easy to see that φk is strictly convex, coercive, and therefore admits a
unique minimizer characterized by: φ′

k(ρ(uk)) = 0.

φ
′

k(ρ) = −〈∇J(uk − ρ∇J(uk)),∇J(uk)〉 (2.17)

Hence
〈∇J(uk),∇J(uk+1)〉 = 0 (2.18)

Since uk+1 = uk − ρ∇J(uk), we also have:

〈uk+1 − uk,∇J(uk+1)〉 = 0 (2.19)

Since J elliptic, we get

J(uk)− J(uk+1) ≥
α

2
‖uk − uk+1‖2 (2.20)

(ii) Since by construction, J(uk) is non-oncreasing and larger than J(u), it converges and in
particular we have J(uk+1) − J(uk) → 0 as k → +∞. Hence from (i), ‖uk − uk+1‖ → 0
as k → +∞.
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(ii) Thanks to the orthogonality of successive gradients, we have:

‖∇J(uk)‖2 = 〈∇J(uk),∇J(uk)−∇J(uk+1〉 ≤ ‖∇J(uk)‖‖∇J(uk)−∇J(uk+1‖ (2.21)

and thus:
‖∇J(uk)‖ ≤ ‖∇J(uk)−∇J(uk+1)‖ (2.22)

(iii) Since J(uk) non-increasing, and since J coercive, we have uk bounded. ∇J being contin-
uous, it is uniformly continuous on any compact set of E (Heine theorem). Hence from
(ii),

‖uk − uk+1‖ → 0 (2.23)

as k → +∞. And from (iii), we thus get ∇J(uk) → 0 as k → +∞.

(iv) We have (using ellipticity and ∇J(u) = 0):

α‖uk−u‖2 ≤ 〈∇J(uk)−∇J(u), uk−u〉 = 〈∇J(uk), uk−u〉 ≤ ‖∇J(uk)‖‖u−uk‖ (2.24)

Hence:
‖uk − u‖ ≤ 1

α
‖∇J(uk)‖ (2.25)

Notice in particular that it gives an estimation of the error.
Notice also that during the proof, we have shown that:

〈∇J(uk),∇J(uk+1)〉 = 0 (2.26)

Remark: In general, one does not try to compute the optimal ρ. There exists a large number
of methods in the litterature for a linear search of an optimal ρ. In particular, let us mention
Wolfe rule.

Case of a quadratic functional

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 (2.27)

Notice that ∇J(v) = Av − b.
Since 〈∇J(uk),∇J(uk+1)〉 = 0, the computation of ρ(uk) is straightforward:

0 = 〈∇J(uk),∇J(uk+1)〉 = 〈A(uk − ρ(uk)(Auk − b))− b, Auk − b〉 (2.28)

We deduce:
ρ(uk) =

‖wk‖2

〈Awk, wk〉
(2.29)

with
wk = Auk − b = ∇J(uk) (2.30)

The algorithm in this case reduces at each iteration to:

• Compute wk = Auk − b.

• Compute ρ(uk) = ‖wk‖2
〈Awk,wk〉

• Compute uk+1 = uk − ρ(uk)wk.

13



Remark: sufficient condition of convergence. Notice that we only give sufficient condi-
tion of convergence. In practice, these conditions will not always be fullfilled, but the algorithm
may nevertheless converges. In practice, if the algorithm does not converge, most often the so-
lution explodes (although sometimes it may oscillate).

2.2.4 Variable step gradient method

In the previous algorithm, finding the optimal step ρ can be high time consuming. It is therefore
sometimes simpler to use a constant step ρ for all iterations. Although there will be more
iterations needed, since the iterations will be faster it may be a good strategy. It can also be
ρk depending on iteration k, but not “optimal”.

The variable step algorithm is therefore:
u0 in RN , and:

uk+1 = uk − ρk∇J(uk) (2.31)

The Fixed step algorithm is therefore:
u0 in RN , and:

uk+1 = uk − ρ∇J(uk) (2.32)

Theorem 2.3. Let us consider an elliptic functional J (with ellipticity constant α). Let us
furthermore assume that ∇J is M Lipshitz. If for all k:

0 < a ≤ ρk ≤ b <
2α

M2
(2.33)

then the variable step gradient method converges, and the speed of convergence is geometric.
There exists β ∈ (0, 1) such that

‖uk − u‖ ≤ βk‖u0 − u‖ (2.34)

Proof: We use the characterization ∇J(u) = 0. Hence we can write:

uk+1 − u = (uk − u)− ρk(∇J(uk)−∇J(u)) (2.35)

Thus:

‖uk+1 − u‖2 = ‖uk − u‖2 − 2ρk〈uk − u,∇J(uk)−∇J(u)〉+ ρ2
k‖∇J(uk)−∇J(u)‖2 (2.36)

And using the ellipticity of J and the Lipshitz constant of ∇J (and assuming ρk > 0):

‖uk+1 − uk‖2 ≤ (1− 2αρk +M2ρ2
k)‖uk − u‖2 (2.37)

It is easy to see that if 0 < ρk <
2α
M2 then 0 <

√
1− 2αρk +M2ρ2

k = β < 1.

�
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Case of a quadratic functional

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 (2.38)

with A symmetric definite positive matrix.
In this case the method is uk=1 = uk − ρk(Auk − b). And the algorithm converges if

0 < a ≤ ρk ≤ b <
2λ1

λ2
N

(2.39)

with λ1 smallest eigenvalue of A, and λN largest eigenvalue of A.
But here we have (using the fact that Au = b):

uk+1 − u = (uk − u)− ρkA(uk − u) = (Id− ρkA)(uk − u) (2.40)

Hence:
‖uk+1 − u‖ ≤ ‖Id− ρkA‖2‖uk − u‖ (2.41)

But since (Id−ρkA) is a symmetric matrix, its norm ‖.‖2 is ‖Id−ρkA‖2 = max{|1−ρkλ1|, |1−
ρkλN |}. Hence ‖Id− ρkA‖2 < 1 if 0 < ρk <

2
λN

. Therefore the algorithm converges if:

0 < a ≤ ρk ≤ b <
2

λN

(2.42)

And if λ1 << λN , this is a much sharper result.

Armijo condition: J convex funtional. We have

J(uk + ρdk) ≥ J(uk) + ρ〈∇J(uk), dk〉 (2.43)

If ε ∈ (0, 1) is fixed, there exists ρ sufficiently small such that:

J(uk + ρdk) ≤ J(uk) + ερ〈∇J(uk), dk〉 (2.44)

This last inequality is Armijo condition. This a sufficient decrease condition.
Typical value for ε in practice is 10−4.
Armijo test: Fix ε ∈ (0, 1) and ρ0 > 0. We set ρi = ρ02

−i. The value of ρ chosen is the
largest ρi which satisfies the Armijo condition.

With such a selection rule, it can be shown that the variable gradient descent converges
(under reasonable hypotheses).

Wolfe conditions This is Armijo condition plus a condition on the curvature:

〈∇J(uk + ρkdk), dk〉 ≥ ε̃〈∇J(uk), dk〉 (2.45)

with ε̃ ∈ (ε, 1).

2.2.5 Conjugate gradient method

Introduction: J functional defined on E = RN . Problem: find u ∈ E such that:

J(u) = inf
v∈E

J(v) (2.46)

To improve the convergence with respect to the optimal gradient descent (best local choice),
one needs to use more information about the funtional.

One solution is to use second order derivative =⇒ Newton like method.
But it is possible to improve the direction choice without resorting to second order derivative.
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Example: Let us consider

J(v1, v2) =
1

2
(α1v

2
1 + α2v

2
2) (2.47)

with 0 < α1 < α2. We have J(0) = infv∈R2 J(v).
Assume that we use the optimal gradient descent to solve this problem. Assume u0 = (u0

1, u
0
2)

has its two components non zero (otherwise the method converges in 1 iteration).
Indeed, a necessary and sufficient condition for uk+1 to be equal to 0 is that 0 belongs to

the line {uk− ρ∇J(uk); ρ ∈ R}., i.e. there exists ρ ∈ R such that: uk
1 = ρα1u

k
1 and uk

2 = ρα2u
k
2.

But this is possible only if one of the uk
i is zero (since α1 < α2). But it is easy to prove by

induction that, if u0
1 6= 0 and u0

2 6= 0, then for all k we have: uk
1 6= 0 and uk

2 6= 0.
In the optimal gradient method, we have the relation

〈∇J(uk),∇J(uk+1)〉 = 0 (2.48)

The basic idea of the conjugate gradient method for a quadratic functional is that the direction
descent dk are orthogonal with respect to 〈., .〉A inner product, to take into account the geometry
of J .

We recall that a quadratic functional is given by:

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 (2.49)

with A symmetric definite positive matrix.

Principle: u0 ∈ RN . We define:

Gk = V ect0≤i≤p{∇J(uk)} (2.50)

uk+1 is defined as the minimizer of the restiction of J to uk +Gk = {uk + vk, vk ∈ Gk}, i.e.:{
uk+1 ∈ (uk +Gk)
J(uk+1) = infv∈(uk+Gk) J(v)

(2.51)

Notice that since uk + Gk is closed and convex, J being coercive and strictly convex, the
above minimization problem admits a solution and only one.

Notice also that comparing with the optimal gradient descent, one optimizes on a larger
set, uk +Gk, instead of {uk + ρ∇J(uk)}: the result is therefore better.

Proposition 2.1. For all p 6= q, we have:

〈∇J(up),∇J(uq)〉 = 0 (2.52)

Notice that in the optimal gradient descent, only 2 consecutive gradients are orthogonal.

Proof: This is an immediate consequence of the fact that J(uk+1) = infv∈(uk+Gk) J(v), i.e.
J(uk+1) = infv∈Gk

J(uk +v) : this implies that 〈∇J(uk+1), w〉 = 0 for all w in Gk. In particular,
〈∇J(uk+1),∇J(ui)〉 = 0 if 0 ≤ i ≤ k.

�
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In particular, this implies that the method converges in at most N iterations.

Proposition 2.2. For all p 6= q, we have:

〈dp, dq〉A = 〈Adp, dq〉 = 0 (2.53)

where dk = uk+1 − uk is the descent direction.

Hence the name of the method.

Proof: Assume the first p+ 1 vectors constructed.

J(v) =
1

2
〈Av, v〉 − 〈v, b〉 (2.54)

with A symmetric. Hence ∇J(v) = Av − b.

∇J(v + w) = A(v + w)− b = ∇J(v) + Aw (2.55)

In particular:
∇J(uk+1) = ∇J(uk + dk) = ∇J(uk) + Adk (2.56)

Hence dk 6= 0 for all k.
From the orthogonality of the gradients, we get:

0 = ‖∇J(uk)‖2 + 〈Adk,∇J(uk)〉 (2.57)

Moreover:
0 = 〈∇J(uk+1),∇J(ui)〉 = 〈∇J(uk,∇J(ui)〉+ 〈Adk,∇J(ui)〉 (2.58)

hence:
0 = 〈Adk,∇J(ui)〉 (2.59)

Since all dm are linear combinations of the ∇J(ui), this implies that: 0 = 〈Adk, dm〉.

�

Algorithm (conjugate gradient method):

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 (2.60)

with A symmetric definite positive matrix.
u0 ∈ RN . We set d0 = ∇J(u0). If ∇J(u0) = 0, then the algorithm is finished. Otherwise,

we set:
r0 =

〈∇J(u0), d0〉
〈Ad0, d0〉

(2.61)

and then u1 = u0 − r0d0.
To build uk+1 from uk: if ∇J(uk) = 0, then the algorithm is finished. Otherwise, we set:

dk = ∇J(uk) +
‖∇J(uk)‖2

‖∇J(uk−1)‖2
dk−1 (2.62)
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and
rk =

〈∇J(uk), dk〉
〈Adk, dk〉

(2.63)

and then uk+1 = uk − rkdk.

Theorem 2.4. The conjugate gradient method applied to a quadratic elliptic functional con-
verges in at most N iterations.

Notice that this method is particularly usefull when A is sparse (since A plays a role in the
computation only in the product Adk).

Practical method: In practice, due to numerical imprecision, the convergence is not reached
in a finite number of iterations. One needs to use a stopping criterion.

Matrix inversion Find u such that

J(u) = inf
v
J(v) (2.64)

with
J(v) =

1

2
〈Av, v〉 − 〈v, b〉 (2.65)

with A symmetric. We have ∇J(v) = Av − b, and the optimality condition ∇J(u) = 0, i.e.
Au = b, i.e. u = A−1b.

Hence the conjugate gradient method can be used to inverse positive definite matrices. It
is in particular used if A has some sparse structure (then the method can become faster then
the Cholesky factorization).

Polak-Ribière conjugate gradient method: The previous method can be extended to
general convex functional (although with no guarantie of finite number iterations to converge).
First notice that the orthogonality of the gradient in the conjugate gradient method enables to
write:

dk = ∇J(uk) +
‖∇J(uk)‖2

‖∇J(uk−1)‖2
dk−1 = ∇J(uk) +

〈∇J(uk),∇J(uk)−∇J(uk−1)〉
‖∇J(uk−1)‖2

dk−1 (2.66)

Using the first part of the equation leads to Fletcher-Reeves conjugate gradient method.
Using the last part leads to Ploak Ribière conjugate gradiente method (which in practice is
more efficient):

u0 ∈ RN . d0 = ∇J(u0).
To build uk+1 from uk: if ∇J(uk) = 0, then the algorithm is finished. Otherwise, we set:

dk = ∇J(uk) +
〈∇J(uk),∇J(uk)−∇J(uk−1)〉

‖∇J(uk−1)‖2
dk−1 (2.67)

and
uk+1 = uk − rkdk (2.68)

with J(uk+1) = infr∈R J(uk − rdk).
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2.2.6 Quasi-Newton method

Basic idea: use of the condition ∇J(u) = 0. To find a minimum of J , one looks for a zero of
∇J . Notice that then it is needed to check that indeed the zero of ∇J is a minimizer of J .

Finding a zero of F Let us consider F : Ω → R where Ω ⊂ R.
The principle of Newton method is to linearise the equation F (x) = 0 around xk the current

iteration:
0 = F (x) = F (uk) + F ′(uk).(x− uk) (2.69)

F ′(uk) is the differential of F .
By analogy with the one dimensional case, we set:

uk+1 = uk − (∇F (uk))
−1F (uk) (2.70)

Given u0 ∈ Ω, define the sequence:

uk+1 = uk − (∇F (uk))
−1F (uk) (2.71)

To be well defined, uk is to remain in Ω for all k, F is to be differentiable in Ω, and ∇F
needs to be invertible.

The main difficulty in Newton method relies in good guess of u0.
Notice that at each iteration, the main computation time is required by ∇F (uk))

−1. A
natural idea is to keep the same matrix during a bunch of iterations, or even to replace it by a
matrix easy to inverse =⇒ quasi-newton method.

We get an algorithm of the type:
Given u0 ∈ Ω, define the sequence:

uk+1 = uk − (Ak(uk′))−1F (uk) (2.72)

with 0 ≤ k′ ≤ k, and Ak(uk′) invertible.
For such an algorithm to converge, we need the following intuitive hyptheses: F (u0) suffi-

ciently small, ∇F (u) does not vary too much around u0, Ak(u) and A−1
k (u) do not vary too

much with respect to k and for u close to u0.

Theorem 2.5. F : Ω ⊂ X → Y where X is a Banach space. F differentiable. Let us assume
that there exist r,M, β such that: r > 0 and B = {x ∈ X, ‖x−x0‖ ≤ r} ⊂ Ω. Ak ∈ Isom(X, Y )
(i.e. set of continuous linear applications bijectives from X to Y with continuous inverse).

1.
sup
k≥0

sup
x∈B

‖A−1
k (x)‖ ≤M (2.73)

2.
sup
k≥0

sup
x,x′∈B

‖∇F (x)− Ak(x
′)‖ ≤ β

M
(2.74)

and β < 1.

3.
‖F (x0)‖ ≤

r

M
(1− β) (2.75)
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Then the sequence xk defined by:

xk+1 = xk − Ak(x
−1
k′ )F (xk) (2.76)

with k ≥ k′ ≥ 0 is entirely contained inside B, and converges to a zero of F , which is the only
zero of F inside B. Moreover, the convergence is geometric:

‖xk − a‖ ≤ ‖x1 − x0‖
1− β

βk (2.77)

It relies on the fixed point theorem in complete spaces (for contractant applications).

Finding a minimum of J :
Newton method:
Given u0 ∈ Ω, define the sequence:

uk+1 = uk − (∇2J(uk))
−1∇J(uk) (2.78)

Quasi-Newton method:
Given u0 ∈ Ω, define the sequence:

uk+1 = uk − A−1
k (u′k)∇J(uk) (2.79)

• If Ak(u
′
k) = ρ−1Id, then this the fixed step gradient method.

• If Ak(u
′
k) = ρ−1

k Id, then this the variable step gradient method.

• If Ak(u
′
k) = (ρ(uk))

−1Id, then this is the optimal step gradient method, with ρ(uk) deter-
mined by:

J(uk − ρ(uk)∇J(uk)) = inf
ρ∈R

J(uk − ρ∇J(uk)) (2.80)
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3. Constrained optimization
3.1 Problems with general constraints

For this subsection, we refer the reader to [5].

3.1.1 Projection on a convex closed set

Necessary condition:

Theorem 3.1. Let J : U → R a differentiable function on a convex set U . If u ∈ U is a
minimizer of J , then 〈∇J(u), (v − u)〉 ≥ 0 for all v ∈ U .

Proof: Remark that if u and v = u+w in U convex, then u+ tw is in U for all t ∈ [0, 1]. We
then apply Taylor formula:

0 ≤ J(u+ tw)− J(u) = t〈∇J(u), w〉+ o(t‖w‖) (3.1)

and w = v − u.

�

Notice that if U is a subspace of E, then the necessary condition becomes: 〈∇J(u), v〉 = 0
for ll v ∈ U .

Notice also that if U = E, then the condition is the classical Euler equation ∇J(u) = 0.

Projection theorem :

Theorem 3.2. Let U a closed non empty convex set in X = RN . Let w ∈ X. Then there
exists a unique element denoted by Pw such that:

Pw ∈ U and ‖w − Pw‖ = inf
v∈U

‖w − v‖ (3.2)

Theorem 3.3. Let U a closed non empty convex set in X = RN . u = Pw iff

〈u− w, v − u〉 ≥ 0 (3.3)

for all v ∈ U .

Proposition 3.1. The projection P : X → U is 1 contractant, i.e.:

‖Pw1 − Pw2‖ ≤ ‖w1 − w2‖ (3.4)

for all w1, w2 in X.

Proposition 3.2. The projection P : X → U is linear iff U is a subspace of X. In this case,
the characterization inequality becomes:

〈Pw − w, v〉 = 0 (3.5)

for all v in U .
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Remaks:

• The characterization of the projection has an immediate geometric interpretation on the
angle between the vectors (Pw − w) and (v − Pw).

• Notice that Pw = w iff w ∈ U .

• The characterization inequality of the projection is nothing but the Euler equation asso-
ciated to the following problem: w fixed in X, consider

J(v) =
1

2
‖w − v‖2 (3.6)

J is differentiable and strictly convex, and has a minimum in U in v = Pw.

• In the case when U is a subspace, then Pw − w ⊥ u for all u in U .

If U is of the type:
U = ΠN

i=1[ai, bi] (3.7)

then (Pw)i = min (max(wi, bi), bi).

3.1.2 Relaxation method for a rectangle

U being contained in X, find u such that:

J(u) = inf
v∈U

J(u) (3.8)

Here we only consider the case when

U = ΠN
i=1[ai, bi] (3.9)

with possibly ai = −∞ and bi = +∞.
In this case the relaxation method is:

J([uk+1
1 ], uk

2, . . . , u
k
N) = infξ∈[a1,b1] J(ξ, uk

2, . . . , u
k
N)

. . .
J(uk+1

1 , . . . , uk+1
N−1, [u

k+1
N ]) = infξ∈[aN ,bN

J(uk+1
1 , . . . , uk+1

N−1, ξ)
(3.10)

Theorem 3.4. If J is elliptic, and if U = ΠN
i=1[ai, bi], then the relaxation method converges.

Remark: It is not possible to extend the relaxation algorithm to more general sets. Indeed,
consider the case when J(v) = v2

1 + v2
2 and U = {v = (v1, v2) ∈ R2; v1 + v2 ≥ 2}. Assume

u0 = (u0
1, u

0
2) with u0

1 6= 1 and u0
2 6= 1.

3.1.3 Projected gradient method

U convex closed non empty set. J convex.

Problem: find u ∈ U such that J(u) = infv∈U J(v).
⇔ u ∈ U and 〈∇J(u), v − u〉 ≥ 0 for all v ∈ U .
⇔ u ∈ U and 〈u− (u− ρ∇J(u)), v − u〉 ≥ 0 for all v ∈ U and ρ > 0.
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⇔ u = P (u− ρ∇J(u)) for all ρ > 0.

Hence the solution appears as a fixed point of the application g : v → g(v) = P (v−ρ∇J(v))
It thus natural to consider the sequence:
u0 ∈ E, and

uk+1 = g(uk) = P (uk − ρ∇J(uk)) (3.11)

Notice that in the case when U = E = RN , then P = Id and thus uk+1 = uk − ρ∇J(uk),
i.e. this is the fixed step gradient method for unconstrained problems.

The method we have just described is called fixed step projected gradient method.
To show the convergence of the fixed step projected gradient method, it suffices to show

that g : E → E is a contraction, i.e. there exists γ ∈ (0, 1) such that ‖g(u)− g(v)‖ ≤ γ‖u− v‖
for all u, v in E.

Thanks to the fixed point theorem in Banach spaces, it shows that g has a fixed point, and
thus the convergence of the algorithm.

More generally, the convergence (under reasonable hypothese) of the variable step projected
gradient method can be shown.

u0 ∈ E, and
uk+1 = g(uk) = P (uk − ρk∇J(uk)) (3.12)

with ρk > 0 for all k ≥ 0.

Theorem 3.5. Let us consider an elliptic functional J (with ellipticity constant α). Let us
furthermore assume that ∇J is M Lipshitz. If for all k:

0 < a ≤ ρk ≤ b <
2α

M2
(3.13)

then the variable step projected gradient method converges, and the speed of convergence is
geometric. There exists β ∈ (0, 1) such that

‖uk − u‖ ≤ βk‖u0 − u‖ (3.14)

Proof:
gk(v) = P (v − ρk∇J(v)) (3.15)

We have:

‖gk(v1)− gk(v2)‖2 = ‖P (v1 − ρk∇J(v1))− P (v2 − ρk∇J(v2))‖2

≤ ‖(v1 − v2)− ρk(∇J(v1))−∇J(v2))‖2

≤ (1− 2αρk +M2ρ2
k)‖v1 − v2‖2

It is easy to see that if 0 < ρk <
2α
M2 then 0 <

√
1− 2αρk +M2ρ2

k = β < 1.
Since the solution u is a fixed point of each application gk, we can write:

‖uk+1 − u‖ = ‖gk(uk)− gk(u)‖ ≤ β‖u− uk‖ (3.16)

�
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Case of a quadratic functional

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 (3.17)

with A symmetric definite positive matrix.
In this case the method is uk+1 = P (uk − ρk(Auk − b)). And the algorithm converges if

0 < a ≤ ρk ≤ b <
2λ1

λ2
N

(3.18)

with λ1 smallest eigenvalue of A, and λN largest eigenvalue of A.
But here we have:

uk+1 − u = P (uk − ρkAuk)− P (u) (3.19)

Using the fact that Au = b,

‖uk+1 − u‖ ≤ ‖uk − ρkA(uk − u))− u‖ = (Id− ρkA)(uk − u) (3.20)

Hence:
‖uk+1 − u‖ ≤ ‖Id− ρkA‖2‖uk − u‖ (3.21)

But since (Id−ρkA) is a symmetric matrix, its norm ‖.‖2 is ‖Id−ρkA‖2 = max{|1−ρkλ1|, |1−
ρkλN |}. Hence ‖Id− ρkA‖2 < 1 if 0 < ρk <

2
λN

. Therefore the algorithm converges if:

0 < a ≤ ρk ≤ b <
2

λN

(3.22)

And if λ1 << λN , this is a much sharper result.

Practical remark: From a practical point of view, the projected gradient method can be
used only if the projection operator is explicitely known (which is not the case in general). A
notable excpetion is the case when:

U = ΠN
i=1[ai, bi] (3.23)

We have already written the projection operator in this case.
Consider for instance the following problem: Minimize J(v) = 1

2
〈Av, v〉− 〈b, v〉 on U = RN

+ .
The projected gradient algorithm in this case is:

u0 ∈ RN , and, for 1 ≤ i ≤ N :

uk+1
i = max

(
uk

i − ρk(Auk − b)i, 0
)

(3.24)

But except in such particular cases, constrained minimization problems are to be handled
with different methods, such as penalization methods.

3.1.4 Penalization method

Theorem 3.6. Let J : RN → R a coercive strictly convex (and thus continuous) function, U a
non empty convex set in RN , and ψ : RN → R a convex (and thus continuous) function such
that

ψ(v) ≥ 0 for all v ∈ RN and ψ(v) = 0 ⇔ v ∈ U (3.25)
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Then for all ε > 0, there exists a unique uε such that:

uε ∈ RN and Jε(uε) = inf
v∈RN

Jε(v) where Jε(v) = J(v) +
1

ε
ψ(v) (3.26)

and limε→0 uε = u, where u is the unique solution of the problem:

Find u ∈ U and J(u) = inf
v∈U

J(v) (3.27)

Proof: It is clear that both (3.26) and (3.27) have a unique solution. We have:

J(uε) ≤ J(uε) +
1

ε
ψ(uε) = Jε(uε) ≤ Jε(u) = J(u) (3.28)

Since J is coercive, uε is bounded. Up to an extraction, there exists ũ such that uε → ũ. Since
J continuous, and since J(uε) ≤ J(u), we get:

J(ũ) ≤ J(u) (3.29)

Remark that:
0 ≤ ψ(uε) ≤ ε(J(u)− J(uε)) (3.30)

But since uε bounded, J(u) − J(uε) is also bounded (independently from ε). Hence: ψ(ũ) =
limψ(uε) = 0. We thus see that ũ is in U . Moreover, since J(ũ) ≤ J(u) we get that ũ = u. By
uniqueness of the solution, we deduce that the result is true for any cluster point of uε.

�

Example: J : RN → R strictly convex, and φi : RN → R convex. Consider the problem: find
u ∈ U such that:

J(u) = inf
v∈U

J(v) (3.31)

with
U = {v ∈ RN ; φi(v) ≤ 0, 1 ≤ i ≤ m} (3.32)

We can choose for instance:

ψ(v) =
m∑

i=1

max(φi(v), 0) (3.33)

or (differentiable constraint):

ψ(v) =
m∑

i=1

(max(φi(v), 0))2 (3.34)

Remarks: The main point of a penalization method is to replaced a constrained minimization
problem by an unconstrained one.

In practice, the problem is to find good penalization functions ψ (for instance differentiable).
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3.2 Problems with equality constraints

We refer the reader to [5].

Definition 3.1. X and Y two normed vectorial spaces.
Isom(X, Y ) is the set of linear continuous bijective applications with continuous inverse.

Theorem 3.7. Implicit functions theorem
Let φ : Ω ⊂ X1 ×X2 → Y an application continuously differentiable on Ω, and (a1, a2) in

Ω, b in Y , points such that:

φ(a1, b1) = b, ∂2φ(a1, a2) ∈ Isom(X2, Y ) (3.35)

X2 is assumed to be a Banach space.
Then there exists an open set O1 ⊂ X1, an open set O2 ⊂ X2, and a continuous application

called implicit function
f : 01 ⊂ X1 → X2 (3.36)

such that (a1, a2) ∈ 01 × 02 ⊂ Ω and

{(x1, x2) ∈ 01 × 02, φ(x1, x2) = b} = {(x1, x2) ∈ 01 ×X2, x2 = f(x1)} (3.37)

Moreover, f is differentiable in a1 and

f ′(a1) = − (∂2φ(a1, a2))
−1 ∂1φ(a1, a2) (3.38)

The following theorem is a consequence of the classical implicit funtion theorem (in Banach
spaces). It gives a necessary condition of linked extrema.

Theorem 3.8. Let Ω ⊂ RN open set. Let φi : Ω → R, 1 ≤ i ≤ m C1 functions on Ω. Let u
in

U = {v ∈ Ω, φi(v) = 0, 1 ≤ i ≤ m} (3.39)

such that the differential ∇φi(u) in L(RN ,R), 1 ≤ i ≤ m are linearly independants.
Let J : Ω → R a function differentiable in u. If J has some local extremum with respect to

U , then there exist m numbers λi(u), 1 ≤ i ≤ m, uniquely defined, such that:

∇J(u) +
m∑

i=1

λi(u)∇φi(u) = 0 (3.40)

Basic idea: J(u1, u2) with u2 in the constraints set {ψ(v) = 0}. Implicit function theorem:
=⇒ u2 = f(u1) and we apply the classical conditon (derivative 0) to J(u, f(u)).

Remarks:

• ∇φi(u) in L(RN ,R), 1 ≤ i ≤ m are linearly independant means that the matrix ∂jφi(u),
1 ≤ i ≤ m, 1 ≤ j ≤ N , is of rank m.

• The numbers λi(u), 1 ≤ i ≤ m, are called Lagrange multipliers associated to the linked
extremum u.

• Notice that the result of the theorem is a necessary condition, but not a sufficient one. It
is therefore needed to carry out a local analysis to check whether it is indeed an extremum.
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Quadratic functional

J(u) =
1

2
〈Au, u〉 − 〈b, u〉 (3.41)

with A symmetric.
Assume we are interested in the problem: find u in U such that

J(u) = inf
v∈U

J(v) (3.42)

with
U = {v ∈ RN , Cv = d} (3.43)

where C is a matrix of size m×N , and d a vector of size m. We assume that m < N .
Let us set φ(v) = Cv − d. We have ∇φ(v) = C.
Hence, if C is of rank m, we can apply the above theorem to get a necessary condition for

J to have an extremum in u ∈ U with respect to U , is that the following linear system admits
a solution (u, λ) in RN+m: {

Au+ CTλ = b
Cu = d

(3.44)

i.e.: (
A CT

C 0

) (
u
λ

)
=

(
b
d

)
(3.45)

which can be solved with any classical method for linear systems.

Lagrange-Newton algorithm Consider the minimization problem

inf J(u)

under the constraint φi(u) = 0. Formally, the first order conditions are:{
∇uL(u, λ) = 0
φ(u) = 0

(3.46)

where L is the Lagrangian of the problem:

L(u, λ) = J(u) +
m∑

i=1

λiφi(u) = J(u) + 〈λ, φ(u)〉 (3.47)

with φ : Ω ⊂ RN → Rm, φ(u) = (φ1(u), . . . , φm(u)).
The Lagrange-Newton algorithm is Newton method applied to this non-linear system:

choose an initial guess (u0, λ0) ∈ RN × Rm. If (uk, λk) known, then:(
∇2

uuL(uk, λk)) ∇φ(uk)
T

∇φ(uk) 0

) (
dk

yk

)
= −

(
∇L(uk, λk)

T

φ(xk)

)
(3.48)

Then: uk+1 = uk + dk, λk+1 = λk + yk.

3.3 Problems with inequality constraints

We refer the reader to [5, 7].
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3.3.1 Characterization of a minimum on a general set

Theorem 3.9. Farkas-Minkowski lemma: Let ai, i ∈ I, where I is a finite set of indices, and b
elements in RN . Then the following inclusion

{w ∈ RN ; 〈ai, w〉 ≥ 0, i ∈ I} ⊂ {w ∈ RN , 〈b, w〉 ≥ 0} (3.49)

is satisfied iff:
There exists λi ≥ 0, i ∈ I, such that b =

∑
i∈I

λiai (3.50)

Definition 3.2. U a non empty set in E = RN . For u in U , we define C(u) the cone of
admissible directions. It is the union of {0} and the set of w ∈ RN such that there exists at
least one sequence of points uk such that:{

uk ∈ U, uk 6= u for all k, limk uk = u
limk

uk−u
‖uk−u‖ = w

‖w‖ , w 6= 0
(3.51)

This last condition can be equivalently written:

uk = u+ ‖u− uk‖
w

‖w‖
+ ‖uk − u‖δk (3.52)

with lim δk = 0 and w 6= 0.
Notice that C(u) is a cone (with sommet 0), not necessarily convex.

Proposition 3.3. Let U a non empty set in E = RN .

• For all u ∈ U , C(u) is a closed set.

• If U is convex, then U ⊂ {u+ C(u)}.

Theorem 3.10. Let J : Ω ⊂ E → R a function defined on an open set Ω which contains U .
If J admits in u ∈ U a local minimum with respect to U , and if J is differentiable in u, then

〈∇J(u), v − u〉 ≥ 0 (3.53)

for all v in {u+ C(u)}, i.e for all w in C(u) we have:

〈∇J(u), w〉 ≥ 0 (3.54)

We remind the reader that we proved before that if U is convex, then a necessary and
sufficient condition for J to have a local minimum in u with respect to U is:

〈∇J(u), v − u〉 ≥ 0 (3.55)

for all v in U .
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Proof of the Theorem 3.10: Let w = (v − u) a non zero vector in C(u), and let uk a
sequence of points in U\{u} such that: limuk = u,

uk − u = ‖u− uk‖
w

‖w‖
+ ‖uk − u‖δk (3.56)

with lim δk = 0, and J(u) ≤ J(uk).
Using the derivability of J in u, we get:

0 ≤ J(uk)− J(u) = 〈∇J(u), uk − u〉+ ‖uk − u‖εk (3.57)

with lim εk = 0. Hence:

0 ≤ ‖uk − u‖
‖w‖

〈∇J(u), w + ‖w‖δk〉+ εk‖uk − u‖ (3.58)

which implies:
0 ≤ 〈∇J(u), w + ‖w‖δk〉+ εk‖w‖ (3.59)

Hence, since lim δk = 0, we get 〈∇J(u), w〉 ≥ 0

�

3.3.2 Kuhn and Tucker relations

We now consider a particular case of set U :

U = {v ∈ Ω;φi(v) ≤ 0, 1 ≤ i ≤ m} (3.60)

with Ω open set of E = RN .

Definition 3.3. Active indices: if u is in U , then:

I(u) = {1 ≤ i ≤ m; φi(u) = 0} (3.61)

Definition 3.4.
C∗(u) = {w ∈ E, 〈∇φi(u), w〉 ≤ 0, i ∈ I(u)} (3.62)

Notice that if I(u) is empty, then C∗(u) = E. Notice also that C∗(u) is a convex set.

Definition 3.5. Qualified constraints: The constraints in u ∈ U are said to be qualified if one
of the two following alternative holds:

• φi is an affine function (φi(x) = ax+ b) for all i ∈ I(u).

• there exists w in E such that for all i ∈ I(u):

〈∇φi(u), w〉 ≤ 0 (3.63)

with strict inequality if φi is not affine.

Proposition 3.4. Let u in

U = {v ∈ Ω;φi(v) ≤ 0, 1 ≤ i ≤ m} (3.64)

on which the fuctions φi : Ω ⊂ E → R, i ∈ I(u) are differentiable. Then we have the inclusion:

C(u) ⊂ C∗(u) (3.65)
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Proof: Each function φi has a local maximum in u with respect to U by definition of the set
I(u). Using Theorem 3.10, we get:

〈∇φi(u), w〉 ≤ 0 for all w in C(u) and i in I(u). (3.66)

which proves the proposition.

�

Theorem 3.11. Let u in

U = {v ∈ Ω;φi(v) ≤ 0, 1 ≤ i ≤ m} (3.67)

on which the functions φi : Ω ⊂ E → R, i ∈ I(u) are differentiable.
If the constraints are qualified in u, and if the functions φi, i 6= I(u), are continuous in u,

we have the equality:
C(u) = C∗(u) (3.68)

Example: affine constraints in RN .

U = {v ∈ RN ;
N∑

j=1

ci,jvj ≤ di, 1 ≤ i ≤ m} = {v ∈ RN ; Cv ≤ d} (3.69)

with C = (ci,j) is an m×N matrix with real coefficients and d ∈ Rm. Then the constraints are
qualified in u ∈ U , and from the above result we have:

C(u) = C∗(u) = {w ∈ RN ,
N∑

j=1

ci,jwj ≤ 0, i ∈ I(u)} (3.70)

We are now in position to state one of the most important results in optimization.
ă

Theorem 3.12. Kuhn and Tucker
Let φi : Ω ⊂ E → R defined on a open set Ω, and

U = {v ∈ Ω;φi(v) ≤ 0, 1 ≤ i ≤ m} (3.71)

Let u in U , and I(u) = {1 ≤ i ≤ m;φi(u) = 0}.
We assume that φi is differentiable in u if i ∈ I(u), and continuous in u if i 6= I(u).
Let J : Ω ⊂ E → R differentiable in u.
If J admits a local minimum in u with respect to U , and if the constraints are qualified in

u, then there exists λi(u), i ∈ I(u) such that:

∇J(u) +
∑

i∈I(u)

λi(u)∇φi(u) = 0 (3.72)

and λi(u) ≥ 0 for all i ∈ I(u).

Notice that it is only a necessary condition.
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Proof: From Theorem 3.10, we have 〈∇J(u), w〉 ≥ 0 for all w ∈ C(u). But here

C(u) = C∗(u) = {w ∈ E, 〈∇φi(u), w〉 ≤ 0, i ∈ I(u)} (3.73)

Hence:
{w ∈ E, 〈−∇φi(u), w〉 ≥ 0, i ∈ I(u)} ⊂ {w ∈ E, 〈∇J(u), w〉 ≥ 0} (3.74)

And we can conclude with the Farkas-Minkowski lemma.

�

Remarks:

• The relations, ∇J(u) +
∑

i∈I(u) λi∇φi(u) = 0 and λi(u) ≥ 0 for all i ∈ I(u), are called
the Kuhn and Tucker relations. They can be written in a closer form to the Lagrange
multipliers (equality constraints):{

∇J(u) +
∑m

i=1 λi(u)∇φi(u) = 0
λi(u) ≥ 0, 1 ≤ i ≤ m,

∑m
i=1 λiφi(u) = 0

(3.75)

(λi(u))i are often called general Lagrange multipliers.

• In practice, these relations remain difficult to handle. It leads to a very large system of
equations and inequations to solve.

• A sufficient condition for the (λi(u))i to be unique is that the differential ∇φi are linearly
independent.

• If I(u) is empty, then we find the classical relation ∇J(u) = 0.

3.3.3 Convex case

The above definition of qualified constraints is not easy to handle, since it depends on u. But
it can be simplified in the case of convex constraints.

Definition 3.6. The constraints φi : Ω ⊂ E → R, 1 ≤ i ≤ m are qualified if one of the two
following alternative holds:

• all the functions φi are affines, and the set (convex if Ω is convex)

U = {v ∈ Ω;φi(v) ≤ 0, 1 ≤ i ≤ m} (3.76)

is not empty.

• there exists w in Ω such that for all i:

φi(w) ≤ 0 (3.77)

with strict inequality if φi is not affine.
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We get the following necessary and sufficient condition: ă

Theorem 3.13. Kuhn and Tucker (convex case)
Let J : Ω ⊂ E → R defined on a convex set Ω, and

U = {v ∈ Ω;φi(v) ≤ 0, 1 ≤ i ≤ m} (3.78)

a subset of Ω. The constraints φi : Ω ⊂ E → R are assumed to be convex.
Let u in U in which φi and J are differentiable.

1. If J admits a local minimum in u with respect to U , and if the constraints are qualified,
then there exists λi(u), 1 ≤ i ≤ m such that:{

∇J(u) +
∑m

i=1 λi(u)∇φi(u) = 0
λi(u) ≥ 0, 1 ≤ i ≤ m,

∑m
i=1 λiφi(u) = 0

(3.79)

2. If J : U → R convex, and if there exists λi which satisfy the above equation, then J admits
in u a local minimum with respect to U .

Proof:

1. It suffices to show that if the convex constraints φi are qualified in the above sens, then
they are qualified in the previous sens (and we then can conclude with Kuhn and Tucker’s
theorem).
We denote by ṽ the element of U of the above definition. For all i: φi(ṽ) ≤ 0 with strict
inequality if φi is not affine.
Now, if u 6= ṽ, take w̃ = ṽ− u. w̃ will satisfies the previous definition. Indeed, we have if
i ∈ I(u) (thus φi(u) = 0):

〈∇φi(u), w̃〉 = φi(u) + 〈∇φi(u), w̃〉 ≤ φi(ṽ) (3.80)

since φi convex. This conclude the proof if u 6= ṽ.
Otherwise, if u = ṽ then necessarily all the constraints φi are affine (since φi(u) = φi(ṽ) ≤
0 with strict inequality if φi not affine).

2. Let v in U . Then, since λi(u) = λi ≥ 0 and φi(v) ≤ 0:

J(u) ≤ J(u)−
m∑

i=1

λiφi(v) (3.81)

Since λi = 0 if i not in I(u) and φi(u) = 0 if i ∈ I(u), we get:

J(u) ≤ J(u)−
m∑

i=1

λi(φi(v)− φi(u)) (3.82)

Now, using the convexity of φi:

J(u) ≤ J(u)−
m∑

i=1

λi〈∇φi(u), v − u〉 (3.83)

Using Kuhn and Tucker relation, we have:

J(u) ≤ J(u) + 〈∇J(u), v − u〉 (3.84)

And since J convex, we eventually get J(u) ≤ J(v).

�
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Interpretation: Let us consider:

Fu(v) = J(v) +
N∑

i=1

λi(u)φi(v) (3.85)

If the condition of the above theorem are satisfied, it is such that:{
J(u) = infv∈U J(v) =⇒ ∇Fu(u) = 0
J(u) = Fu(u)

(3.86)

It means that if the λi are known, than we are back to an unconstrained minimization problem.

Example:

U =

{
v ∈ RN ,

N∑
j=1

ci,jvj ≤ di, 1 ≤ i ≤ m

}
=

{
v ∈ RN , 〈Ci, v〉 ≤ di, 1 ≤ i ≤ m

}
=

{
v ∈ RN , Cv ≤ d

}
Ci column vectors of C = (ci,j).
The constraints are: φi(v) = 〈Ci, v〉 − di. Thus ∇φi = Ci. Hence∑

i

λi∇φi =
∑

i

λiCi = CTλ (3.87)

J : U → R convex. The constraints are qualified iff U is not empty.
J admits a local minimum with respect to U if there exists λ ∈ Rm such that:{

∇J(u) + CTλ = 0
λ ∈ Rm

+ , and λi = 0 if 〈Ci, u〉 < di
(3.88)

3.3.4 Ideas from duality

Let V and M two sets, and a L a function:

L : V ×M → R (3.89)

Definition 3.7. A point (u, λ) is said to be a saddle point (point selle) of L if u is a minimizer
of L(., λ) : v ∈ V → L(v, λ) ∈ R and if λ is a maximizer of L(u, .) : µ ∈ M → L(u, µ) ∈ R, i.e.
if:

sup
µ∈M

L(u, µ) = L(u, λ) = inf
v∈V

L(v, λ) (3.90)

Notice that in the definition, the two variables play different roles (cannot be changed).
In practice, µ ∈M will denote a generalized lagrange multiplier.

Theorem 3.14. If (u, λ) is a saddle point of L, then:

sup
µ∈M

inf
v∈V

L(v, µ) = L(u, λ) = inf
v∈V

sup
µ∈M

L(v, µ) (3.91)
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Proof: Notice that we always have:

sup
µ∈M

inf
v∈V

L(v, µ) ≤ inf
v∈V

sup
µ∈M

L(v, µ) (3.92)

Indeed, if ṽ ∈ V and if µ̃ ∈M , then:

inf
ṽ∈V

L(ṽ, µ) ≤ L(ṽ, µ̃) ≤ sup
µ∈M

L(ṽ, µ) (3.93)

To get the opposite inequality, we use the fact that (u, λ) is saddle point of L.

inf
v∈V

sup
µ∈M

L(v, µ) ≤ sup
µ∈M

L(u, µ) = L(u, λ) (3.94)

And
L(u, λ) = inf

v∈V
L(v, λ) ≤ sup

µ∈M
inf
v∈V

L(v, µ) (3.95)

�

From now on, we assume all the functions to be defined on the whole space V = RN (for
the sake of clarity).

We consider J : V → R and φi : V → R, 1 ≤ i ≤ m, and

U = {v ∈ V = RN , φi(v) ≤ 0, 1 ≤ i ≤ m} (3.96)

We consider the problem (primal problem) (P):

Find u ∈ U such that J(u) = inf
v∈U

J(v) (3.97)

Under some specific conditions, any solution u of (P) is the first argument of a saddle point
(u, λ) of a certain function L called Lagrangian associated to problem (P). The second argument
λ is called generalized Lagrange multiplier associated to u (since as we will see it is the vector
given by the Kuhn and Tucker relations).

Let us define the Lagrangien associated to problem (P) as:

L : (v, µ) ∈ V × Rm
+ → L(v, µ) = J(v) +

m∑
i=1

µiφi(v) (3.98)

Theorem 3.15.

1. If (u, λ) ∈ V × Rm
+ is a saddle point of the Lagrangien L, then u, which belongs to U , is

solution of problem (P).

2. We assume that J and φi, 1 ≤ i ≤ m are convex and differentiable in u ∈ U , and the
constraints are qualified. Then, if u is solution of problem (P), there exists at least one
vector λ ∈ Rm

+ such that (u, λ) ∈ V × Rm
+ is a saddle point of L.
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Proof:

1. From the inequalities L(u, µ) ≤ L(u, λ) for all µ ∈ Rm
+ , we get:

m∑
i=1

(µi − λi)φi(u) ≤ 0 (3.99)

Hence φi(u) ≤ 0 (by letting µ → +∞). Moreover, with µ = 0, we get
∑m

i=1 λiφi(u) ≥ 0.
But since λi ≥ 0 and φi(u) ≤ 0, we know that

∑m
i=1 λiφi(u) ≤ 0. As a consequence, we

have:

u ∈ U and
m∑

i=1

λiφi(u) = 0 (3.100)

Now using the fact that L(u, λ) ≤ L(v, λ) for all v ∈ V we get:

m∑
i=1

λiφi(u)︸ ︷︷ ︸
=0

+J(u) ≤ J(v) +
m∑

i=1

λiφi(v) (3.101)

And since φi(v) ≤ 0, we get J(u) ≤ J(v).

2. We can apply Kuhn and Tucker’s theorem: if u is a solution of problem (P), then there
exists λ ∈ Rm

+ such that:

m∑
i=1

λiφi(u) = 0 and ∇J(u) +
m∑

i=1

λi∇φi(u) = 0 (3.102)

From the first equality, we get for all µ ∈ Rm
+ :

L(u, µ) = J(u) +
m∑

i=1

µiφi(u) ≤ J(u) = L(u, λ) (3.103)

And the second equality is a sufficient condition for the follwing convex function (as sum
of convex functions) to have a minimum:

L(., λ) : v → J(v) +
m∑

i=1

λiφi(v) (3.104)

Hence L(u, λ) ≤ L(v, λ) for all v ∈ V . And thus (u, λ) is saddle point of the Lagragien L.

�

Up to now, we have established that, under some hypotheses, a solution u of the primal
problem (P) is the first argument of a saddle point of its associated Lagrangien.

Assume that we know one of the second argument λ of the saddle points of L. Then the
constrained problem (P) would be replaced by an unconstrained problem (Pλ): find uλ such
that:

uλ ∈ V and L(uλ, λ) = inf
v∈V

L(v, λ) (3.105)
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Now the question is how to find such a λ ∈ Rm
+ . Recall the equality verified by saddle

points:
L(uλ, λ) = inf

v∈V
L(v, λ) = sup

µ∈Rm
+

inf
v∈V

L(v, µ) (3.106)

We are therefore led to find λ as a solution of the dual problem (Q):

Find λ ∈ Rm
+ such that G(λ) = sup

µ∈Rm
+

G(µ) (3.107)

where G : Rm
+ → R is defined by:

G : µ ∈ Rm
+ → G(µ) = inf

v∈V
L(v, µ) (3.108)

µ ∈ Rm
+ is called the dual variable of the primal variable v ∈ V = RN .

Notice that the dual problem (Q) is also a constrained problem, but the constraints µi ≥ 0
are very easy to handle (since we know explicitely the projection operator). On the contrary,
the constraints φi(u) ≤ 0 are in general impossible to handle numerically. This is the basic idea
of Uzawa algorithm.

Theorem 3.16.

1. We assume that φi : V → R is continuous, and that for all µ ∈ Rm
+ , problem (Pµ):

find uµ ∈ V such that L(uµ, µ) = inf
v∈V

L(v, µ) (3.109)

has a unique solution uµ which depends continuously of µ ∈ Rm
+ .

Then, if λ is a solution of the dual problem (Q), the solution uλ of the corresponding
problem (Pλ) is a solution of the primal problem (P).

2. We assume that the primal problem (P) has at least one solution u, that J and φi are
convex functions, differentiable in u, and that the constraints are qualified. Then the dual
problem (Q) has at least one solution.

Sketch of the proof:

1. Let λ a solution of problem (Q). we already have:

λ ∈ Rm
+ and G(λ) = L(uλ, λ) = inf

v∈V
L(v, λ) (3.110)

We want to show that:
sup

µ∈Rm
+

L(uλ, µ) = L(uλ, λ) (3.111)

These two relations are exactly the defintion of a saddle point (uλ, λ) of the Lagrangien
L, and we will thus deduce that uλ is a solution of problem (P).

The first point is to show that the function G is differentiable. It can be shown that if
ξ ∈ Rm:

〈∇G(u), ξ〉 =
m∑

i=1

ξiφi(uµ) (3.112)
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Since G has a maximum in λ on the convex Rm
+ , we have for all µ ∈ Rm

+ :

〈∇G(λ), µ− λ) ≤ 0 (3.113)

i.e. for all µ ∈ Rm
+ :

m∑
i=1

µiφi(uλ) ≤
m∑

i=1

λiφi(uλ) (3.114)

We thus have:

L(uλ, µ) = J(uλ) +
m∑

i=1

µiφi(uλ)

≤ J(uλ) +
m∑

i=1

λiφi(uλ)

= L(uλ, λ)

which is the second inequality characterizing a saddle point.

2. From the previous theorem, there exists at least one λ ∈ Rm
+ such that (u, λ) is a saddle

point of the Lagrangien L. The theorem on saddle point then imply that:

L(u, λ) = inf
v∈V

L(v, λ) = sup
µ∈Rm

+

inf
v∈V

L(v, µ) (3.115)

i.e: G(λ) = supµ∈Rm
+
G(µ).

�

Example: Consider the example of a quadratic functional:

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 (3.116)

with A symmetric definite positive matrix of size N2, and b ∈ RN .

U =

{
v ∈ RN ,

N∑
j=1

ci,jvj ≤ di, 1 ≤ i ≤ m

}
=

{
v ∈ RN , Cv ≤ d

}
(3.117)

where C is a real m×N matrix, and d ∈ Rm. We assume U non empty (and thus the constraints
are qualified).

We want to find u such that J(u) = infv∈U J(v). It is easy to see that there exists a unique
solution for the primal problem (P).

The lagrangien L is:

L(v, µ) =
1

2
〈Av, v〉RN − 〈b− CTµ, v〉RN − 〈µ, d〉Rn (3.118)

Moreover, the gradient of L(., µ) is zero in uµ., i.e.

Auµ = b− CTµ ⇐⇒ uµ = A−1(b− CTµ) (3.119)
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Then, after some computations:

G(µ) = −1

2
〈CA−1CTµ, µ〉m + 〈CA−1b− d, µ〉m −

1

2
〈A−1b, b〉N (3.120)

We can then show that the dual problem (Q) has always a solution. This solution is unique
if rank(C)=m.

Remark that:
∇G(µ) = Cuµ − d = −CA−1CTµ+ CA−1b− d (3.121)

i.e. (∇G(µ))i = φi(uµ) , 1 ≤ i ≤ m.

3.3.5 Uzawa algorithm

The idea of the method is that the projection operator P+ : Rm → Rm
+ in the dual problem (Q)

is very simple:
(P+λ)i = max(λi, 0) (3.122)

Uzawa algorithm is in fact the projected gradient method applied to the dual problem (Q):
λ0 ∈ Rm

+ arbitrary, and the sequence λk in Rm
+ is defined by:

λk+1 = P+(λk − ρ∇G(λk)) (3.123)

Since in the dual problem (Q), one is interested in a maximum (and not a minimum), it is
therefore natural to change the sign of the parameter ρ with respect to the classical method.

Under some hypotheses, it is possible to compute the gradient of G:

(∇G(µ))i = φi(uµ) , 1 ≤ i ≤ m (3.124)

the vector uµ being the solution of the unconstrained minimization problem:

uµ ∈ V, J(uµ) +
m∑

i=1

µiφi(uµ) = inf
v∈V

{
J(v) +

m∑
i=1

µiφi(v)

}
(3.125)

Uzawa algorithm: λ0 ∈ Rm
+ arbitrary. We define by induction (λk, uk) ∈ Rm

+ × V by (for
the sake of clarity, we write uk = uλk

):{
Computation of uk: J(uk) +

∑m
i=1 λ

k
i φi(u

k) = infv∈V

{
J(v) +

∑m
i=1 λ

k
i φi(v)

}
Computation of λk+1

i : λk+1
i = max

{
λk

i + ρφi(u
k), 0

} (3.126)

Uzawa method is a way to replace a constrained minimization problem by a sequence of
unconstrained minimization problem.

Notice that uk can converge while λk does not.

Theorem 3.17. Convergence of Uzawa method
V = RN . J elliptic (with contant α), and:

U = {v ∈ RN , Cv ≤ d}, C ∈ Am,N(R), d ∈ Rm (3.127)

is non empty. Then, if

0 < ρ <
2α

‖C‖2
(3.128)
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the sequence uk converges to the unique solution of the primal problem (P).
If the rank of C is m, then the sequence λk also converges towards the unique solution of

the dual problem (Q).

Notice that ‖C‖ = supv∈RN
‖Cv‖m

‖v‖n
.

Case of a quadratic functional:

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 (3.129)

with A symmetric definite positive matrix of size N2, and b ∈ RN .

U =

{
v ∈ RN ,

N∑
j=1

ci,jvj ≤ di, 1 ≤ i ≤ m

}
=

{
v ∈ RN , Cv ≤ d

}
(3.130)

where C is a real m×N matrix, and d ∈ Rm. We assume U non empty (and thus the constraints
are qualified).

An iteration of Uzawa algorithm is:{
Computation of uk: Auk − b+ CTλk = 0
Computation of λk+1

i : λk+1
i = max{(λk + ρ(Cuk − d))i, 0}

(3.131)

And the method converges if

0 < ρ <
2λ1(A)

‖C‖2
(3.132)

where λ1(A) is the smallest eigenvalue of A (it is the ellipticity constant).
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