
SOJOURN TIMES, SINGULARITIES OF THE SCATTERING KERNELAND INVERSE PROBLEMSVESSELIN PETKOV AND LUCHEZAR STOYANOVAbstra
t. The paper deals with inverse problems in the s
attering by obsta
les in odd dimensionalEu
lidean spa
es. In general, su
h problems 
on
ern the re
overing of the geometri
 properties ofthe obsta
le from the information related to the s
attering amplitude a(�;!; �), related to the waveequation in the exterior of the obsta
le with Diri
hlet boundary 
ondition. It turns out that allsingularities of the Fourier transform of a(�;!; �), the so 
alled s
attering kernel, are given by thesojourn (travelling) times of s
attering rays in the exterior of the obsta
le. Apart from that thesesojourn times are a naturally observable data. The purpose of this survey is to des
ribe severalresults in obsta
le s
attering obtained in the last twenty years 
on
erning sojourn times of s
atteringrays, and to motivate further study of related inverse s
attering problems.1. Introdu
tionThe s
attering operator S(�) presents a mathemati
al model for the data observed experimen-tally in many bran
hes of physi
s, 
hemistry and mathemati
s. The operator S(�) is related tobehavior as the time t! �1 of the solutions of an unperturbed operator L0 and to its perturbationL. The kernel of S(�) � I, the so 
alled s
attering amplitude a(�; !; �), 
ontains the informationrelated to the perturbation of L0 and this kernel is the leading term of the asymptoti
 of an out-going solution vs(r�; �) of Lvs = 0 as jxj = r ! 1. Obsta
le s
attering problems arise in manyphysi
al phenomena and 
on
ern the perturbation 
aused by a bounded obsta
le K with 
onne
ted
omplement 
. In general the inverse s
attering problems deal with re
overing geometri
 propertiesof K from information related to the s
attering amplitude.S
hi�er's result (see [12℄, [2℄) implies that the obsta
le K is uniquely determined if we know thes
attering amplitude a(�; !; �) for � 2 (�; �) � R+ and all !; � 2 Sn�1: Some more pre
ise results
on
erning uniqueness in this inverse s
attering problem are known under weaker assumptions (see[2℄, [7℄, [11℄, [26℄ for more details and referen
es.) On the other hand, in general in experiments one
annot determine the s
attering amplitude for all (outgoing) dire
tions � 2 Sn�1 or all (in
oming)dire
tions ! 2 Sn�1, while the sojourn (travelling) times of the so 
alled (!; �)-rays in the exteriorof the obsta
le give a physi
ally observable data. This naturally leads to the 
onsideration ofinverse s
attering problems involving su
h rays. In fa
t, it turns out that all singularities of theFourier transform s(t; !; �) of a(�; !; �), the so 
alled s
attering kernel, have the form �T
 , whereT
 are sojourn times of (!; �)-rays 
. Moreover, for (!; �) in a set of full measure in Sn�1 � Sn�1the singularities of s(t; !; �) are pre
isely the numbers of the form �T
 , that is the so 
alledPoisson relation be
omes an equality (see Se
tion 5). This leads to some interesting geometri
alobservations. The purpose of this survey is to des
ribe several results in obsta
le s
attering obtainedin the last twenty years 
on
erning sojourn times of (!; �)-rays, and to motivate further study ofrelated inverse s
attering problems. 1



2 V. PETKOV AND L. STOYANOVThe s
attering amplitude is de�ned in Se
tion 2 below. The 
ase of a 
onvex obsta
le is then
onsidered in details, and the leading term of the asymptoti
 of the s
attering amplitude as �! +1is derived. Se
tion 3 is devoted to the Fourier transform of the s
attering amplitude, the so 
alleds
attering kernel s(t; �; !), t 2 R, �, ! 2 Sn�1. It turns out that the singularities of s(t; �; !) int are very mu
h related to the geometry of the obsta
le K. Namely, these are given by sojourn(travelling) times of s
attering rays in the exterior of the obsta
le in
oming with dire
tion ! andoutgoing with dire
tion �. This is parti
ularly easy to see in the 
ase of a 
onvex obsta
le, where as
attering ray 
an have at most one re
e
tion at the boundary �K of the obsta
le. In the general
ase a typi
al s
attering ray is a mutiply re
e
ting ray with re
e
tions at �K. Moreover there areother, more 
ompli
ated rays, that have to be taken into a

ount when studying the singularitiesof the s
attering kernel; some of these 
ontain gliding segments on �K whi
h are simply geodesi
swith respe
t to the metri
 on �K indu
ed by the Eu
lidean stru
ture. All these are generalizedbi
hara
teristi
s in the sense of Melrose and Sj�ostrand [20℄. Their de�nition is sket
hed in Se
tion3 below, and at the end of that se
tion the leading term of the singularity of s(t; �; !) at t � �T isdes
ribed, where T is the sojourn time of a s
attering ray satisfying some non-degenera
y properties.Se
tion 4 is purely geometri
al. Here we give a simple de�nition of a re
e
ting (!; �)-ray, andshow that for almost all (!; �) 2 Sn�1 � Sn�1, the re
e
ting (!; �)-rays in the exterior of K haveno tangen
ies to �K and any two of them have di�erent sojourn times. These properties, togetherwith non-degenera
y of the di�erential 
ross-se
tions, play an important role in the analysis ofthe singularities of the s
attering kernel. The latter is dealt with in Se
tion 5. The 
entral pointhere is the so 
alled Poisson relation for the s
attering kernel, and the �rst half of Se
tion 5is devoted to the idea of its proof. We then pro
eed to dis
uss the question of how often thisrelation be
omes an equality. One of the problems to do this is to show that (under 
ertain non-degenera
y assumptions about the obsta
le) for almost all (!; �) 2 Sn�1 � Sn�1, the (!; �)-rays inthe exterior of K are re
e
ting rays, i.e. they do not 
ontain gliding segments on the boundary.Combining this with previous results gives that the Poisson relation be
omes an equality for almostall (!; �) 2 Sn�1 � Sn�1.In Se
tion 6 we dis
uss the existen
e of simply re
e
ting non-degenerate s
attering rays withsojourn times tending to in�nity. This leads to some interesting results 
on
erning the behavior ofthe modi�ed resolvent of the Lapla
ian.Finally, in Se
tion 7 the inverse s
attering problem is 
onsidered of re
overing geometri
 infor-mation about the obsta
le from its s
attering length spe
trum, i.e. from the set of sojourn times ofs
attering rays in the exterior of the obsta
le1. Pairs of obsta
les K, L are 
onsidered su
h that for(almost) all (!; �) 2 Sn�1 � Sn�1 the sets of sojourn times of (!; �)-rays in the exteriors of K andL are the same. It then turns out that the generalized geodesi
 
ows in the non-trapping parts ofthe 
otangent bundles of the exteriors of K and L are 
onjugated by a time preserving 
onjuga
ywhi
h is almost everywhere smooth and symple
ti
. Various geometri
 relationships between Kand L are derived.2. S
attering amplitude for stri
tly 
onvex obsta
lesLet K � Rn ; n � 3; n odd, be a bounded domain with C1 boundary �K and 
onne
ted
omplement 
 = Rn nK: Su
h K is 
alled an obsta
le in Rn . Throughout this paper we deal with1A

ording to the Poisson relation, this is equivalent to trying to obtain information about the obsta
le from thesingularities of the s
attering kernel.



SCATTERING PROBLEMS 3the Diri
hlet problem for the Lapla
ian but similar 
onsiderations 
an be applied to other boundaryvalue problems. To introdu
e the s
attering amplitude a(�; �; !); (�; !) 2 Sn�1 � Sn�1, 
onsiderthe outgoing solution vs = vs(x; �) of the problem((� + �2)vs = 0 in Æ
;vs + e�i�hx;!i = 0 on �Ksatisfying the so 
alled (i�) - outgoing Sommerfeld radiation 
ondition. This 
ondition means thatas jxj = r �!1 we havevs(r�; �) = e�i�rr(n�1)=2�a(�; �; !) +O�1r��; x = r� :We 
an interpret vi = e�i�<x;!> as an in
oming plane wave, while vs(x; �) is the outgoing waveobtained after the impa
t of vi on �K: To obtain a formula for the leading term a(�; �; !) we applythe Green formula 
ombined with the outgoing 
ondition and dedu
e the following representation(2.1) vs(x; �) = Z�KhE�(x� y)�vs�� (y; �)� �E��� (x� y)vs(y; �)idSy ;where E�(x) is the outgoing Green fun
tionE�(x) = (i�)(n�3)=22(2�)(n�1)=2 e�i�rr(n�1)=2 +O� 1r(n+1)=2�and �(x) is the unit normal to x 2 �K pointing into 
: Next, we multiply (2.1) by ei�rr(n�1)=2,put x = r�, and taking the limit r !1, we get(2.2) a(�; �; !) = (i�)(n�3)=22(2�)(n�1)=2 Z�K�i� < �(x); � > ei�<x;��!> + ei�<x;�>�vs�� (x; �)�dSx ;where < �; � > denotes the s
alar produ
t in Rn :Following the physi
al literature, a(�; �; !) is 
alled the s
attering amplitude. The analysis ofthe leading term of its asymptoti
 as �! +1 has a long tradition in mathemati
al physi
s. Thesimplest 
ase to deal with is when � 6= ! and K is a stri
tly 
onvex obsta
le. In this 
ase theintegral I(�) = (i�)(n�1)=22(2�)(n�1)=2 Z�K < �(x); � > ei�<x;��!>dSxis rather easy to study. The phase fun
tion < x; � � ! > jx2�K has two 
riti
al points x� with< x+; � � ! >= maxy2�K < y; � � ! >;< x�; � � ! >= miny2�K < y; � � ! >;�(x�) = � � � !j� � !j :Here x+ denotes the point in the illuminated region (see Figure 1)�K+(!) = fy 2 �K :< �(y); ! >< 0grelated to !, while x� lies in the shadow region�K�(!) = fy 2 �K :< �(y); ! >> 0g;



4 V. PETKOV AND L. STOYANOVand we have used the 
onvention that the obsta
le lies in the half-spa
efx 2 Rn :< x; � � ! >< 0g:
K

ω θ

+x

(xν +)Figure 1.Applying a stationary phase argument for the integral over �K+(!), one gets(2.3) (i�)(n�1)=22(2�)(n�1)=2 Z�K+(!) < �(x); � > ei�<x;��!>dSx= 12ei�<x+;��!>K(x+)�1=2 < �(x+); � >j� � !j(n�1)=2 +O(j�j�1) ;K(y) > 0 being the Gauss 
urvature at y 2 �K: We get a similar expression for the integral over�K�(!):The analysis of the term involving �vs�� is more 
ompli
ated. In mathemati
al physi
s manye�orts have been 
on
erned with 
onstru
tion of an approximate outgoing solution w0(x; �) of theproblem ((� + �2)w0 = f(x; �) in Æ
;w0 + e�i�hx;!i = g(x; �) on �Kwith f(x; �) 2 C1(
); g(x; �) 2 C1(�K): This leads to 
onsiderable diÆ
ulties when one has todes
ribe the form of the solution w0 in a domain 
lose to the grazing submanifoldG(!) = fy 2 �K :< �(y); ! >= 0g:The progress of the mi
rolo
al analysis in the seventies led to the investigation of the above prob-lem without a pre
ise information for w0 in a neighborhood of G(!). This was done by Majda[14℄ exploiting the works of H�ormander [9℄, Taylor [30℄ and Melrose [17℄ for the propagation of the



SCATTERING PROBLEMS 5singularities. Below we present the idea of the approa
h of Majda and refer to [14℄ for more details.Consider the boundary problem((�2t ��)u0 = F (t; x) in R � Æ
;u0 + Æ(t� < x;! >) = G(t; x) on R � �K;where F (t; x) 2 C1(R � 
) vanishes for t � �t0, G(t; x) 2 C10 (R � �K) and t0 is 
hosen so thatsuppt Æ�t� < x;! > jx2�K� � ft : jtj � t0g :Taking a partition of unity f j(t; x)gMj=1 on [�t0; t0℄� �K, we pass to the analysis of the solutionsof the lo
alized problems(2.4) ((�2t ��)uj = Fj(t; x) in R � Æ
;uj +  jÆ(t� < x;! >) = Gj(t; x) on R � �Kwith Fj(t; x) 2 C1(R � 
); Gj(t; x) 2 C10 (R � �K) and Fj = 0 for t � t0: Then using the de
ayof lo
al energy for stri
tly 
onvex obsta
les we get�vs�� �����K = MXj=1 Z e�i�t �uj(t; x)�� ����R��K dt+O(j�j�N ); 8N :The results on the propagation of the wave front set WF (uj) of the solutions of (2.4) (see [30℄,[17℄) say that(2.5) WF� �uj�� ����R��K� �WF� jÆ(t� < x;! >)jR��K�:In the 
ase when supp j\�R�G(!)� = ; the above relation follows from the pseudo-lo
al propertyof pseudo-di�erential operators [10℄ sin
e we have, modulo smooth terms, the representation(2.6) �uj�� ����R��K = �Bjh jÆ(t� < x;! >)jR��Ki ;Bj being a �rst order pseudo-di�erential operator. In the 
ase supp  j \�R�G(!)� 6= ; we applythe results of Taylor [30℄ and Melrose [17℄ for di�ra
tion problems. Thus we are going to study theexpression(2.7) Xj Z Z�K e�i�(t�<x;�>) �uj�� dt dSx ;where the integral is interpreted in the sense of distributions. From the de�nition of the wave frontit is easy to see that the 
ondition(t; y0; dt�; d0y�) \WF (u) = ;; y0 2 D � Rn�1implies ZR ZD e�i��(y0;t)u(y0; t) dt dy0 = O(j�j�N ); 8N :



6 V. PETKOV AND L. STOYANOVIn order to exploit this property, assume that in lo
al 
oordinates Uj \ �K is given byyn = g(y0); y0 = (y1; : : : ; yn�1) 2 D � Rn�1 :Then (2.5) yields WF� �uj�� ����R��K� � f(t; y; �; �) 2 T �(R � �K) : t =< y; ! >;y 2 supp  j(y;< y; ! >); (�; �) = �(�!0 �rg(y0)!n; 1)g :Clearly, for the phase fun
tion � = t� < y; � > jy2Uj\�K we have dy0;t� = (��0 � rg(y0)�n; 1)whi
h 
oin
ides with the dire
tions of the wave front of �uj�� ���R��K only in the 
ase�!0 �rg(y0)!n = ��0 �rg(y0)�n :Thus we dedu
e immediately � � !j� � !j = ��(y0; g(y0)) :The assumption � 6= ! implies that for y 2 G(!) the last 
ondition is impossible. Moreover, thesame argument shows that supp  j(y;< y; ! >) must be in
luded in small neighborhood U� of x�with  j(y;< y; ! >) = 1 in a neighborhood of x�:Sin
e x� lies in the shadow region, we have < �(x�); ! >> 0 and the solution of the waveequation whi
h is smooth for t < 0 in a small neighborhood of (< x�; ! >; x�) has the formu� = �Æ(t� < x;! >): Thus we obtain�vs�� ����U�\�K = i� < �; ! > e�i�<x;!>jU�\�K ;and repla
ing �vs�� jU�\�K in the expression (2.7), we see that the shadow region gives no 
ontributionto a(�; �; !) be
ause < �(x�); � + ! >= 0 :Passing to the illuminated region, denote by  + and B+ the 
ut-o� fun
tion and the pseudo-di�erential operator related to U+. Then for the formally adjoint operators B�+ we obtain�Z ZU+ B�+�e�i�(t�<y0 ;�0>�g(y0)�n)� +Æ�t� < y0; !0 > �g(y0)!n��1 + jrg(y0)j2�1=2dtdy0= ��ZU+ ei�(<y0 ;�0�!0>+g(y0)(�n�!n))b+(y0; �)dy0 +O(1)with b+(y0; �) = �i�+�y0;�1; �0 +rg(y0)�n��1 + jrg(y0)j2�1=2;i�+ being the prin
ipal symbol of B+: Thus our task is redu
ed to the study of an integral havingthe same form as I(�):Without loss of the generality we 
an assume that rg(x0+) = 0: From the 
onstru
tion of theasymptoti
 solution in a neighborhood of x+ we obtain�+(x0+; �1; �0) =< �(x+); � >> 0



SCATTERING PROBLEMS 7and we 
on
lude that12� i�2��(n�1)=2 ZU+ ei�(<y0 ;�0�!0>+g(y0)(�n�!n))b+(y0; �)dy0= 12ei�<x+;��!>K(x+)�1=2 < �(x+); � >j� � !j(n�1)=2 +O(j�j�1) :Taking the sum of all 
ontributions, one getsa(�; �; !) = ei�<x+;��!>K(x+)�1=2 < �(x+); � > j� � !j(1�n)=2 +O(j�j�1) :Finally, in the illuminated region we have< �(x+); � >j� � !j = < � � !; � >j� � !j2 = 12and(2.8) a(�; �; !) = 12ei�<x+;��!>K(x+)�1=2j� � !j(3�n)=2 +O(j�j�1) :Thus from the limit ja(!; �)j = lim�!1 ja(�; !; �)jwe 
an determine the Gauss 
urvature K(x+) at x+. When (!; �) runs over a setV 2 Sn�1 � Sn�1 n f(!; !) : ! 2 Sn�1g ;we 
an re
over the Gauss 
urvature K(y) at every point y 2 �K, provided the mapV 3 (!; �) �! � � !j� � !j 2 Sn�1is onto. On the other hand, the knowledge of the Gauss 
urvature at all points of �K determinesuniquely �K (see [14℄ for more details).The 
ase ! = � is more 
ompli
ated sin
e the singularities asso
iated to di�ra
ted rays mustbe taken into a

ount. We refer to [19℄ and [31℄ for results in this dire
tion.3. Singularities of the s
attering kernelThroughout this se
tion we assume that � 6= !: To study the general 
ase of non-
onvexobsta
les it is more 
onvenient to 
onsider the s
attering kernel s(t; �; !) de�ned as the Fouriertransform of the s
attering amplitude:s(t; �; !) = F�!t�� �2�i�(n�1)=2a(�; �; !)� ;where �F�!t'�(t) = (2�)�1 R eit�'(�)d� for fun
tions ' 2 S(R): Let V (t; x;!) be the solution ofthe problem 8><>:(�2t ��)V = 0 in R � Æ
;V + Æ(t� hx; !i) = 0 on R � �K;V jt<�t0 = 0:



8 V. PETKOV AND L. STOYANOVThen we have s(�; �; !) = (�1)(n+1)=22�n�1�n Z�K �n�2t ��V (hx; �i � �; x;!)dSx;where the integral is interpreted in the sense of distributions. Our aim will be to examine thesingularities of s(t; �; !) with respe
t to t:First we de�ne the so 
alled re
e
ting (!; �)-rays. Given two dire
tions (�; !) 2 Sn�1 � Sn�1,
onsider a 
urve 
 2 
 having the form
 = [mi=0li; m � 1;where li = [xi; xi+1℄ are �nite segments for i = 1; :::;m�1; xi 2 �K, and l0 (resp. lm) is the in�nitesegment starting at x1 (resp. at xm) and having dire
tion �! (resp. �). The 
urve 
 is 
alled are
e
ting (!; �)-ray in 
 if for i = 0; 1; :::;m�1 the segments li and li+1 satisfy the law of re
e
tionat xi+1 with respe
t to �K. The points x1; :::; xm are 
alled re
e
tion points of 
 and this ray is
alled ordinary re
e
ting (or simply re
e
ting) if 
 has no segments tangent to �K:

�K
U0

H��
Z���(u) �u
u!Z!

x1 xmxm(u)x1(u)

Figure 2Next, we de�ne two important notions related to (!; �)-rays (also 
alled s
attering rays). Fixan arbitrary open ball U0 with radius a > 0 
ontaining K: For � 2 Sn�1 introdu
e the hyperplaneZ� orthogonal to � and su
h that � is pointing into the interior of the open half spa
e H� withboundary Z� 
ontaining U0. Let �� : Rn �! Z� be the orthogonal proje
tion. For a re
e
ting



SCATTERING PROBLEMS 9(!; �)-ray 
 in 
 with su

essive re
e
ting points x1; :::; xm the sojourn time T
 of 
 is de�ned byT
 = k�!(x1)� x1k+ m�1Xi=1 kxi � xi+1k+ kxm � ���(xm)k � 2a :Obviously, T
 + 2a 
oin
ides with the length of this part of 
 whi
h lies in H! \H�� (see Figure2). In fa
t, the sojourn time T
 does not depend on the 
hoi
e of the ball U0 sin
e it follows easilythat k�!(x1)� x1k = a+ hx1; !i; kxm � ���(xm)k = a� hxm; �i ;therefore T
 = hx1; !i+ m�1Xi=1 kxi � xi+1k � hxm; �i :Given an ordinary re
e
ting (!; �)-ray 
 set u
 = �!(x1): There exists a small neighborhoodW
 of u
 in Z! su
h that for every u 2 W
 there is an unique dire
tion �(u) 2 Sn�1 and pointsx1(u); :::; xm(u) whi
h are the su

essive re
e
tion points of a re
e
ting (u; �(u))-ray in 
 with�!(x1(u)) = u: This de�nes a smooth mapJ
 :W
 3 u �! �(u) 2 Sn�1and dJ
(u
) is 
alled a di�erential 
ross se
tion related to 
. We say that 
 is non-degenerate ifdet dJ
(u
) 6= 0 :The notion of sojourn time as well as that of di�erential 
ross se
tion are well known in the physi
alliterature. The de�nitions given above are due to Guillemin [5℄.For stri
tly 
onvex obsta
les all (non-trivial) re
e
ting rays have only one re
e
tion point x1and the 
orresponding sojourn time is equal to < x1; ! � � > : Moreover, the stationary phaseargument of the previous se
tion implies that a(�; !; �) has a 
omplete asymptoti
 expansiona(�; !; �) = eihx+; !��i NXj=0 
j��j +O(j�j�N�1); 8N 2 N ;whi
h gives sing supp s(t; �; !) = f�T+g ;T+ = hx+; ! � �i being the sojourn time of the (!; �)-ray 
+ re
e
ting at x+: A simple geometri
argument implies that jdet dJ
+(u
+)j = 4j� � !j(n�3)K(x+)and for t 
lose to �T+ we have(3.1) s(t; �; !) = ��12� �(n�1)=2���dJ
+(u
+)����1=2Æ(n�1)=2(t+ T+) + lower order singularities:For stri
tly 
onvex obsta
les T+ is an isolated singularity of s(t; �; !) related to an ordinaryre
e
ting ray. This situation 
an be generalized for generi
 obsta
les if we 
onsider the ba
ks
attering dire
tion � = �!: Without loss of the generality we may assume that K lies in the halfspa
e fx 2 Rn : hx; !i > 0g: Then the fun
tion�K 3 x �! hx; !i 2 R+



10 V. PETKOV AND L. STOYANOVhas a positive minimum �(!) and there exists at least one re
e
ting (!;�!)-ray 
 with sojourntime T
 = 2�(!): Of 
ourse we 
ould have many (!;�!)-rays with the same minimal sojourntime. A geometri
 argument based on Sard's theorem shows that there exists a subset B � Sn�1with full measure su
h that for every ! 2 B we have only a �nite number of re
e
ting (!; �)-rays with sojourn time 2�(!). Moreover, ea
h of these rays 
1; : : : ; 
M , has only one re
e
tionpoint xk 2 �K; k = 1; : : : ;M , and �K has a non-vanishing Gauss 
urvature K(xk) 6= 0 for everyk = 1; : : : ;M . Thus, repeating the argument from Se
tion 2, it follows that for ! 2 B the sojourntime T = �2�(!) is an isolated singularity of the s
attering kernel s(t;�!; !), and for su
h ! wehave max sing [suppt s(t;�!; !)℄ = �2�(!) ;and for t 
lose to �2�(!),s(t;�!; !) = 21�n�� 1��(n�1)=2 MXk=1 jK(xk)j�1=2Æ(n�1)=2(t+ 2�(!)) + lower order singularities :This result is due to Majda [15℄. From the maximal singularity of the ba
k s
attering kernel oneobtains that the 
onvex hull of the obsta
le is given by
onvex hullK =\! fx : hx; !i � �(!)g :Thus one 
an re
over the geometry of a 
onvex obsta
le.It is mu
h more 
ompli
ated to get similar results in the 
ase of non-
onvex obsta
les. Now theinformation obtained by means of rays having only one re
e
tion is no longer suÆ
ient. One needs to
onsider multiple re
e
ting (!; �)-rays leading to isolated singularities of s(t; �; !): Roughly speak-ing, the singularities of the s
attering kernel are amongst the sojourn times of (!; �)-rays, howevernow one has to 
onsider not only simply re
e
ting (!; �)-rays but all generalized geodesi
s in
omingwith dire
tion ! and outgoing with dire
tion � (see Chapter 9 in [22℄ and [18℄) { these are simply
alled (!; �)-rays. In general, there exist (!; �)-rays with grazing or gliding segments (see Figure 3).The pre
ise de�nition of an (!; �)-ray is based on the notion of a generalized bi
hara
teristi
 ofthe operator � = �2t ��x given as traje
tories of the generalized Hamilton 
ow Ft in 
 generatedby the symbol Pni=1 �2i � �2 of � (see [20℄ for a pre
ise de�nition). In general, Ft is not smoothand in some 
ases there may exist two di�erent integral 
urves issued from the same point in thephase spa
e (see [30℄ for an example). To avoid this situation we assume that the following generi

ondition is satis�ed.(G) If for (x; �) 2 T �(�K) the normal 
urvature of �K vanishes of in�nite order in dire
-tion �, then �K is 
onvex at x in dire
tion �:
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Figure 3.We will now sket
h the de�nition of a generalized bi
hara
teristi
s of �: Let p(x; �) be therestri
tion of the prin
ipal symbol of � to the level surfa
e � = 1 (this is the 
ase of motionwith unit speed along geodesi
s). Noti
e that in this 
ase the so 
alled zero bi
hara
teristi
 set� = p�1(0) 
oin
ides with the 
osphere bundle S�(
) of 
. Given a point x 2 �K, we 
hoose lo
al
oordinates x = (x1; : : : ; xn); � = (�1; : : : ; �n)in T �(Rn) so that lo
ally �K is given by x1 = 0 and 
 by x1 � 0: The 
oordinates (x; �) 
an be
hosen so that, up to a non-zero smooth fa
tor, p(x; �) has the formp(x; �) = �21 � r(x; �0)with x0 = (x2; : : : ; xn); �0 = (�2; : : : ; �n) and r(x; �0) homogeneous of order 2 in �0. Introdu
e thesets �0 = f(x; �) 2 T �(Rn) n f0g : x1 > 0g ;H = f(x; �) 2 � : x1 = 0; r(0; x0; �0) > 0g ;G = f(x; �) 2 � : x1 = 0; r(0; x0; �0) = 0g :The sets H and G are 
alled hyperboli
 and glan
ing set, respe
tively. Next 
onsider the symbolsr0(x0; �0) = r(0; x0; �0); r1(x0; �0) = �r�x1 (0; x0; �0) ;and de�ne the di�ra
tive and gliding sets byGd = f(x; �) 2 G : r1(x0; �0) > 0g ;Gg = f(x; �) 2 G : r1(x0; �0) < 0g ;respe
tively. The generalized bi
hara
teristi
s are related to the following Hamilton ve
tor �eldsHp = nXj=1� �p��j : ��xj � �p�xj : ���j � ;



12 V. PETKOV AND L. STOYANOVHr0 = nXj=2��r0��j : ��xj � �r0�xj : ���j � :We have d�p(x; �) 6= 0 on S�(
) and d�0r0(x0; �0) 6= 0 on G. Moreover, the above de�nitions are in-dependent on the 
hoi
e of the lo
al 
oordinates. Using the above lo
al 
oordinates the generalizedbi
hare
teristi
s of � are de�ned as follows.Let I � R be an open interval. A 
urve 
 : I �! S�(
) is 
alled a generalized bi
hara
teristi
of � if there exists a dis
rete subset B � I su
h that the following 
onditions hold:(i) If 
(t0) 2 �0 [Gd for some t0 2 I n B, then 
 is di�erentiable at t0 andddt
(t0) = Hp(
(t0)):(ii) If 
(t0) 2 G nGd for some t0 2 I nB, then
(t) = (x1(t); x0(t); �1(t); �0(t))is di�erentiable at t0 anddx1dt (t0) = d�1dt (t0) = 0; ddt (x0(t); �0(t))jt=t0 = Hr0(
(t0)) :(iii) If t0 2 B, then 
(t) 2 �0 for all t 6= t0; t 2 I with jt� t0j suÆ
iently small. Moreover, inthis 
ase for ��1 (x0; �0) = �pr0(x0; �0) we havelimt!t0 ;�(t�t0)>0 
(t) = (0; x0(t); ��1 (x0(t0); �0(t0)) 2 H :Noti
e that the fun
tions x(t); �0(t); j�1(t)j are 
ontinuous on I, while the fun
tion �1(t) has ajump dis
ontinuity at any point t 2 B: Finally, under the 
ondition (G) a generalized bi
hara
teris-ti
 
 : R �! S�(
) of � is uniquely extendible in the sense that for ea
h t 2 R the only generalizedbi
hara
teristi
 (up to the 
hange of parameter t) passing through 
(t) is 
 ([20℄; see also vol. IIIof [10℄).More generally, working with the restri
tion of the prin
ipal symbol of � to a level surfa
e� = �0 6= 0, one de�nes generalized bi
hara
etristi
s on the set _T �(
) of all (x; �) 2 T �(
) su
hthat � 6= 0. Given � = (x; �) 2 _T �(
), there exists a unique generalized bi
hara
teristi
 (x(t); �(t)) 2_T �(
) su
h that x(0) = x and �(0) = �. Set Ft(x; �) = (x(t); �(t)) for all t 2 R. This de�nes a
ow Ft : _T �(
) �! _T �(
) ([20℄) whi
h is sometimes 
alled the generalized geodesi
 
ow on _T �(
).Obviously, it leaves the 
osphere bundle S�(
) invariant. At points of transversal re
e
tion at_T ��K(
) the 
ow Ft is dis
ontinuous. To make it 
ontinuous, 
onsider the quotient spa
e _T �b (
) =_T �(
)= � of _T �(
) with respe
t to the following equivalen
e relation: � � � if and only if � = �or �; � 2 T ��K(
) and either limt%0 Ft(�) = � or limt&0Ft(�) = �. Let S�b (
) be the image ofS�(
) in _T �b (
). Melrose and Sj�ostrand ([20℄) proved that the natural proje
tion of Ft on _T �b (
) is
ontinuous.After these de�nitions a 
urve 
 = fx(t) 2 
 : t 2 Rg is 
alled an (!; �)-ray if there exist realnumbers t1 < t2 so that ~
(t) = (x(t); �(t)) 2 S�(
)



SCATTERING PROBLEMS 13is a generalized bi
hara
teristi
 of � and�(t) = ! for t � t1; �(t) = � for t � t2;provided that the time t in
reases when we move along ~
: Denote by L!;�(
) the set of all (!; �)-rays in 
: The sojourn time TÆ of Æ 2 L!;�(
) is de�ned as the length of the part of Æ lying inH! \H��:Turning to the problem of the behavior of s(t; �; !) near singularities, assume that 
 is a �xednon-degenerate ordinary re
e
ting (!; �)-ray su
h that(3.2) T
 6= TÆ for every Æ 2 L!;�(
) n f
g:By using the 
ontinuity of the generalized Hamilton 
ow, it is easy to show that(�T
 � �;�T
 + �) \ sing supp s(t; �; !) = f�T
gfor � > 0 suÆ
iently small. The singularity of s(t; �; !) at t = �T
 
an be investigated using aglobal 
onstru
tion of an asymptoti
 solution as a Fourier integral operator ([6℄, [21℄, Chapter 9 in[22℄).Theorem 1. ([21℄) Under the assumption (3.2) we have(3.3) �T
 2 sing supp s(t; �; !)and for t 
lose to �T
 the s
attering kernel has the form(3.4) s(t; �; !) = � 12�i�(n�1)=2(�1)m
�1 exp�i�2�
�����det dJ
(u
) < �(q1); ! >< �(qm); � > ����1=2Æ(n�1)=2(t+ T
) + lower order singularities:Here m
 is the number of re
e
tions of 
, q1 (resp. qm) is the �rst (resp. the last) re
e
tion pointof 
 and �
 2 Z.Noti
e that for stri
tly 
onvex obsta
les we have �
 = �n�12 ; q1 = qm and � � ! is parallel to�(q1): 4. Properties of refle
ting (!; �)- raysTo apply the result of the previous se
tion we need the 
ondition (3.2) and it is desirable toprove that there exists a subset S � Sn�1 � Sn�1 with zero Lebesgue measure su
h that for alldire
tions (!; �) 2 Sn�1 � Sn�1 n S the 
orresponding (!; �) - rays satisfy (3.2). Here one has todeal with all (generalized) (!; �)-rays and this makes the problem rather diÆ
ult. We start with aresult 
on
erning the ordinary re
e
ting (!; �)-rays only.Theorem 2. ([23℄) For every ! 2 Sn�1 there exists a set S(!) � Sn�1 the 
omplement of whi
h isa 
ountable union of 
ompa
t subsets of Sn�1 of measure zero su
h that if � 2 S(!), then any twodi�erent ordinary re
e
ting (!; �)-rays in 
 have distin
t sojourn times.



14 V. PETKOV AND L. STOYANOVIn what follows we sket
h the proof of the above theorem.Let U0 be an open ball with 
enter 0 and radius a 
ontaining K and let Z = Z! be thehyperplane introdu
ed in Se
tion 3. Given an integer k � 1, denote by Uk the set of those u 2 Zfor whi
h the traje
tory 
(u) of the generalized Hamiltonian 
ow starting in u with dire
tion ! isan ordinary re
e
ting ray with exa
tly k re
e
tion points. Let Jk(u) 2 Sn�1 be the dire
tion of
(u) after the last re
e
tion. Obviously, Uk is open in Z and the mapJk : Uk 3 z �! Jk(u) 2 Sn�1is smooth.Now let us �x two arbitrary integers k � 1; s � 1: For u 2 Uk denote by f(u) the sojourn timeof the s
attering ray determined by 
(u). In the same way denote by g(v) the sojourn time of thes
attering ray with s re
e
tions determined by v 2 Vs: The fun
tions f : Uk �! R; g : Vs �! Rare smooth.For u 2 Uk denote by x1(u); : : : ; xk(u) the su

essive re
e
tion points of 
(u). The 
orrespond-ing maps xi : Uk �! �K are smooth and for every y 2 �K we denote by N(y) the unit normal to�K pointing into 
: Thus for u 2 Uk we obtainJk(u) = xk(u)� xk�1(u)kxk(u)� xk�1(u)k � 2D xk(u)� xk�1(u)kxk(u)� xk�1(u)k ; N(xk(u))EN(xk(u)) ;and f(u) = k�1Xi=0 kxi+1(u)� xi(u)k+ t� 2a ;where x0(u) (resp. xk+1(u)) denotes the orthogonal proje
tion of x1(u) (resp. xk(u)) on Z (resp.Z��)), � = Jk(u) and t = kxk(u)� xk+1(u)k: We obtain easily t = a� h�; xki, sof(u) = k�1Xi=0 kxi+1(u)� xi(u)k � hxk(u); Jk(u)i � a:For v 2 Vs the su

essive re
e
tion points of 
(v) will be denoted by y1(v); : : : ; ys(v). Next we sety0(v) = v and we de�ne ys+1(v) in the same way as xk+1(u): Now denote by W (k; s) the set ofthose (u; v) 2 Uk � Vs for whi
h Jk(u) = Js(v); f(u) = g(v)and rank dJk(u) = rank dJs(v) = n� 1:Lemma 1. W (k; s) is a smooth (n� 2)-dimensional submanifold of Uk � Us.Proof of Lemma 1. Consider a point w0 = (u0; v0) 2W (k; s): Sin
e rank dJk(u0) = rank dJs(v0) =n� 1; there exists a neighborhood U of w0 in Uk � Vs su
h that for every (u; v) 2 U we haverank dJk(u) = rank dJs(v) = n� 1:De�ne the map L : U �! Rn byL(u; v) = ��(u; v); ��(j)(u; v)�1�j�n�1�with �(u; v) = f(u)� g(v); �(u; v) = Jk(u)� Js(v):



SCATTERING PROBLEMS 15Clearly, W (k; s) \ U � L�1(0) and to prove that W (k; s) is a smooth (n � 2)-dimensionalsubmanifold of Uk � Vs it is suÆ
ient to show that L is a submersion at any point w0 of L�1(0):For this purpose we assume without loss of the generality that �n 6= 0: Suppose thatn�1Xj=1Aj grad �(j)(w0) +C grad �(w0) = 0with some 
onstants Aj ; C: Cal
ulating the derivatives involved above and using the geometri
almeaning of f , g, Jk and Js, one derives A1 = : : : An�1 = C = 0. Thus L is a submersion at w0: Werefer to [23℄ for more details.Proof of Theorem 2: Consider the map ' : Uk � Vs �! Sn�1 given by '(u; v) = Jk(u): Thismap is smooth and dim W (k; s) = n � 2 shows that '(W (k; s)) is a 
ountable union of 
ompa
tsubsets of Sn�1 of measure zero. ClearlyFk = fu 2 Uk : rank dJk(u) � n� 2gis a 
ountable union of 
ompa
t subsets. By Sard's theorem, Jk(Fk) has measure 0 in Sn�1 for allk, so F = Sk Jk(Fk) also has measure zero in Sn�1. Hen
e the subsetS(!) = Sn�1 n �F [[k [s Jk(W (k; s))� ;of Sn�1 has the desired properties.Setting S = f(!; �) 2 Sn�1 � Sn�1 : � 2 S(!)g; we see that for (!; �) 2 S any two di�erentordinary re
e
ting rays in 
 have distin
t sojourn times and the 
omplement of S in Sn�1 � Sn�1has measure 0.To deal with re
e
ting rays with tangent segments, we introdu
e a more general type of tra-je
tories. A 
urve 
 in Rn is 
alled an (!; �)-traje
tory for 
 if it has the form 
 = Ssi=0 li; whereli = [xi; xi+1℄; i = 1; : : : ; s � 1; xi 2 �K for all i = 1; : : : ; s; while l0 (resp. ls) is the in�nite raystarting at x1 (resp. xs) with dire
tion �! (resp. �) and for every i = 0; 1; : : : ; s� 1; li and li+1satisfy the law of re
e
tion at xi with respe
t to �K: It is 
lear that every re
e
ting (!; �)-ray isan (!; �)-traje
tory, but the 
onverse is not true in general sin
e some (!; �)-traje
tory may inter-se
t transversally �K: On the other hand, every (!; �)-re
e
ting ray with tangent segment is an(!; �)-traje
tory. We have the following.Theorem 3. ([23℄) There exists T � Sn�1 � Sn�1 the 
omplement of whi
h is a 
ountable unionof 
ompa
t subsets of measure zero in Sn�1 � Sn�1 su
h that for (!; �) 2 T all (!; �)-traje
toriesfor 
 are ordinary.The proof of the above result follows the idea of the proof of Theorem 2. For simpli
ity set�K = X: Fix two integers k and s so that s � 1; 0 � k � s: Let M(s; k) be the set of those� = (!;x; y; �) 2Ms = Sn�1 �X(s) �X � Sn�1with x = (x1; : : : ; xs) su
h that there exists an (!; �)-traje
tory for X with su

essive transversalre
e
tion points x1; : : : ; xs, the segment [xk; xk+1℄ of whi
h is tangent to X at y 2 (xk; xk+1): HereX(s) = f(x1; : : : ; xs) 2 Xs : xi 6= xj; i 6= jgand x0 (resp. xs+1) is the orthogonal proje
tion of x1 on Z! (resp. of xs on Z��).



16 V. PETKOV AND L. STOYANOVThe main step in the proof is to show that M(s; k) is a smooth submanifold ofMs of dimension2n� 3: This follows from a spe
ially adapted parametrization of M(s; k); see [23℄ for details. Usingthis one obtains Theorem 3 easily. Consider the proje
tion�s :Ms = Sn�1 �X(s) �X � Sn�1 �! Sn�1 � Sn�1given by �s(!;x; y; �) = (!; �);and introdu
e the open subsets of MsUr(s; k) = f(!;x; y; �) 2Ms : x(r)k 6= x(r)k+1g; r = 1; : : : ; n:ThenMr(s; k) =M(s; k)\Ur(s; k) is a smooth submanifold ofMs of dimension 2n�3 < dim(Sn�1�Sn�1): Sin
e �s is smooth, the set Lr(s; k) = �s�Mr(s; k)� � Sn�1 � Sn�1 has measure zero.Consequently, for the 
overing Mr(s; k) = S1j=1Kj with Kj 
ompa
t, one gets thatLr(s; k) = 1[j=1�s(Kj)is a 
ountable union of 
ompa
t subsets of Sn�1 � Sn�1 of measure zero. SettingT = Sn�1 � Sn�1 n [0�k�s 1[r=1Lr(s; k) ;
ompletes the proof of Theorem 3.Finally, we �nd a subset U � Sn�1 � Sn�1 su
h that for (!; �) 2 T \ U all re
e
ting (!; �)-rays are ordinary and non-degenerate. So there exists a subset A = T \ U \ S of Sn�1 � Sn�1of full measure so that for every (!; �) 2 A the 
orresponding (!; �)-re
e
ting rays are ordinary,non-degenerate and with distin
t sojourn times.The study of the generalized (!; �)-rays leads to many diÆ
ulties. However it is quite naturalto expe
t that for almost all (!; �) in Sn�1 � Sn�1 there are no generalized (!; �)-rays di�erentfrom re
e
ting ones. This will be dis
uss in details in the next se
tion.5. Poisson relation for the s
attering kernelLet K be an obsta
le in Rn ; n � 3; n odd, with C1 boundary �K so thatK � fx 2 Rn : jxj � �0gand let 
 = Rn nK. In what follows we assume that K satis�es the 
ondition (G) from Se
tion 3.Let � : T �(R � 
) �! 
 be the natural proje
tion.The following result of [21℄, [1℄ (
f. also Chapter 8 in [22℄ and [18℄) shows that for ! 6= � allsingularities in t of s(t; �; !) are given by (negative) sojourn times.Theorem 4. ([21℄, [1℄) For ! 6= � we have(5.1) sing supp s(t; �; !) � f�T
 : 
 2 L!;�(
)g:



SCATTERING PROBLEMS 17In analogy with the well-known Poisson relation for the Lapla
ian on Riemannian manifolds,(5.1) is 
alled the Poisson relation for the s
attering kernel, while the set of all T
 , where 
 2L!;�(
), (!; �) 2 Sn�1 � Sn�1, is 
alled the s
attering length spe
trum of K.The proof of the above theorem is based on results on propagation of singularities along gen-eralized bi
hara
taristi
s, using some properties of os
illatory integrals. Below we present a briefidea of it. Consider a �xed t0 so that�t0 =2 f�T
 : 
 2 L(!;�)(
)g:Take T > 0 with jt0j < T and introdu
e the set�T = fT
 : jT
 j � T; 
 2 L(!;�)(
)g:The 
ontinuity of the generalized Hamiltonian 
ow implies that �T is 
losed, so we 
an 
hoose�0 > 0 so that T
 =2 [t0 � �0; t0 + �0℄; 8
 2 L(!;�)(
) :Let �(t) 2 C10 (R); �(t) = 1 for jtj � 1=2; �(t) = 0 for jtj � 1: Set �Æ(t) = �(t=Æ) for 0 < Æ � �0=2.To prove that t0 =2 sing supp s(t; �; !), it is suÆ
ient to show that the integralJ(�) = hs(t; �; !); �Æ(t+ t0)e�i�ti= n�2Xk=0 
k(�i�)n�2�k ZR Z�
 ei�(t�hx;�i) dk�Ædtk (hx; �i � t+ t0)�w�� (t; x;!) dt dSx; 
k = 
onstis rapidly de
reasing with respe
t to �: Here w(t; x;!) = V (t; x;!) + Æ(t� hx; !i); where V (t; x;!)is de�ned in Se
tion 3. Let us treat the term with k = 0, the other ones 
an be examined by asimilar argument.Without loss of the generality we may assume that ! = (0; : : : ; 0; 1): SetZ(�) = fx 2 Rn : xn = �g;where � < ��0 and let R+� = ft 2 R : t > �g: To lo
alize the problem, introdu
e a partition ofunity on Z(�) given by fun
tions'j(x0) 2 C10 (Rn�1); x0 = (x1; : : : ; xn�1):Consider the problems: 8><>:�vj = 0 in R+� � Rnx ;vj(�; x) = 'j(x0)Æ(� � x0);�vj�t (�; x) = 'j(x0)Æ0(� � xn) ;8>>>><>>>>:�Wj = 0 in R � Æ
;Wj = 0 on R � �
;Wj(�; x) = 'j(x0)Æ(� � x0);�Wj�t (�; x) = 'j(x0)Æ0(� � xn) :



18 V. PETKOV AND L. STOYANOVClearly, there exists a 
ompa
t set F 00 � Rn�1 su
h that if supp 'j \ F 00 = ;; then the straightlines issued from (x0; �); x0 2 supp 'j , with dire
tion ! do not meet �
: For su
h j and ! 6= � wehave(5.2) WF���Wj�� �jR��
� \ f(t; x; 1;��jTx(�
)) : jtj � T + �0 + 1; x 2 �
g = ; :This implies easily(5.3) ZR Z�
 ei�(t�hx;�i)�Æ(hx; �i � t+ t0)�Wj�� dtdSx = O(j�j�m); 8m 2 N :Now set F0 = fx 2 Rn : x0 2 F 00; xn = �g and denote by l(u0) the straight line passing throughu0 2 F0 with dire
tion !: There are three 
ases:(i) ; 6= l(u0) \K � �
;(ii) l(u0) meets transversally �
 at x1(u0);(iii) l(u0) is tangent to �
 at x1(u0) and ! is an asymptoti
 dire
tion for �
 at x1(u0):In the 
ase (i) the generalized bi
hare
teristi
 
0 with Im (�Æ
0) = l(u0) is uniquely extendible,and results on propagation of singularities lead to (5.2) whi
h in turn gives (5.3). To deal with the
ase (ii), set t1(u) = ju � x1(u)j; u 2 F0. The solution vj with su
h j is given by an os
illatoryintegral and WF (vj) is in
luded in the set of all (t; x;��;�!) 2 T �(Rn+1) n f0g su
h that � > 0and there exist x̂ 2 Z(�); x̂0 2 supp 'j ; s � 0 with t = � � �s; x = x̂� �s!: We modify vj on theinterse
tion of a small neighborhood of x1(u0) with the interior of K so that the modi�ed fun
tion~vj has the properties ~vj = vj for t < t1 + �; ~vj = 0 for t > t1 + 2�; � > 0:Here t1 = maxft1(u) : u 2 O(u0)g; where O(u0) is a suÆ
iently small neighborhood of u0 withsupp 'j � O(u0) and � is small enough. Moreover, we preserve the 
ondition�~vj = 0 in R+� � Æ
:Set hj = (~vj)jR+� ��
 and noti
e that hj = 0 for t suÆ
iently 
lose to �: We extend hj as 0 fort < � and 
onsider the solution wj of the problem8><>:�wj = 0 in R � Æ
;wj + hj = 0 on R � �
;wj = 0 for t < �:We have ��t (wj + ~vj)jR+� ��
 = 0 and we are going to study the integralsIj;Æ(�) = ZR Z�
 ei�(t�<x;�>)�Æ(< x; � > �t+ t0)� ���� < �; � > ��t�~vj dt dSx ;Jj;Æ(�) = ZR Z�
 ei�(t�<x;�>)�Æ(< x; � > �t+ t0)� ���� < �; � > ��t�wj dt dSx :



SCATTERING PROBLEMS 19This study is based on 
ertain information about the generalized wave front setWFb(v) � T �(R � Æ
) [ T �(R � �
) = ~T �(R � 
) ;where the map � is the one introdu
ed in Se
tion 3 (see [20℄ for the properties of WFb(u)). Forx 2 �
 we have �: T �(R � 
) 3 (t; x; �; �) �! (t; x; �; �jTx(�
)) 2 T �(R � �
) :The 
ru
ial step in the analysis of Ij;Æ(�) and Jj;Æ(�) is the following.Proposition 1. Set T1 = �0 + jt0j+ 1 and suppose that there exists � > 0 su
h thatWFb(wj) \ f� 2 ~T �(R � 
) : � =� (t; x; 1;��); T1 + � � t � T1 + 2�g = ;;WFb(~vj) \ f� 2 ~T �(R � 
) : � =� (t; x; 1;��); T1 + � � t � T1 + 2�g = ;:Then Ij;Æ(�) = O(j�j�m); Jj;Æ(�) = O(j�j�m); 8m 2 N:A similar argument 
an be applied in the 
ase (iii) whi
h 
ompletes the proof of Theorem 4.While in general the relation (5.1) is not an equality, it turns out that there exists a set R offull measure in Sn�1�Sn�1 su
h that for (!; �) 2 R the Poisson relation be
omes an equality. Thisis rather important for some inverse s
attering problems.It is proved in [27℄ that for ea
h T > 0, S�(
) 
an be represented as a 
ountable union of Borelsubsets Si su
h that on ea
h Si , fFtg0�t�T 
oin
ides with the restri
tion of an one-parameterfamily G(i)t of Lips
hitz maps de�ned in a neighborhood of Si in _T �(
), taking values in T �(Rn)and su
h that for all but �nitely many t, G(i)t is smooth and its restri
tion to smooth lo
al 
ross-se
tions is a 
onta
t transformation. As a 
onsequen
e of this regularity property one gets thefollowing.Theorem 5. ([27℄) The generalized geodesi
 
ow Ft preserves the Hausdor� dimension of Borelsubsets of S�(
).This would have been a trivial fa
t if the maps Ft were Lips
hitz. However, it is well-knownand easy to see that this not the 
ase. Lo
ally near a point � 2 S�(
), the map Ft is Lips
hitz ona neighborhood of � for small jtj when � =2 S��K(
) or � is a transversal re
e
tion point. Whenever� 2 G, the map Ft is not Lips
hitz (
f. [20℄ or [10℄, vol. III). For example, in the simplest 
ase ofa di�ra
tive tangent point � 2 Gd, the map Ft has a singularity of "square root type" at �, so it is
learly not Lips
hitz.Let � : I �! S�(
) be a generalized geodesi
 in 
. We say that � is gliding on �K if the setof those t 2 I su
h that �(t) 2 Gg is dense in I. In this 
ase the traje
tory f�(t) : t 2 Ig is 
alleda gliding segment on �K.Given T > 0, denote by TT the set of those � 2 S�(
) su
h that fFt(�) : 0 � t � TgTGg 6= ;;that is the traje
tory fFt(�) : 0 � t � Tg 
ontains a non-trivial gliding segment on �K.



20 V. PETKOV AND L. STOYANOVLemma 2. ([27℄) Let L0 be an isotropi
 submanifold of S�(
)nS��K(
) of dimension n�1 su
h thatHp(�) is not tangent to L0 at any � 2 L0. Then for every T > 0 we have dimH(FT (TT\L0)) � n�2.Moreover, if for a given T we have FT (L0) � S�(
) n S��K(
), then there exists a 
ountable familyfImg of smooth (n�2)-dimensional isotropi
 submanifolds of S�(
) su
h that FT (TT \L0) �[m Im:Using Theorems 1{4 and Lemma 2 above, one derives the following.Theorem 6. ([27℄) There exists a subset R of full Lebesgue measure in Sn�1� Sn�1 su
h that forea
h (!; �) 2 R the only (!; �)-rays in 
 are re
e
ting (!; �)-rays andsing supp s(t; �; !) = f�T
 : 
 2 L!;�(
)g :In what follows we sket
h the proof of this theorem.It follows from the results of Melrose and Sj�ostrand [20℄ (see also Theorem 24.3.9 in [10℄, vol.III) that every (!; �)-ray 
 in 
 that does not 
ontain gliding segments is a re
e
ting (!; �)-ray,i.e. it 
onsists of �nitely many straight line segments in 
 (
f. Se
tion 3).Proof of Theorem 6:We are going to show that there exists a subset R of full Lebesgue measurein Sn�1 � Sn�1 su
h that for ea
h (!; �) 2 R the only (!; �)-rays in 
 are re
e
ting (!; �)-rays.As before, denote by U0 = fx 2 Rn : jxj < �0g an open ball in Rn 
ontaining the obsta
leK and let C be the boundary sphere of U0. Fix ! 2 Sn�1, x0 2 C and 
onsider the generalizedgeodesi
 (x(t); �(t)) = Ft(x0; !). Let T > 0 be su
h that x(T ) 2 C. DenoteS0 = f(x; �) 2 S�(
) : x 2 C; � is transversal to Cg:Sin
e � = p�1(0) = S�(
), using the notation S�C(
) = f(x; �) 2 S�(
) : x 2 Cg; we haveS00 = S0 \� = f(x; �) 2 S�C(
) : � is transversal to Cg: Then S00 is a symple
ti
 submanifold of S.Let P : S0 �! S0 be the lo
al map de�ned in a neighborhood of (x0; !) using the shift along the
ow Ft; then P(S00) � S00. Consider the Lagrangian submanifoldL0 = f(x; �) 2 S00 : � = !gof S00. Setting T = TT and applying Lemma 2 to L0, gives that FT (L0 \ T ) is 
ontained in a
ountable union of isotropi
 (n� 2)-dimensional submanifolds of S. Sin
e lo
ally near (x0; !) themap FT : S0 �! FT (S0) is smooth, FT (S0) is a (2n� 1)-dimensional submanifold of S transversalto the 
ow Ft at FT (x0; !). Consequently, lo
ally near FT (x0; !) 2 FT (S0) \ S0 the shift Q alongFt from FT (S0) to S0 (forwards or ba
kwards) is a smooth map. Moreover Q maps FT (S00) into S00(sin
e p�1(0) is invariant under the 
ow Ft), the restri
tion Q : FT (S00) �! S00 is a lo
al symple
ti
map, and P = QÆFT . Hen
e the set P(L0\T ) = Q(FT (L0\T )) is 
ontained in a 
ountable unionof isotropi
 (n� 2)-dimensional submanifolds of S. The proje
tion j : S00 �! Sn�1, j(x; �) = �, issmooth, so Sard's theorem gives now that the set j(P(L0\T )) has Lebesgue measure zero in Sn�1.Hen
e there exists a neighborhood U of x0 in C and a subset R!(U) = Sn�1 n j(P(L \ T )) of fullLebesgue measure in Sn�1 su
h that for x 2 U every generalized (!; �)-ray in 
 passing through xwith � 2 R!(U) is a re
e
ting (!; �)-ray. Covering C by a �nite family of neighborhoods Ui, we�nd a subset R! = \iR!(Ui) of full Lebesgue measure in Sn�1 su
h that every (!; �)-ray in 
 with� 2 R! is a re
e
ting (!; �)-ray. It now follows from Fubini's theorem thatR0 = f(!; �) 2 Sn�1 � Sn�1 : � 2 R!g



SCATTERING PROBLEMS 21is a subset of full Lebesgue measure in Sn�1 � Sn�1. Moreover it is 
lear that for (!; �) 2 R0, all(!; �)-rays in 
 are re
e
ting ones.A

ording to Theorems 2 and 3 above, there exists a subset R00 = T \ S of full Lebesguemeasure in Sn�1�Sn�1 su
h that for (!; �) 2 R00 every re
e
ting (!; �)-ray in 
 has no tangen
iesto �K and T
 6= TÆ whenever 
 and Æ are di�erent re
e
ting (!; �)-rays in 
. Then R = R0 \ R00has full Lebesgue measure in Sn�1 � Sn�1. Given (!; �) 2 R, it follows from Theorem 1 that�T
 2 sing supp s(t; �; !) for all 
 2 L!;�(
). Combining this with Theorem 4 
ompletes the proofof the theorem.Using Theorem 6 we will now derive a simple but rather important property of obsta
les ([12℄;
f. also Proposition 2.3 in [27℄): most rays in
oming from in�nity are not trapped by the obsta
leK. Here it is essential that we 
onsider points in the setS�C(
) = f(x; �) 2 S�(
) : x 2 Cg ;where C as before is the boundary sphere of an open ball U0 
ontaining K. In general it is nottrue that the trapped points (x; �) 2 S�(
K) with x near K form a set of Lebesgue measure zeroin S�(
K). The example of M. Livshitz (
f. Se
tion 7 below ) shows that in some 
ases the set oftrapped points may even 
ontain a non-trivial open subset of S�(
K).Proposition 2. The set of those (x; �) 2 S�C(
) su
h that the traje
tory fFt(x; �) : t � 0g isbounded has Lebesgue measure zero in S�C(
).Proof. For (x; !) 2 S�C(
), let Æ(x; !) be the generalized geodesi
 in 
K issued from x in dire
tion !.Assume that there exists a subset W of positive Lebesgue measure in S�C(
) su
h that Æ(x; !) � U0for all (x; !) 2 W . A

ording to Theorem 3 and to an argument from the proof of Theorem6 above (or using Lemma 2 duire
tly), we may assume that for all (x; !) 2 W the generalizedgeodesi
 Æ(x; !) does not 
ontain gliding segments on �K and has only transversal re
e
tions at�K. Given (x; !) 2 W , denote by x0 the �rst 
ommon point of Æ(x; !) with �K andby !0 there
e
ted dire
tion of Æ(x; !) at x0, i.e. !0 = ! � 2h!; �(x0)i�(x0), where �(x0) is the outer unitnormal to K at x0. Then the set W 0 = f(x0; !0) 2 S��K(
) : (x; !) 2 Wg is a subset of positiveLebesgue measure in S��K(
).Denote by M � S��K(
) the set of those (y; �) 2 S��K(
) for whi
h the standard billiard ballmap B is well-de�ned. The map B (as a lo
al map) preserves the so 
alled Liouville's measure �on M whi
h is absolutely 
ontinuous with respe
t to the Lebesgue measure on S��K(
).Next, we use the argument from the proof of the Poin
ar�e Re
urren
e Theorem in ergodi
theory. It follows from the de�nition of W 0 that Bk(W 0) � M and �(Bk(W 0)) = �(W 0) > 0for all k = 0; 1; 2; : : :. On the other hand, in the situation under 
onsideration we 
learly have�([1k=0Bk(W 0)) <1. Therefore there exist non-negative integers k < m with Bk(W 0)\Bm(W 0) 6=;. Sin
e B is invertible, this means that there exists (x0; !0) 2 W 0 \ Bm�k(W 0). Then (x0; !0) =B(y; �) for some (y; �) 2 Bm�k�1(W 0) � M . Now the 
hoi
e of W and the de�nition of W 0 showthat W 0 has no 
ommon points with B(M). This is a 
ontradi
tion whi
h proves the proposition.6. Existen
e of s
attering rays with sojourn times tending to infinityIn this se
tion we study the existen
e of (!; �)-rays for trapping obsta
les. The image S�b (
) =�(S�(
)) of the 
hara
teristi
 set S�(
) is 
alled the 
ompressed 
hara
teristi
 set and the image
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 =� (
) of a generalized bi
hara
teristi
 de�ned in Se
tion 3 is 
alled a 
ompressed generalizedbi
hara
teristi
.Let again U0 be an open ball 
ontaining K and C be its boundary sphere. Given a pointz = (x; �) 2 S�b (
), 
onsider the 
ompressed generalized bi
hara
teristi

z(t) = (x(t); �(t)) 2 S�b (
)parametrized by the time t and passing through z for t = 0: Denote by T (z) 2 R+ [1 the maximalT > 0 su
h that x(t) 2 U0 for 0 � t � T (z): We introdu
e the trapping set�1 = f(x; �) 2 S�b (
) : x 2 C; T (z) =1g:It follows from the 
ontinuity of the generalized Hamiltonian 
ow that �1 is 
losed in �. Theobsta
le K is 
alled trapping if �1 6= ;: We have the following.Theorem 7. ([23℄) Let the obsta
le K be trapping and satisfy the 
ondition (G). Then there existsa sequen
e of ordinary re
e
ting non-degenerate s
attering rays 
m with sojourn times T
m �!1:Proof. It is easy to see that �1 6= S�b (
), hen
e the boundary ��1 of �1 in S�b (
) is not empty.Take a point ẑ 2 ��1: Sin
e S�b (
)n�1 6= ;, there exists a sequen
e zm = (xm; �m) 2 S�b (
); xm 2C, su
h that zm =2 �1 for allm and zm �! ẑ: Consider the 
ompressed generalized bi
hara
teristi
s
zm(t) = (zm; �m) passing through zm for t = 0 and su
h that T (zm) <1: The sequen
e fT (zm)gis unbounded, sin
e otherwise we will have T (ẑ) < 1 in 
ontradi
tion with ẑ 2 �1: Thus wemay assume that T (zm) �!m!1 +1: Set ym = xm(T (zm)) 2 C; !m = �m(T (zm)) 2 Sn�1: Takinga subsequen
e, we may assume that ym �! u 2 C; !m �! ! 2 Sn�1: For the generalizedbi
hara
teristi
s 
�(t) = (y(t); �(t)) issued from � = (u; !) we have T (�) = 1 and y(t) 2 U0 fort � 0:Let Z! be the hyperplane passing through u and orthogonal to ! and let Z1 be the set ofthose points y 2 Z! for whi
h the generalized bi
hara
teristi
 
�y passing through �y = (y; !) hasthe property T (�y) = 1: The set Z1 is 
losed in Z!, Z! 6= ; and Z1 6= Z!. Thus there existsa sequen
e of points um �! y0 for some y0 2 Z! with um 2 Z! n Z1 su
h that T (�um) < 1 forall m and T (�um) �!1: Applying Proposition 2, we 
an approximate 
um by ordinary re
e
tingrays 
Æm with sojourn times going to in�nity and by a se
ond approximation we may 
hoose theordinary re
e
ting rays 
Æm to be non-degenerate.Now 
onsider a �xed ordinary re
e
ting (!0m; �0m)-ray with sojourn time Tm whi
h is non-degenerate. In general it is possible to have other (generalized) (!0m; �0m)-rays with the same sojourntime and Tm 
ould be a non-isolated point in s(t; !0m; �0m): LetA � Sn�1�Sn�1 be the set introdu
edat the end of Se
tion 4 and let R � Sn�1 � Sn�1 be the set of Theorem 6. Let� = R\A � Sn�1 � Sn�1:Then for (!; �) 2 � ea
h (!; �)-ray is ordinary re
e
ting and non-degenerate. By applying the in-verse mapping theorem, it is easy to see that we may approximate (!0m; �0m) by a pair (!00m; �00m) 2 �suÆ
iently 
lose to (!0m; �0m) so that there exist ordinary re
e
ting non-degenerate (!00m; �00m)-rayswith sojourn times T 00m �!1 (see [23℄ for more details).The sojourn times T 00m are isolated points in s(t; !00m; �00m) and the argument of Se
tion 3 basedon (3.4) implies that following.



SCATTERING PROBLEMS 23Theorem 8. Under the assumptions of Theorem 7 there exists a sequen
e (!m; �m) 2 Sn�1�Sn�1and ordinary re
e
ting non-degenerate re
e
ting (!m; �m)-rays with sojourn times Tm �! 1 sothat(6.1) �Tm 2 sing supp s(t; !m; �m); 8m 2 N:The relation (6.1) was 
alled property (S) in [24℄, and there we 
onje
tured that every trappingobsta
le has the property (S): The above result shows that for generi
 obsta
les this 
onje
tureis true. Moreover, the above argument implies that for ea
h m 2 N there exists a set �m �Sn�1 � Sn�1 with positive measure �m > 0 so that the (!; �)-rays with (!; �) 2 �m produ
esingularities ��m � �m of the s
attering kernel s(t; !; �): Thus for obsta
les satisfying (S) somesojourn times 
an be observed after a suÆ
iently long time.The property (S) leads to some interesting results 
on
erning the behavior of the modi�edresolvent of the Lapla
ian [23℄. For Im� > 0 
onsider the outgoing resolvent R(�) = (��� �2)�1of the Lapla
ian in 
 with Diri
hlet boundary 
onditions on �
. The outgoing 
ondition meansthat for f 2 C10 (
) there exists g(x) 2 C10 (Rn) so that we haveR(�)f(x) = R0(�)g(x); jxj ! 1;where R0(�) = (��� �2)�1 : L2
omp(Rn) �! H2lo
(Rn)is the outgoing resolvent of the free Lapla
ian in Rn related to the outgoing Green fun
tion intro-du
ed in Se
tion 2. The operatorR(�) : L2
omp(
) 3 f �! R(�)f 2 H2lo
(
)has a meromorphi
 
ontinuation in C with poles �j; Im�j < 0, 
alled resonan
es ([12℄, [25℄). Let�i(x) 2 C10 (Rn); i = 1; 2 be 
ut-o� fun
tions su
h that �i(x) = 1 on a neighborhood of K and�1(x) = 1 on supp �2(x). It is easy to see that the modi�ed resolvent~R(�) = �1R(�)�2has a meromorphi
 
ontinuation in C . The poles of ~R(�) are independent of the 
hoi
e of �i andthey 
oin
ide with their multipli
ities with those of the resonan
es (see [12℄, [25℄). On the otherhand, the s
attering amplitude a(�; !; �) also admits a meromorphi
 
ontinuation in C and thepoles of this 
ontinuation and their multipli
ities are the same as those of the resonan
es (see [12℄).From the general results on propagation of singularities ([20℄) it follows that if K is non-trapping,there exist � > 0 and d > 0 so that ~R(�) has no poles in the domainU�;d = f� 2 C : d� � log(1 + j�j) � Im� � 0g:For trapping obsta
les we expe
t to have poles in all domains U�;d: For the moment this is anopen problem and we have a weaker result.Theorem 9. ([23℄) Assume that there exists a sequen
e of ordinary re
e
ting (!m; �m)-rays in 
with sojourn times Tm !1: Let � 2 C10 (R) be su
h that supp � � (�1; 1); �(t) = 1 for jtj � 12 :Assume that there exists a sequen
e 
m ! 0 of non-zero real numbers and an integer k independenton m su
h that ���Ft!�h�� t+ Tm
m �s(t; !m; �m)i��� � (
m � om(1))j�jk; j�j ! 1;
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m > 0: Then there are two possibilities:(i) For ea
h � > 0 and ea
h d > 0, the modi�ed resolvent ~R(�) has poles in the domain U�;d:(ii) For some � > 0; d > 0 the modi�ed resolvent ~R(�) is holomorphi
 in U�;d but for all� � 0; p 2 N; k 2 N we havesup�2U�;d; k'kHk(
)=1(1 + j�j)�pe��j Im�jk ~R(�)'kH1(
) = +1:It is natural to make the 
onje
ture that under the assumption of Theorem 9 the 
ase (i) alwaystakes pla
e. 7. Rigidity of the s
attering length spe
trumFix again a large open ball U0 in Rn , n � 3, n odd2, and let C = �U0. Throughout thisse
tion we 
onsider obsta
les K in Rn 
ontained in U0 with smooth boundaries �K that satisfythe 
ondition (G) from Se
tion 3 and su
h that 
K(�) is a non-degenerate simply re
e
ting ray foralmost all � 2 S�C(
) su
h that 
K(�) \ �K 6= ;. Denote by K0 the 
lass of obsta
les with theseproperties. One 
an derive from [22℄ (see Chapter 3 there) that K0 is of se
ond Baire 
ategory (withrespe
t to the C1 Whitney topology; 
f. [8℄) in the 
lass of all obsta
les with smooth boundaries.Sin
e in this se
tion we deal with more than one obsta
le, it is 
onvenient to repla
e thenotation 
, Ft, s(t; !; �), _T �b (
) and S�b (
) used so far (
f. Se
tion 3 for the latter two) by 
K ,F (K)t , sK(t; !; �), _T �b (
K) and S�b (
K), respe
tively.A point � = (x; !) 2 _T �(
K) is 
alled a trapped point if at least one of the 
urves fpr1(F (K)t (�)) :t � 0g and fpr1(F (K)t (�)) : t � 0g in 
K is bounded. Here we use the notation pr1(y; �) = y andpr2(y; �) = �. Denote by Trap(
K) the set of all trapped points in _T �(
K). Noti
e that theset �1 used in Se
tion 6 
oin
ides with Trap(
K) \ S�C(
K). It is easy to see that �1 6= ; i�Trap(
K) 6= ;. So, if Trap(
K) = ;, then K is a non-trapping obsta
le. It is known for examplethat all star-shaped obsta
les are non-trapping.The s
attering length spe
trum (SLS) of K is by de�nition the family of sets of real numbersSLK = fSLK(!; �)g(!;�) where (!; �) runs over Sn�1 � Sn�1 and SLK(!; �) is the set of sojourntimes T
 of all (!; �)-rays 
 in 
K . Thus, SLK is a map whi
h assigns to ea
h pair of dire
tions(!; �) a set SLK(!; �) of real numbers.In this se
tion we dis
uss the problem of re
overing information about the geometry of theobsta
le K from its SLS. Two obsta
les K and L in Rn are said to have almost the same SLS ifthere exists a subset R of full Lebesgue measure in Sn�1 � Sn�1 su
h that SLK(!; �) = SLL(!; �)for all (!; �) 2 R. We will say that a property P of obsta
les in Rn 
an be re
overed by the SLSof the obsta
le if whenever K and L have almost the same SLS and K has property P, then L hasproperty P as well.It follows from results of A. Majda [15℄ (see also Majda and Ralston [16℄) and P. Lax and R.Phillips [13℄ that the 
onvex hull K̂ of K 
an be re
overed from SLK . Consequently, in the 
lass2In fa
t, most of the 
onsiderations in this se
tion are purely geometri
al and apply also in the 
ase when n iseven, n � 2.
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onvex obsta
les and also in the 
lass of 
onne
ted obsta
les with real analyti
 boundaries, K is
ompletely determined by its SLS.EXAMPLE 7.1. The following example of M. Livshits (
f. Chapter 5 in [18℄) shows that ingeneral SLK does not determine K uniquely. Here the part E is half an ellipse with fo
i F1 andF2. The ellipse has the property that any ray interse
ting the segment 
onne
ting the fo
i, afterre
e
tion at the boundary, interse
ts the same segment again. It is now 
lear that no s
atteringray in the exterior of the obsta
le K has a 
ommon point with the parts P and Q, so these two\po
kets\ 
annot be re
overed from the SLS of the obsta
le. It should be mentioned that thisexample is in R2 and no examples like this in higher dimensions are known to the authors.

A
F1

Q

E

F2
B

PFigure 4. Livshits' Example (adapted from Ch. 5 of [18℄).The problem 
onsidered at the beginning of this se
tion is of a global nature. The following sim-ple example shows that in the 
orresponding lo
al problem there is no uniqueness (unless possiblysome non-degenera
y 
onditions are imposed).EXAMPLE 7.2. Consider two obsta
les K and L = L1 [ L2 [ L3 in Rn , n � 2, as shown in the�gure below. Here K and L2 are (stri
tly) 
onvex domains, while L1 and L3 are 
onvex domains.Moreover K and L2 are symmetri
 with respe
t to the hyperplane � 
ontaining the 
at \top parts"of �L1 and �L3. The rays on the �gure are generated by some �0 (far from K and L). For any �
lose to �0 we have F (K)t (�) = F (L)t (�) for t >> 0 and both traje
tories have 
ommon points withthe 
orresponding obsta
les (and are non-degenerate). On the other hand, K \ L = ;.
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FIGURE 5.It should be mentioned however that the obsta
les K and L in this example do not satisfy the
ondition G. Whether su
h examples exist with K and L satisfying G is an open problem.It turns out that if two obsta
les K and L have almost the same SLS, then their generalizedgeodesi
 
ows are 
onjugate with a time preserving 
onjuga
y on the non-trapping parts of theirphase spa
es.Theorem 10. ([28℄) If the obsta
les K;L 2 K0 have almost the same SLS, then there exists ahomeomorphism � : _T �b (
K) n Trap(
K) �! _T �b (
L) n Trap(
L)with the following properties:(i) � de�nes a symple
ti
 map on an open dense subset of _T �b (
K) n Trap(
K);(ii) � maps S�b (
K) n Trap(
K) onto S�b (
L) n Trap(
L);(iii) F (L)t Æ � = � Æ F (K)t for all t 2 R;(iv) �(x; �) = (x; �) for any (x; �) 2 _T �b (
K)nTrap(
K) = _T �b (
L)nTrap(
L) su
h that x =2 U0.Conversely, it is not diÆ
ult to show that if K;L 2 K0 are two obsta
les for whi
h there existsa homeomorphism � : S�b (
K) n Trap(
K) �! S�b (
L) n Trap(
L) su
h that F (L)t Æ � = � Æ F (K)tfor all t 2 R and � = id on S�(Rn n U0) n Trap(
K), then K and L have the same SLS ([28℄).There is a 
lear analogy between the property des
ribed above and the so 
alled lens equivalen
eof geodesi
 
ows on Riemannian manifolds without boundary (see [3℄ and the referen
es there).We are now going to sket
h the proof of Theorem 10. Assume that the obsta
les K and Lhave almost the same SLS. The existen
e of the 
onjuga
y � follows easily from the following mainlemma.Lemma 3. For every � 2 S�(Rn n U0) and every t 2 R with F (K)t (�) 2 S�(Rn n U0) we haveF (K)t (�) = F (L)t (�):



SCATTERING PROBLEMS 27Indeed, given � 2 _T �(
) n Trap(
K), take t 2 R so large that F (K)t (�) 2 S�(Rn n U0). Thende�ne �(�) = F (L)�t Æ F (K)t (�). It follows from the above lemma that the de�nition of � is 
orre
tand moreover F (L)t Æ � = � Æ F (K)t for all t 2 R and �(�) = � for � 2 _T �(Rn n U0) n Trap(
K).Clearly � is a homeomorphism and it follows from the properties of the generalized geodesi
 
ows([20℄) that it is a symple
ti
 map on an open dense subset of _T �b (
K) nTrap(
K). This shows howTheorem 10 is derived from Lemma 3.We now pro
eed to prove Lemma 3.Fix for a moment an arbitrary (!0; �0) 2 Sn�1 � Sn�1, and let Æ be a non-degenerate simplyre
e
ting (!0; �0)-ray in 
K with re
e
tion points x1; : : : ; xk (k � 1) and Æ0 is a non-degeneratesimply re
e
ting (!0; �0)-ray in 
L with re
e
tion points y1; : : : ; ym (m � 1). Using the non-degenera
y of Æ and the Inverse Mapping Theorem one derives the existen
e of a neighborhood Uof (!0; �0) in Sn�1 � Sn�1 su
h that for ea
h (!; �) 2 U there are a unique re
e
ting (!; �)-rayÆ(!; �) in 
K with re
e
tion points x1(!; �); : : : ; xk(!; �) 
lose to x1; : : : ; xk, resp., and a uniquere
e
ting (!; �)-ray Æ0(!; �) in 
L with re
e
tion points y1(!; �); : : : ; ym(!; �) 
lose to y1; : : : ; ym,respe
tively.Lemma 4. Under the above assumptions, suppose in addition that TÆ(!;�) = TÆ0(!;�) for all (!; �) 2U . Then for ea
h (!; �) 2 U there exist real numbers �(!; �) and �(!; �) su
h that(7.1) y1(!; �) = x1(!; �) + �(!; �)! ; ym(!; �) = xk(!; �) + �(!; �)�:Proof of Lemma 4: Let (!; �) = (!(u); �(v)), (u; v) 2 Rn�1 �Rn�1 be a smooth parametrizationof U and let xj(u; v) = xj(!(u); �(v)) and yj(u; v) = yj(!(u); �(v)). For the fun
tionsf(u; v) = h!(u); x1(u; v)i + k�1Xi=1 kxi(u; v)� xi+1(u; v)k � hxk(u; v); �(v)i;g(u; v) = h!(u); y1(u; v)i + m�1Xi=1 kyi(u; v) � yi+1(u; v)k � hym(u; v); �(v)i;we have f(u; v) = g(u; v) for all (u; v), therefore the derivatives of these two fun
tions 
oin
ide. Asimple 
al
ulation gives�f�uj (u) = � �!�uj ; x1�+�!; �x1�uj�+ k�1Xi=1 � xi+1 � xikxi+1 � xik ; �xi+1�uj � �xi�uj����xk�uj ; �� :Using the notation ei = xi+1 � xikxi+1 � xik and the re
e
tion law at the points x1; : : : ; xk�1, we �nd�f�uj (u) = � �!�uj ; x1�+�! � e1; �x1�uj�+�e1 � e2; �x2�uj�+ : : :+�ek�2 � ek�1; �xk�1�uj �+�ek�1 � �; �xk�uj � = � �!�uj ; x1� :In the same way one gets �g�uj = � �!�uj ; y1� : Hen
e � �!�uj ; x1� = � �!�uj ; y1� for all j = 1; : : : ; n�1,so y1 � x1 = �! for some � 2 R.



28 V. PETKOV AND L. STOYANOVSimilarly, ym = xk + �� for some � 2 R.In what follows we denote by ÆM the interior (i.e. the largest open subset) of a subsetM of Rn .Proof of Lemma 3: Let R be a subset of full Lebesgue measure in Sn�1 � Sn�1 su
h that(7.2) SLK(!; �) = SLL(!; �) ; (!; �) 2 R:Shrinking R if ne
essary, we will assume that (!; !) =2 R for any ! 2 Sn�1. Then for (!; �) 2 R,any (!; �)-ray in 
K (and in fa
t in the exterior of any obsta
le) must have at least one re
e
tionpoint. Furthermore, using Theorems 3, 4 and 6 above, we may assume that the set R is 
hosenin su
h a way that: (i) for (!; �) 2 R all (!; �)-rays in 
K (resp. 
L) are non-degenerate simplyre
e
ting (!; �)-rays; (ii) if (!; �) 2 R and 
 and Æ are (!; �)-rays in 
K (resp. 
L), then T
 6= TÆ.It follows from [13℄ and [15℄ (see also [16℄) that K̂ = L̂.Let �0 = (u0; !0) 2 S�( Æ
K̂) and t0 2 R be su
h that F (K)t0 (�0) 2 S�( Æ
K̂). We will show thatF (K)t0 (�0) = F (L)t0 (~�0). Using various results from [20℄, [23℄ and [28℄, one derives that it is enough to
onsider the 
ase when �0 is non-trapped and (!0; �0) 2 R. Then Æ = 
K(�0) is a non-degeneratesimply re
e
ting (!0; �0)-ray in 
K .The essential 
ase to 
onsider is when 
K(�0) \ �K 6= ;. Then there exists s0 2 R withF (K)s0 (~�0) = (x0; �0), x0 2 �K, and without loss of generality we will assume s0 > 0 and moreoverthat s0 is the minimal positive number with pr1(F (K)s0 (�0)) 2 �K. Let x1 = x0; x2; : : : ; xk bethe su

essive re
e
tion points of Æ. A

ording to (7.2), there exists a re
e
ting (!0; �0)-ray Æ0in 
L with TÆ0 = TÆ. Let y1; : : : ; ym be the su

essive re
e
tion points of Æ0. The 
hoi
e of Rand (!0; �0) 2 R imply that Æ0 is non-degenerate. From the latter one derives that there exist aneighborhood U of (!0; �0) in Sn�1�Sn�1 and a neighborhood Ui of xi in �K for ea
h i = 1; : : : ; ksu
h that for every (!; �) 2 U there is a unique re
e
ting (!; �)-ray Æ(!; �) in 
K with re
e
tionpoints x1(!; �) 2 U1; : : : ; xk(!; �) 2 Uk smoothly depending on (!; �). Similarly, there exists aneighborhood U 0j of yj in �L for ea
h j = 1; : : : ;m su
h that for every (!; �) 2 U there is a uniquere
e
ting (!; �)-ray Æ0(!; �) in 
L with re
e
tion points y1(!; �) 2 U 01; : : : ; ym(!; �) 2 U 0m smoothlydepending on (!; �). Moreover Æ(!0; �0) = Æ and Æ0(!0; �0) = Æ0.A

ording to (7.2), for ea
h (!; �) 2 R \ U there exists a unique re
e
ting (!; �)-ray Æ00(!; �)in 
L with(7.3) TÆ00(!;�) = TÆ(!;�):Assuming U is small enough, it then follows that Æ00(!; �) = Æ0(!; �) for ea
h (!; �) 2 R \ U .Indeed, otherwise there exists a sequen
e f(!p; �p)g1p=1 � R \ U 
onverging to (!0; �0) su
h thatÆ00(!p; �p) 6= Æ0(!p; �p) for all p. Let Z = Z!0 . Denote by up the (in
oming) interse
tion pointof Æ00(!p; �p) with Z; then Æ00(!p; �p) = 
L(up; !p). Considering an appropriate subsequen
e, wemay assume that up ! u 2 Z as p ! 1. Then Æ00 = 
L(u; !0) is an (!0; �0)-ray in 
L and
learly TÆ00 = limp TÆ00(!p;�p) = TÆ00(!0;�0). Now (7.3) implies TÆ00 = TÆ(!0;�0) = TÆ and thereforeTÆ00 = TÆ0(!0;�0) = TÆ0 . This and (!0; �0) 2 R give Æ00 = Æ0. Hen
e u belongs to Æ0 = Æ0(!0; �0) andtherefore for large p, the ray Æ00(!p; �p) has m re
e
tion points belonging to the neighborhoods U 0j ,respe
tively. From the 
hoi
e of U and the uniqueness of the (!; �)-rays Æ0(!; �) for (!; �) 2 U , itnow follows that Æ00(!p; �p) = Æ0(!p; �p). This is a 
ontradi
tion with the 
hoi
e of the sequen
e
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h proves that Æ00(!; �) = Æ0(!; �) for all (!; �) 2 R \ U . Hen
e(7.4) TÆ0(!;�) = TÆ(!;�)for (!; �) 2 R\U . This gives that (7.4) holds for all (!; �) 2 U , and then by Lemma 4 imply that(7.1) hold for some real numbers �(!; �) and �(!; �) for all (!; �) 2 U . In parti
ular, Æ0 = 
L(�0).Let F (K)t0 (�0) = (z; �). Then either � = !0 and z = x1 + s!0 for some s < 0, or � = �0 andz = xk + s�0 for some s > 0. The same holds for F (L)t0 (�0) = (z0; � 0). In both 
ases (7.1) and (7.4)imply (z; �) = (z0; � 0), i.e. F (K)t0 (�0) = F (L)t0 (�0). :Using the existen
e of the 
onjuga
y � and the fa
t that it is measure preserving with respe
tto the 
anoni
al measures on S�b (
K) and S�b (
L), one derives the following.Corollary 1. Let the obsta
les K and L have almost the same SLS. If the sets of trapped pointsof both K and L have Lebesgue measure zero, then Vol(K) = Vol(L).Livshits' example shows that the above 
on
lusion is not true without any assumption aboutthe sets of trapped points. Noti
e that far from the obsta
le the trapping set is relatively small. Forexample, if C is a large sphere in Rn (i.e. it 
ontains K in its interior), a slight modi�
ation of theproof of Proposition 2 above shows that dim(S�C(
K) \ Trap(
K)) � 2n � 3. On the other hand,in some 
ases (e.g. Livshits' example) we have dim(Trap(
K)\S�b (
K)) = 2n�1 = dim(S�b (
K)).Another simple 
onsequen
e of Theorem 10 
on
erns ba
ks
attering rays. Denote by Trap(n)(�K)the set of those x 2 �K su
h that (x; �K(x)) 2 Trap(
K), where �K(x) is the outward unit normalto �K at x.Suppose that K and L are obsta
les with almost the same SLS. Let � be the 
onjuga
yfrom Theorem 10. Given x 2 �K n Trap(n)(�K), take an arbitrary t > 0 su
h that (z; �) =F (K)t (x; �K(x)) 2 S�(Rn nU0). Then F (K)t (z;��) = (x; �K(x)) and F (K)2t (z;��) = (z; �). Therefore(z; �) = �(z; �) = � Æ F (K)2t (z;��) = F (L)2t Æ �(z;��) = F (L)2t (z;��) ;for (y; �) = F (L)t (z;��) we must have y 2 �L and � ? �L at y. Thus, �(x; �K(x)) = (y; �L(y)) forsome y 2 �L n Trap(n)(�L). Setting '(x) = y, one gets a homeomorphism' : �K n Trap(n)(�K) �! �L n Trap(n)(�L)su
h that '(x) = y whenever �(x; �K(x)) = (y; �L(y)). In parti
ular, if dim(Trap(n)(�K)) < n� 2and dim(Trap(n)(�L)) < n� 2, it follows that K and L must have the same number of 
onne
ted
omponents.Here we denote by dim(X) the topologi
al dimension of X (
f. for example [4℄). Sin
e dim(X) �dimH(X), where dimH(X) is the Hausdor� dimension of the metri
 spa
e X (
f. e.g. [4℄), allassumptions of the form \dim(X) � a" 
an be repla
ed by \dimH(X) � a".It seems natural to 
onje
ture that in the 
ase of non-trapping obsta
les the SLS uniquelydetermines the obsta
le. While this is still an open problem, using Theorem 10 and ba
ks
atteringrays as above, one 
an prove this 
onje
ture at least for star-shaped obsta
les (as mentioned above,these are ne
essarily non-trapping).Proposition 3. ([28℄) Let K and L have almost the same SLS. If K is star-shaped, then L = K.



30 V. PETKOV AND L. STOYANOVEven though the trapping set is relatively small far from the obsta
le, in general it may be bigenough to topologi
ally divide S�C(
K), i.e. it may happen that S�C(
K) nTrap(
K) has more thanone 
onne
ted 
omponent.We will denote by �K(ob) the union of all 
onne
ted 
omponents of �K that have a 
ommonpoint with at least one s
attering ray in 
K , and 
all it the observable part of the boundary �K.The obsta
le K will be 
alled observable, if �K = �K(ob).Theorem 11. ([29℄) Let K;L be obsta
les in Rn with real analyti
 boundaries that have almost thesame SLS. If K is su
h that Trap(
K) does not topologi
ally divide S�C(
K), then �K(ob) = �L(ob).If in addition both K and L are observable, then K = L.The idea of the proof of Theorem 11 is rather simple. Let Y be the union of all 
onne
ted
omponents of �K(ob) that do not 
oin
ide with 
onne
ted 
omponents of L. Assuming Y 6= ;,one �nds � 2 S�(Rn n U) su
h that 
K(�) = fpr1(F (K)t (�)) : t 2 Rg has a 
ommon point withY . Consider a smooth 
urve �(s) in S�(Rn n U) that 
onne
ts � to a point �(0) = �0 generatinga free ray, i.e. a ray without 
ommon points with K. After some regularization of the 
urve �(s)(imposing some transversality 
onditions on it), we 
hoose the smallest s with 
K(�(s)) \ Y 6= ;.For � = �(s), the s
attering ray 
K(�) has only one 
ommon point y with Y whi
h is a tangentpoint, and all transversal re
e
tion of its o

ur at 
onne
ted 
omponents of �K that 
oin
idewith 
onne
ted 
omponents of L. Then we show that y0 2 �L for a dense set of points y0 in aneighborhood of y in Y . Thus, �K = �L near y whi
h is a 
ontradi
tion with the de�nition of Y .We refer the reader to [29℄ for details.It is not 
lear how restri
tive the 
ondition that Trap(
K) does not topologi
ally divide S�C(
K)is. It turns out ([29℄) that this 
ondition is satis�ed when K is a �nite disjoint union of stri
tly
onvex domains with C1 boundaries. This and Theorem 11 imply the following.Corollary 2. ([29℄) If K is a �nite disjoint union of stri
tly 
onvex domains, K and L have almostthe same SLS and both �K and �L are real analyti
, then K = L.It is an open problem whether the statement of Corollary 2 remains true for obsta
les with C1boundaries �K and �L.Next, we des
ribe a few results from [28℄ involving s
attering rays having tangen
ies to theboundary.Denote by K(fin) the 
lass of obsta
les K 2 K0 su
h that the normal 
urvature of K does notvanish of in�nite order. From now on until the end of this se
tion we assume that K;L 2 K(fin).Consider an arbitrary s
attering ray 
 in 
K and let X and Y be arbitrary 
ross-se
tions ofthe in
oming and outgoing rays of 
. De�ne the 
ross-se
tional map PK : S�X(Rn) �! S�Y (Rn) bythe shift along the 
ow F (K)t . Now assume that the obsta
le K and L have almost the same SLS.It then follows from Theorem 10 that PK = PL. In parti
ular the singularities of PK and PL arethe same, and this implies that for any �0 = (x0; �0) 2 S�(Rn n U0) n Trap(
K), the ray 
K(�0)
ontains a point of tangen
y to �K if and only if 
L(�0) 
ontains a point of tangen
y to �L.Next, suppose that �(s), s 2 [0; a℄, is a 
ontinuous 
urve in S�(
K) 
onsisting of non-trappedpoints. Using an idea of Melrose and Sj�ostrand [20℄ involving winding numbers, one shows that if
K(�(s)) is simply re
e
ting for ea
h s, then the number of re
e
tion points of 
K(�(s)) is the samefor all s 2 [0; a℄. Now assume that � = �(0) generates a ray 
K(�) 
ontaining a gliding segment



SCATTERING PROBLEMS 31on �K. If sk & 0 are su
h that ea
h 
K(�(sk)) is simply re
e
ting, it follows from [20℄ that thenumber of re
e
tion points of 
K(�(sk)) tends to1. Hen
e there must be in�nitely many s 2 (0; a℄su
h that F (K)t (�(s)) 2 S�(�K) for some t = t(s). On the other hand if 
K(�) is tangent to �Kbut does not 
ontain a gliding segment, then it is not diÆ
ult to 
onstru
t a 
ontinuous 
urve �(s)(0 � s � a, a > 0) in S�(
K) with �(0) = � su
h that 
(�(s)) is a simply re
e
ting ray for alls 2 (0; a℄.These observation yield that from the SLS of an obsta
le one 
an determine whi
h points� 2 S�(
K) n Trap(
K) generate rays 
ontaining gliding segments on �K.Corollary 3. ([28℄) Let K;L have almost the same SLS. If there exists a s
attering ray 
ontaininga gliding segment in 
K, then 
L has the same property. Consequently, if K is a �nite disjointunion of 
onvex domains in Rn and dim(Trap(
L) \ S�(�L)) < 2n � 3, then L is also a �nitedisjoint union of 
onvex domains, moreover K and L must have the same number of 
onne
ted
omponents and are therefore di�eomorphi
.A point � 2 S�C(
K) will be 
alled a

essible if it belongs to a 
onne
ted 
omponent ofS�C(
K)nTrap(
K) 
ontaining a point that generates a free ray. Presumably the SLS provides moresubstantial information about the behavior of the 
ow F (K)t near a

essible points � 2 S�C(
K)and 
orrespondingly about parts of �K that 
an be rea
hed by rays generated by a

essible points.The following result of [28℄ shows for example that the SLS determines uniquely the number ofre
e
tion points of simply re
e
ting rays 
K(�) generated by a

essible points �.Proposition 4. ([28℄) Let K;L have almost the same SLS. For every 
onne
ted 
omponent W ofS�C(
K) n Trap(
K) there exists an integer m = m(K;L;W ) su
h that(7.5) #(
K(�) \ �K) = #(
L(�) \ �L) +mfor all � 2W \ U (K). Moreover, m = 0 whenever W is a

essible. That is#(
K(�) \ �K) = #(
L(�) \ �L)for any a

essible point �.We refer the reader to [28℄ for some further results 
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