Composition 7

 $\begin{array}{c} 19 \text{ octobre } 2015 \\ \text{dur\'ee } 1 \text{h} \end{array}$

Exercice 1. Soit f une fonction de \mathbb{R} dans \mathbb{R} dérivable. Soit a < b. On suppose que f'(a) < f'(b). Soit k un réel vérifiant f'(a) < k < f'(b). On considère g la fonction: g(x) := f(x) - kx.

- 1) Montrer que g admet un minimum sur [a, b] et que ce minimum n'est pas atteint ni en a ni en b.
- 2) En déduire que la dérivée d'une fonction réelle vérifie le théorème des valeurs intermédiaires (théorème de Darboux).

Exercice 2. On considère l'équation différentielle

$$(E): x''(t) + q(t)x(t) = 0$$

où q est une fonction continue sur \mathbb{R} .

On rappelle que les solutions sont globales et que les zéros d'une solution non identiquement nulle sont isolés.

- 1) En utilisant Cauchy-Lipshitz, justifier que l'ensemble des solutions de (E) est un espace vectoriel de dimension 2.
- 2) Soient f et g deux solutions de (E). On considère le Wronskien: W(t) = f(t)g'(t) f'(t)g(t). Montrer que W est constant.
- 3) On f et g sont linéairement indépendantes et que $\alpha < \beta$ sont deux zéros consécutifs de f, montrer qu'il existe $\gamma \in (\alpha, \beta)$ tel que $g(\gamma) = 0$.

Exercice 3.

On considère l'équation différentielle:

$$x'(t) = \sin(x(t)). \tag{1}$$

et on considère ϕ la solution maximale de (1) vérifiant $\phi(0) = x_0$ avec $x_0 \in (0, \pi)$.

- 1) Justifier que ϕ est bien définie et que son ensemble de définition est \mathbb{R} .
 - 2) Montrer que pour tout $t \in \mathbb{R}$, on a $0 < \phi(t) < \pi$.
 - 3) Montrer que $\phi(t) \to \pi$ quand $t \to +\infty$.