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Master 2 Internship - Université de Bordeaux

Semi-discrete Optimal Transport
for Large-Scale problems

When: 5 to 6 months Internship starting between January and April 2020
Where: Institut de Mathématiques de Bordeaux, Talence, France
Salary: 540 €/month

Expected skills: Applied mathematics
Image processing and analysis, machine learning, Matlab, python.

Application: Send by email, before December 31th, a CV and a statement of interest to
Arthur.Leclaire @math.u-bordeaux.fr and Nicolas.Papadakis @math.u-bordeaux.fr

Context Optimal transportation [12] is a very active research topic with applications in various fields,
like economics, machine learning, or image processing. Given two probability measures 1, 7 on R? and a
convex cost function ¢(z,y) on R%, the Monge’s formulation of optimal transport (OT) consists in solving

inf / oz, T(2))dp(x), (1)

where the infimum is taken on all measurable maps 7' : R¢ — R? whose image measure Ty equals v.
Kantorovich proposed the convex relaxation

W(p.v) = inf / e y)dn(x, ) @)

where the infimum is taken on all couplings 7 of (u,v). Using convex duality [10]], this problem is
equivalent to solving

max/god,u—&-/wdu 3
5

on all continuous bounded functions ¢, 9 satisfying ¢(x) + ¥(y) < ¢(x,y) almost everywhere. One
can even reduce this problem to a single variable v since the corresponding optimal ¢ is the so-called
c-transform of ¢ [[10]]

U (a) = mine(a,y) ~ (o).

Objectives The main goal of this internship is to investigate regularity properties of the optimal
c-transform, depending on the regularity of the measures pu, v.

We will focus primarily on the semi-discrete case of optimal transportation [7] meaning that y is
absolutely continuous whereas v is supported on a finite set Y. In this setting, computing the c-transform
is essentially a nearest neighbor search. Besides, this setting leads to a finite-dimensional concave problem
that can be solved with deterministic [[7]] and stochastic [6} 2] solvers. However, the stochastic gradient
descent proposed in [[6] does not scale well when the cardinal of Y is large. In contrast, the stochastic
approach of [[L1] based on a parameterization with neural networks should scale better, but remains to be
analyzed precisely.

The regularity properties of the optimal dual variables will allow to propose new approximation classes
for ¢, 1, and thus design new scalable numerical OT solvers that rely on a principled parameterization of
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the dual variables ¢, ¥. The developed numerical solutions could be integrated to several applications that
require large-scale optimal transport, for example domain adaptation [3]], generative networks [[1], texture
synthesis [8]], or shape analysis [5]. The project thus consists of the following tasks:

e Analyze the regularity of optimal dual variables ¢, 1.
e Quantize the impact of restricting to a sub-class of dual variables.

e Propose a stochastic solver based on a new parameterization of the dual problem.

Evaluate the performance of this numerical scheme on synthetic examples.

e Compare with other techniques based on entropic regularization [4] and regularization of Brenier
potentials [9].

e Incorporate the proposed numerical solver to address OT problems in machine learning and image
processing.
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