
Image processing with variational approaches
and Partial Differential Equations

Practice 1: Denoising and restauration

Nicolas Papadakis

IMB, Université Bordeaux
351 Cours de la libération, 33405 Talence Cedex, FRANCE

Email : nicolas.papadakis@math.u-bordeaux.fr

1. Introduction
All along this practice, we will consider gray scale images and we will use MATLAB®.

1.1 General advices when using MATLAB

MATLAB has been first developed for solving matrix problems and its intern functions are
optimized for such purpose. Hence, for optimizing computational runtime, it is recommended
to write your algorithms in a vectorial/matrix form and to avoid the use of for loops when
possible. Even if not necessary, it is recommended to initialize variables (with functions such
as zeros, ones). To comment a line, use the character %. All created figures can be closed with
the command close all. All created variables can be cleared with the command clear all. Do
not hesitate to look at the documentation to correctly use the predefined functions (command:
help).

1.2 MATLAB and images

In MATLAB, a gray scale image I of size (m,n) is a matrix I of size (m,n), and the value
I(i, j) corresponds to the gray value at pixel location (i, j), i = 1 · · ·m, j = 1 · · ·n.

MATLAB can read images written in any standard format with the command imread. In
the same way, results can be written with the command imwrite. When reading an image with
imread, the loaded values are integers and the gray values are in the range [0; 255], from black
to white.

Remark: You can copy/paste from this pdf the following scripts and commands.

mailto:nicolas.papadakis@math.u-bordeaux.fr

1.3 Basic examples

Example 1: Reading and displaying an image

%load the image camerama.tif that is included in MATLAB's own dataset:

Im_data=imread('cameraman.tif');

%VERY IMPORTANT: do not forget to convert integer values
%in real ones for future manipulations:

Im_data=double(Im_data);

%Display:

imagesc(Im_data);
colormap gray;

%To open a second figure:

figure;

%Other command for image display:

imshow(Im_data/255.);

%If the image has real values, imshow require these values to be
%in the range [0;1] for a correct display. A normalization is thus
%required if working in the range [0;255]

The previous script should display:

Display of image Cameraman with imagesc Display of image Cameraman with imshow

2

Example 2: Avoid “for loops”

N=2000;
A=ones(N,N); %Initialize A with values 1
B=randn(N,N); %Initialize B with random values in [0;1]

%Compute product between matrices elements.
tic
for i=1:N,

for j=1:N,
A(i,j)=A(i,j)*B(i,j);

end
end
toc %Display runtime since tic command

tic
A=A.*B; % .* for an element wise operation between matrices
%(different from A*B that realizes a matrix multiplication)
toc

The previous script should give you as output something (depending on the computer) like:

Result after execution:
Elapsed time is 0.129287 seconds.
Elapsed time is 0.005119 seconds.

Exemple 3: Adding gaussian noise to an image with a function

Create the file add_gaussian_noise.m containing:

function out = add_gaussian_noise(I,s)
%Add Gaussian noise of standard deviation s to an image I

[m,n]=size(I);
%creation and addition of gaussian noise
out=I+s*randn(m,n);

The script:

Im_noised=add_gaussian_noise(Im_data,30);
imagesc(Im_noised)
colormap gray;

should give you:

3

2 Denoising with PDEs
Let Ω be a bounded open set of R2. We will typically consider Ω as a rectangle representing
the image domain. An image is a function defined on Ω such as u : Ω → R (u : Ω → R3 for
color images), i.e. for pixels x ∈ Ω.

We now consider that we have an image f that corresponds to an unknown ground truth
image u∗ perturbed with an additional Gaussian noise ω. From the previous examples we can
take:

u∗ f = u∗ + ω

and the objective is to denoise the available image f and recover an image as close as possible
to u∗.

2.1 Heat equation

The first PDE that have been used in image processing is the Heat equation that realizes a
spatial diffusion of the gray values of a given image. It is a parabolic equation that reads:

∂u(t,x)
∂t

= ∆u(t, x) for t ≥ 0 and x ∈ Ω
u(0, x) = f(x) for x ∈ Ω
∂u(t,x)
∂N

= 0 for t > 0 and x ∈ ∂Ω,

(2.1)

where ∆ is the Laplacian operator, f is the initial temporal condition and ∂u
∂N

= 0 are Neumann
boundary conditions. This model diffuses the initial condition f (that can be seen as an initial
temperature) along time.

The introduction of this equation comes from the following remark. If f , the initial condi-
tion, is smooth enough, then the explicit solution of (2.1) is given by:

u(t, x) =

∫
R2

G√2t(x− y)f(y) dy =
(
G√2t ∗ u0

)
(x) (2.2)

where Gσ is a Gaussian kernel of dimension 2:

Gσ(x) =
1

2πσ2
exp

(
−|x|

2

2σ2

)
(2.3)

The convolution of a data f with a positive kernel is a basic operation in image processing that
corresponds to a low-pass filter that will “kill” high frequencies of f and thus remove its noise.

4

2.2 From continuous to discrete

In image processing, we only have access to discrete values u(i, j) that are located at pixels
x = (i, j), i = 1 · · ·m, j = 1 · · ·n, on the discrete grid describing the image domain Ω.

Discrete spatial operators A discrete image is thus a matrix of dimension m × n. We
denote as X the euclidean space Rm×n, and Y = X × X. The space X is equipped with the
scalar product:

〈u, v〉X =
∑

1≤i,j≤N

ui,jvi,j (2.4)

and the norm:
‖u‖X =

√
〈u, u〉X . (2.5)

If u ∈ X, the gradient ∇u = [∂xu; ∂yu]T is a vector of Y given by :

(∇u)i,j = ((∇u)1
i,j, (∇u)2

i,j) (2.6)

where, see [1, ?], the horizontal gradient can be discretized as

(∇u)1
i,j =

{
ui+1,j − ui,j si i < M
0 si i = M

(2.7)

and the vertical gradient as:

(∇u)2
i,j =

{
ui,j+1 − ui,j si j < N
0 si j = N

(2.8)

These schemes correspond to the general forward discretization ∂xu(i, j) = u(i+h,j)−u(i,j)
h

with a
spatial step of h = 1.

We also introduce a discrete version of the divergence operator div (p) = ∂xp1 + ∂yp2 for a
vector p = [p1, p2] ∈ Y . It is defined in analogy with the continuous case as:

div = −∇∗ (2.9)

where ∇∗ is the adjoint operator of ∇ : i.e., for all p ∈ Y and u ∈ X, 〈−div p, u〉X = 〈p,∇u〉Y .
One can then show that:

(div (p))i,j =

p1
i,j − p1

i−1,j si 1 < i < M
p1
i,j si i=1
−p1

i−1,j si i=M
+

p2
i,j − p2

i,j−1 si 1 < j < N
p2
i,j si j=1
−p2

i,j−1 si j=N
(2.10)

Hence, the discretization of the Laplacian operator ∆u = ∂xxu + ∂yyu for u ∈ X will be
given as:

∆u = div∇u. (2.11)

One can check that combining (2.7), (2.8) and (2.10), we recover the standard Laplacian dis-
cretization for 1 < i < m and 1 < j < n:

∆uni,j = uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4uni,j (2.12)

The functions gradx.m , grady.m and div.m computing these operators are available here:
gradx.m grady.m div.m .

5

http://www.math.u-bordeaux.fr/~npapadak/TP/gradx.m
http://www.math.u-bordeaux.fr/~npapadak/TP/grady.m
http://www.math.u-bordeaux.fr/~npapadak/TP/div.m

Boundary conditions As we consider a bounded open set Ω, adequate boundary conditions
are required. Neumann conditions are the natural conditions that arise in image processing.

Nevertheless from the above discretizations of the gradient and divergence operators that
ensures that 〈p,∇u〉Y = 〈−div p, u〉X for all p ∈ Y and u ∈ X, we have the Neumann conditions
for free from the Theorem of Stokes. As a consequence, we won’t have to deal with the
conditions ∂u(t,x)

∂N
= 0 in the implementation.

Temporal scheme Let us now detail how discretizating in time the PDE (2.1). We denote
as δt the numerical time step and uki,j represents the value of the image at time t = kδt. We
consider an explicit Euler scheme of order 1 in time, which leads to the following approximation
of the temporal partial derivative:

∂uk+1
i,j

∂t
=
uk+1
i,j − uki,j
δt

. (2.13)

Gathering all previous information, the discretization of problem (2.1) finally reads:{
uk+1
i,j = uk + δt(∆u

k)ij

u0
ij = fij,

(2.14)

where, from relation (2.11), the discretization of the Laplacian is obtained with schemes (2.7),
(2.8) and (2.10).

2.3 Time to work:

Heat equation: The objective is now to solve numerically the problem (2.14).

1 Write a function heat_equation that

– takes as argument the noisy image f , a time step δt and a number of iterations K.

– solves problem (2.14) for iterations k = 1 · · ·K (the values uk+1 should erase the
temporary values uk to save memory space).

– returns uK .

2 Write a script that test this function on a noisy image f for different evolution times K.
The time step can be set to δt = 1/8 to ensure the stability of the scheme.

One can display uk along iterations to visualize the diffusion process (i.e. the evolution of the
solution):

imagesc(u);
colormap gray;
drawnow; %to have a real time display

Depending on the evolution time K, we observe images uK that are more or less smooth:

K = 0 (u0 = f) K = 20 K = 100

6

Convolution with a Gaussan kernel: We now check that (2.2) is indeed a solution of
(2.1).

3 Define a matrix G of size (2P − 1, 2P − 1) representing a Gaussian kernel of standard
deviation σ2 = 2Kδt. One can take for instance P = bKδt + 1c. Two options are possible
to define this kernel:

– Hard one: using (2.3) (in which the index x = (0, 0) will correspond to the position
G(P, P)).

– Esay one: using fspecial with options 'gaussian', size (2P − 1, 2P − 1) and standard
deviation

√
2Kδt.

4 Realize a convolution of f with G with the function imfilter and the option 'replicate' to
mimic Neumann conditions.

5 Compare the result with the one obtained with the Heat equation.

Application to contour detection: PDEs can be used as pre-processing tasks for other
applications, such as contour detection that consists in finding the significant contours present
in an image. A main ingredient of contour detectors is to look for pixels (i, j) for which the
gradient norm ||∇u(i, j)|| is large. The detection of significant contours of an image it then
more robust when the image is smooth enough.

We illustrate this fact with the Marr-Hildreth contour detector that estimates that a pixel
belongs to a significant contour if 2 conditions are met:

(1) ||∇u(i, j)|| > η > 0, where η is a threshold that selects pixels of high gradient. A small
parameters involves the selection of too many pixel (and bold contours), whereas a large
one will only select a few one. Considering only this criteria does not give accurate
detection as the threshold is hard to tune.

(2) ∆u(i, j) changes its sign at location (i, j). This means that the pixel (i, j) is a local
extrema of ∇u(i, j). This criteria will detect thin contours but will be sensible to noise.

We now given a 1D illustration of this algorithm. In the next Figure, we consider a line
of the image (a) denoted as u and shown in (b). The gradient ∇u and the Laplacian ∆u are
illustrated respectively in (c) and (d).

(a) Image (b) u (c) ∇u (d) ∆u

7

Let us now observe the effect of condition (1) on ∇u. When taking (a) a threshold of
η = 0.15, we see that (b) the condition ||∇u(i, j)|| > η find the main contour of the image but
it involves a bold contour in the final detection (c).

(a) ||∇u|| > η = 0.15 (b) Contours in u (b) Contour in the image

Illustration of condition (1)

We now detail the effect of condition (2) on ∆u. When looking (a) at pixels (i, j) where ∆u
changes its sign, we see that (b) the local extrema of ∇u are found but it involves the detection
of non significant contours in the final detection (c).

(a) ∆u changes its sign (b) Contours in u (b) Contour in the image

Illustration of condition (2)

Combining the two criteria, we see below that the algorithm only selects the pixel with
a large enough gradient norm that is also a local extrema. This gives an accurate contour
detection (b).

(a) Contours in u (b) Contour in the image

Illustration of conditions (1) + (2)

8

6 Write a function Marr_Hildreth that takes as input an image u and a threshold η > 0
and returns the contour image that contains the value 1 for pixels checking conditions
(1) and (2) and 0 otherwise. The function detecting change of sign can be found here:
change_sign.m .

7 Apply the function to the noisy image f and to the denoised one uK .

We illustrate the influence of the threshold η and the smoothness of the image on the contour
detection in the following Figure. When the image is noisy (first line), the detector finds a lot
of pixels with a large gradient that are local extrema. When smoothing the image (lines 2 and
3), the noise is removed. However when the smoothing of the image is too important (line 3),
the contours are also smoothed in the detection.

Notice that this algorithm is basic and more evolved detectors exist, see for instance the
MATLAB’s function edge and its options.

u0 = f η = 50 η = 80 η = 120

u20 η = 2 η = 5 η = 10

u100 η = 1 η = 2 η = 5

The Heat equation which is equivalent to the convolution with a Gaussian Kernel, is
isotropic, meaning that no particular direction are considered during the diffusion. This is
an issue for denoising and contour detection, since one would like to preserve the significant
image discontinuities present in the original image.

9

http://www.math.u-bordeaux.fr/~npapadak/TP/change_sign.m

2.4 Perona-Malik

In order to enhance the results obtained with the Heat equation, Perona and Malik proposed
to modify the equation by integrating information related to the presence of boundaries:

∂u(t,x)
∂t

= div
(
g
(
||∇u(t, x)||

)
∇u(t, x)

)
for t ≥ 0 and x ∈ Ω

u(0, x) = f(x) for x ∈ Ω
∂u(t,x)
∂N

= 0 for t > 0 and x ∈ ∂Ω,

(2.15)

where c is a decreasing function from R+ to R+.

Remark: If taking a constant function g = 1, we recover the isotropic Heat equation.

The function g is classically taken such that g(0) = 1 and limξ→+∞ g(ξ) = 0, with for
instance g(ξ) = exp(−ξ2/α2). Hence, in an uniform (i.e constant) area where the gradient of
a pixel (i, j) is small (||∇u(i, j)|| ≈ 0), the Perona-Malik model acts like an isotropic diffusion
with g = 1 at this pixel. On the other hand, when the gradient is large (||∇u(i, j)|| >> 0),
the diffusion is stopped with g = 0 at this location of high gradient, which allows a better
preservation of contours. The Perona-Malik PDE is thus an anisotropic diffusion since
specific directions are discouraged. In the following we will consider

g(ξ) =
1√

(ξ/α)2 + 1
. (2.16)

8 Write a function Perona_Malik that

– takes as argument the noisy image f , a time step δt, a number of iterations K and
a parameter α

– solves problem (2.15), with the temporal derivative (2.13) and the function g defined
in (2.16), for iterations k = 1 · · ·K

– returns uK .

9 Write a script that test this function on a noisy image f for different evolution times K
and parameters α.

10 Apply the Marr Hildreth contour detector on the obtained results.

As shown in the next figure, the Perona-Malik PDE better preserves the discontinuities in
the final images uK , which involves more accurate contour detections.

u50, α = 15
(

η = 10 u100, α = 15 η = 2

10

Enhacement with a convolution of the gradient with a Gaussian As previously ob-
served, whene the original image f is very noisy, its gradients present strong oscillations that
perturb the diffusion. The noise may indeed be considered as a significant contour. E A simple
approach to circumvent this issue is to smooth the gradient that is send to the function c. The
improved model then reads:

∂u(t,x)
∂t

= div
(
g(Gσ ∗ ||∇u(t, x)||)∇u(t, x)

)
for t ≥ 0 and x ∈ Ω

u(0, x) = f(x) for x ∈ Ω
∂u(t,x)
∂N

= 0 for t > 0 and x ∈ ∂Ω.
(2.17)

Optional: Implementation of this model and comparison with the previous one.

With this convolution, the main drawbacks of the previously studied PDEs are still present.
Namely, tuning the number of iterations is a hard task. Doing a few iterations does not denoise
the image, whereas iterating a lot over smooth the image. The main problem comes from the
fact that the initial condition f is “lost” during the diffusion. We now see how re-injecting such
information into the process.

3 Denoising with variational approaches
Before coming to variational models, we first recall some properties of convex functionals.

3.1 Minimization of convex and differentiable functionals

In this practice, we consider u ∈ X, where X is the euclidean space Rm×n. A function J : X →
R is said convex iff:

∀(u, v) ∈ X ×X, and ∀t ∈ [0; 1], J(tu+ (1− t)v) ≤ tJ(u) + (1− t)J(v).

The function is strictly convex if the above inequality is strict ∀u 6= v and t ∈]0; 1[. Classical
1D examples (i.e. m = n = 1) of convex and strictly convex functions are given below.

J(u) = |u| is convex J(u) = ||u||2 is strictly convex J(u) = max(||u||2, 0.1) is convex

Assuming that J is proper, lower semi-continuous and coercive (see Lecture for definitions
and details), then a convex function admits at least one global minimizer. If the function is
not strictly convex, the minimizers are not necessarily unique (the values of the functions at
the minimizers are in red in the previous Figures).

11

From now, we will only consider differentiable functions J so that ∇J(u) ∈ X exists for all
u ∈ X and it is the only vector of X that checks:

J(v) ≥ J(u) + 〈∇J(u), v − u〉, ∀v ∈ X.

Notice that ∇ here represents the derivative of the function J with respect to u:
∇J(u) = ∂uJ(u), and not the spatial gradient as before. The vector ∇J(u) then defines
the tangent of J at point u, as illustrated below:

J(u) = ||u||2, the red vectors represent (with a rescaling) ∇J(u) = 2u at points u = 0.5 and
u = −0.3.

In this differentiable and convex context, we can observe that u is a minimizer of J iff
∇J(u) = 0. The gradient ∇J thus allows to characterize minimizers of J , but it also permits
to get closer to one minimizer from a current point u, by going in the opposite direction from
∇J(u) and thus decrease the function J . Hence, with an adequate time step τ > 0 and with an
additional condition on ∇J (discussed in the remark page 13), the well-known gradient descent
algorithm:

uk+1 = uk − τ∇J(uk),

converges to a global minimizer of J for any u0 ∈ X.

3.2 Previous PDEs as gradient descent of convex functionals

From now on, we will consider the discrete framework so that the following sums
on Ω corresponds to a discretization of the continuous integrals on Ω in the Lecture.
Let us now consider the convex function JH(u) = 1

2

∑
x∈Ω ||∇u(x)||2 = 1

2
||∇u||2Y . From calculus

of variations, one obtains ∇JH(u) = −div (∇u) = −∆u ∈ X.
We can then apply the gradient descent algorithm in order to compute a minimizer of this

convex function. Initializing u0 = f , it reads:

uk+1 = uk + τ∆uk,

which exactly corresponds to the previous discretization of the Heat equation (2.14).
In the same vein, we can show that the Perona-Malik PDE1 defined in (2.15) corresponds to

a gradient descent algorithm applied to the convex functional JPM(u) =
∑

x∈Ω

√
||∇u(x)||2 + 1,

since:

∇JPM(u) = −div

(
∇u√

||∇u||2 + 1

)
.

Homework: Check the convexity and the computation of the gradients of the above functions
JH and JPM .

1where c(t) of (2.16) is parameterized with α = 1.

12

Interpretations From the gradient descent point of view, we see that with an infinite time
t, the previous PDEs (2.1) and (2.15) will respectively converge to a global minimizer of the
functions JH and JPM .

We denote as C the set of uniform images (i.e. constant) u ∈ X (i.e. so that u ∈ C iff
∇u(x) = 0, ∀x ∈ Ω). It is clear that JH(u) = 0 if u ∈ C and JH(u) > 0 if u /∈ C. The same
observation can be made for JPM . Hence C is the set of global minimizers of functions JH and
JPM . This confirms that the PDEs will converge to constant images2.

The difference between both PDEs concerns the paths uk between u0 = f and u∞ =
constant. The isotropic Heat equation corresponds to a quadratic function JH , whereas the
anisotropic Perona-Malik model relies on a differentiable approximation of the piecewise-linear
and non differentiable Total Variation regularization

∑
x∈Ω

√
||∇u(x)||2. These functions are

displayed below:

JH(u) JPM(u)

From now on, in the Figures, the x-axis is a 1D representation of X = Rm×n. The set C
of global minimizers is in purple: JH(u) = JPM(u) for all u ∈ C. The vectors ∇JH(u) and
∇JPM(u) are displayed in red for a same u.

From the shape of these functions, we understand that for an initialization f far from C and
the same time steps, the gradient descent on the quadratic JH will involve gradients ∇JH(u)
with higher norms than ∇JPM(u) and it will reach faster the neighborhood of C than the
gradient descent on JPM . This explains why the Heat equation gives very smooth images (close
to C) with few iterations.

Remark on the convergence of gradient descent If ∇J is Lipschitz continuous with
constant L (i.e. ||∇J(u) − ∇J(v)|| ≤ L||u − v||, for all u, v ∈ X), then the gradient descent
converges for all τ < 2/L. For the Heat equation, ∇JH = −∆ is Lispchitz continuous. With
the discretization of the Laplacian considered page 5, the constant L of ∆ is 8, so that we can
take τ < 1/8. On the other hand, it is worth noting that ∇JPM is not Lispchitz continuous so
that the Perona-Malik PDE may diverge if not optimizing the time step at each iteration with
line search methods.

Enhancing PDEs methods A previously underlined drawback of the presented PDEs is
that the original data f is only used as an initialization and forgotten along the process. We
now see how defining a convex function that will take into account this information so that its
minimizers will have a stronger link with f .

2With the Neumann condition, the PDEs will converge to the constant image where the constant is the mean
value of f . It corresponds to a homogeneous diffusion on the whole domain Ω of the initial temperature f .

13

3.3 Variational model with data fidelity term

As previously noticed, the functions JH and JPM have a smoothing effect. A simple idea to
counter balance this regularization behavior is to consider an additional data fidelity term:

JD(u) =
1

2

∑
x∈Ω

||u(x)− f(x)||2 =
1

2
||u− f ||2X

This function is strictly convex and its obvious minimizer is obtained for u = f . This model
assume that the data is a degradation of the perfect unknown image u∗ with a Gaussian noise ω,
i.e. f = u∗+ω. Notice that minimizing the ||.||2X norm corresponds, in the Bayesian framework,
to the minimization of the likelihood of the image u with respect to the data noisy f .

We can now consider the following kind of models:

Jλ(u) = λJD(u) + JR(u), (3.18)
where λ ≥ 0 is a parameter weighting the influence of the regularization with respect to the
data and JR is a regularization function that can be taken as JH(u) = 1

2

∑
x∈Ω ||∇u(x)||2 or

JPM(u) =
∑

x∈Ω

√
||∇u(x)||2 + 1.

It is worth noting that the function Jλ in (3.18) is strictly convex for λ > 0. We call uλ
a minimizer of (3.18) for a given λ. For λ = 0, we recover the previously studied models and
uλ is not unique (any u ∈ C is a minimizer). For λ → 0+, the minimum is achieved for the
constant image with the same mean as f . For λ→∞, the data term is prominent so we have
limλ→∞ uλ = f . The interesting values are thus in between. We next illustrate the influence of
this parameter on the minimizer uλ.

JR(u) JD(u)

The set C of global minimizers of JR is in purple. The minimizer of JD (= f) is in red.

Jλ(u), λ = 0.1 Jλ(u), λ = 2 Jλ(u), λ = 10

Illustration of Jλ and its minimizer uλ (black points) for different values of λ.

Hence, we clearly observe that the minimizer of Jλ will be a compromise between the data
f and an uniform image in C. Tuning the parameter λ adequately is in practice more simple
than setting a number of iteration in PDEs approaches. The parameter can for instance been
set with respect to the expected noise level of the image.

14

Variational models in image processing In image processing applications (denoising,
segmentation, optical flow estimation...), it is classical to design algorithms based on the mini-
mization of a function. The important point is therefore to ensure that the minimizers of the
proposed function have good properties with respect to the tackled application. Here these
properties are the following: the denoised image u should be smooth and close to f .

3.3.1 Minimization of Jλ

We now consider the gradient descent algorithm to solve problem (3.18):

uk+1 = uk − τ(λ∇JD(uk) +∇JR(uk)).

We can first observe that ∇JD(u) = (u−f) ∈ X. Next, we detail the algorithm for different
regularizers JR.

Easy homework: Check the strict convexity and the computation of the gradient of the function
JD.

Tikhonov regularization The so-called Tikhonov regularization is JR(u) = JH(u) = ||∇u||2X .
This function enforces the image to be smooth. The corresponding the gradient descent algo-
rithm reads:

uk+1 = uk + τ(λ(f − uk) + ∆uk), (3.19)

where the time step can be taken as τ = 1/(λ+ 4).

Smoothed Total Variation regularization The so-called smoothed Total Variation regu-
larization is JR(u) = J εTV (u) :=

∑
x∈Ω

√
||∇u(x)||2 + ε. This function enforces the image to be

piecewise constant. The gradient descent algorithm is in this case:

uk+1 = uk + τ

(
λ(f − uk) + div

(
∇uk√

||∇uk||2 + ε

))
, (3.20)

where the time step τ must be taken small enough to avoid numerical instabilities (see Remark
page 13). With the previous notations, we have JPM = J1

TV . Taking ε = 1 gives a good
approximation of the Total Variation regularization if the gray values of f are within the range
[0; 255].

PDE point of view It is interesting to interpret the algorithms (3.19) and (3.20) as PDEs.
For the Tikhonov regularization, one recovers:

∂u(t,x)
∂t

= λ(f(x)− u(t, x)) + ∆u(t, x) for t ≥ 0 and x ∈ Ω
u(0, x) = f(x) for x ∈ Ω
∂u(t,x)
∂N

= 0 for t > 0 and x ∈ ∂Ω.
(3.21)

With respect to the Heat equation and the Perona-Malink one, the additional term λ(f(x) −
u(t, x)) now enforces, the solution u(t, x) to go into the direction of f(x), with an influence
given by λ.

15

3.4 Back to work

We can now solve the problem (3.18) for the different regularizers.

11 Write a function Denoise_Tikhonov that

– takes as argument the noisy image f , a time step τ (that can be automatically set
to 1/(λ+ 4)), a number of iterations K and a parameter λ

– realizes the gradient descent algorithm (3.19) for iterations k = 1 · · ·K
– returns uK .

12 Write a function Denoise_TV that

– takes as argument the noisy image f , a time step τ , a number of iterations K and
parameters λ and ε

– realizes the gradient descent algorithm (3.20) for iterations k = 1 · · ·K
– returns uK .

13 Write a script that test these functions on a noisy image f for different parameters λ.

Remark: The parameterK is a maximum number of iteration. The algorithm can be stopped
if a convergence criteria is met. A standard criteria is to measure the normalized root-mean-
square error (RMSE) between successive iterations: ||uk+1 − uk||/||uk|| and stop the algorithm
when it is small enough (for instance < 10−5 for Tikhonov and < 10−4 for smoothed Total Vari-
ation). Also notice that since the Tikhonov regularization is quadratic and the Total Variation
one in piecewise linear, good values of λ are not in the same range for the 2 regularizations.
An example of the obtained results is given below.

T
ik
ho

no
v

λ = 1 λ = 0.1 λ = 0.01

sm
oo

th
ed

To
ta
l

V
ar
ia
ti
on

λ = 0.1 λ = 0.01 λ = 0.001

Denoising results for different values of λ. First line: Minimizer uλ of Jλ with Tikhonov
regularization. Second line: Minimizer uλ with smoothed Total Variation regularization.

16

3.5 Solving Tikhonov regularization with Fourrier Transform

The Tikhonov regularization corresponds to solve the problem:

min
u
Jλ(u) = λJD(u) + JH(u) =

λ

2
||u− f ||2X +

1

2
||∇u||2Y . (3.22)

The minimizer u of this convex function is then characterized by ∇Jλ(u) = 0. Computing
the Euler-Lagrange equation of (3.22), it gives as optimality condition:

λ(u− f)−∆u = 0. (3.23)

As for the Heat equation, whose solution u(t, x) can be explicitly obtained through a convo-
lution with an adequate kernel depending on t (see relation (2.2)), the solution of the Tikhonov
regularization problem can be explicitly computed (i.e. without minimizing Jλ iteratively).

The solution can indeed be exhibited by considering Discrete Fourier Transform (DFT) of
the optimality condition (3.23).

We recall that the DFT of a m× n discrete image f(k, l) (0 ≤ k ≤ m− 1 et 0 ≤ l ≤ n− 1)
is given, for 0 ≤ p ≤ m− 1 and 0 ≤ q ≤ n− 1, by:

F(f)(p, q) = F (p, q) =
m−1∑
i=0

n−1∑
j=0

f(k, l)e−j(2π/m)pke−j(2π/n)ql (3.24)

and the inverse transform is:

f(k, l) =
1

mn

m−1∑
p=0

n−1∑
q=0

F (p, q)ej(2π/m)pkej(2π/n)ql (3.25)

One can show that, for the centered discretization of the Laplacian operator (2.12) and
periodic conditions, we have

F(∆f)(p, q) = −4F(f)(p, q)
(

sin2
(πp
m

)
+ sin2

(πq
n

))
(3.26)

from which we can deduce that the minimizer u of (3.22) checks:

F(u)(p, q) =
λF(f)(p, q)

λ+ 4
(
sin2

(
πp
m

)
+ sin2

(
πq
n

)) (3.27)

Homework:

• Show relations (3.26) and (3.27). Recall: 2 sin2(a) = 1− cos(2a).

• Implement relation (3.27) and find the minimizer using functions fft2 and ifft2. Compare
the solution with the one obtained with the Denoise_Tikhonov function for the same λ.

Remark: The above DFT method assumes periodic conditions, while Neumann conditions
were previously considered. As a consequence, differences between both approaches should be
mainly visible on the image boundaries.

17

4 Extensions to deconvolution and inpainting
We now extend the previous variational model to a more general one dealing with other ap-
plications than denoising. To that end, instead of the data function JD, we define a new data
function JA that will be minimized jointly with the two studied regularization functions. This
data function reads:

JA(u) =
1

2

∑
x∈Ω

||(Au)(x)− f(x)||2 =
1

2
||Au− f ||2X , (4.28)

where A is a linear operator from X to X that can be represented as mn×mn matrix in the
discrete setting. This data function can model different interesting applications:

• Deconvolution: We assume that the available image f is obtained as G ∗ u∗+ ω, where
u∗ is the unknown ground truth image to recover, G(x) is a known 2D convolution filter
and ω is an additional Gaussian noise. In this case, the data function ||G∗u−f ||2X tries to
estimate an image u which convolution with the kernel G is close to the one of u∗. With
adequate change of indexes, the discrete convolution of u with a kernel G can be seen as
a matrix vector multiplication, by considering the mn×mn matrix A(k, l) = G(xl− xk).

u∗ G ∗ u∗ f = G ∗ u∗ + ω

Example of data f in case of deconvolution.

• Inpainting: We assume that the available image f is a partial observation of a pertur-
bation of the ground truth image u∗ to recover. More precisely, we only have access to
observations of some pixels x that belong to a known region M ⊂ Ω. In this case, the
data term can be taken as

∑
x∈M ||u(x) − f(x)||2. It corresponds to the framework of

(4.28) with the mn×mn matrix A(k, l) = 1 if k = l and pixel xk ∈M and 0 otherwise.

u∗ M f = u∗|M

Example of data f in case of inpainting.
Remark: Notice that JA is strictly convex only if A is a positive definite matrix and thus an
invertible matrix. In this case, one can equivalently consider as data term ||u−A−1f ||2X which
enters in the framework of previous section. Hence, the interesting case to look at is when A
has zero eigenvalues, for instance when A is positive semi-definite.

18

4.1 Gradient of JA
The gradient of function (4.28) reads ∇JA(u) = AT (A(u− f). In the aforementioned applica-
tions one has:

• Deconvolution: With an isotropic kernel G, the gradient of JG(u) = 1
2
||G ∗ u− f ||2X is

∇JG(u) = G ∗ (G ∗ u− f). (4.29)

• Inpainting: The gradient of JM(u) = 1
2

∑
x∈M ||u(x)− f(x)||2 is

∇JM(u)(x) =

{
u(x)− f(x) if x ∈M
0 otherwise.

(4.30)

Considering the mask function M(x) = 1 if x ∈ M and 0 otherwise, we also have:
∇JM(u) = (u− f)M .

4.2 Variational models and minimization

We can now use the new data functions together with the regularization ones, in order to
formalize and solve the deconvolution and inpainting problems.

• Deconvolution: The function to minimize reads:

λ

2
||G ∗ u− f ||2X +

∑
x∈Ω

√
||∇u(x)||2 + 1.

Minimizing this function corresponds to find a piecewise constant image u whose convolu-
tion with G is close to f . As the data f is assumed to be blurred, considering a Tikhonov
regularization is in this case not very smart, since it would not produce a sharp enough
image. The gradient descent algorithm applied to this problem gives:

uk+1 = uk + τ

(
λG ∗ (f −G ∗ uk) + div

(
∇uk√

||∇uk||2 + 1

))
, (4.31)

• Inpainting: The function to minimize reads:

λ

2

∑
x∈M

||u(x)− f(x)||2 +
∑
x∈Ω

√
||∇u(x)||2 + 1.

The idea is to diffuse the known information into the region M to the masked regions
Ω\M with the regularization function. We thus obtain:

uk+1 = uk + τ

(
λ(f − uk)M + div

(
∇uk√

||∇uk||2 + 1

))
, (4.32)

The Tikhonov regularization is of interest in this application, namely in almost uniform
image regions (sky, water...), as it will realize an isotropic diffusion of the known infor-
mation. The corresponding gradient descent algorithm is:

uk+1 = uk + τ
(
λ(f − uk)M + ∆uk

)
. (4.33)

19

14 Write a function Deconvolution_TV that

– takes as argument an image f , a kernel G, a time step τ , a number of iterations K
and a parameter λ and returns uK (see Page 7 for image convolution in Matlab)

– realizes the gradient descent algorithm (4.31) for iterations k = 1 · · ·K

15 Write a function Inpainting_TV that

– takes as argument an image f , a mask imageM , a time step τ , a number of iterations
K and parameter λ and returns uK

– realizes the gradient descent algorithm (4.32) f for iterations k = 1 · · ·K

16 Implement the function Inpainting_Tichonov that

– takes as argument an image f , a mask imageM , a time step τ , a number of iterations
K and parameter λ and returns uK

– realizes the gradient descent algorithm (4.33) f for iterations k = 1 · · ·K

17 Write a script that test, for different parameters λ, these functions on images f obtained
as follows

– Deconvolution: convolve the image of your choice with a Kernel G (for instance
G= fspecial('gaussian',[7 7],5);) and add noise. Give the same G to your function
Deconvolution_TV

– Inpainting: Take a large value for K and use the images and masks available here:
Image 1 , Mask 1 , Image 2 , Mask 2 , Image 3 , Mask 3 .

f
u ??

First column: Deconvolution with smoothed Total Variation. Second column: Inpainting with
smoothed total variation. Third column: Inpaitning with Tikhonov. Last column: Inpainting

References
[1] J.-F. Aujol. Some first-order algorithms for total variation based image restoration. Journal

of Mathematical Imaging and Vision, 34(3):307–327, 2009.

[2] A. Chambolle. An algorithm for total variation minimization and applications. Journal of
Mathematical Imaging and Vision, 20(1):89–97, 2004.

20

http://www.math.u-bordeaux.fr/~npapadak/TP/Im1.png
http://www.math.u-bordeaux.fr/~npapadak/TP/Im1_mask.png
http://www.math.u-bordeaux.fr/~npapadak/TP/Im2.png
http://www.math.u-bordeaux.fr/~npapadak/TP/Im2_mask.png
http://www.math.u-bordeaux.fr/~npapadak/TP/Im3.png
http://www.math.u-bordeaux.fr/~npapadak/TP/Im3_mask.png

	. Introduction
	General advices when using MATLAB
	MATLAB and images
	Basic examples

	Denoising with PDEs
	Heat equation
	From continuous to discrete
	Time to work:
	Perona-Malik

	Denoising with variational approaches
	Minimization of convex and differentiable functionals
	Previous PDEs as gradient descent of convex functionals
	Variational model with data fidelity term
	Minimization of J

	Back to work
	Solving Tikhonov regularization with Fourrier Transform

	Extensions to deconvolution and inpainting
	Gradient of JA
	Variational models and minimization

