
Master 2 Internship - Université de Bordeaux

Semi-discrete Optimal Transport
for Large-Scale problems

When: 5 to 6 months Internship starting between January and April 2020

Where: Institut de Mathématiques de Bordeaux, Talence, France

Salary: ≈540 e/month

Expected skills: Applied mathematics
Image processing and analysis, machine learning, Matlab, python.

Application: Send by email, before December 31th, a CV and a statement of interest to
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Context Optimal transportation [12] is a very active research topic with applications in various fields,
like economics, machine learning, or image processing. Given two probability measures µ, ν on Rd and a
convex cost function c(x, y) on Rd, the Monge’s formulation of optimal transport (OT) consists in solving

inf
T

∫
c(x, T (x))dµ(x), (1)

where the infimum is taken on all measurable maps T : Rd → Rd whose image measure T]µ equals ν.
Kantorovich proposed the convex relaxation

W (µ, ν) = inf
π

∫
c(x, y)dπ(x, y) (2)

where the infimum is taken on all couplings π of (µ, ν). Using convex duality [10], this problem is
equivalent to solving

max
ϕ,ψ

∫
ϕdµ+

∫
ψdν (3)

on all continuous bounded functions ϕ,ψ satisfying ϕ(x) + ψ(y) 6 c(x, y) almost everywhere. One
can even reduce this problem to a single variable ψ since the corresponding optimal ϕ is the so-called
c-transform of ψ [10]

ψc(x) = min
y
c(x, y)− ψ(y).

Objectives The main goal of this internship is to investigate regularity properties of the optimal
c-transform, depending on the regularity of the measures µ, ν.

We will focus primarily on the semi-discrete case of optimal transportation [7] meaning that µ is
absolutely continuous whereas ν is supported on a finite set Y . In this setting, computing the c-transform
is essentially a nearest neighbor search. Besides, this setting leads to a finite-dimensional concave problem
that can be solved with deterministic [7] and stochastic [6, 2] solvers. However, the stochastic gradient
descent proposed in [6] does not scale well when the cardinal of Y is large. In contrast, the stochastic
approach of [11] based on a parameterization with neural networks should scale better, but remains to be
analyzed precisely.

The regularity properties of the optimal dual variables will allow to propose new approximation classes
for ϕ,ψ, and thus design new scalable numerical OT solvers that rely on a principled parameterization of
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the dual variables ϕ,ψ. The developed numerical solutions could be integrated to several applications that
require large-scale optimal transport, for example domain adaptation [3], generative networks [1], texture
synthesis [8], or shape analysis [5]. The project thus consists of the following tasks:

• Analyze the regularity of optimal dual variables ϕ,ψ.

• Quantize the impact of restricting to a sub-class of dual variables.

• Propose a stochastic solver based on a new parameterization of the dual problem.

• Evaluate the performance of this numerical scheme on synthetic examples.

• Compare with other techniques based on entropic regularization [4] and regularization of Brenier
potentials [9].

• Incorporate the proposed numerical solver to address OT problems in machine learning and image
processing.

References
[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. preprint arXiv:1701.07875, 2017.

[2] B. Bercu and J. Bigot. Asymptotic distribution and convergence rates of stochastic algorithms for
entropic optimal transportation between probability measures. preprint arXiv:1812.09150, 2018.

[3] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9):1853–1865, 2015.

[4] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Conference on
Neural Information Processing Systems (NIPS’13), pages 2292–2300, 2013.

[5] J. Feydy, P. Roussillon, A. Trouvé, and P. Gori. Fast and scalable optimal transport for brain
tractograms. In Proceedings of MICCAI, pages 636–644. Springer, 2019.

[6] A. Genevay, M. Cuturi, G. Peyré, and F. Bach. Stochastic optimization for large-scale optimal
transport. In Advances in neural information processing systems, pages 3440–3448, 2016.

[7] J. Kitagawa, Q. Mérigot, and B. Thibert. A Newton algorithm for semi-discrete optimal transport.
Journal of the European Math Society, 2017.

[8] A. Leclaire and J. Rabin. A fast multi-layer approximation to semi-discrete optimal transport. In
Proceedings of SSVM, pages 341–353. Springer, 2019.

[9] F.-P. Paty, A. d’Aspremont, and M. Cuturi. Regularity as regularization: Smooth and strongly convex
brenier potentials in optimal transport. preprint arXiv:1905.10812, 2019.

[10] F. Santambrogio. Optimal transport for applied mathematicians. Progress in Nonlinear Differential
Equations and their applications, 87, 2015.

[11] V. Seguy, B. Bhushan Damodaran, R. Flamary, N. Courty, A. Rolet, and M. Blondel. Large-Scale
Optimal Transport and Mapping Estimation. preprint arXiv:1711.02283, 2017.

[12] C. Villani. Topics in Optimal Transportation. American Math. Society, 2003.

2


