SOJOURN TIMES, SINGULARITIES OF THE SCATTERING KERNEL
AND INVERSE PROBLEMS

VESSELIN PETKOV AND LUCHEZAR STOYANOV

ABSTRACT. The paper deals with inverse problems in the scattering by obstacles in odd dimensional
Euclidean spaces. In general, such problems concern the recovering of the geometric properties of
the obstacle from the information related to the scattering amplitude a(\,w, 8), related to the wave
equation in the exterior of the obstacle with Dirichlet boundary condition. It turns out that all
singularities of the Fourier transform of a(\,w,#), the so called scattering kernel, are given by the
sojourn (travelling) times of scattering rays in the exterior of the obstacle. Apart from that these
sojourn times are a naturally observable data. The purpose of this survey is to describe several
results in obstacle scattering obtained in the last twenty years concerning sojourn times of scattering
rays, and to motivate further study of related inverse scattering problems.

1. INTRODUCTION

The scattering operator S(\) presents a mathematical model for the data observed experimen-
tally in many branches of physics, chemistry and mathematics. The operator S()) is related to
behavior as the time t — o0 of the solutions of an unperturbed operator Ly and to its perturbation
L. The kernel of S(\) — I, the so called scattering amplitude a(\,w, ), contains the information
related to the perturbation of Ly and this kernel is the leading term of the asymptotic of an out-
going solution v, (76, \) of Lvy = 0 as |x| = r — oo. Obstacle scattering problems arise in many
physical phenomena and concern the perturbation caused by a bounded obstacle K with connected
complement €. In general the inverse scattering problems deal with recovering geometric properties
of K from information related to the scattering amplitude.

Schiffer’s result (see [12], [2]) implies that the obstacle K is uniquely determined if we know the
scattering amplitude a(\, w, ) for A € (o, 8) C Rt and all w,f € S"!. Some more precise results
concerning uniqueness in this inverse scattering problem are known under weaker assumptions (see
(2], [7], [11], [26] for more details and references.) On the other hand, in general in experiments one
cannot determine the scattering amplitude for all (outgoing) directions § € 8"~ ! or all (incoming)
directions w € S"~!, while the sojourn (travelling) times of the so called (w, §)-rays in the exterior
of the obstacle give a physically observable data. This naturally leads to the consideration of
inverse scattering problems involving such rays. In fact, it turns out that all singularities of the
Fourier transform s(t,w, ) of a()A,w,#), the so called scattering kernel, have the form —T.,, where
T, are sojourn times of (w,#)-rays . Moreover, for (w,#) in a set of full measure in S"~' x "~
the singularities of s(t,w,f) are precisely the numbers of the form —T.,, that is the so called
Poisson relation becomes an equality (see Section 5). This leads to some interesting geometrical
observations. The purpose of this survey is to describe several results in obstacle scattering obtained
in the last twenty years concerning sojourn times of (w,#)-rays, and to motivate further study of
related inverse scattering problems.
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The scattering amplitude is defined in Section 2 below. The case of a convex obstacle is then
considered in details, and the leading term of the asymptotic of the scattering amplitude as A — +o00
is derived. Section 3 is devoted to the Fourier transform of the scattering amplitude, the so called
scattering kernel s(t,0,w), t € R, 0, w € S . It turns out that the singularities of s(¢,0,w) in
t are very much related to the geometry of the obstacle K. Namely, these are given by sojourn
(travelling) times of scattering rays in the exterior of the obstacle incoming with direction w and
outgoing with direction #. This is particularly easy to see in the case of a convex obstacle, where a
scattering ray can have at most one reflection at the boundary 0K of the obstacle. In the general
case a typical scattering ray is a mutiply reflecting ray with reflections at 0 K. Moreover there are
other, more complicated rays, that have to be taken into account when studying the singularities
of the scattering kernel; some of these contain gliding segments on K which are simply geodesics
with respect to the metric on K induced by the Euclidean structure. All these are generalized
bicharacteristics in the sense of Melrose and Sjostrand [20]. Their definition is sketched in Section
3 below, and at the end of that section the leading term of the singularity of s(¢,60,w) at t ~ —T is
described, where T is the sojourn time of a scattering ray satisfying some non-degeneracy properties.

Section 4 is purely geometrical. Here we give a simple definition of a reflecting (w, #)-ray, and
show that for almost all (w,0) € S ! x 8”1, the reflecting (w, §)-rays in the exterior of K have
no tangencies to JK and any two of them have different sojourn times. These properties, together
with non-degeneracy of the differential cross-sections, play an important role in the analysis of
the singularities of the scattering kernel. The latter is dealt with in Section 5. The central point
here is the so called Poisson relation for the scattering kernel, and the first half of Section 5
is devoted to the idea of its proof. We then proceed to discuss the question of how often this
relation becomes an equality. One of the problems to do this is to show that (under certain non-
degeneracy assumptions about the obstacle) for almost all (w,6) € S"! x 8"~!, the (w, #)-rays in
the exterior of K are reflecting rays, i.e. they do not contain gliding segments on the boundary.
Combining this with previous results gives that the Poisson relation becomes an equality for almost
all (w,0) € S» 1 x 8™ 1,

In Section 6 we discuss the existence of simply reflecting non-degenerate scattering rays with
sojourn times tending to infinity. This leads to some interesting results concerning the behavior of
the modified resolvent of the Laplacian.

Finally, in Section 7 the inverse scattering problem is considered of recovering geometric infor-
mation about the obstacle from its scattering length spectrum, i.e. from the set of sojourn times of
scattering rays in the exterior of the obstacle!. Pairs of obstacles K, L are considered such that for
(almost) all (w,f) € 8"~ ! x 8"~ ! the sets of sojourn times of (w, #)-rays in the exteriors of K and
L are the same. It then turns out that the generalized geodesic flows in the non-trapping parts of
the cotangent bundles of the exteriors of K and L are conjugated by a time preserving conjugacy
which is almost everywhere smooth and symplectic. Various geometric relationships between K
and L are derived.

2. SCATTERING AMPLITUDE FOR STRICTLY CONVEX OBSTACLES

Let K C R", n > 3, n odd, be a bounded domain with C*° boundary 0K and connected
complement Q = R” \ K. Such K is called an obstacle in R". Throughout this paper we deal with

]According to the Poisson relation, this is equivalent to trying to obtain information about the obstacle from the
singularities of the scattering kernel.
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the Dirichlet problem for the Laplacian but similar considerations can be applied to other boundary
value problems. To introduce the scattering amplitude a(),0,w), (0,w) € S* ! x 8"~ ! consider
the outgoing solution vy = vg(x, \) of the problem

(A + A?)vg =0 in Q,
vs + e MEW) = () on OK

satisfying the so called (i\) - outgoing Sommerfeld radiation condition. This condition means that
as |z| =r — oo we have
—iAr

vs(rf, \) = h(a(k,@,w) —I—O(%)), x=rf.

We can interpret v; = e as an incoming plane wave, while vs(z, A) is the outgoing wave
obtained after the impact of v; on K. To obtain a formula for the leading term a(), 6, w) we apply
the Green formula combined with the outgoing condition and deduce the following representation

— AL T,Ww>

Ovg oF
(21) n@ ) = [ [Bae -0 5200 - G2 e - wo(0)]ds)
JOK v v
where E)\(z) is the outgoing Green function
B (,I)\)(nfri)/Q e iAr 1
@) = @m0 D2 2+ 0(r<n+1)/2>

and v(x) is the unit normal to z € K pointing into €. Next, we multiply (2.1) by e"r("~1)/2

put z = rf#, and taking the limit r — oo, we get
o (ix)(n=3)/2 ( IN<TO—w> | iA<z,0>
(22) a()\,H,w) = W Lok ’L)\ < V($),9 >e +e

where < o, @ > denotes the scalar product in R”.

b

v,

2, A))dSm ,

Following the physical literature, a(\, 0, w) is called the scattering amplitude. The analysis of
the leading term of its asymptotic as A — +oc has a long tradition in mathematical physics. The
simplest case to deal with is when § # w and K is a strictly convex obstacle. In this case the
integral

; n—1)/2
I\ = 7(7)\)( ! / <v(x),0 > eA<ml—w>gg.
2(2m)(n=/2 Jo
is rather easy to study. The phase function < z,0 — w > |,c9K has two critical points x4 with

<xy,0 —w>=max < y,0 —w >,

yeOK
<z_,0—w>= min <y,0 —w >,
yeOK
0—w
vizy) ==+ .
() .

Here zT denotes the point in the illuminated region (see Figure 1)
0K, (w) ={y € 0K :< v(y),w >< 0}
related to w, while 2~ lies in the shadow region

0K (w) ={y € 0K :< v(y),w >> 0},
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and we have used the convention that the obstacle lies in the half-space

{r eR" : < 2,0 —w ><0}.

w

v(xy)
FIGURE 1.

Applying a stationary phase argument for the integral over 0K (w), one gets

(M)(nfl)ﬂ

2(2m)(n-1)/2

1
= —e

2

K(y) > 0 being the Gauss curvature at y € 0K. We get a similar expression for the integral over
0K _(w).

(2.3) / <v(z),0 > eA<si—w>48,
0K (w)

L <v(zg),0>

AT 00> IO (1) 10— w|(=D/2

+O(IA7Y,

The analysis of the term involving %”; is more complicated. In mathematical physics many

efforts have been concerned with construction of an approximate outgoing solution wg(z, ) of the
problem

(A -+ X2)wg = f(z,) in ©,

wo + e~MPW) = g(z, \) on K
with f(z,\) € C®(Q), g(z,\) € C*®°(0K). This leads to considerable difficulties when one has to
describe the form of the solution wg in a domain close to the grazing submanifold

G(w) ={y € 0K : < v(y),w >=0}.

The progress of the microlocal analysis in the seventies led to the investigation of the above prob-
lem without a precise information for wg in a neighborhood of G(w). This was done by Majda
[14] exploiting the works of Hormander [9], Taylor [30] and Melrose [17] for the propagation of the
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singularities. Below we present the idea of the approach of Majda and refer to [14] for more details.

Consider the boundary problem
(02 — A)ug = F(t,z) in R x Q,
uy+0(t— < z,w>) =G(t,x) onR x 0K,
where F(t,z) € C(R x Q) vanishes for ¢ < —tg, G(t,z) € C§°(R x 0K) and t; is chosen so that

supp; 5<t— <z,w> \meaK) CA{t:|t]| <to}.

Taking a partition of unity {1, (¢, x)} 1, on [—tg, tg] X OK, we pass to the analysis of the solutions
of the localized problems

(2.4) (0} — A)uj = Fj(t,z) in R x 502,
uj +;0(t— < z,w >) = Gj(t,z) on R x IK

with Fj(t,z) € C*(R x Q), G;(t,z) € C°(R x 0K) and F; = 0 for t < ty. Then using the decay
of local energy for strictly convex obstacles we get

Z/ —iAt 8“7 (t 35)

The results on the propagation of the wave front set WF(u;) of the solutions of (2.4) (see [30],
[17]) say that

O0vg

dt + O(|\~N), YN .
o | sk

RxOK

Ou,

(2.5) WF(E

) c WF(wjé(t— < W >)|Rxa,().

Rx0OK

In the case when supp1); N (]Rx G(w)) = () the above relation follows from the pseudo-local property
of pseudo-differential operators [10] since we have, modulo smooth terms, the representation
Ou,j

(2.6) -

By |d(t= < 2.0 >z -

RxOK

Bj being a first order pseudo-differential operator. In the case supp ;N (]R X G(w)) # () we apply

the results of Taylor [30] and Melrose [17] for diffraction problems. Thus we are going to study the
expression

) ou;
2.7 / / e MI=<w0>) 2 qvds,
(2.7) ; Jok v

where the integral is interpreted in the sense of distributions. From the definition of the wave front
it is easy to see that the condition

(tﬂ y’adt@,d;¢) N WF(U,) = w’ y’ € D C Rnfl
implies

[ ] ety deay = oY), vN
JR J D
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In order to exploit this property, assume that in local coordinates U; N 0K is given by

Yo =9 v = W1, yn1) €D C R
Then (2.5) yields

811,]'

WF( ov

) C {(t,y,76) ET*R x K) : t =< y,w >,

RxOK

y € supp ¥;(y, < y,w >), (§,7) = £(~w' ~ Vg(y)wn, 1)}
Clearly, for the phase function ® = t— < y,0 > [cy,nox we have dy ;@ = (—0" — Vg(y')0n, 1)

which coincides with the directions of the wave front of % only in the case
RxOK

—w' = Vg(y )wn = —0"—Vg(y')b, .

Thus we deduce immediately
0— w
7% 4 1 ny .
T v(y',9(y'))

The assumption 6 # w implies that for y € G(w) the last condition is impossible. Moreover, the
same argument shows that supp ;(y, < y,w >) must be included in small neighborhood Uy of 24
with ;(y, < y,w >) =1 in a neighborhood of z.

Since z_ lies in the shadow region, we have < v(z_),w >> 0 and the solution of the wave
equation which is smooth for ¢ < 0 in a small neighborhood of (< z_,w >,z_) has the form
u_ = —0(t— < z,w >). Thus we obtain

0vg

o |y ok

=X <v,w>e AT, on

and replacing (?,;:j \U_nok in the expression (2.7), we see that the shadow region gives no contribution

to a(X, 6, w) because

<v(z_.),0+w>=0.

Passing to the illuminated region, denote by %4 and By the cut-off function and the pseudo-
differential operator related to Uy . Then for the formally adjoint operators B} we obtain

; 1 gl ’ 1/2
—// By (G*M(t%y #>-el )0”))¢+5(t— <y,w' > —g(y')wn) (1 + \Vg(y')IQ) dtdy’
Us

= —\ /U ei)\(<y’,€’7w’>+g(y’)(9n7wn))b+(ylje)dyl + O(l)
JUL

with /
1/2
by(y',0) = —ify (y', -1,0" + Vg(y’)Hn) (1 + IVg(y’)\Q) ,

1B+ being the principal symbol of By . Thus our task is reduced to the study of an integral having
the same form as I(\).

Without loss of the generality we can assume that Vg(z!,) = 0. From the construction of the
asymptotic solution in a neighborhood of z we obtain

ﬁ+($’+7 _159’) =< V(£E+),0 >>0
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and we conclude that

LOANCD2 [ i< 0> 40 Onn))py (1 )
- X<y '~ e (y,6)d
2(%) /U+e +(y', 0)dy

1

_ e Ly <v(zg),0>

A R ) P = e

+O(IAY.
Taking the sum of all contributions, one gets

a(\ 0, w) = eA<TH0> 0z )2 < u(ny),0 > 10 — w2 L O(IN ).
Finally, in the illuminated region we have

<v(zy4),0> <-wb> 1
0 -—w —  0-w? 2

and
1.
(2.8) a(A0,w) = e TR ) 20 — W O O(A )
Thus from the limit
a(w, 0)| = lim |a(A, w,0)]
A—00
we can determine the Gauss curvature () at ;. When (w,#) runs over a set
Ves ! x8" M\ {(w,w) weS '},
we can recover the Gauss curvature K(y) at every point y € 0K, provided the map
0—w
0 — wl

is onto. On the other hand, the knowledge of the Gauss curvature at all points of K determines
uniquely 0K (see [14] for more details).

V3 (w,b) — e s

The case w = # is more complicated since the singularities associated to diffracted rays must
be taken into account. We refer to [19] and [31] for results in this direction.

3. SINGULARITIES OF THE SCATTERING KERNEL

Throughout this section we assume that 6 # w. To study the general case of non-convex
obstacles it is more convenient to consider the scattering kernel s(t,0,w) defined as the Fourier
transform of the scattering amplitude:

5(t,0,w) = th((%)("”)/Qa(A,e,m) ,

where (T,\_>t<p) (t) = (2m) ! [ e p(N)dA for functions ¢ € S(R). Let V (¢, z;w) be the solution of
the problem

(02— A)V =0 in R x ©,

V+0(t—(r,w)) =0 onR x 0K,

V|t<7t0 — 0
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Then we have

5(0,0,w) = (1)<"+1>/22"7H"/ 20,V ((z,0) — 0, 33 w)dSs,
Jok
where the integral is interpreted in the sense of distributions. Our aim will be to examine the
singularities of s(t,6,w) with respect to t.

First we define the so called reflecting (w, #)-rays. Given two directions (0, w) € S ! x S*° 1,
consider a curve v € € having the form

where l; = [x;, z;41] are finite segments for i = 1,...,m — 1, z; € 0K, and [ (resp. l,,) is the infinite
segment starting at z; (resp. at x,,) and having direction —w (resp. ). The curve 7 is called a
reflecting (w,@)-ray in Q if for i = 0,1,...,m — 1 the segments [; and [; 1 satisfy the law of reflection
at z;y1 with respect to K. The points z1, ..., z,, are called reflection points of v and this ray is
called ordinary reflecting (or simply reflecting) if -y has no segments tangent to JK.

FIGURE 2

Next, we define two important notions related to (w,#)-rays (also called scattering rays). Fix
an arbitrary open ball Uy with radius a > 0 containing K. For ¢ € S"~! introduce the hyperplane
Z¢ orthogonal to ¢ and such that £ is pointing into the interior of the open half space H; with
boundary Z; containing Uy. Let 7 : R® — Z; be the orthogonal projection. For a reflecting
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(w, @)-ray v in Q with successive reflecting points 1, ..., z, the sojourn time T, of 7 is defined by

m—1
T, = [[ru(er) — mal + 3 o — wisill + 2 — 7o)l — 2a.
=1

Obviously, T, 4 2a coincides with the length of this part of v which lies in H, N H_y (see Figure
2). In fact, the sojourn time 7', does not depend on the choice of the ball Uy since it follows easily
that

||7Tw(-731) - *T]H =a+ <$17w>a ”xm - 71'76(*77771)” =a— <xm79> )

therefore

m—1
Ty = (z1,w) + > & — @i || = (@m, 0) .
i=1

Given an ordinary reflecting (w, )-ray -y set u, = m,(z1). There exists a small neighborhood
W, of uy in Z, such that for every u € W, there is an unique direction §(u) € S”~! and points
21(u), ..., Ty (u) which are the successive reflection points of a reflecting (u,0(u))-ray in Q with
7, (21 (1)) = u. This defines a smooth map

Jy Wy u— 0(u) € S"!
and dJ,(uy) is called a differential cross section related to . We say that vy is non-degenerate if
detdJ,(uy) #0.

The notion of sojourn time as well as that of differential cross section are well known in the physical
literature. The definitions given above are due to Guillemin [5].

For strictly convex obstacles all (non-trivial) reflecting rays have only one reflection point x;
and the corresponding sojourn time is equal to < x1,w — 6 > . Moreover, the stationary phase
argument of the previous section implies that a(\, w, ) has a complete asymptotic expansion

N
a(X,w,0) = TN N e X T L 0NN, VN N,
J=0
which gives
sing supp 5(1,0,w) = { T4},
T, = (x4,w — 6) being the sojourn time of the (w,#)-ray v, reflecting at z. A simple geometric
argument implies that

|det dJ,, (u,, )] = 40 — w| " (zy)

and for ¢ close to —T we have

B st0w = ()" dh )

s

~1/2
5 D/2(¢ + T,) + lower order singularities.

For strictly convex obstacles Ty is an isolated singularity of s(t,0,w) related to an ordinary
reflecting ray. This situation can be generalized for generic obstacles if we consider the back
scattering direction # = —w. Without loss of the generality we may assume that K lies in the half
space {z € R" : (z,w) > 0}. Then the function

0K >z — (z,w) € RT
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has a positive minimum p(w) and there exists at least one reflecting (w, —w)-ray v with sojourn
time T, = 2p(w). Of course we could have many (w, —w)-rays with the same minimal sojourn
time. A geometric argument based on Sard’s theorem shows that there exists a subset B C S"!
with full measure such that for every w € B we have only a finite number of reflecting (w, 6)-
rays with sojourn time 2p(w). Moreover, each of these rays 7,...,vy, has only one reflection
point 7 € 0K, k = 1,..., M, and 0K has a non-vanishing Gauss curvature K(zy) # 0 for every
k=1,..., M. Thus, repeating the argument from Section 2, it follows that for w € B the sojourn
time T' = —2p(w) is an isolated singularity of the scattering kernel s(#, —w,w), and for such w we
have

maxsing [supp; s(f, —w, w)] = ~2p(w) |

and for ¢ close to —2p(w),

M
1y (n-1)/2
s(t, —w,w) =27 (7_) " E K ()] /26 1/2(1 + 2p(w)) + lower order singularities .
m
k=1

This result is due to Majda [15]. From the maximal singularity of the back scattering kernel one
obtains that the convex hull of the obstacle is given by

convex hull K = m{x s (z,w) > p(w)} .

w

Thus one can recover the geometry of a convex obstacle.

It is much more complicated to get similar results in the case of non-convex obstacles. Now the
information obtained by means of rays having only one reflection is no longer sufficient. One needs to
consider multiple reflecting (w, 6)-rays leading to isolated singularities of s(t, 6, w). Roughly speak-
ing, the singularities of the scattering kernel are amongst the sojourn times of (w, #)-rays, however
now one has to consider not only simply reflecting (w, #)-rays but all generalized geodesics incoming
with direction w and outgoing with direction € (see Chapter 9 in [22] and [18]) these are simply
called (w, §)-rays. In general, there exist (w, §)-rays with grazing or gliding segments (see Figure 3).

The precise definition of an (w, #)-ray is based on the notion of a generalized bicharacteristic of
the operator 0 = 97 — A, given as trajectories of the generalized Hamilton flow F; in Q generated
by the symbol Y7, &2 — 72 of O (see [20] for a precise definition). In general, F; is not smooth
and in some cases there may exist two different integral curves issued from the same point in the
phase space (see [30] for an example). To avoid this situation we assume that the following generic
condition is satisfied.

(G) If for (z,¢) € T*(0K) the normal curvature of K vanishes of infinite order in direc-
tion £, then 0K is convex at z in direction &.
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y o/

FIGURE 3.

We will now sketch the definition of a generalized bicharacteristics of [J. Let p(z,&) be the
restriction of the principal symbol of [0 to the level surface 7 = 1 (this is the case of motion
with unit speed along geodesics). Notice that in this case the so called zero bicharacteristic set
¥ = p~1(0) coincides with the cosphere bundle S*(€) of €. Given a point z € K, we choose local
coordinates

= (21,...,2n), £ = (&1,---, &)
in T*(R™) so that locally 0K is given by z; = 0 and Q by z; > 0. The coordinates (z,&) can be
chosen so that, up to a non-zero smooth factor, p(z, &) has the form
p(z,€) = & —r(z,¢)

with ' = (z9,...,2,), & = (&,...,&,) and r(z,£’) homogeneous of order 2 in ¢'. Introduce the
sets

Yo = {(2, ) € T*(R")\ {0} : =1 >0},
H={(z,6) €e¥L: 21 =0,7(0,2",¢) > 0},
G={(z,6) €eX: 21 =0,r(0,2',¢)=0}.
The sets H and G are called hyperbolic and glancing set, respectively. Next consider the symbols
ol €) = r(0.5,€), (&', €) = 20,56
and define the diffractive and gliding sets by

Gi={(z,§) € G: n(z',¢) >0},
Gy ={(2,¢) € G: m(2,¢) <0},
respectively. The generalized bicharacteristics are related to the following Hamilton vector fields

(22 e 0y

H,= : :
’ 0¢j Ozj O 0,

J=1
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n
Org 0 drg 0
o =3 (5650 9 58)
=2 YSs OTj RN
We have dep(z, &) # 0 on S*(Q) and dgro(2',€') # 0 on G. Moreover, the above definitions are in-
dependent on the choice of the local coordinates. Using the above local coordinates the generalized
bicharecteristics of [ are defined as follows.

Let I C R be an open interval. A curve 7y : I — S*(Q) is called a generalized bicharacteristic
of [ if there exists a discrete subset B C I such that the following conditions hold:

(i) If v(to) € X U Gy for some ty € I\ B, then ~ is differentiable at ¢, and

1

Colto) = Hy(a(1n).
(ii) If y(t0) € G\ G4 for some ty € I\ B, then
v(t) = (21(t),2'(8), &(2), €' (1))

is differentiable at #; and

(]’1'1 (]51 d

— (o) = —=(to) =0, %(-’E'(t), ' (t)) 1=ty = Hro(v(t0)) -

(iii) If £ € B, then y(t) € X for all t # &g, t € I with |t — #;| sufficiently small. Moreover, in
this case for &5 (2, &) = +/ro(z',€') we have
lm (1) = (0.2'(2), 6 (' (1), € (1)) € .
t—to, £ (t—to)>0
Notice that the functions z(t), &'(t), |£1(¢)| are continuous on I, while the function & (¢) has a
jump discontinuity at any point ¢ € B. Finally, under the condition (G) a generalized bicharacteris-
tic y: R — S*(Q) of O is uniquely extendible in the sense that for each ¢ € R the only generalized

bicharacteristic (up to the change of parameter t) passing through «(¢) is v ([20]; see also vol. III
of [10]).

More generally, working with the restriction of the principal symbol of [] to a level surface
T = 79 # 0, one defines generalized bicharacetristics on the set T*(Q) of all (z,&) € T*() such
that ¢ # 0. Given o = (z,&) € T*(Q), there exists a unique generalized bicharacteristic (z(t), £(t)) €
T*(Q) such that £(0) = = and £(0) = £. Set Fy(z,&) = (z(t),£(t)) for all t € R. This defines a
flow F; : T*(€2) — T*() ([20]) which is sometimes called the generalized geodesic flow on T* ().
Obviously, it leaves the cosphere bundle S*(€2) invariant. At points of transversal reflection at
T3 (Q) the flow F; is discontinuous. To make it continuous, consider the quotient space Ty (Q) =
T*(Q)/ ~ of T*(£2) with respect to the following equivalence relation: p ~ ¢ if and only if p = &
or p,o € T, () and either lim; ~ Fy(p) = o or limp g Fi(p) = 0. Let S;(2) be the image of
S*(Q) in Tb*(Q) Melrose and Sjostrand ([20]) proved that the natural projection of F; on Tb*(Q) is
continuous.

After these definitions a curve v = {z(t) € 2 : t € R} is called an (w, §)-ray if there exist real
numbers #; < to so that

V() = ((t),£(t) € S™()
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is a generalized bicharacteristic of [ and
E(t) =w for t <ty1, £(t) =6 for ¢t > i,

provided that the time ¢ increases when we move along 4. Denote by L, 4(£2) the set of all (w,6)-
rays in 2. The sojourn time T5 of 6 € L, () is defined as the length of the part of § lying in
H,NH_y.

Turning to the problem of the behavior of s(t,6,w) near singularities, assume that v is a fixed
non-degenerate ordinary reflecting (w,#)-ray such that
(3.2) T, # Ts for every 6 € L, () \ {7}
By using the continuity of the generalized Hamilton flow, it is easy to show that
(-Ty — €,~Ty +€) Nsing supp s(t,0,w) = {-T,}

for € > 0 sufficiently small. The singularity of s(t,0,w) at t = —T., can be investigated using a

global construction of an asymptotic solution as a Fourier integral operator ([6], [21], Chapter 9 in
[22]).

Theorem 1. ([21]) Under the assumption (3.2) we have

(3.3) ~T, € sing supp s(t,6,w)
and for t close to —T’, the scattering kernel has the form
1 \(m=-1)/2
(3.4) stho.w) = (5=) (=)™ e (i2p,)
27 2

§n=D/2(¢ 4 T,) + lower order singularities.

detdJ,(uy) < v(q1),w > ‘*1/2
< v(qm), 0 >

Here m. is the number of reflections of vy, qi (resp. qm) is the first (resp. the last) reflection point
of v and B, € Z.

Notice that for strictly convex obstacles we have 3, = —%, q1 = ¢, and 0 — w is parallel to
v(q1).

4. PROPERTIES OF REFLECTING (w, f)- RAYS

To apply the result of the previous section we need the condition (3.2) and it is desirable to
prove that there exists a subset S C 8"~! x §”~! with zero Lebesgue measure such that for all
directions (w,f) € 8" ! x 8"~ 1\ § the corresponding (w, ) - rays satisfy (3.2). Here one has to
deal with all (generalized) (w,#)-rays and this makes the problem rather difficult. We start with a
result concerning the ordinary reflecting (w, 0)-rays only.

Theorem 2. ([23]) For every w € S" ! there exists a set S(w) C 8"~ the complement of which is
a countable union of compact subsets of S*~ ! of measure zero such that if 0 € S(w), then any two
different ordinary reflecting (w, 0)-rays in Q have distinct sojourn times.



14 V. PETKOV AND L. STOYANOV

In what follows we sketch the proof of the above theorem.

Let Uy be an open ball with center 0 and radius a containing K and let Z = Z, be the
hyperplane introduced in Section 3. Given an integer k > 1, denote by Uy the set of those u € Z
for which the trajectory ~y(u) of the generalized Hamiltonian flow starting in u with direction w is
an ordinary reflecting ray with exactly k reflection points. Let Jix(u) € S ! be the direction of
v(u) after the last reflection. Obviously, Uy is open in Z and the map

Jp: U, > 2z — Jk(’ll,) e st

is smooth.

Now let us fix two arbitrary integers k > 1, s > 1. For u € U, denote by f(u) the sojourn time
of the scattering ray determined by ~y(u). In the same way denote by g(v) the sojourn time of the
scattering ray with s reflections determined by v € V. The functions f : U, — R, ¢g:V, — R
are smooth.

For u € Uy denote by z1(u), ..., zx(u) the successive reflection points of y(u). The correspond-
ing maps x; : Uy — 0K are smooth and for every y € 0K we denote by N(y) the unit normal to
OK pointing into €. Thus for u € Uy we obtain

_ zk(u) —zp_1(u) _ T (u) — zp—1(u)
T = e~ X o) ]

. N(ow(w) )N (@e(w))
and
k—1
F() = 3" i (w) = i(w) | + ¢ =2,
=0

where zo(u) (resp. z11(u)) denotes the orthogonal projection of xq(u) (resp. xi(u)) on Z (resp.
Z_9)), 0 = Ji(u) and t = ||z (u) — xk11(uw)|- We obtain easily t = a — (0, x), so
k—1

F) = S i () — ma@)l] — (o), Jy(w)) —
1=0
For v € V; the successive reflection points of y(v) will be denoted by y1(v),...,ys(v). Next we set
yo(v) = v and we define y,,1(v) in the same way as zx,1(u). Now denote by W (k,s) the set of
those (u,v) € Uy x Vg for which

Ji(u) = Js(v), f(u) =g(v)
and

rank dJg(u) = rank dJs(v) =n — 1.

Lemma 1. W(k,s) is a smooth (n — 2)-dimensional submanifold of U X Us.

Proof of Lemma 1. Consider a point wg = (ug,vg) € W (k, s). Since rank dJi(ug) = rank dJs(vg) =
n — 1, there exists a neighborhood U of wq in Uy x Vi such that for every (u,v) € U we have

rank dJi(u) = rank dJs(v) =n — 1.
Define the map L : U — R" by

L(u,v) = ()\(u,v), (X(j)(“"v)>1<j<n—l)
with o

Au,v) = f(u) = g(v), x(u,0) = Jr(u) = Js(v).
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Clearly, W (k,s) N U C L '(0) and to prove that W (k,s) is a smooth (n — 2)-dimensional
submanifold of Uy, x Vj it is sufficient to show that L is a submersion at any point wq of L~! (0).
For this purpose we assume without loss of the generality that 6, # 0. Suppose that

n—1

> A; grad xU) (wp) + C grad A(wp) = 0

j=1
with some constants A;, C. Calculating the derivatives involved above and using the geometrical
meaning of f, g, Ji and J,, one derives A} = ... A, 1 = C = 0. Thus L is a submersion at wy. We

refer to [23] for more details. m

Proof of Theorem 2. Consider the map ¢ : U, x Vs — S ! given by ¢(u,v) = Ji(u). This
map is smooth and dim W (k,s) = n — 2 shows that ¢(W (k,s)) is a countable union of compact
subsets of 8”1 of measure zero. Clearly

F, = {u € Uy : rankdJi(u) < n — 2}

is a countable union of compact subsets. By Sard’s theorem, .J;(F}) has measure 0 in S”~! for all
k, so F = J, Ji(F})) also has measure zero in S"'. Hence the subset

Sw) ="\ (Ful UKW (k5)) .
k s
of 8"~ ! has the desired properties. ®

Setting S = {(w,0) € S" ' x 8" ' : § € S(w)}, we see that for (w,0) € S any two different
ordinary reflecting rays in Q have distinct sojourn times and the complement of S in 8"~! x §"~!
has measure 0.

To deal with reflecting rays with tangent segments, we introduce a more general type of tra-
jectories. A curve v in R" is called an (w, §)-trajectory for Q if it has the form v = (J}_, /;, where
li =[xy xipa], i =1,...,8s =1, z; € OK for all i = 1,... s, while [y (resp. [,) is the infinite ray
starting at 27 (resp. xg) with direction —w (resp. #) and for every ¢ = 0,1,...,s — 1, [; and [;44
satisfy the law of reflection at x; with respect to OK. It is clear that every reflecting (w, 6)-ray is
an (w, #)-trajectory, but the converse is not true in general since some (w, #)-trajectory may inter-
sect transversally K. On the other hand, every (w,#)-reflecting ray with tangent segment is an
(w, B)-trajectory. We have the following.

Theorem 3. ([23]) There exists T C S"! x S"! the complement of which is a countable union
of compact subsets of measure zero in S" 1 x 8" such that for (w,0) € T all (w,d)-trajectories
for Q are ordinary.

The proof of the above result follows the idea of the proof of Theorem 2. For simplicity set
0K = X. Fix two integers k and s so that s > 1, 0 < k < s. Let M(s, k) be the set of those
(= (wimy;0) € My =S""x X() x X x 87!

with & = (z1,...,zs) such that there exists an (w, #)-trajectory for X with successive transversal
reflection points z1, ..., s, the segment [z, zx1] of which is tangent to X at y € (xx, zx11). Here

X(G) = {(mla---ams) € X*: €Ty 7&7")3 7‘757}

and z( (resp. zsy1) is the orthogonal projection of z; on Z, (resp. of x5 on Z_y).
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The main step in the proof is to show that M (s, k) is a smooth submanifold of M, of dimension
2n — 3. This follows from a specially adapted parametrization of M (s, k); see [23] for details. Using
this one obtains Theorem 3 easily. Consider the projection

ms:t Mg =S"""x X®) x X x 8" — 8" x g1
given by
ms(w; 3y 0) = (w, 0),
and introduce the open subsets of M
Ur(s, k) = {(w;z;y;6) € My : xg) # xgcz)_l}, r=1,...,n.
Then M, (s, k) = M (s, k)NU,(s,k) is a smooth submanifold of M of dimension 2n—3 < dim(S™ ! x
S~ 1). Since m, is smooth, the set L,(s,k) = m, (Mr(s,k)> C 8" ! x 8! has measure zero.

Consequently, for the covering M, (s, k) = U(;; K; with K; compact, one gets that

Ly (s, k) = | mo(K;)
j=1

is a countable union of compact subsets of S~ x S”~! of measure zero. Setting

T=s""xs""\ J fj Lo(s, k),

0<k<sr=1

completes the proof of Theorem 3. B

Finally, we find a subset 4 C S™ ! x 8"~ ! such that for (w,0) € T NU all reflecting (w, 6)-
rays are ordinary and non-degenerate. So there exists a subset A = TNUNS of S*~! x §»~!
of full measure so that for every (w,f) € A the corresponding (w, #)-reflecting rays are ordinary,
non-degenerate and with distinct sojourn times.

The study of the generalized (w, #)-rays leads to many difficulties. However it is quite natural
to expect that for almost all (w,#) in S ! x S"~! there are no generalized (w,f)-rays different
from reflecting ones. This will be discuss in details in the next section.

5. POISSON RELATION FOR THE SCATTERING KERNEL
Let K be an obstacle in R", n > 3, n odd, with C'*° boundary 0K so that
Kc{zeR": |z|] <po}

and let 2 = R? \ K. In what follows we assume that K satisfies the condition (G) from Section 3.
Let : T*(R x Q) — € be the natural projection.

The following result of [21], [1] (cf. also Chapter 8 in [22] and [18]) shows that for w # 6 all
singularities in ¢ of s(¢,0,w) are given by (negative) sojourn times.

Theorem 4. ([21], [1]) For w # 6 we have
(5.1) sing supp s(t,0,w) C {-Ty :v € L, ()}
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In analogy with the well-known Poisson relation for the Laplacian on Riemannian manifolds,
(5.1) is called the Poisson relation for the scattering kernel, while the set of all T, where v €
L,0(), (w,0) € S" 1 x 8" is called the scattering length spectrum of K.

The proof of the above theorem is based on results on propagation of singularities along gen-
eralized bicharactaristics, using some properties of oscillatory integrals. Below we present a brief
idea of it. Consider a fixed ¢y so that

—tg ¢ {=Ty: v € Lu,p(2)}.
Take T' > 0 with |¢g| < T and introduce the set
I'r = {T"/ : |T,y‘ < T, AS E(w,g)(Q)}

The continuity of the generalized Hamiltonian flow implies that 'z is closed, so we can choose
€o > 0 so that

T, ¢ [to — €0, to + €], Vy € E(w’g)(ﬂ) .
Let p(t) € Cg°(R), p(t) =1 for |t| < 1/2, p(t) =0 for |t| > 1. Set ps(t) = p(t/0) for 0 < § < ey/2.
To prove that ¢y ¢ sing supp s(t, 6, w), it is sufficient to show that the integral

J()‘) = (S(t, 9, w)a pé(t + tﬂ)eii)\t>

d* 0
—ch )R k//(’m —(@0) df?((m,())—t—l—to)%(t,m;w)dtdSm, ¢, = const

is rapldly decreasmg with respect to A. Here w(t, z;w) = V (¢, 2;w) + §(t — (x,w)), where V (¢, z; w)
is defined in Section 3. Let us treat the term with & = 0, the other ones can be examined by a
similar argument.

Without loss of the generality we may assume that w = (0,...,0,1). Set
Z(r)={x eR": z, =7},

where 7 < —pg and let Rf = {t € R: t > 7}. To localize the problem, introduce a partition of
unity on Z(7) given by functions

pi(7") € CP(R" 1), o' = (21,...,Zn_1).
Consider the problems:
Ov; =0 inRf x R,
gj(ﬂ z) = pj(z")o(r — '),
i (1.2) = ()0 (1 — 2n)

OW; =0 inR x €,

Wi =0 onR x 99,

Wy(T z) = pj(z)o(r — 2'),
8t (T T) = ‘PJ( )5,(7 — ) .
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Clearly, there exists a compact set Fj C R"~! such that if supp ¢j N Fy =0, then the straight
lines issued from (z',7), ' € supp ¢;, with direction w do not meet JQ. For such j and w # 0 we
have

(5.2) WF((

This implies easily

8Wj)
v / |Rxd9

) N{(t 2,1, O o0) : [ <T+po+1, 2 €09} =0

(5.3) / / A0 ps (2, 0) — ¢ + tg)%dtdSm =O(A™), Vm e N.
R JoQ ov

Now set Fy = {z € R" : 2’ € F{, x,, = 7} and denote by [(ug) the straight line passing through
ug € Fy with direction w. There are three cases:

(i) 0 # l(ug) N K C 09,
(ii) I(up) meets transversally 02 at 1 (ug),
(iii) I(ug) is tangent to 9 at z1(up) and w is an asymptotic direction for 9Q at x (ug).

In the case (i) the generalized bicharecteristic vy with Tm (7o) = I(ug) is uniquely extendible,
and results on propagation of singularities lead to (5.2) which in turn gives (5.3). To deal with the
case (ii), set t1(u) = |u — z1(u)|, u € Fy. The solution v; with such j is given by an oscillatory
integral and W F(v;) is included in the set of all (¢,z, £0, Fw) € T*(R"*1)\ {0} such that o > 0
and there exist £ € Z(7), ' € supp ¢;, s > 0 with ¢t = 7 £ 0s, © = & & osw. We modify v; on the
intersection of a small neighborhood of z;(ug) with the interior of K so that the modified function
v; has the properties

vj=vjfort <t;+e 0; =0fort >t + 2, e > 0.

Here t; = max{t1(u) : u € O(ug)}, where O(ug) is a sufficiently small neighborhood of ug with
supp ¢; C O(ug) and e is small enough. Moreover, we preserve the condition

O5; =0 in Rf x Q.

Set h; = (77]')\R+X(’m and notice that h; = 0 for ¢ sufficiently close to 7. We extend h; as 0 for
t < 7 and consider the solution w; of the problem

Ow; =0 inR x Q,
wj+h_7-:00n RX@Q,
w; =0 for ¢t < 7.

We have %(wj + 6-7)\Rix89 = 0 and we are going to study the integrals

- 9 9
Is(\) = /R /8Q NE=<20) (g s —t+t0)($— <v,0> E)@j dtds, |

y 8 8
) _ IANt—<z,0>) )
J],(;()\) / /a e ps(< x,0 > —t+t0)<—y— <v,0> —t>wjdtd5m .
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This study is based on certain information about the generalized wave front set

W Fy(v) € T*(R x Q) UT*(R x 9Q) = T*(R x Q) ,

where the map ~ is the one introduced in Section 3 (see [20] for the properties of W F,(u)). For
x € 02 we have

~T*R x Q)3 (L2, 7,8) — (tz,7,¢m,00) € T*(R x 0Q) .

The crucial step in the analysis of I;5(\) and J; () is the following.

Proposition 1. Set T1 = py + |to| + 1 and suppose that there exists n > 0 such that
WEy(w;) 0 {p € TR x Q) : o=~ (2,1, -60), Ty 47 <t < Ty + 25} =0,

WE(#;) N {p € T*(RxQ): p=~(t,2,1,-0), Ty +1 < t <T1 + 21} = 0.
Then
Lis(A) = O(AT™), Jjs(A) = O(IAI™™), Vm € N

A similar argument can be applied in the case (iii) which completes the proof of Theorem 4. m

While in general the relation (5.1) is not an equality, it turns out that there exists a set R of
full measure in S” ! x S”~! such that for (w, ) € R the Poisson relation becomes an equality. This
is rather important for some inverse scattering problems.

It is proved in [27] that for each T' > 0, S*(€2) can be represented as a countable union of Borel
subsets S; such that on each S; , {ft}ggtST coincides with the restriction of an one-parameter

family gt(“ of Lipschitz maps defined in a neighborhood of S; in T*(Q), taking values in T*(R")

and such that for all but finitely many ¢, g,@ is smooth and its restriction to smooth local cross-
sections is a contact transformation. As a consequence of this regularity property one gets the
following.

Theorem 5. ([27]) The generalized geodesic flow Fy preserves the Hausdorff dimension of Borel
subsets of S*(2).

This would have been a trivial fact if the maps F; were Lipschitz. However, it is well-known
and easy to see that this not the case. Locally near a point p € §*(£2), the map F; is Lipschitz on
a neighborhood of p for small |t| when p ¢ S}, () or p is a transversal reflection point. Whenever
p € G, the map F; is not Lipschitz (cf. [20] or [10], vol. III). For example, in the simplest case of
a diffractive tangent point p € G4, the map F; has a singularity of ”square root type” at p, so it is
clearly not Lipschitz.

Let T': I — S*(Q) be a generalized geodesic in 2. We say that T' is gliding on 0K if the set
of those ¢ € I such that I'(f) € G is dense in I. In this case the trajectory {I'(t) : ¢t € I} is called
a gliding segment on OK.

Given T > 0, denote by Ty the set of those p € S*(Q) such that {F(p) : 0 <t <T} (G4 # 0,
that is the trajectory {Fi(p) : 0 <t < T} contains a non-trivial gliding segment on 0K.



20 V. PETKOV AND L. STOYANOV

Lemma 2. ([27]) Let Lo be an isotropic submanifold of S*(2)\ S}, () of dimension n—1 such that
H,(p) is not tangent to Ly at any p € Lo. Then for every T > 0 we have dimy (Fr(TrNLy)) < n—2.
Moreover, if for a given T we have Fr(Lg) C S*(2) \ S5 (2), then there exists a countable family

{Z} of smooth (n—2)-dimensional isotropic submanifolds of S*(2) such that Fr(TrNLy) C UIm.

Using Theorems 1 4 and Lemma 2 above, one derives the following.

Theorem 6. ([27]) There exists a subset R of full Lebesque measure in S™ ' x S~ such that for
each (w,0) € R the only (w,0)-rays in Q are reflecting (w,0)-rays and

sing supp s(t,0,w) = {-T, : v € L, 9(Q)} .

In what follows we sketch the proof of this theorem.

It follows from the results of Melrose and Sjostrand [20] (see also Theorem 24.3.9 in [10], vol.
ITT) that every (w,f)-ray 7 in Q that does not contain gliding segments is a reflecting (w, 6)-ray,
i.e. it consists of finitely many straight line segments in  (cf. Section 3).

Proof of Theorem 6. We are going to show that there exists a subset R of full Lebesgue measure
in S"! x 8"~ ! guch that for each (w,6) € R the only (w,#)-rays in Q are reflecting (w, #)-rays.

As before, denote by Uy = {z € R" : |z| < ppo} an open ball in R containing the obstacle
K and let C be the boundary sphere of Uy. Fix w € S"~!, 27 € C and consider the generalized
geodesic (z(t),£(t)) = Fi(xg,w). Let T > 0 be such that z(T) € C. Denote

So={(z,¢) € S*(Q): z € C, { is transversal to C}.

Since ¥ = p~1(0) = S*(12), using the notation SA(2) = {(z,£) € S*() : = € C}, we have
Sy =SoNY ={(z,€&) € S5() : £ is transversal to C'}. Then S is a symplectic submanifold of S.
Let P : Sg — S be the local map defined in a neighborhood of (zg,w) using the shift along the
flow F;; then P(S]) C Sj. Consider the Lagrangian submanifold

Lo={(z,&) €S):¢&=w}

of Sj. Setting 7 = T7 and applying Lemma 2 to Ly, gives that Fr(Lo N T) is contained in a
countable union of isotropic (n — 2)-dimensional submanifolds of S. Since locally near (z(,w) the
map Fr : Sg — Fr(Sp) is smooth, Fr(Sp) is a (2n — 1)-dimensional submanifold of S transversal
to the flow F; at Fr(xg,w). Consequently, locally near Fr(zg,w) € Fr(Sg) NSy the shift Q along
Fi from Fr(Sp) to Sy (forwards or backwards) is a smooth map. Moreover Q maps Fr(S]) into S},
(since p~1(0) is invariant under the flow %), the restriction @ : Fr(S))) — S} is a local symplectic
map, and P = Qo Fr. Hence the set P(LoNT) = Q(Fr(LoNT)) is contained in a countable union
of isotropic (n — 2)-dimensional submanifolds of S. The projection j : S§ — S"71, j(z,&) = &, is
smooth, so Sard’s theorem gives now that the set j(P(LoN 7)) has Lebesgue measure zero in S" 1.
Hence there exists a neighborhood U of zy in C and a subset R, (U) = S" '\ j(P(LNT)) of full
Lebesgue measure in 8" ! such that for € U every generalized (w,f)-ray in € passing through z
with 6 € R, (U) is a reflecting (w,#)-ray. Covering C by a finite family of neighborhoods U;, we
find a subset R, = N;R,,(U;) of full Lebesgue measure in S”~! such that every (w, #)-ray in € with
0 € R, is a reflecting (w, #)-ray. It now follows from Fubini’s theorem that

R ={(w,0) €S" ' xS"1:0ecR,}
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is a subset of full Lebesgue measure in 8" ! x S"~!. Moreover it is clear that for (w,0) € R’, all
(w, f)-rays in Q are reflecting ones.

According to Theorems 2 and 3 above, there exists a subset R” = T NS of full Lebesgue
measure in S” ' x 8"~ such that for (w,0) € R" every reflecting (w, #)-ray in  has no tangencies
to 0K and T, # Ty whenever 7 and ¢ are different reflecting (w, #)-rays in Q. Then R = R' N R"
has full Lebesgue measure in S"~! x S"~!'. Given (w,f) € R, it follows from Theorem 1 that
—T, € sing supp s(t,0,w) for all v € L,, 4(2). Combining this with Theorem 4 completes the proof
of the theorem. m

Using Theorem 6 we will now derive a simple but rather important property of obstacles ([12];
cf. also Proposition 2.3 in [27]): most rays incoming from infinity are not trapped by the obstacle
K. Here it is essential that we consider points in the set

So(Q) ={(#,§) € S5(Q) sz € C},

where C' as before is the boundary sphere of an open ball Uy containing K. In general it is not
true that the trapped points (z,£) € S*(Qx) with 2 near K form a set of Lebesgue measure zero
in S*(Qg). The example of M. Livshitz (cf. Section 7 below ) shows that in some cases the set of
trapped points may even contain a non-trivial open subset of S*(Q).

Proposition 2. The set of those (x,§) € S{(Q) such that the trajectory {Fi(z,&) : t > 0} is
bounded has Lebesque measure zero in S¢.(€2).

Proof. For (z,w) € S;.(2), let §(x, w) be the generalized geodesic in Q issued from z in direction w.
Assume that there exists a subset W of positive Lebesgue measure in S (€2) such that §(z,w) C Uy
for all (z,w) € W. According to Theorem 3 and to an argument from the proof of Theorem
6 above (or using Lemma 2 duirectly), we may assume that for all (z,w) € W the generalized
geodesic d(x,w) does not contain gliding segments on K and has only transversal reflections at
0K. Given (z,w) € W, denote by z’ the first common point of §(z,w) with 9K andby w’ the
reflected direction of 0(z,w) at 2/, i.e. W' = w — 2(w,v(z"))r(z'), where v(z') is the outer unit
normal to K at z'. Then the set W' = {(a',w') € S5, (Q) : (z,w) € W} is a subset of positive
Lebesgue measure in S}, (£2).

Denote by M C S}, (£2) the set of those (y,n) € S5, (€2) for which the standard billiard ball
map B is well-defined. The map B (as a local map) preserves the so called Liouville’s measure y
on M which is absolutely continuous with respect to the Lebesgue measure on S}, (€2).

Next, we use the argument from the proof of the Poincaré Recurrence Theorem in ergodic
theory. Tt follows from the definition of W' that B¥(W') ¢ M and pu(B¥(W") = p(W') > 0
for all £k = 0,1,2,.... On the other hand, in the situation under consideration we clearly have
(U B¥(W')) < co. Therefore there exist non-negative integers k < m with B¥(W')NB™(W') #
(. Since B is invertible, this means that there exists (z',w') € W' n B ¥(W'). Then (2',u') =
B(y,n) for some (y,n) € B™*~1(W') ¢ M. Now the choice of W and the definition of W’ show
that W' has no common points with B(M). This is a contradiction which proves the proposition. m

6. EXISTENCE OF SCATTERING RAYS WITH SOJOURN TIMES TENDING TO INFINITY

In this section we study the existence of (w, #)-rays for trapping obstacles. The image S; (2) =~
(S*(92)) of the characteristic set S*(€2) is called the compressed characteristic set and the image
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7 =~ () of a generalized bicharacteristic defined in Section 3 is called a compressed generalized
bicharacteristic.

Let again Uy be an open ball containing K and C be its boundary sphere. Given a point
z = (x,&) € S;(Q), consider the compressed generalized bicharacteristic

2(t) = (2(£),£(1)) € S5 ()

parametrized by the time ¢ and passing through z for ¢ = 0. Denote by T'(z) € RT Uoc the maximal
T > 0 such that z(t) € Uy for 0 < t < T'(2). We introduce the trapping set

Yoo ={(2,€) € S;(Q): z € C, T(2) = oo}

It follows from the continuity of the generalized Hamiltonian flow that >, is closed in 3. The
obstacle K is called trapping if Yo, # 0. We have the following.

Theorem 7. ([23]) Let the obstacle K be trapping and satisfy the condition (G). Then there exists
a sequence of ordinary reflecting non-degenerate scattering rays v, with sojourn times T, — oc.

Proof. It is easy to see that ¥, # S;(€2), hence the boundary 0% of ¥ in S;(€2) is not empty.
Take a point Z € 0X.«. Since S; () \ Xoc # 0, there exists a sequence z,, = (T, Em) € S5 (), zp €
C, such that z,, ¢ ¥ for all m and z,, — 2. Consider the compressed generalized bicharacteristics
Yo (t) = (2m, Em) passing through z, for ¢ = 0 and such that T'(z,,) < oc. The sequence {T'(z,,)}
is unbounded, since otherwise we will have T'(Z) < oo in contradiction with Z € 3. Thus we
may assume that T'(z,) oo Set Ym = Tm(T(2m)) € C, wm = Em(T(2m)) € S !. Taking

a subsequence, we may assume that y,, — u € C, w,, — w € S"'. For the generalized
bicharacteristics y,(t) = (y(t),£(t)) issued from p = (u,w) we have T'(u) = oo and y(t) € Uy for
t>0.

Let Z, be the hyperplane passing through « and orthogonal to w and let Z,, be the set of
those points y € Z,, for which the generalized bicharacteristic v,, passing through p, = (y,w) has
the property T'(py) = oo. The set Zy is closed in Z,, Z, # 0 and Zs # Z,. Thus there exists
a sequence of points u,, — yo for some yy € Z, with u,, € Z, \ Zy such that T'(u,,,) < oo for
all m and T'(u,,,) — oco. Applying Proposition 2, we can approximate 7, by ordinary reflecting
rays s, with sojourn times going to infinity and by a second approximation we may choose the
ordinary reflecting rays 7;, to be non-degenerate.

Now consider a fixed ordinary reflecting (w/,,6,,)-ray with sojourn time T,, which is non-

m’m
degenerate. In general it is possible to have other (generalized) (wh,, 9;,1) -rays with the same sojourn
time and Tj,, could be a non-isolated point in s(t,w’,, 6! ). Let A C S !x 8"~ ! be the set introduced

at the end of Section 4 and let R ¢ S” ! x S” ! be the set of Theorem 6. Let
E=RNAcCS" ' x8" !

Then for (w,f) € Z each (w,#)-ray is ordinary reflecting and non-degenerate. By applying the in-
verse mapping theorem, it is easy to see that we may approximate (w/,,6.,) by a pair (vl ,0) € =2

my’m m’ m
sufficiently close to (wm, 6!.) so that there exist ordinary reflecting non-degenerate (w61 )-rays

with sojourn times 7)) — oo (see [23] for more details). m

The sojourn times 7} are isolated points in s(¢,w! . 0) and the argument of Section 3 based
on (3.4) implies that following.
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Theorem 8. Under the assumptions of Theorem 7 there exists a sequence (wWp,,Om) € S* ! x 71
and ordinary reflecting non-degenerate reflecting (wm, Om)-rays with sojourn times T,, — o0 so
that

(6.1) —T,, € sing supp $(t,wm,0n), Ym € N.

The relation (6.1) was called property (S) in [24], and there we conjectured that every trapping
obstacle has the property (S). The above result shows that for generic obstacles this conjecture
is true. Moreover, the above argument implies that for each m € N there exists a set II,,, C
S"~1 x §"~1 with positive measure €, > 0 so that the (w,#)-rays with (w,0) € II,, produce
singularities —7,, < —m of the scattering kernel s(¢,w, ). Thus for obstacles satisfying (S) some
sojourn times can be observed after a sufficiently long time.

The property (S) leads to some interesting results concerning the behavior of the modified
resolvent of the Laplacian [23]. For Im A > 0 consider the outgoing resolvent R(\) = (—A — A%)~!
of the Laplacian in © with Dirichlet boundary conditions on 9€2. The outgoing condition means
that for f € C§°(Q2) there exists g(z) € C§°(R") so that we have

R(X) f(z) = Ro(N)g(z), |z = oo,
where
Ro(A) = (- A~ X*) 712 Ly (RY) —— Higo(R")
is the outgoing resolvent of the free Laplacian in R"” related to the outgoing Green function intro-
duced in Section 2. The operator

R(A) : Liomp() 3 f — RO\ f € Higo()

comp

has a meromorphic continuation in C with poles A;, Im A; < 0, called resonances ([12], [25]). Let
xi(z) € C*(R™), i = 1,2 be cut-off functions such that y;(z) = 1 on a neighborhood of K and
x1(z) =1 on supp x2(z). It is easy to see that the modified resolvent

R(\) = x1R\)x2

has a meromorphic continuation in C. The poles of R(\) are independent of the choice of x; and
they coincide with their multiplicities with those of the resonances (see [12], [25]). On the other
hand, the scattering amplitude a(X,w, ) also admits a meromorphic continuation in C and the
poles of this continuation and their multiplicities are the same as those of the resonances (see [12]).
From the general results on propagation of singularities ([20]) it follows that if K is non-trapping,
there exist € > 0 and d > 0 so that R(\) has no poles in the domain

Ucg={N€C:d—elog(l+|\) <Tm\ < 0}.

For trapping obstacles we expect to have poles in all domains U, 4. For the moment this is an
open problem and we have a weaker result.

Theorem 9. ([23]) Assume that there exists a sequence of ordinary reflecting (wm,Om)-rays in Q
with sojourn times Ty, — oo. Let ® € C§°(R) be such that supp ® C (—1,1), ®(t) =1 for |t| < %
Assume that there exists a sequence 7y, — 0 of non-zero real numbers and an integer k independent
on m such that

L+ T,

Tm

Fia [0 (=) st wms 0) || 2 (em = om(DINE, ]A] = o,
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where ¢, > 0. Then there are two possibilities:
(i) For each e > 0 and each d > 0, the modified resolvent R(\) has poles in the domain U, 4.

(ii) For some € > 0, d > 0 the modified resolvent R()\) is holomorphic in Uea but for all
a>0,peN, k€N we have

sup (1 + ‘)\‘)*pe*(l‘lm)\‘||R()\)(70||H1(Q) = +00.
/\GUe,da”‘PHHk(Q):l

It is natural to make the conjecture that under the assumption of Theorem 9 the case (i) always
takes place.

7. RIGIDITY OF THE SCATTERING LENGTH SPECTRUM

Fix again a large open ball Uy in R*, n > 3, n odd? and let C = 9U;. Throughout this
section we consider obstacles K in R” contained in Uy with smooth boundaries 0K that satisfy
the condition (G) from Section 3 and such that yx (o) is a non-degenerate simply reflecting ray for
almost all 0 € S§(Q) such that yx (o) NIK # 0. Denote by Ky the class of obstacles with these
properties. One can derive from [22] (see Chapter 3 there) that Ky is of second Baire category (with
respect to the C>° Whitney topology; cf. [8]) in the class of all obstacles with smooth boundaries.

Since in this section we deal with more than one obstacle, it is convenient to replace the
notation Q, Fy, s(t,w,0), T;(Q) and S;(Q) used so far (cf. Section 3 for the latter two) by Q,

}}(K), sk (t,w, ), Tb*(QK) and S; (Q ), respectively.
A point o = (z,w) € T*(Qk) is called a trapped point if at least one of the curves {prl(}"t(K) (0)) :

t <0} and {prl(ft(K)(a)) :t > 0} in Qg is bounded. Here we use the notation pr;(y,n) = y and
pry(y.n) = 1. Denote by Trap(Qg) the set of all trapped points in T*(Qg). Notice that the
set Yoo used in Section 6 coincides with Trap(Qx) NS¢ (R ). It is easy to see that Yoo # 0 iff
Trap(Qk) # 0. So, if Trap(Qk) = 0, then K is a non-trapping obstacle. It is known for example
that all star-shaped obstacles are non-trapping.

The scattering length spectrum (SLS) of K is by definition the family of sets of real numbers
SLg = {SLi(w,0)}, 9 where (w,0) runs over 8" ' x 8" " and SLg (w,#) is the set of sojourn
times T, of all (w,#)-rays v in Qg. Thus, SLk is a map which assigns to each pair of directions
(w,0) a set SLi(w,0) of real numbers.

In this section we discuss the problem of recovering information about the geometry of the
obstacle K from its SLS. Two obstacles K and L in R are said to have almost the same SLS if
there exists a subset R of full Lebesgue measure in S"~! x §”~! such that SLx (w,0) = SLz(w, )
for all (w,f) € R. We will say that a property P of obstacles in R” can be recovered by the SLS
of the obstacle if whenever K and L have almost the same SLS and K has property P, then L has
property P as well.

It follows from results of A. Majda [15] (see also Majda and Ralston [16]) and P. Lax and R.

Phillips [13] that the convex hull K of K can be recovered from SLg. Consequently, in the class

2In fact, most of the considerations in this section are purely geometrical and apply also in the case when n is
even, n > 2.
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of convex obstacles and also in the class of connected obstacles with real analytic boundaries, K is
completely determined by its SLS.

EXAMPLE 7.1. The following example of M. Livshits (cf. Chapter 5 in [18]) shows that in
general SLg does not determine K uniquely. Here the part E is half an ellipse with foci F; and
F;5. The ellipse has the property that any ray intersecting the segment connecting the foci, after
reflection at the boundary, intersects the same segment again. It is now clear that no scattering
ray in the exterior of the obstacle K has a common point with the parts P and @), so these two
“pockets“ cannot be recovered from the SLS of the obstacle. It should be mentioned that this
example is in R? and no examples like this in higher dimensions are known to the authors.

FIGURE 4. Livshits’ Example (adapted from Ch. 5 of [18]).

The problem considered at the beginning of this section is of a global nature. The following sim-
ple example shows that in the corresponding local problem there is no uniqueness (unless possibly
some non-degeneracy conditions are imposed).

EXAMPLE 7.2. Consider two obstacles K and L = L1 U Ly U Lz in R”, n > 2, as shown in the
figure below. Here K and Ly are (strictly) convex domains, while L; and L3 are convex domains.
Moreover K and L9 are symmetric with respect to the hyperplane « containing the flat “top parts”
of 0Ly and OL3. The rays on the figure are generated by some o( (far from K and L). For any o

close to og we have _7-—15([()(0) = ft(L)((r) for £ >> 0 and both trajectories have common points with
the corresponding obstacles (and are non-degenerate). On the other hand, K N L = ().
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FIGURE 5.

It should be mentioned however that the obstacles K and L in this example do not satisfy the
condition G. Whether such examples exist with K and L satisfying G is an open problem.

It turns out that if two obstacles K and L have almost the same SLS, then their generalized
geodesic flows are conjugate with a time preserving conjugacy on the non-trapping parts of their
phase spaces.

Theorem 10. ([28]) If the obstacles K, L € Ky have almost the same SLS, then there exists a
homeomorphism

O Ty (Q) \ Trap(Q) — T3 () \ Trap(r)

with the following properties:
(i) ® defines a symplectic map on an open dense subset ofT (k) \ Trap(k);
(ii) @ maps S;(Qxk) \ Trap(QK) onto Sy (7)) \ Trap(Qr,);
(iii) F} Vo ® =P o .7: for all t € R;
(iv) ( &) = (z,&) for any (z,€) € Tb*(QK)\Trap(QK) =Ty (Qr,)\ Trap(€2r,) such that z ¢ Up.
Conversely, it is not difficult to show that if K, L € Ky are two obstacles for which there exists
a homeomorphism & : S} (Qx) \ Trap(Qx) — S(21,) \ Trap(€,) such that 1) o & = & o £
for all t € R and ® = id on S*(R" \ Uy) \ Trap(€Q2x), then K and L have the same SLS ([28]).

There is a clear analogy between the property described above and the so called lens equivalence
of geodesic flows on Riemannian manifolds without boundary (see [3] and the references there).

We are now going to sketch the proof of Theorem 10. Assume that the obstacles K and L
have almost the same SLS. The existence of the conjugacy ® follows easily from the following main
lemma.

Lemma 3. For every o € S*(R" \ Uy) and every t € R with .7-",5([()(0) € S*(R" \ Up) we have
Fi (o) = FP (o).
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Indeed, given o € T*(Q) \ Trap(Q2x), take ¢ € R so large that f,f(K)(a) € S*(R" \ Up). Then

define ®(0) = f&fg) o t(K)(a). It follows from the above lemma that the definition of ® is correct

and moreover }}(L) o =2do ]-"t(K) for all t € R and ®(0) = o for 0 € T*(R" \ Up) \ Trap(Q).
Clearly @ is a homeomorphism and it follows from the properties of the generalized geodesic flows
([20]) that it is a symplectic map on an open dense subset of Tb*(QK) \ Trap(€Q2x). This shows how
Theorem 10 is derived from Lemma 3.

We now proceed to prove Lemma 3.

Fix for a moment an arbitrary (wg,fy) € S* ' x S~ ! and let § be a non-degenerate simply
reflecting (wog, p)-ray in Qg with reflection points z1,..., 2, (k > 1) and ¢’ is a non-degenerate
simply reflecting (wy, 6p)-ray in Qp with reflection points y1,...,y, (m > 1). Using the non-
degeneracy of § and the Inverse Mapping Theorem one derives the existence of a neighborhood U
of (wp,Bp) in 8" ' x S"! such that for each (w,f) € U there are a unique reflecting (w, 6)-ray
d(w,0) in Qp with reflection points z1(w,0), ..., xx(w,0) close to x1,..., 2k, resp., and a unique
reflecting (w, 0)-ray ¢ (w,0) in Qp with reflection points y1(w,0),...,ym(w,0) close to y1,...,Ym,
respectively.

Lemma 4. Under the above assumptions, suppose in addition that Ty, gy = Ty (,g) for all (w,0) €
U. Then for each (w,0) € U there exist real numbers A(w,0) and p(w,6) such that

(7.1) y1(w,0) = 21 (w,0) + Mw,w , ym(w,0) = z(w,0) + p(w, 0)6.

Proof of Lemma 4. Let (w,0) = (w(u),8(v)), (u,v) € R?"~! x R*~! be a smooth parametrization
of U and let zj(u,v) = zj(w(u),f(v)) and y;(u,v) = y;j(w(u),f(v)). For the functions

k—1
flu,v) = (wlu), 21 (u,0)) + Y lli(u,0) = zita(u,0)]| = (2w, 0), 0(0)),

m—1

g(“‘a 7)) = <w(“‘)a Y1 (“‘7 1))) + Z Hyi(“‘a 7)) o yH—l(“‘a U)H B (ym(ua 7))7 9(“))7
i=1
we have f(u,v) = g(u,v) for all (u,v), therefore the derivatives of these two functions coincide. A
simple calculation gives

k—1
of [ Ow 0z Tix1 — i Oxziy1 Oz oxy,
87@(“) B <8uj’m1> * <w, du;j > * Z < |ziv1 — =i’ Ou;  duy duj’ b)-

=1

. . Ti+1 — Xy . .
Using the notation e; = L ™ and the reflection law at the points z1,...,TE_1, we find

||~’I77:+1 - -7772”

8—f(u)—a—w'r +w—e%+e—e%+
du;j v 811,]-’”1 ‘1’811,]- R ou;j

8.’Iik,] 8’I"k Ow
9 — g -0, — ) =(— .
+<€k 2 — €1, du, >+ <€k 1 " Du 6Uj’x]

0 0 0 0
In the same way one gets 99 _ <—w,y1> . Hence <—w,x]> = <—w,y1> forallj=1,...,n—1,
Ou; Ou; Ou; Ou,

so y1 — 1 = Aw for some A € R.
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Similarly, y,, = xy + p6 for some p € R. ®

In what follows we denote by ]\04 the interior (i.e. the largest open subset) of a subset M of R".
Proof of Lemma 3. Let R be a subset of full Lebesgue measure in 8"~ x S”~! such that
(7.2) SLk(w,0) =SLj(w,0) , (w,0)€R.

Shrinking R if necessary, we will assume that (w,w) ¢ R for any w € S?~!. Then for (w,) € R,

any (w,@)-ray in Qg (and in fact in the exterior of any obstacle) must have at least one reflection

point. Furthermore, using Theorems 3, 4 and 6 above, we may assume that the set R is chosen

in such a way that: (i) for (w,0) € R all (w,0)-rays in Qg (resp. ) are non-degenerate simply

reflecting (w, 6)-rays; (ii) if (w,6) € R and y and § are (w, §)-rays in Qg (resp. €2,), then T, # T;.
It follows from [13] and [15] (see also [16]) that K = L.

Let o¢g = (ug,wp) € S*(SO)K) and tg € R be such that T(K)(Ug) € S*(KOZK) We will show that

to
ft(OK)((I()) = t(OL)(&O). Using various results from [20], [23] and [28], one derives that it is enough to
consider the case when g is non-trapped and (wq, ) € R. Then § = yx(0g) is a non-degenerate
simply reflecting (wg, 6p)-ray in Q.

The essential case to consider is when g (0g) N K # (. Then there exists sy € R with
fgf)(&o) = (20,&0), 20 € 0K, and without loss of generality we will assume sy > 0 and moreover
that sg is the minimal positive number with pr, (]—"S(OK)(UO)) € OK. Let x1 = xg,x9,...,x be
the successive reflection points of §. According to (7.2), there exists a reflecting (wy, 6p)-ray o'
in Q7 with Ty = Ts. Let yi,...,y, be the successive reflection points of §’. The choice of R
and (wp,fy) € R imply that ¢’ is non-degenerate. From the latter one derives that there exist a
neighborhood U of (wg, fy) in 8" ' x 8”1 and a neighborhood U; of z; in K for eachi = 1,...,k
such that for every (w,f) € U there is a unique reflecting (w, #)-ray d(w, ) in Qg with reflection
points z1(w,0) € Uy,...,zx(w,f) € U smoothly depending on (w, ). Similarly, there exists a
neighborhood U]’- of y; in OL for each j =1,...,m such that for every (w,f) € U there is a unique
reflecting (w, 6)-ray ¢'(w, 6) in Q, with reflection points y; (w,8) € Uy, ..., ym(w,0) € U}, smoothly
depending on (w, #). Moreover §(wq, ) = ¢ and &' (wg, Oy) = §'.

According to (7.2), for each (w,0) € R N U there exists a unique reflecting (w, #)-ray 6" (w, 0)
in Q7 with

(7.3) Ts1(w,0) = To(w,0)-

Assuming U is small enough, it then follows that §"(w,f) = ¢'(w, ) for each (w,0) € RNU.
Indeed, otherwise there exists a sequence {(wp,0p)};2; C R NU converging to (wo,fp) such that
8" (wp, 0,) # 0'(wp,0p) for all p. Let Z = Z,,. Denote by u, the (incoming) intersection point
of 0" (wp,0,) with Z; then 0" (wp,0,) = v1.(up,wp). Considering an appropriate subsequence, we
may assume that u, — u € Z as p — oo. Then ¢" = 7 (u,wp) is an (wp, fp)-ray in Q, and
clearly T(;H = lirnp T5"(wp,0p) = Tﬁ”(wo,ﬂo)- Now (73) implies T(;H = T(;(UJO’()O) = T,; and therefore
Tsr = Tyt (wy,00) = Tsr- This and (wo, 6y) € R give §" = ¢'. Hence u belongs to §' = ¢'(wo, 6y) and
therefore for large p, the ray ¢ (wp, 6,) has m reflection points belonging to the neighborhoods U7,
respectively. From the choice of U and the uniqueness of the (w,)-rays ¢'(w, ) for (w,0) € U, it
now follows that ¢"(wp,0,) = 0'(wp,8,). This is a contradiction with the choice of the sequence
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{(wp, 6p)}, which proves that §"(w, ) = ¢'(w, ) for all (w,d) € RN U. Hence

(7.4) T (w,0) = Ts(w,0)

for (w,0) € RNU. This gives that (7.4) holds for all (w,#) € U, and then by Lemma 4 imply that
(7.1) hold for some real numbers \(w, ) and p(w,f) for all (w,0) € U. In particular, §' = vy (09).

Let ft(OK)((I()) = (2,(). Then either ( = wy and z = x1 + swy for some s < 0, or { = y and

z = xy, + sl for some s > 0. The same holds for ]-",(L)(Ug) = (2/,¢'). In both cases (7.1) and (7.4)

Lo
imply (2,¢) = (2/,¢'), ie. Fi)(00) = F(0y). m.

Using the existence of the conjugacy ® and the fact that it is measure preserving with respect
to the canonical measures on S;(€2x) and Sy (€2r,), one derives the following.

Corollary 1. Let the obstacles K and L have almost the same SLS. If the sets of trapped points
of both K and L have Lebesque measure zero, then Vol(K) = Vol(L).

Livshits’ example shows that the above conclusion is not true without any assumption about
the sets of trapped points. Notice that far from the obstacle the trapping set is relatively small. For
example, if C is a large sphere in R” (i.e. it contains K in its interior), a slight modification of the
proof of Proposition 2 above shows that dim(S/(2x) N Trap(Q2x)) < 2n — 3. On the other hand,
in some cases (e.g. Livshits’ example) we have dim(Trap(Qx)NS; (2x)) = 2n —1 = dim(S5; (k).

Another simple consequence of Theorem 10 concerns backscattering rays. Denote by Trap("‘) (0K)
the set of those z € 0K such that (z,vk(z)) € Trap(Qk ), where v (z) is the outward unit normal
to OK at =x.

Suppose that K and L are obstacles with almost the same SLS. Let ® be the conjugacy
from Theorem 10. Given z € 9K \ Trap™ (9K), take an arbitrary ¢ > 0 such that (z,¢) =

}}(K)(.'I;, vi(z)) € S*(R"\Up). Then ]-}(K)(z, —() = (z,vk(z)) and ]-"2({()(2, —() = (2,(). Therefore
(2.0) = 8(2,0) = ®o Fy ) (2,-¢) = Fy) 0 @(z. ) = F3, (2,0)

for (y,n) = t(L)(z, —() we must have y € L and n L OL at y. Thus, ®(z, vk (x)) = (y,vr.(y)) for
some y € OL \ Trap(™ (AL). Setting ¢(z) = y, one gets a homeomorphism

¢ : OK \ Trap™ (0K) — 0L \ Trap™ (L)

such that ¢(z) = y whenever ®(z, vk (z)) = (y,v1(y)). In particular, if dim(Trap™ (0K)) < n — 2
and dim(Trap(™(dL)) < n — 2, it follows that K and L must have the same number of connected
components.

Here we denote by dim(X) the topological dimension of X (cf. for example [4]). Since dim(X) <
dimgy (X)), where dimy(X) is the Hausdorff dimension of the metric space X (cf. e.g. [4]), all
assumptions of the form “dim(X) < a” can be replaced by “dimy(X) < a”.

It seems natural to conjecture that in the case of non-trapping obstacles the SLS uniquely
determines the obstacle. While this is still an open problem, using Theorem 10 and backscattering
rays as above, one can prove this conjecture at least for star-shaped obstacles (as mentioned above,
these are necessarily non-trapping).

Proposition 3. ([28]) Let K and L have almost the same SLS. If K is star-shaped, then L = K.
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Even though the trapping set is relatively small far from the obstacle, in general it may be big
enough to topologically divide S{,(Q2k ), i.e. it may happen that S§(Qk) \ Trap(£2x) has more than
one connected component.

We will denote by 9K (©D) the union of all connected components of 0K that have a common
point with at least one scattering ray in Qg, and call it the observable part of the boundary K.
The obstacle K will be called observable, if 0K = 9K (©b)

Theorem 11. ([29]) Let K, L be obstacles in R with real analytic boundaries that have almost the

same SLS. If K is such that Trap(Qx) does not topologically divide Sf,(Qk ), then 9K (©b) = gr,(0b).
If in addition both K and L are observable, then K = L.

The idea of the proof of Theorem 11 is rather simple. Let Y be the union of all connected
(ob)

components of JK that do not coincide with connected components of L. Assuming Y # (),
(K)

one finds 0 € S*(R" \ U) such that yx (o) = {pr;(F, (o)) : t € R} has a common point with
Y. Consider a smooth curve o(s) in S*(R" \ U) that connects o to a point o(0) = 0( generating
a free ray, i.e. a ray without common points with K. After some regularization of the curve o(s)
(imposing some transversality conditions on it), we choose the smallest s with yx(o(s)) NY # 0.
For p = o(s), the scattering ray vyx(p) has only one common point y with Y which is a tangent
point, and all transversal reflection of its occur at connected components of 0K that coincide
with connected components of L. Then we show that y' € dL for a dense set of points ¢ in a
neighborhood of y in Y. Thus, 0K = 0L near y which is a contradiction with the definition of Y.
We refer the reader to [29] for details.

It is not clear how restrictive the condition that Trap(£2x) does not topologically divide S (2k)
is. It turns out ([29]) that this condition is satisfied when K is a finite disjoint union of strictly
convex domains with C* boundaries. This and Theorem 11 imply the following.

Corollary 2. ([29]) If K is a finite disjoint union of strictly convex domains, K and L have almost
the same SLS and both 0K and OL are real analytic, then K = L.

It is an open problem whether the statement of Corollary 2 remains true for obstacles with C*
boundaries 0K and OL.

Next, we describe a few results from [28] involving scattering rays having tangencies to the
boundary.

Denote by KU™) the class of obstacles K € Ky such that the normal curvature of K does not
vanish of infinite order. From now on until the end of this section we assume that K, L € K1)

Consider an arbitrary scattering ray v in Qx and let X and Y be arbitrary cross-sections of
the incoming and outgoing rays of y. Define the cross-sectional map P : S5 (R") — S5 (R") by

the shift along the flow }}(K). Now assume that the obstacle K and L have almost the same SLS.
It then follows from Theorem 10 that Px = Pr. In particular the singularities of Px and Pr, are
the same, and this implies that for any o¢ = (z0,&) € S*(R" \ Up) \ Trap(Q2k), the ray vi(oo)
contains a point of tangency to 0K if and only if 7 (0g) contains a point of tangency to OL.
Next, suppose that o(s), s € [0,a], is a continuous curve in S*(k) consisting of non-trapped
points. Using an idea of Melrose and Sjostrand [20] involving winding numbers, one shows that if
v ((s)) is simply reflecting for each s, then the number of reflection points of yx (o(s)) is the same
for all s € [0,a]. Now assume that o = o(0) generates a ray yx (o) containing a gliding segment
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on OK. If s N\, 0 are such that each yx(o(sg)) is simply reflecting, it follows from [20] that the
number of reflection points of yx (o(sx)) tends to co. Hence there must be infinitely many s € (0, a
such that .7-',5([()(0(3)) € S*(0K) for some ¢t = t(s). On the other hand if yx (o) is tangent to 0K
but does not contain a gliding segment, then it is not difficult to construct a continuous curve o(s)
(0 <s<a,a>0)in S*(Qx) with 0(0) = o such that y(o(s)) is a simply reflecting ray for all
s € (0,al.

These observation yield that from the SLS of an obstacle one can determine which points
o € S*(Qk) \ Trap(Q k) generate rays containing gliding segments on 0K.

Corollary 3. ([28]) Let K, L have almost the same SLS. If there ezists a scattering ray containing
a gliding segment in Qg , then Qrp has the same property. Consequently, if K is a finite disjoint
union of conver domains in R" and dim(Trap(Q7) N S*(OL)) < 2n — 3, then L is also a finite
disjoint union of convexr domains, moreover K and L must have the same number of connected
components and are therefore diffeomorphic.

A point 0 € S; (k) will be called accessible if it belongs to a connected component of
S&(Q2k )\ Trap(Qx ) containing a point that generates a free ray. Presumably the SLS provides more
substantial information about the behavior of the flow ]-"t(K) near accessible points p € S¢.(Qk)
and correspondingly about parts of 0K that can be reached by rays generated by accessible points.
The following result of [28] shows for example that the SLS determines uniquely the number of

reflection points of simply reflecting rays yx (o) generated by accessible points o.

Proposition 4. ([28]) Let K, L have almost the same SLS. For every connected component W of
S&(Qk) \ Trap(Qk) there exists an integer m = m(K, L, W) such that

(7.5) #(vk (0) NOK) = #(yL(0) NOL) +m

for all 0 € WNUY) . Moreover, m = 0 whenever W is accessible. That is

#(yx (o) NOK) = #(v.(0) N OL)

for any accessible point o.

We refer the reader to [28] for some further results concerning relationship between obstacles
having almost the same SLS.
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