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1. Introduction
The objective of this practice is to implement algorithms dedicated to the estimation of optical
flow between successive frames of a video I(x, y, t) defined on a constant 2D pixel domain
(x, y) ∈ Ω for different times t = 1 · · ·N . We fill focus on variational methods derived from the
seminal work of Horn and Schunck [2]. Assuming that the pixels intensities do not change over
time, the optical flow problem between two successive images I(x, y, t) and I(x, y, t+ 1) can be
stated as the estimation of a 2D motion field (u, v) so that:

I(x+ u(x, y), y + v(x, y), t+ 1) = I(x, y, t), (1.1)

where u(x, y) and v(x, y) stand for the horizontal and vertical components of the motion field
and are defined over Ω.

This is illustrated in the following figure:

Illustration [3] of motion field w = (u, v) between successive frames.
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Relation (1.1) is non linear in (u, v). Assuming that the motion amplitude is small, a
linearization can be performed to obtain:

I(x+ u, y + v, t+ 1) ≈ I(x, y, t) + ∂xI(x, y, t)u(x, y) + ∂yI(x, y, t)v(x, y) + ∂tI(x, y, t), (1.2)

Considering the partial temporal derivative of the image ∂tI(x, t) = I(x, y, t + 1) − I(x, y, t)
and using relation (1.1), we obtain:

∂tI + ∂xIu+ ∂yIv = ∂tI +∇I · w ≈ 0, (1.3)

where w = (u, v) is the motion field to estimate. This constraint, that can also be derived from
dI
dt

= 0, is known as the optical flow constraint equation. Hence, the data term to minimize for
the optical flow estimation can be written as:

||∂tI +∇I · w||2.

By minimizing this squared L2 distance, we are looking for a motion field w that register the
image I(x, y, t+ 1) with respect to the image I(x, y, t).

This problem is nevertheless ill-posed, since two unknowns u and v of total size 2|Ω| have to
be estimated from only |Ω| constraints. As a consequence, Horn and Schunck proposed to add
some regularity constraints on the motion components in order to close the problem. Assuming
that the underlying motion field is smooth, they consider the Tikhonov regularization:

||∇w||2 = ||∇u||2 + ||∇v||2.

The final convex functional to minimize thus reads:

J(u, v) = λ||∂tI + ∂xIu+ ∂yIv||2 +
(
||∇u||2 + ||∇v||2

)
, (1.4)

where λ > 0 is the regularization parameter.

2. Horn and Schunck model for color images
We now consider the optical flow estimation between color images I in the RGB space, we will
refer to the index c = 1, 2, 3 for each color channel. The problem thus becomes:

J(u, v) = λ

3∑
c=1

||∂tIc + ∂xI
cu+ ∂yI

cv||2 + ||∇u||2 + ||∇v||2, (2.1)

In order to minimize the convex and differentiable functional (2.1), we rely on the simple
gradient descent algorithm, even if more advanced optimization tools could be considered.
Initializing u0 = v0 = 0 and deriving functional (2.1), one obtains, for a time step τ > 0:{

uk+1 = uk + τ(∆uk − λ
∑3

c=1(∂tI
c + ∂xI

cuk + ∂yI
cvk)∂xI

c)

vk+1 = vk + τ(∆vk − λ
∑3

c=1(∂tI
c + ∂xI

cuk + ∂yI
cvk)∂yI

c).
(2.2)
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Implementation

• Load the two images I1 and I2 from frame10.png and frame11.png

• Precompute the gradients ∂xI and ∂yI on the image I1 and the temporal derivative as
∂tI = I2 − I1. Be careful that these derivatives are computed on each color channel c.

• Implement algorithm (2.2) and test it for λ = 1/400 and τ = 0.02 with a large number
of iterations. A test ||uk+1 − uk||/||uk|| + ||vk+1 − vk||/||vk|| < ε = 10−3 or 10−4 can be
considered to check the convergence and stop the iterations.

• Display/Validation of result:
– The function flowToColor.m (that needs computeColor.m ) takes u and v as argu-

ments and returns an image (to display) representing the optical flow with standard
color convention.

– The vector field can be displayed on the image with the function drawMotion.m
that takes as inputs the vector field (u, v) and the image I1.

– Write a function Registration.m that takes as inputs the vector field (u, v) and the
second image I2 and realize the registration: Ĩ2(x, y) = I2(x+u, y+v) using bilinear
interpolation. The obtained image should be closed to I1.

You should obtain the following results:

I1 I2

drawMotion(u, v, I1) flowToColor(u, v) Color convention

Ĩ2 =Registration(u, v, I2) |Ĩ2 − I1|

where most of the registration errors |Ĩ2 − I1| appears in the occluded/desoccluded areas and
for the regions with higher motions.
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3 Multi-resolution algorithm
The previous algorithm assumes that the motion amplitude is low. This is not a good model for
estimating large displacements. In order to circumvent this limitation, multi-resolution (also
known as coarse-to-fine) approaches are commonly used.

The idea is to create a pyramid of down-sampled images I1 and I2. We will denote by I`
an image at level `, such that each spatial dimension of the domain of I`+1 is half the one of I`
and I0 = I, i.e. |Ω`| = |Ω|/4` and Ω0 = Ω.

Hence, at a low resolution (level l = 5 for instance), the number of column and lines of I` are
divided by a factor 2` with respect to the dimension of I0. As a consequence, the assumption
of small motion amplitude is checked at this scale and the previous algorithm can be used to
estimate the motion (u`, v`) between images I`1 and I`2.

The multi-resolution framework then consists in estimating the motion (u`+1, v`+1) at a
pyramid level `+ 1 and using it at the next level, as illustrated in the following figure.

Illustration [5] of the multi-resolution approach.

Hence, we can realize the linearization of the optical flow constraint at the level ` around
the previously estimated motion field (u`+1, v`+1):

I`(x+ u`+1 + u`, y + v`+1 + v`, t+ 1)

≈I`(x+ u`+1, y + v`+1, t) + ∂xI
`(x+ u`+1, y + v`+1, t)u`

+ ∂yI
`(x+ u`+1, y + v`+1, t)v` + ∂tI

`(x+ u`+1, y + u`+1, t),

(3.3)

Denoting as Ĩ`2 the image I`2 registered by the motion field (u`+1, v`+1), the linearization can
be discretized to obtain the following optical flow constraint:

∂tI
` + ∂xI

`u` + ∂yI
`v` = 0,

where
∂tI

` = Ĩ`2 − I`1, ∂xI
` = ∂xĨ

`
2, ∂yI

` = ∂y Ĩ
`
2, (3.4)

The final convex functional to minimize over (u`, v`) at pyramid level ` reads:

λ||∂tI` + ∂xI
`u` + ∂yI

`v`||2 + ||∇(u` + u`+1)||2 + ||∇(v` + v`+1)||2.
Notice that the regularization is done over the whole current motion field (u` +u`+1, v` + v`+1).
It leads to the following iterative gradient descent for each level `:{

u`k+1 = u`k + τ(∆(u`k + u`+1)− λ
∑3

c=1(∂tI
`,c + ∂xI

`,cu`k + ∂yI
`,cv`k)∂xI

`,c)

v`k+1 = v`k + τ(∆(v`k + v`+1)− λ
∑3

c=1(∂tI
`,c + ∂xI

`,cu`k + ∂yI
`,cv`k)∂yI

`,c).
(3.5)
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Gathering all elements, the algorithm at level ` is described in the following diagram. In
the next sections, we will only change the “Optimization” box of this framework.

Implement the multi-resolution algorithm and test it for L = 6 with the same parameters
than before.

• Inputs: I1, I2 and a number of pyramid level L

• Initialize uL = vL = 0 on the domain ΩL

• For ` = L− 1 · · · 0

– Up-sample u`+1 and v`+1 to fit the domain of Ω` = |Ω|/4` (that is twice bigger in
each dimension than the one of Ω`+1). Set u`+1 = 2u`+1 and v`+1 = 2v`+1 (the
motion amplitude is twice bigger on the higher resolution domain Ω`.

– Down-sample I`1 and I`2 to fit the domain |Ω`| = |Ω|/4` from I1 and I2
– Register I`2 with (u`+1, v`+1) to obtain Ĩ`2 using your function Registration.m

– Initialize u`0 = v`0 = 0. Take τ = 0.005.

– Realize the gradient descent algorithm (3.5) with (3.4) to obtain (u`, v`).

– Set (u`, v`) = (u`, v`) + (u`+1, v`+1)

• Output: (u0, v0)

The obtained optical flow is now more accurate as illustrated below.

flowToColor(u, v) |Ĩ2 − I1|
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4. L1 data term
In the regions of occlusion/desocclusions, the constraint I(x + u, y + v, t + 1) = I(x, y, t) can
not be verified so that the norm of the previous data term ||∂tI+∂xIu+∂yIv||2 may “explode”.
In order to be more robust to such outliers, we now consider the following L1 data term:

||∂tI + ∂xIu+ ∂yIv||,
which is still convex in (u, v) but non differentiable, so that gradient descent can not be applied.
Hence, we will consider the Forward-Backward algorithm that is dedicated to the minimization
of the sum of two convex functionals F (x) + G(x), one of them, say G, being differentiable.
This algorithm reads:

xk+1 = ProxτF (xk − τ∇G(xk)), (4.1)

where the proximity operator is defined as:

ProxτF (x̃) = arg min
x

||x− x̃||2

2τ
+ F (x).

While the step x̃ = xk − τ∇G(xk) is an explicit (forward) gradient descent over the function
G, the step ProxτF (x̃) corresponds to an implicit (backward) descent and is commonly used
when the function F is not differentiable.

With our new data term, we can now define the whole optical flow functional to minimize
with F (u, v) = λ||∂tI + ∂xIu+ ∂yIv|| and G(u, v) = ||∇u||2 + ||∇v||2. Notice that for technical
reasons, we will consider from now grayscale images. As before, the gradient of G is:

∇uG(u, v) = −∆u, ∇vG(u, v) = −∆v. (4.2)

Denoting as ρ(ũ, ṽ) = ∂tI + ∂xIũ+ ∂yIṽ, the proximity operator of F can be expressed as [6]:

ProxτF (ũ, ṽ) = (ũ, ṽ) +


τλ∇I if ρ(ũ, ṽ) ≤ −τλ||∇I||2
−τλ∇I if ρ(ũ, ṽ) ≥ τλ||∇I||2
−ρ(ũ, ṽ)∇I/||∇I||2 otherwise,

(4.3)

where ∇I = (∂xI, ∂yI) is a vector field of the same dimension than (u, v) as we deal with
grayscale images. Homework: show relation (4.3). The proximity operator of the color image
data term

∑
c ||∂tIc + ∂Icxu+ ∂yI

cv|| is more complex to compute, see [4] if you are ambitious.
Implement the multi-resolution algorithm for the L1 data term on grayscale images. Do not

forget to convert the color images into grayscale ones, using for instance MATLAB’s function
rgb2gray. With respect to the squared L2 model, the gradient descent algorithm (3.5), should
now be replaced by the Forward-Backward algorithm (4.1) applied to the new problem. This
gives, at pyramid level ` and iteration k + 1:

(ũ, ṽ) = (u`k, v
`
k)− τ∇G(u`k + u`+1, v`k + v`+1)

(u`k+1, v
`
k+1) = ProxτF (ũ, ṽ),

(4.4)

using the above relations (4.2) and (4.3). One can take τ = 1/8 and λ = 1/300.
This new model is more robust to outliers and it also decreases the registration error.

flowToColor(u, v) |Ĩ2 − I1|
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5. Total variation regularization
All the previous models rely on a Tikhonov regularization of the motion field. This leads to
smooth motion transitions. In order to promote piece wise constant motion regions and thus
sharper transitions, we now consider the Total Variation regularization of the motion field (u, v),
as proposed in [6].

The corresponding functional to minimize, still defined for grayscale images, reads:

λ||∂tI + ∂xIu+ ∂yIv||+ ||∇u||+ ||∇v||.
Relying on the dual formulation of the total variation (see Practice 2) and introducing the

dual variables zu = (zux , z
u
y ) and zv = (zvx, z

v
y), minimizing the previous functional is equivalent

to solve the primal-dual saddle point problem:

min
u,v

max
zu,zv

λ||∂tI + ∂xIu+ ∂yIv||+ 〈∇u, zu〉+ 〈∇v, zv〉 − ιB(zu)− ιB(zv),

where ιB is the characteristic function of the `2 ball of radius 1, i.e. ιB(z) = 0 if ||z|| ≤ 1
and +∞ otherwise. To solve this problem, we rely on the primal-dual algorithm of [1] that
reads, at level ` and iteration k + 1:

zuk+1 = ProjB
(
zuk + σ∇(u`k + u`+1)

)
zvk+1 = ProjB

(
zvk + σ∇(v`k + v`+1)

)
(u`k+1, v

`
k+1) = ProxτF (u`k + τdiv(zuk+1), v

`
k + τdiv(zvk+1)),

(5.1)

where ProxτF is still defined in (4.3) and the projection onto the ball B is:

ProjB(z) =

{
z if ||z|| ≤ 1
z/||z|| otherwise.

Implement the multi-resolution algorithm for the L1 data term and Totaal Variation regular-
ization on grayscale images. This corresponds to change the optimization scheme as (5.1). The
time step value can be here taken as σ = 1/

(
2 + max

(
max(||∇u`+1||),max(||∇v`+1||)

))
and

τ = 1/4. With parameter λ = 1/2, the following result, containing sharper motion transitions,
should be obtained.

flowToColor(u, v) |Ĩ2 − I1|

Notice that the flowToColor function normalizes the vectors with respect to the highest
motion vector. This explains the variations of color intensities in the produced images.

If you have time. You can test your algorithms and compare your results with ground truth
motion fields using data available here .
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