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Abstract. This paper focuses on the problem of multiplicative noise removal. We draw our
inspiration from the modeling of speckle noise. By using a MAP estimator, we can derive a functional
whose minimizer corresponds to the denoised image we want to recover. Although the functional is
not convex, we prove the existence of a minimizer and we show the capability of our model on some
numerical examples. We study the associated evolution problem, for which we derive existence and
uniqueness results for the solution. We prove the convergence of an implicit scheme to compute the
solution.
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1. Introduction. Image denoising is a widely studied problem in the applied
mathematics community. We refer the reader to [4, 14] and references herein for an
overview of the subject. Most of the literature deals with the additive noise model:
given an original image u, it is assumed that it has been corrupted by some additive
noise v. The problem is then to recover u from the data f = u+ v. Many approaches
have been proposed. Among the most famous ones are wavelets approaches [17],
stochastic approaches [21], and variational approaches [37, 31].

In this paper, we are concerned with a different denoising problem. The assump-
tion is that the original image u has been corrupted by some multiplicative noise v:
the goal is then to recover u from the data f = uv. Multiplicative noise occurs as
soon as one deals with active imaging system: laser images, microscope images, SAR
images, . . . As far as we know, the only variational approach devoted to multiplicative
noise is the one by Rudin et al [36] as used for instance in [33, 28, 29, 38]. The goal of
this paper is to go further and to propose a functional well-adapted to the removing
of multiplicative noise. Inspired from the modeling of active imaging systems, this
functional is:

E(u) =

∫

|Du| +
∫ (

log u+
f

u

)

where f is the original corrupted image and
∫
|Du| stands for the total variation of

u.
From a mathematical point of view, part of the difficulty comes from the fact

that, contrary to the additive case, the proposed model is nonconvex, which causes
uniqueness problems, as well as the issue of convergence of the algorithms. Another
mathematical issue comes from the fact that we deal with linear growth functional.
The natural space in which we compute a solution is BV , the space of functions with
bounded variations. But contrary to what happens with classical Sobolev spaces,
the minimum of the functional does not verify an associated Euler-Lagrange equation
(see [3] and [2] where this problem is studied) but a differential inclusion involving
the subdifferential of the energy.
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The paper is organized as follows. We draw our inspiration from the modeling
of active imaging systems, which we remind to the reader in Section 2. We use the
classical MAP estimator to derive a new model to denoise non textured SAR images
in Section 3. We then consider this model from a variational point of view in Section 4
and we carry out the mathematical analysis of the functional in the continuous setting.
In Section 5 we illustrate our model by displaying some numerical examples. We also
compare it with other ones. We then study in Section 6 the evolution equation
associated to the problem. To prove the existence and the uniqueness of a solution
to the evolution problem we first consider a semi-implicit discretization scheme and
then we let the discretization time step goes to zero. The proofs are rather technical
and we give them in an appendix.

2. Speckle noise modeling. Synthetic Aperture Radar (SAR) images are strongly
corrupted by a noise called speckle. A radar sends a coherent wave which is reflected
on the ground, and then registered by the radar sensor [30, 26]. If the coherent wave
is reflected on a coarse surface (compared to the radar wavelength), then the image
processed by the radar is degraded by a noise with large amplitude: this gives a speck-
led aspect to the image, and this is the reason why such a noise is called speckle [24].
To illustrate the difficulty of speckle noise removal, Figure 2.1 shows a 1 Dimensional
noise free signal, and the corresponding speckled signal (the noise free signal has been
multiplied by a speckle noise of mean 1). It can be seen that almost all the informa-
tion has disappeared (notice in particular that the vertical scale goes from 40 to 120
for the noise free signal presented in (a), whereas it goes from 0 to 600 on the speckled
signal presented in (b)). As a comparison, Figure 2.1 (c) shows the 1D signal of (a)
once it has been multiplied by a Gaussian noise of mean 1 and standard deviation 0.2
(as used for instance in [36]), and Figure 2.1 (d) shows the 1D signal of (a) once it
has been added a Gaussian noise of zero mean and standard deviation σ = 15 (notice
that for both (c) and (d), the vertical scale goes from 20 to 140).

If we denote by I the image intensity considered as a random variable, then I
follows a negative exponential law. The density function is: gI(x) = 1

µI
e
− x

µI 1{x≥0},
where µI is both the mean and the standard deviation of I. In general the image is
obtained as the summation of L different images (this is very classical with satellite
images). If we assume that the variables Ik, 1 ≤ k ≤ L are independent, and have

the same mean µI , then the intensity J = 1
L

∑L
k=1 Ik follows a gamma law, with

density function: gJ(x) =
(

L
µI

)L
1

Γ(L)x
L−1 exp

(

−Lx
µI

)

1{x≥0}, where Γ(L) = (L−1)!.

Moreover, µI is the mean of J , and µI√
L

its standard deviation.

The classical modeling [41] for SAR image is: I = RS, where I is the intensity
of the observed image, R the reflectance of the scene (which is to be recovered), and
S the speckle noise. S is assumed to follow a gamma law with mean equal to one:

gS(s) = LL

Γ(L)s
L−1 exp (−Ls)1{s≥0}. In the rest of the paper, we will assume that the

image to recover has been corrupted by some multiplicative gamma noise.
Speckle removal methods have been proposed in the literature. There are geo-

metric filters, such as Crimmins filter [15] based on the application of convex hull
algorithms. There are adaptive filters, such as Lee filter, Kuan filter, or its improve-
ment proposed by Wu and Maitre [42]: first and second order statistic computed in
local windows are incorporated in the filtering process. Adaptive filters with some
modeling of the scene, such as Frost filter have been proposed. The criterion is based
on a MAP estimator, and Markov random fields can be used such as in [40, 16].
Another class of filters are multi-temporal ones, such as Bruniquel filter [10]: by
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(a) Noise free signal (b)Speckled signal
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(c)Degraded by multiplicative Gaussian noise (d) Degraded by additive Gaussian noise
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Fig. 2.1. Speckle noise in 1D: notice that the vertical scale is not the same on the different
images (scale between 40 and 120 on (a), 0 and 600 on (b), 20 and 140 on (c), 20 and 140 on
(d)) (a) 1D signal f ; (b) f degraded by speckle noise of mean 1; (c) f degraded by a multiplicative
Gaussian noise (σ = 0.2); (d) f degraded by an additive Gaussian noise (σ = 15). Speckle noise is
much stronger than classical additive Gaussian noise [37] or classical multiplicative Gaussian noise
[36].

computing barycentric means, the standard deviation of the noise can be reduced
(provided that several different images of the same scene are available). A last class
of methods are variational ones, such as [37, 36, 6], where the solution is computed
with PDEs.

3. A variational multiplicative denoising model. The goal of this section is
to propose a new variational model for denoising images corrupted by multiplicative
noise and in particular for SAR images. We start from the following multiplicative
model: f = uv, where f is the observed image, u > 0 the image to recover, and v the
noise. We consider that f , u, and v are instances of some random variables F , U and
V . In the following, if X is a random variable, we denote by gX its density function.
We refer the interested reader to [25] for further details about random variables. In
this section, we consider discretized images. We denote by S the set of the pixels of
the image. Moreover, we assume that the samples of the noise on each pixel s ∈ S
are mutually independent and identically distributed (i.i.d) with density function gV .

3.1. Density laws with a multiplicative model. Our goal is to maximize
P (U |F ) thus thanks to Bayes rule we need to know P (F |U) and gF |U .

Proposition 3.1. Assume U and V are independent random variables, with
continuous density functions gU and gV . Denote by F = UV . Then we have for
u > 0:

gV

(
f

u

)
1

u
= gF |U (f |u) (3.1)
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Proof. It is a standard result (see [25]) for instance). We give the proof here for
the sake of completeness.

Let A an open subset in R. We have:
∫

R
gF |U (f |u)1{f∈A} = P (F ∈ A|U) = P (F∈A,U)

P (U) =
P((V = F

U )∈A

U
,U)

P (U) . Using the fact

that U and V are independent, we have:

P((V = F
U )∈A

U
,U)

P (U) = P
((
V = F

U

)
∈ A

U

)
=
∫

R
gV (v)1{v∈A

u } dv =
∫

R
gV (f/u)1{f∈A}

df
u .

3.2. Our model via the MAP estimator. We assume the following multi-
plicative model: f = uv, where f is the observed image, u the image to recover, and
v the noise. We assume that v follows a gamma law with mean one, and with density
function:

gV (v) =
LL

Γ(L)
vL−1e−Lv 1{v≥0} (3.2)

Using Proposition 3.1, we therefore get:

gF |U (f |u) =
LL

uLΓ(L)
fL−1e−

Lf
u (3.3)

We also assume that U follows a Gibbs prior:

gU (u) =
1

Z
exp (−γφ(u)) (3.4)

where Z is a normalizing constant, and φ a non negative given function. We aim
at maximizing P (U |F ). This will lead us to the classical Maximum a Posteriori

estimator. From Bayes rule, we have: P (U |F ) = P (F |U) P (U)
P (F ) . Maximizing P (U |F )

amounts to minimizing the log-likelihood:

− log(P (U |F ) = − log(P (F |U)) − log(P (U)) + log(P (F )) (3.5)

Let us remind the reader that the image is discretized. We denote by S the set of
the pixels of the image. Moreover, we assume that the samples of the noise on each
pixel s ∈ S are mutually independent and identically distributed (i.i.d) with density
gV . We therefore have: P (F |U) =

∏

s∈S P (F (s)|U(s)), where F (s) (resp. U(s)) is
the instance of the variable F (resp. U) at pixel s. Since log(P (F )) is a constant, we
just need to minimize:

− log (P (F |U)) − log(P (U)) = −
∑

s∈S
(log (P (F (s)|U(s))) − log(P (U(s)))) (3.6)

Using (3.3), and since Z is a constant, we eventually see that minimizing − log (P (F |U))
amounts to minimizing:

∑

s∈S

(

L

(

logU(s) +
F (s)

U(s)

)

+ γφ(U(s))

)

(3.7)

The previous computation leads us to propose the following functional for restor-
ing images corrupted with gamma noise:
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∫ (

log u+
f

u

)

dx+
γ

L

∫

φ(u) dx (3.8)

Remarks: 1) It is easy to check that the function u → log u + f
u reaches its

minimum value 1 + log f over R
+
∗ for u = f .

2) Multiplicative Gaussian noise: in the additive noise case, the most classical
assumption is to assume that the noise is a white Gaussian noise. However, this can
no longer be the case when dealing with multiplicative noise, except in the case of tiny
noise. Indeed, if the model is f = uv where v is a Gaussian noise with mean 1, then
some instances of v are negative. Since the data f is assumed positive, this implies
that the restored image u has some negative values which is of course impossible.
Nevertheless, numerically, if the standard deviation of the noise is smaller than 0.2
(i.e. in the case of tiny noise), then it is very unlikely that v takes some negative
values. See also [32] where some limitations of Bayesian estimators approach are
investigated.

4. Mathematical study of the Variational model. In this section, we pro-
pose a nonconvex model to remove multiplicative noise, for which we prove the exis-
tence of a solution.

4.1. Preliminaries. Throughout our study, we will use the following classical
distributional spaces. Ω ⊂ R2 will denote an open bounded set of R2 with Lipschitz
boundary.
• D(Ω) = C∞

0 (Ω) is the set of functions in C∞(Ω) with compact support in Ω. We
denote by D′(Ω) the dual space of D(Ω), i.e. the space of distributions on Ω.
• Wm,p(Ω) denotes the space of functions in Lp(Ω) whose distributional derivatives
Dαu are in Lp(Ω), p ∈ [1,+∞), m ≥ 1, m ∈ N, |α| ≤ m. For further details on these
spaces, we refer the reader to [19, 20].
• BV (Ω) is the subspace of functions u ∈ L1(Ω) such that the following quantity is
finite:

J(u) = sup

{∫

Ω

u(x)div (ξ(x))dx/ξ ∈ C∞
0 (Ω,R2), ‖ξ‖L∞(Ω,RN ) ≤ 1

}

(4.1)

BV (Ω) endowed with the norm ‖u‖BV = ‖u‖L1 + J(u) is a Banach space. If
u ∈ BV (Ω), the distributional derivative Du is a bounded Radon measure and (4.1)
corresponds to the total variation, i.e. J(u) =

∫

Ω
|Du|.

For Ω ⊂ R2, if 1 ≤ p ≤ 2, we have: BV (Ω) ⊂ Lp(Ω). Moreover, for 1 ≤ p < 2,
this embedding is compact. For further details on BV (Ω), we refer the reader to [1].
• Since BV (Ω) ⊂ L2(Ω), we can extend the functional J (which we still denote by J)
over L2(Ω):

J(u) =

{ ∫

Ω
|Du| if u ∈ BV (Ω)

+∞ if u ∈ L2(Ω)\BV (Ω)
(4.2)

We can then define the subdifferential ∂J of J [35]: v ∈ ∂J(u) iff for all w ∈ L2(Ω), we
have J(u+ w) ≥ J(u) + 〈v, w〉L2(Ω) where 〈., .〉L2(Ω) denotes the usual inner product
in L2(Ω).
• Decomposability of BV (Ω): If u in BV (Ω), then Du = ∇u dx +Dsu, where ∇u ∈
L1(Ω) and Dsu ⊥ dx. ∇u is called the regular part of Du.
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• Weak -* topology on BV (Ω): If (un) is a bounded sequence in BV (Ω), then up
to a subsequence, there exists u ∈ BV (Ω) such that: un → u in L1(Ω) strong, and

Dun → Du in the sense of measure, i.e. 〈Dun, φ〉 → 〈Du, φ〉 for all φ in (C∞
0 (Ω))

2
.

• Approximation by smooth functions: If u belongs to BV (Ω), then there exits a
sequence un in C∞(Ω)

⋂
BV (Ω) such that un → u in L1(Ω) and J(un) → J(u) as

n→ +∞.
• In this paper, if a function f belongs to L∞(Ω), we denote by supΩ f (resp. infΩ f)
the supess of f (resp. the infess of f). We recall that supess f = inf{C ∈ R; f(x) ≤
C a.e.} and infess f = sup{C ∈ R; f(x) ≥ C a.e.}.

4.2. The variational Model. The application we have in mind is the denoising
of non textured SAR images. Inspired by the works of Rudin et al [37, 36], we decide
to choose φ(u) = J(u).

We thus propose the following restoration model (λ being a regularization param-
eter):

inf
u∈S(Ω)

J(u) + λ

∫

Ω

(

log u+
f

u

)

(4.3)

where S(Ω) = {u ∈ BV (Ω), u > 0}, and f > 0 in L∞(Ω) the given data.
From now on, without loss of generality, we assume that λ = 1.

4.3. Existence of a minimizer. In this subsection, we show that Problem (4.3)
has at least one solution.

Theorem 4.1. Let f be in L∞(Ω) with infΩ f > 0, then problem (4.3) has at
least one solution u in BV (Ω) satisfying:

0 < inf
Ω
f ≤ u ≤ sup

Ω
f (4.4)

Proof.
Let us denote by α = inf f and β = sup f . Let us consider a minimizing sequence

(un) ∈ S(Ω) for Problem (4.3). Let us denote by

E(u) = J(u) +

∫

Ω

(

log u+
f

u

)

(4.5)

We split the proof in two parts.
First part: we first show that we can assume without restriction that α ≤ un ≤ β.

We remark that x 7→ log x + f
x is decreasing if x ∈ (0, f) and increasing if x ∈

(f,+∞). Therefore, if M ≥ f , one always has:
(

log(min(x,M)) +
f

min(x,M)

)

≤ log x+
f

x
(4.6)

Hence, if we let M = β = sup f , we find that:
∫

Ω

(

log inf(u, β) +
f

inf(u, β)

)

≤
∫

Ω

(

log u+
f

u

)

(4.7)

Moreover, we have that (see Lemma 1 in section 4.3 of [27] for instance): J(inf(u, β)) ≤
J(u). We thus deduce that:

E(inf(u, β)) ≤ E(u) (4.8)
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And we get in the same way that E(sup(u, α)) ≤ E(u) where α = inf f .
Second part: From the first part of the proof, we know that we can assume that
α ≤ un ≤ β. This implies in particular that un is bounded in L1(Ω).

By definition of (un), the sequence E(un) is bounded, i.e. there exists a constant

C such that J(un) +
∫

Ω

(

log un + f
un

)

≤ C. Moreover, standard computations show

that
∫

Ω

(

log un + f
un

)

reaches its minimum value
∫

Ω
(1 + log f) when u = f , and thus

we deduce that J(un) is bounded.
Therefore we get that un is bounded in BV (Ω) and there exists u in BV (Ω) such

that up to a subsequence, u
n
→ u in BV (Ω)-weak * and un → u in L1(Ω)-strong.

Necessarily, we have 0 ≤ α ≤ u ≤ β, and thanks to the lower semi-continuity of the
total variation and Fatou’s lemma, we get that u is a solution of problem (4.3).

4.4. Uniqueness and comparison principle. In this subsection, we adress
the problem of the uniqueness of a solution of Problem (4.3). The question remains
open in general, but we prove two results: we give a sufficient condition ensuring
uniqueness and we show that a comparison principle holds.

Proposition 4.2. Let f > 0 be in L∞(Ω), then problem (4.3) has at most one
solution û such that 0 < û < 2f .

Proof. Let us denote by

h(u) = log u+
f

u
(4.9)

We have h
′

(u) = 1
u − f

u2 = u−f
u2 , and h

′′

(u) = − 1
u2 + 2 f

u3 = 2f−u
u3 . We deduce that if

0 < u < 2f , then h is striclty convex implying the uniqueness of a minimizer.
We now state a comparison principle.
Proposition 4.3. Let f1 and f2 be in L∞(Ω) with infΩ f1 > 0 and infΩ f2 > 0.

Let us assume that f1 < f2. We denote by u1 (resp. u2) a solution of (4.3) for f = f1
(resp. f = f2). Then we have u1 ≤ u2.

Proof. We use here the following classical notations: u ∨ v = sup(u, v), and
u ∧ v = inf(u, v).

From Theorem 4.1, we know that u1 and u2 do exist. We have since ui is a
minimizer with data fi:

J(u1 ∧ u2) +

∫

Ω

(

log(u1 ∧ u2) +
f1

u1 ∧ u2

)

≥ J(u1) +

∫

Ω

(

log u1 +
f1
u1

)

(4.10)

and:

J(u1 ∨ u2) +

∫

Ω

(

log(u1 ∨ u2) +
f2

u1 ∨ u2

)

≥ J(u2) +

∫

Ω

(

log u2 +
f2
u2

)

(4.11)

Adding these two inequalities, and using the fact that J(u1 ∧ u2) + J(u1 ∨ u2) ≤
J(u1) + J(u2) [12, 23], we get:

∫

Ω

(

log(u1 ∧ u2) +
f1

u1 ∧ u2
− log u1 −

f1
u1

+ log(u1 ∨ u2) +
f2

u1 ∨ u2
− log u2 −

f2
u2

)

≥ 0

(4.12)
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Writing Ω = {u1 > u2} ∪ {u1 ≤ u2}, we easily deduce that:

∫

{u1>u2}
(f1 − f2)

u1 − u2

u1u2
≥ 0 (4.13)

Since f1 < f2, we thus deduce that {u1 > u2} has a zero Lebesgue measure, i.e.
u1 ≤ u2 a.e. in Ω.

4.5. Euler-Lagrange equation associated to Problem (4.3):. Let us now
write an ”Euler-Lagrange” equation for any solution of problem (4.3), the difficulty
being that the ambient space is BV (Ω).

Proposition 4.4. Let f be in L∞(Ω) with infΩ f > 0. If u in BV (Ω) is a
solution of Problem (4.3), then we have:

−h′

(u) ∈ ∂J(u) (4.14)

Proof. This is a consequence of the maximum principle (4.4) of Theorem 4.1.
Indeed, h can be replaced below infΩ f by its C1− quadratic extension and this change
does not alter the set of minimizers. The new functional has a Lipschitz derivative,
and then standard results can be used to get (4.14).

To give more insight to equation (4.14), we state the following result (see Propo-
sition 1.10 in [2] for further details):

Proposition 4.5. Let (u, v) in L2(Ω) with u in BV (Ω). The following assertions
are equivalent:

(i) v ∈ ∂J(u).
(ii) Denoting by X(Ω)2 = {z ∈ L∞(Ω,R2) : div (z) ∈ L2(Ω)}, we have:

∫

Ω

vu dx = J(u) (4.15)

and

∃z ∈ X(Ω)2 , ‖z‖∞ ≤ 1 , z.N = 0 , on ∂Ω
such that v = −div (z) in D′(Ω)

(4.16)

(iii) (4.16) holds and:

∫

Ω

(z,Du) =

∫

Ω

|Du| (4.17)

From this proposition, we see that (4.14) means: −h′

(u) = div z,

with z satisfying (4.16) and (4.17). This is a rigorous way to write −div
(

∇u
|∇u

)

+

h
′

(u) = 0.

5. Numerical results. We present in this section some numerical examples
illustrating the capability of our model. We also compare it with some existing other
ones.
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5.1. Algorithm. To numerically compute a solution to Problem (4.3), we use

the equation −div
(

∇u
|∇u

)

+ h
′

(u) = 0 and as it is classically done in image analysis

we embed it into a dynamical equation which we drive to a steady state:

∂u

∂t
= div

( ∇u
|∇u|

)

+ λ
f − u

u2
(5.1)

with initial data u(x, 0) = 1
|Ω|
∫

Ω
f . We denote this model as the AA model. We

use the following explicit scheme, with finite differences (we have checked numerically
that for δt > 0 small enough, the sequence (un) satisfies a maximum principle):

un+1 − un

δt
=

(

div

(

∇un
√

|∇un|2 + β2

)

− λh
′

(un)

)

(5.2)

with β a small fixed parameter.

5.2. Other models. We have compared our results with some other classical
variational denoising models.

Additive model (log). A natural way to turn a multiplicative model into an ad-
ditive one is to use the logarithm transform(see [5, 22] for instance). Nevertheless,
as can be seen on the numerical results, such a straightforward method does not
lead satisfactory results. In the numerical results presented in this paper, we refer
to this model as the log model. We first take the logarithm of the original image f .
We then denoise log(f) by using the ROF model [37], with the following functional
infy

(
J(y) + 1

2λ‖x− z‖2
L2

)
. We finally take the exponential to obtain the restored

image. As can be seen on Figures 5.1 and 5.2, there is no maximum principle for
this algorithm. In particular, the mean of the restored image is much smaller than
the one of the original image. In fact, in such an approach, the assumptions are not
consistent with the modelling, as explained hereafter.

The original considered model is the following: f = uv, under the assumptions
that u and v are independent, and E(v) = 1 (i.e. v is of mean one). Hence E(f) =
E(u).

Now, if we take the logarithm, denoting by x = log(f), y = log(u), and z = log(v),
we get the additive model x = y+ z. To recover y from x, the classical assumption is
E(z) = 0: this is the basic assumption in all the classical additive image restoration
methods [11, 4] (total variation minimization, nonlinear diffusion, wavevelet shrinkage,
non local means, heat equation, . . . ).

But, from Jensen inequality, we have: exp(E(z)) ≤ E(exp(z)), i.e. 1 ≤ E(v).
As soon as there is some noise, we no longer are in the case of equality in Jensen
inequality, which implies E(v) > 1. As a consequence, E(u) < E(f) (in the numerical
examples presented in Figure 5.1 and 5.2, we obtain E(u) ≈ E(f)/2).

As a conclusion, if one wants to use the logarithm to get an additive model, then
one cannot directly apply a standard additive noise removal algorithm. One needs to
be more careful.

RLO model. The second model we use is a multiplicative version of the ROF
model: it is a constrained minimization problem proposed by Rudin, Lions, and Osher
in [36, 34], and we will call it the RLO model. In this approach, the model considered
is f = uv, under the constraints that

∫

Ω
v = 1 (mean one), and

∫

Ω
(v−1)2 = σ2 (given
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variance). The goal is then to minimize
∫

Ω
|Du| under the two previous constraints.

The gradient projection method leads to:

∂u

∂t
= div

( ∇u
|∇u|

)

− λ
f2

u3
− µ

f

u2
(5.3)

The two lagrange multipliers λ and µ are dynamically updated to satisfy the
constraints (as explained in [36]). With this algorithm, there is no regularization
parameter to tune: the parameter to tune is here the number of iterations (since the
considered flow is not associated to any functional). In practice, it appears that the
Lagrange multipliers λ and µ are almost always of opposite signs.

Notice that the model proposed in this paper (AA) is specifically devoted to the
denoising of images corrupted by gamma noise. The RLO model does not make such
an assumption on the noise, and therefore cannot be expected to perform as well as
the AA model for speckle removal. Notice also that in the case of small Gaussian
multplicative noise, both RLO and AA models give very good results, as can be seen
on Figure 5.4.

5.3. Deblurring. It is possible to modify our model to incorporate a linear
blurring operator K. u being the image to recover, we assume that the observed
image f is obtained as: f = (Ku).v. The functional to minimize in this case becomes:

inf
u

(

J(u) + λ

∫

Ω

(
f

Ku
+ log(Ku)

))

(5.4)

The associated Euler-Lagrange equation is (denoting by KT the transpose of K):

0 ∈ ∂J(u) + λKT

( −f
(Ku)2

+
1

Ku

)

(5.5)

Numerically, we use a steepest gradient descent approach by solving:

∂u

∂t
= div

( ∇u
|∇u|

)

+ λKT

(
f −Ku

(Ku)2

)

(5.6)

5.4. Results. On Figure 5.1, we show a first example. The original synthetic
image is corrupted by some multiplicative noise with gamma law of mean one (see
(3.2)). We display the denoising results obtained by our approach (AA), as well
as with the RLO model. Due to the very strong noise, the RLO model has some
difficulties to bring back in the range of the image some isolated points (white and
black points on the denoised image) and in the same time keep sharp edges: to remove
these artefacts, one needs to regularize more, and therefore some part of the edges
are lost. Moreover, the mean of the original image is not preserved (the mean of the
restored image is quite larger than the one of the original image): this is the reason
why the SNR is not much improved, and also why the restored image with the RLO
model looks lighter. We also display the results obtained with the log model: as
explained before, this model gives bad results, due to the fact that the mean is not
preserved (with the log model, the mean is much reduced). This is the reason why
the restored image with the log model is much darker.

On Figure 5.2, we show how our model behaves with a complicated geometrical
image. We also give the results with the RLO model and the log model (which have
the same drawbacks as on Figure 5.1).
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On Figure 5.3, we show the result we get on a SAR image provided by the CNES
(French space agency: http://www.cnes.fr/index v3.htm). The reference image (also
furnished by the CNES) has been obtained by amplitude summation.

On Figure 5.4, we show how our model behave with multiplicative Gaussian
noise. We have used the same parameters for the Gaussian noise as in [36], i.e. a
standard deviation of 0.2 (and a mean equal to 1). The original image is displayed
on Figure 5.2. In this case, we see that we get a very good restoration result. Notice
that such a multiplicative Gaussian noise is much easier to handle than the speckle
noise which was tackled on Figures 5.1 to 5.3. But, as far as we know, this is the type
of multiplicative noise which was considered in all the variational approaches inspired
by [36] (as used for instance in [33, 28, 29, 38]). We also show the results with the
RLO model and the log model. Notice that in this case all the models perform very
well, even the log model: indeed, since the noise is small, the Jensen inequality is
almost an equality.

On Figure 5.5, we finally show a deblurring example with our model (5.4). The
original image (displayed on Figure 5.2) has been convolved with a Gaussian kernel of
standard deviation

√
2 and then multiplied by a Gaussian noise of standard deviation

0.2 and mean 1 (we use the same parameters as in [36]). Even though the restored
image is not as good as in the denoising case presented on Figure 5.4, we see that our
model works well for deblurring.

6. Evolution equation. In this section we study the evolution equation asso-
ciated to (4.14). The motivation is that when searching for a numerical solution of
(4.14) it is, in general, easier to compute a solution of the associated evolution equa-
tion (by using for example explicit or semi-implicit schemes) and then studying the
asymptotic behaviour of the process to get a solution of the stationary equation.

We first consider a semi-discrete version of the problem: the space Ω is still
included in R2, but we discretize the time variable. We consider the case of a regular
time discretization, (tn), with t0 given, and tn+1 − tn = δt in R

∗
+ (in this section, δt

is fixed). We define un = u(., tn), and we consider the following implicit scheme.

0 ∈ un+1 − un

δt
+ ∂J(un+1) + h

′

(un+1) (6.1)

where J is the extended total variation as defined in (4.2). We first need to check that
indeed (6.1) defines a sequence (un). To this end, we intend to study the following
functional:

inf
u∈BV (Ω), u>0

F (u, un) (6.2)

with:

F (u, un) =

∫

Ω

u2

2
dx−

∫

Ω

unu dx+ δt

(

J(u) +

∫

Ω

h(u) dx

)

(6.3)

We want to define un+1 as:

un+1 = argmin
{u∈BV (Ω), u>0}

F (u, un) (6.4)
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Noise free image Speckled image (f), SNR=-0.065

u (AA) (λ = 30), SNR=21.2 u (RLO) (iterations=600), SNR=6.5

u (log) (λ = 2), SNR=6.9

Fig. 5.1. Denoising of a synthetic image with gamma noise. f has been corrupted by some
multiplicative noise with gamma law of mean one. u is the denoised image.

6.1. Existence and uniqueness of the sequence (un). We first need to check
that indeed the sequence (un) is well-defined.

Proposition 6.1. Let f be in L∞(Ω) with infΩ f > 0. Let (un) be in BV (Ω)
such that infΩ f ≤ un ≤ supΩ f . If δt < 27(infΩ f)2, then there exists a unique un+1
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Noise free image Speckled image (f), SNR=-0.063

u (AA) (λ = 30), SNR=13.6 u (RLO) (iterations=600), SNR=9.1

u (log) (λ = 1), SNR=6.7

Fig. 5.2. Denoising of a synthetic image with gamma noise. f has been corrupted by some
multiplicative noise with gamma law of mean one.

in BV (Ω) satisfying (6.4). Moreover, we have:

inf
(

inf
Ω
f , inf

Ω
u0

)

≤ un ≤ sup

(

sup
Ω
f , sup

Ω
u0

)

(6.5)

Proof. We split the proof in two parts.
First part: we first show the existence and uniqueness of un+1. We consider: g(u) =
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Reference image Speckled image (f) u (AA) (λ = 180)

Fig. 5.3. Denoising of a SAR image provided by the CNES (French space agency).

Noisy image (f), SNR=14.0 u (AA) (λ = 500), SNR=20.9

u (RLO) (iterations=500), SNR=20.1 u (log), λ = 0.5, SNR=20.0

Fig. 5.4. Denoising of a synthetic image degraded by multiplicative Gaussian noise with σ = 0.2.
The original noise free image is shown in Figure 5.2.

δth(u)+u2/2−unu. We have: g
′′

(u) = 1+ δt f−u
u2 = u3−δtu+2δtf

u3 . A simple computa-

tion shows that if δt < 27(infΩ f)2, then g
′′

(u) > 0 for all u > 0, i.e. g strictly convex
on R

∗
+. It is then standard to deduce the existence and uniqueness of un+1.

Second part: As in the proof of theorem 4.1, we have:
∫

Ω

(

log inf(u, β) +
f

inf(u, β)

)

≤
∫

Ω

(

log u+
f

u

)

(6.6)

and J(inf(u, β)) ≤ J(u).
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Noisy and blurred image (f) Deblurred image u (λ = 1000)

Fig. 5.5. Deblurring of the synthetic image of Figure 5.2 (the original image, which is shown
in Figure 5.2, has first been convolved with a Gaussian kernel of standard deviation σ =

√

2, and
then multiplied by some Gaussian noise of mean 1 and standard deviation σ = 0.2).

We remark that x 7→ x2/2 − xun is decreasing if x ∈ (0, un) and increasing if
x ∈ (un,+∞). Therefore, proceeding as in the proof of theorem 4.1, we get:

∫

Ω

(inf (u , supun))
2

2
− un inf (u , supun) ≤

∫

Ω

u2

2
− uun (6.7)

Thus the truncation procedure makes decrease the energy and we deduce the right-
hand side inequality in (6.5). We get the other one in the same way.

We can thus derive the following theorem:
Theorem 6.2. Let f be in L∞(Ω) with infΩ f > 0 , and u0 in L∞(Ω)

⋂
BV (Ω)

with infΩ u0 > 0 be given. If δt < 27(infΩ f)2, then there exists a unique sequence
(un) in BV (Ω) satisfying (6.4). Moreover, the following estimates hold:

inf
(

inf
Ω
f , inf

Ω
u0

)

= α ≤ un ≤ β = sup

(

sup
Ω
f , sup

Ω
u0

)

(6.8)

and

J(un) ≤ J(u0) +

∫

Ω

h(u0) dx−
∫

Ω

(1 + log f) (6.9)

Proof. This theorem is just a consequence (by induction) of proposition 6.1,
except for estimate (6.9) which we prove now:

From (6.4), we have: F (un+1, un) ≤ F (un, un), which means:

δt

(

J(un+1) − J(un) +

∫

Ω

h(un+1) −
∫

Ω

h(un)

)

+
1

2

∫

Ω

(un+1 − un)
2 ≤ 0 (6.10)

This implies:

J(un+1) − J(un) +

∫

Ω

h(un+1) −
∫

Ω

h(un) ≤ 0 (6.11)



16

By summation, we obtain:

J(un+1) ≤ −
∫

Ω

h(un+1) +

∫

Ω

h(u0) + J(u0) (6.12)

Standard computations show that
∫

Ω
h(un+1) ≥

∫

Ω
(1 + log f) dx , from which we

deduce (6.9).

6.2. Euler-Lagrange equation. We have the following ”Euler-Lagrange” equa-
tion:

Proposition 6.3. The sequence (un) satisfying (6.4) is such that:

0 ∈ un+1 − un

δt
+
(

∂J(un+1) + h
′

(un+1)
)

(6.13)

Proof. The proof is similar to the one of Proposition 4.4.

6.3. Convergence of the sequence un. The following convergence result holds:
Proposition 6.4. Let f be in L∞(Ω) with infΩ f > 0 , and u0 in L∞(Ω)

⋂
BV (Ω)

with infΩ u0 > 0 be fixed. Let δt < 27(infΩ f)2. The sequence (un) defined by equation
(6.1) is such that there exists u in BV (Ω) with un ⇀ u (up to a subsequence) for the
BV (Ω) weak * topology, and u is solution of

0 ∈ ∂J(u) + h
′

(u) (6.14)

in the distributional sense.
Proof. As in the proof of Theorem 6.2, we get the same kind of equation as (6.10):

1

2

∫

Ω

(un+1 − un)
2 ≤ δt

(

J(un) − J(un+1) +

∫

Ω

h(un) −
∫

Ω

h(un+1)

)

(6.15)

By summation, we obtain:

1

2

N−1∑

n=0

∫

Ω

(un+1 − un)
2 ≤ δt

(

J(u0) − J(uN ) +

∫

Ω

h(u0) −
∫

Ω

h(uN )

)

≤ δt

(

J(u0) +

∫

Ω

h(u0) −
∫

Ω

h(f)

)

< +∞

(since
∫

Ω
h(uN ≥

∫

Ω
h(f)). In particular, this implies that un+1 − un → 0 in L2(Ω)

strong.
From estimate (6.9), we know that there exists u in BV (Ω) such that up to a

subsequence un ⇀ u for the BV (Ω) weak * topology. Moreover, un → u in L1(Ω)
strong. Let v ∈ L2(Ω). From (6.13), we have:

J(v) ≥ J(un+1) +

〈

v − un+1,−
un+1 − un

δt
− h

′

(un+1)

〉

L2(Ω)

(6.16)

Using estimate (6.8) and the fact that un → u in L1(Ω) strong, we deduce from
Lebesgues dominated convergence theorem that (up to a subsequence) un → u in
L2(Ω) strong. Moreover, since un+1 − un → 0 in L2(Ω) strong, and thanks to the
lower semi-continuity of the total variation, we get: J(v) ≥ J(u)+〈v−u,−h′

(u)〉L2(Ω).
Hence (6.14) holds.



17

6.4. Continuous setting. Let us consider the following evolution equation

∂u

∂t
∈ −∂J(u) − h′(u) (6.17)

with the initial condition u(0) = u0 and with h(u) = f
u +log u, i.e. h

′

(u) = u−f
u2 . J(u)

still denotes the extended total variation of u with respect to the space variable x.
To show the existence and uniqueness of a solution for (6.17), we could apply

the theory of maximal monotone operator [9, 8, 2]. This theory works provided h
′

is
Lipschitz. One only needs to replace h by its C1− quadratic extension below infΩ.
This would yield a solution in L2(Ω). Here, we derive sharper bounds with the next
result, whose proof is given in Appendix A.

Theorem 6.5. Let f be in L∞(Ω) with infΩ f > 0 , and u0 in L∞(Ω)
⋂
BV (Ω)

with infΩ u0 > 0. Then problem (6.17) has exactly one solution u in
L∞

w ((0, T );BV (Ω))
⋂
W 1,2((0, T );L2(Ω)).

Remark. u belongs to L∞
w ((0, T );BV (Ω)) means that u belongs to L∞((0, T )×Ω)

and Du belongs to L∞
w ((0, T );Mb(Ω)). L∞

w ((0, T );Mb(Ω)) is the space of equiv-
alent classes of weak* measurable mappings µ that are essentially bounded, i.e.
sup essx∈Ω‖µ(x)‖ < +∞ (we say that µ is weak* measurable if 〈µ(x), f〉Mb(Ω)×C0(Ω;R2)

is measurable with respect to x for every f in C0(Ω; R2), see Lemma A.5 and [7] for
further details).

Appendix A. Evolution equation: continuous setting.
To show that problem(6.17) has a solution, we start from the semi-discrete prob-

lem we have studied in the previous section. We therefore consider a sequence (un)
satisfying (6.4). From Proposition 6.3, we know that (un) satisfies:

0 ∈ un+1 − un

δt
+
(

∂J(un+1) + h
′

(un+1)
)

(A.1)

and un+1 satisfies Neumann boundary conditions ∂un+1

∂N = 0 on the boundary of Ω.
From Theorem 6.2, we know that the sequence (un) exists and is unique provided
δt < 27(infΩ f)2.

A.1. Definitions of interpolate functions. We classically introduce two func-
tions defined on Ω × R

+. We assume that t0 = 0, and tn = nδt.

ũδt(t, x) = u[t/δt]+1(x) = un+1(x) if tn < t ≤ tn+1 (A.2)

where [t/δt] is the integer part of t/δt. ũδt(., x) is thus piecewise constant. We also
introduce:

ûδt(t, x) = (t− tn)
un+1(x) − un(x)

δt
+ un(x) (A.3)

with n = [t/δt]. ûδt(., x) is piecewise affine, continuous, and we have:

∂ûδt

∂t
(t, x) =

un+1(x) − un(x)

δt
, tn < t < tn+1 (A.4)

With these notations, we can rewrite (A.1) as:

ũδt(t, x)) − ũδt(t− δt, x)

δt
∈ −∂J(ũδt(t, x)) − h

′

(ũδt(t, x)) (A.5)
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i.e.:

∂ûδt

∂t
(t, x) ∈ −∂J(ũδt(t, x)) − h

′

(ũδt(t, x)) (A.6)

A.2. A priori estimates. We first need to show some a priori estimates.

Proposition A.1. Let T > 0 be fixed, f in L∞(Ω) with infΩ f > 0 , and u0 in
L∞(Ω)

⋂
BV (Ω) with infΩ u0 > 0. Then, if 0 ≤ t ≤ T :

inf
(

inf
Ω
f , inf

Ω
u0

)

= α ≤ ũδt, ûδt ≤ β = sup

(

sup
Ω
f , sup

Ω
u0

)

(A.7)

and:

sup
t∈(0,T )

{J(ũδt), J(ûδt)} ≤ J(u0) +

∫

Ω

h(u0) −
∫

Ω

h(f) (A.8)

Proof.

(A.7) for ũδt comes from (6.8) in Theorem 6.2, and (A.8) comes from (6.9). We
then get the estimates for ûδt from (A.3).

Proposition A.2. Let T > 0 be fixed. There exists a constant C > 0, which
does not depend on δt, such that:

∫ T

0

∥
∥
∥
∥

∂ûδt

∂t

∥
∥
∥
∥

2

L2(Ω)

≤ C (A.9)

Proof. Let us denote by N = [t/δt]. We have:

∫ tn+1

tn

∥
∥
∥
∥

∂ûδt

∂t

∥
∥
∥
∥

2

L2(Ω)

= δt

∫

Ω

∣
∣
∣
∣

un+1(x) − un(x)

δt

∣
∣
∣
∣

2

dx (A.10)

By using (6.15), we get:

∫ tn+1

tn

∥
∥
∥
∥

∂ûδt

∂t

∥
∥
∥
∥

2

L2(Ω)

≤ 2

(

J(un) − J(un+1) +

∫

Ω

h(un) −
∫

Ω

h(un+1)

)

(A.11)

Hence:

N−1∑

n=0

∫ tn+1

tn

∥
∥
∥
∥

∂ûδt

∂t

∥
∥
∥
∥

2

L2(Ω)

≤ 2

(

J(u0) − J(uN ) +

∫

Ω

h(u0) −
∫

Ω

h(uN )

)

≤ 2

(

J(u0) +

∫

Ω

h(u0) −
∫

Ω

h(f)

)

We thus deduce that:

∫ T

0

∥
∥
∥
∥

∂ûδt

∂t

∥
∥
∥
∥

2

L2(Ω)

dt ≤ 2T

(

J(u0) +

∫

Ω

h(u0) −
∫

Ω

h(f)

)

+

∫ T

tN

∥
∥
∥
∥

∂ûδt

∂t

∥
∥
∥
∥

2

L2(Ω)

dt

(A.12)
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But, by using (6.15), we have:

∫ T

tN

∥
∥
∥
∥

∂ûδt

∂t

∥
∥
∥
∥

2

L2(Ω)

dt ≤ 2
T − tn
δt

(

J(uN ) − J(uN+1) +

∫

Ω

h(uN ) −
∫

Ω

h(uN+1)

)

≤ 2

(

J(u0) − J(uN+1) +

∫

Ω

h(uN ) −
∫

Ω

h(uN+1)

)

We then get from ( 6.9) and (6.8) that there exists B > 0 which does not depend on

N and δt such that:
∫ T

tN

∥
∥∂ûδt

∂t

∥
∥

2

L2(Ω)
dt ≤ B. We then conclude thanks to (A.12).

Corollary A.3. Let T > 0 be fixed. Then:

lim
δt→0

∫ T

0

‖ûδt − ũδt‖2
L2(Ω) dt = 0 (A.13)

Proof. Let us denote by N = [t/δt]. We have:

∫ T

0

‖ûδt − ũδt‖2
L2(Ω) dt =

N−1∑

n=0

∫ tn+1

tn

‖ûδt − ũδt‖2
L2(Ω) dt+

∫ T

tN

‖ûδt − ũδt‖2
L2(Ω) dt

(A.14)
But:

N−1∑

n=0

∫ tn+1

tn

‖ûδt − ũδt‖2
L2(Ω) dt =

N−1∑

n=0

∫ tn+1

tn

‖(t− tn − δt)(un+1 − un)‖2
L2(Ω) dt

(A.15)
We then deduce from (A.4) that:

N−1∑

n=0

∫ tn+1

tn

‖ûδt − ũδt‖2
L2(Ω) dt ≤

N−1∑

n=0

∫ tn+1

tn

∥
∥
∥
∥
δt
∂ûδt

∂t

∥
∥
∥
∥

L2(Ω)

dt

≤ (δt)2
∫ T

0

∥
∥
∥
∥

∂ûδt

∂t

∥
∥
∥
∥

2

L2(Ω)

dt

︸ ︷︷ ︸

→0 as δt→ 0

And:

∫ T

tN

‖ûδt − ũδt‖2
L2(Ω) dt ≤ (δt)3

∥
∥
∥
∥

uN+1 − uN

δt

∥
∥
∥
∥

2

L2(Ω)

dt

︸ ︷︷ ︸

→0 as δt→ 0

(A.16)

We summarize the a priori estimates we have proved in the following corollary:
Corollary A.4. Let T > 0 be fixed. There exists a constant C > 0 such that:

sup

{

sup
t∈(0,T )

‖ũδt‖L∞(Ω) , sup
t∈(0,T )

‖ûδt‖L∞(Ω)

}

≤ C (A.17)
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sup

{

sup
t∈(0,T )

J(ũδt) , sup
t∈(0,T )

J(ûδt)

}

≤ C (A.18)

∫ T

0

∥
∥
∥
∥

∂ûδt

∂t

∥
∥
∥
∥

2

L2(Ω)

≤ C (A.19)

lim
δt→0

∫ T

0

‖ûδt − ũδt‖2
L2(Ω) dt = 0 (A.20)

A.3. Existence of a solution. We can now prove Theorem 6.5.
Proof. The uniqueness of u will come from Proposition A.6. Here we just show

the existence of u.
We first remark that, from (A.17) and(A.19), ûδt is uniformly bounded in

W 1,2((0, T );L2(Ω)). Thus, up to a subsequence, there exists u in W 1,2((0, T );L2(Ω))
such that ûδt ⇀ u inW 1,2((0, T );L2(Ω)) weak. SinceW 1,2((0, T );L2(Ω)) is compactly
embedded in L2((0, T );L2(Ω)) (see [39], Theorem 2.1, chapter 3), ûδt → u strongly
in L2((0, T );L2(Ω)).

Since (A.17) and (A.18) hold, we can apply Lemma A.5 (stated below) with (ũδt).
Thus, up to a subsequence, there exists ũ in L∞

w ((0, T );BV (Ω)) such that ũδt ⇀ ũ
in L∞(Ω × (0, T )) weak * and Dxũδt ⇀ Dxũ in L∞

w ((0, T );Mb(Ω)) weak *. From
(A.20), we have that ũδt → u strongly in L2((0, T );L2(Ω)), and we thus deduce that
ũ = u.

The semi-discrete implicit scheme writes for a.e. t ∈ (0, T ):

−∂ûδt

∂t
− h

′

(ũδt) ∈ ∂J(ũδt) (A.21)

i.e., for all v in BV (Ω), v > 0, and a.e. t ∈ (0, T ):

J(v) ≥ J(ũδt) + 〈v − ũδt,−
∂ûδt

∂t
− h

′

(ũδt)〉L2(Ω)×L2(Ω) (A.22)

Let φ in C0
c (0, T ) a test function, φ ≥ 0. We multiply (A.22) by φ and integrate on

(0, T ):

∫ T

0

J(v)φ(t) dt ≥
∫ T

0

J(ũδt)φ(t) dt+

∫ T

0

∫

Ω

(v − ũδt)

(

−∂ûδt

∂t
− h

′

(ũδt)

)

φ(t) dtdx

(A.23)
We want to let δt→ 0 in (A.23). By convexity, we have:

lim inf

∫ T

0

J(ũδt)φ(t) dt ≥
∫ T

0

J(u)φ(t) dt (A.24)

Now, since ũδt → u strongly in L2((0, T );L2(Ω)), ∂ûδt

∂t ⇀ ∂u
∂t in L2((0, T );L2(Ω))

weak, and h
′

bounded on the interval [α, β], the second term on the right hand-side
of (A.23) tends to

∫ T

0

∫

Ω

(v − u)

(

−∂u
∂t

− h
′

(u)

)

φ(t) dtdx
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We thus get:

∫ T

0

J(v)φ(t) dt ≥
∫ T

0

J(u)φ(t) dt+

∫ T

0

∫

Ω

(v − u)

(

−∂u
∂t

− h
′

(u)

)

φ(t) dtdx (A.25)

This inequality holds for all φ ≥ 0, we deduce that for a.e. t in (0, T ):

J(v) ≥ J(u) +

∫

Ω

(v − u)

(

−∂u
∂t

− h
′

(u)

)

dx (A.26)

i.e.: −∂u
∂t ∈ ∂J(u) + h

′

(u). Hence we deduce that u is a solution of (6.17) in the
distributional sense.

In the above proof, we have used the following lemma:
Lemma A.5. Let (un) be a bounded sequence in L∞

w (Ω×(0, T )), such that (Dxun)
be a bounded sequence in L∞

w ((0, T );Mb(Ω)). Then, up to a subsequence, there exists u
in L∞

w ((0, T );BV (Ω)) such that un ⇀ u in L∞(Ω×(0, T )) weak * , and Dxun ⇀ Dxu
in L∞

w ((0, T );Mb(Ω)) weak *, i.e. for all ψ in L1((0, T );C0(Ω)):

∫ T

0

〈Dun, ψ〉Mb(Ω)×C0(Ω;R2) dt→
∫ T

0

〈Du,ψ〉Mb(Ω)×C0(Ω;R2) dt (A.27)

where 〈., .〉Mb(Ω)×C0(Ω) denotes the duality product between bounded measures on Ω
and C0(Ω; R2) the space of continuous functions on Ω and vanishing in ∂Ω.

Proof. From the Riesz representation theorem [1, 20], there is an isometric iso-
morphism between Mb(Ω) and the dual space of C0(Ω). Moreover, since C0(Ω) is
separable, there is an isometric isomorphism between L∞

w ((0, T );Mb(Ω)) and the dual
space of L1((0, T );C0(Ω)) (see [7] or [18] page 588). Up to a subsequence, there exists
u in L∞(Ω× (0, T )) and v in L∞

w ((0, T );Mb(Ω)) such that un ⇀ u in L∞(Ω× (0, T ))
weak * , and Dxun ⇀ v in L∞

w ((0, T );Mb(Ω)) weak * . We therefore have for all ψ
in L1((0, T );C0(Ω)):

∫ T

0

〈Dun, ψ〉Mb(Ω)×C0(Ω;R2) dt→
∫ T

0

〈v, ψ〉Mb(Ω)×C0(Ω;R2) dt (A.28)

Moreover, we have Dxun → Dxu in D′

(Ω × (0, T )) and Dxun → v in D′

(Ω × (0, T )):
this implies that Dxu = v.

A.4. Uniqueness of the solution. A uniqueness result holds.
Proposition A.6. Let f be in L∞(Ω) with infΩ f > 0, and u0 in L∞(Ω)

⋂
BV (Ω)

with infΩ u0 > 0. Then Problem (6.17) has at most one solution u such that 0 < α ≤
u ≤ β.

Proof. This is a standard result. It is based on the convexity of J , the fact that
h′ is Lipshitz on [infΩ f,+∞), and Gronwall inequality.
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[9] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces
de Hilbert. Norht Holland, 1973.

[10] J. Bruniquel and A. Lopes. Analysis and enhancement of multi-temporal sar data. In SPIE,
volume 2315, pages 342–353, Septembre 1994.

[11] A. Buades, B. Coll, and J-M. Morel. A review of image denoising algorithms, with a new one.
SIAM Journal on Multiscale Modeling and Simulation, 4(2):490–530, 2005.

[12] A. Chambolle. An algorithm for mean curvature motion. Interfaces and Free Boundaries,
6:1–24, 2004.

[13] A. Chambolle. An algorithm for total variation minimization and applications. JMIV, 20:89–97,
2004.

[14] T. Chan and J. Shen. Image processing and analysis - Variational, PDE, wavelet, and stochas-
tic methods. SIAM Publisher, 2005.

[15] T.R. Crimmins. Geometric filter for reducing speckle. Optical Engineering, 25(5):651–654, May
1986.

[16] J. Darbon, M. Sigelle, and F. Tupin. A note on nice-levelable MRFs for SAR image denoising
with contrast preservation, September 2006. Preprint,
http://www.enst.fr/ data/files/docs/id 619 1159280203 271.pdf.

[17] D.L. Donoho and M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage.
Journal of the American Statistical Association, 90(432):1200–1224, December 1995.

[18] R.E. Edwards. Functional Analysis: Theory and Application. Holt, Rinehart and Winston,
1965.

[19] L.C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, 1991.

[20] L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions, volume 19
of Studies in Advanced Mathematics. CRC Press, 1992.

[21] D. Geman and S. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–
741, 1984.
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