
SOJOURN TIMES, SINGULARITIES OF THE SCATTERING KERNELAND INVERSE PROBLEMSVESSELIN PETKOV AND LUCHEZAR STOYANOVAbstrat. The paper deals with inverse problems in the sattering by obstales in odd dimensionalEulidean spaes. In general, suh problems onern the reovering of the geometri properties ofthe obstale from the information related to the sattering amplitude a(�;!; �), related to the waveequation in the exterior of the obstale with Dirihlet boundary ondition. It turns out that allsingularities of the Fourier transform of a(�;!; �), the so alled sattering kernel, are given by thesojourn (travelling) times of sattering rays in the exterior of the obstale. Apart from that thesesojourn times are a naturally observable data. The purpose of this survey is to desribe severalresults in obstale sattering obtained in the last twenty years onerning sojourn times of satteringrays, and to motivate further study of related inverse sattering problems.1. IntrodutionThe sattering operator S(�) presents a mathematial model for the data observed experimen-tally in many branhes of physis, hemistry and mathematis. The operator S(�) is related tobehavior as the time t! �1 of the solutions of an unperturbed operator L0 and to its perturbationL. The kernel of S(�) � I, the so alled sattering amplitude a(�; !; �), ontains the informationrelated to the perturbation of L0 and this kernel is the leading term of the asymptoti of an out-going solution vs(r�; �) of Lvs = 0 as jxj = r ! 1. Obstale sattering problems arise in manyphysial phenomena and onern the perturbation aused by a bounded obstale K with onnetedomplement 
. In general the inverse sattering problems deal with reovering geometri propertiesof K from information related to the sattering amplitude.Shi�er's result (see [12℄, [2℄) implies that the obstale K is uniquely determined if we know thesattering amplitude a(�; !; �) for � 2 (�; �) � R+ and all !; � 2 Sn�1: Some more preise resultsonerning uniqueness in this inverse sattering problem are known under weaker assumptions (see[2℄, [7℄, [11℄, [26℄ for more details and referenes.) On the other hand, in general in experiments oneannot determine the sattering amplitude for all (outgoing) diretions � 2 Sn�1 or all (inoming)diretions ! 2 Sn�1, while the sojourn (travelling) times of the so alled (!; �)-rays in the exteriorof the obstale give a physially observable data. This naturally leads to the onsideration ofinverse sattering problems involving suh rays. In fat, it turns out that all singularities of theFourier transform s(t; !; �) of a(�; !; �), the so alled sattering kernel, have the form �T , whereT are sojourn times of (!; �)-rays . Moreover, for (!; �) in a set of full measure in Sn�1 � Sn�1the singularities of s(t; !; �) are preisely the numbers of the form �T , that is the so alledPoisson relation beomes an equality (see Setion 5). This leads to some interesting geometrialobservations. The purpose of this survey is to desribe several results in obstale sattering obtainedin the last twenty years onerning sojourn times of (!; �)-rays, and to motivate further study ofrelated inverse sattering problems. 1



2 V. PETKOV AND L. STOYANOVThe sattering amplitude is de�ned in Setion 2 below. The ase of a onvex obstale is thenonsidered in details, and the leading term of the asymptoti of the sattering amplitude as �! +1is derived. Setion 3 is devoted to the Fourier transform of the sattering amplitude, the so alledsattering kernel s(t; �; !), t 2 R, �, ! 2 Sn�1. It turns out that the singularities of s(t; �; !) int are very muh related to the geometry of the obstale K. Namely, these are given by sojourn(travelling) times of sattering rays in the exterior of the obstale inoming with diretion ! andoutgoing with diretion �. This is partiularly easy to see in the ase of a onvex obstale, where asattering ray an have at most one reetion at the boundary �K of the obstale. In the generalase a typial sattering ray is a mutiply reeting ray with reetions at �K. Moreover there areother, more ompliated rays, that have to be taken into aount when studying the singularitiesof the sattering kernel; some of these ontain gliding segments on �K whih are simply geodesiswith respet to the metri on �K indued by the Eulidean struture. All these are generalizedbiharateristis in the sense of Melrose and Sj�ostrand [20℄. Their de�nition is skethed in Setion3 below, and at the end of that setion the leading term of the singularity of s(t; �; !) at t � �T isdesribed, where T is the sojourn time of a sattering ray satisfying some non-degeneray properties.Setion 4 is purely geometrial. Here we give a simple de�nition of a reeting (!; �)-ray, andshow that for almost all (!; �) 2 Sn�1 � Sn�1, the reeting (!; �)-rays in the exterior of K haveno tangenies to �K and any two of them have di�erent sojourn times. These properties, togetherwith non-degeneray of the di�erential ross-setions, play an important role in the analysis ofthe singularities of the sattering kernel. The latter is dealt with in Setion 5. The entral pointhere is the so alled Poisson relation for the sattering kernel, and the �rst half of Setion 5is devoted to the idea of its proof. We then proeed to disuss the question of how often thisrelation beomes an equality. One of the problems to do this is to show that (under ertain non-degeneray assumptions about the obstale) for almost all (!; �) 2 Sn�1 � Sn�1, the (!; �)-rays inthe exterior of K are reeting rays, i.e. they do not ontain gliding segments on the boundary.Combining this with previous results gives that the Poisson relation beomes an equality for almostall (!; �) 2 Sn�1 � Sn�1.In Setion 6 we disuss the existene of simply reeting non-degenerate sattering rays withsojourn times tending to in�nity. This leads to some interesting results onerning the behavior ofthe modi�ed resolvent of the Laplaian.Finally, in Setion 7 the inverse sattering problem is onsidered of reovering geometri infor-mation about the obstale from its sattering length spetrum, i.e. from the set of sojourn times ofsattering rays in the exterior of the obstale1. Pairs of obstales K, L are onsidered suh that for(almost) all (!; �) 2 Sn�1 � Sn�1 the sets of sojourn times of (!; �)-rays in the exteriors of K andL are the same. It then turns out that the generalized geodesi ows in the non-trapping parts ofthe otangent bundles of the exteriors of K and L are onjugated by a time preserving onjugaywhih is almost everywhere smooth and sympleti. Various geometri relationships between Kand L are derived.2. Sattering amplitude for stritly onvex obstalesLet K � Rn ; n � 3; n odd, be a bounded domain with C1 boundary �K and onnetedomplement 
 = Rn nK: Suh K is alled an obstale in Rn . Throughout this paper we deal with1Aording to the Poisson relation, this is equivalent to trying to obtain information about the obstale from thesingularities of the sattering kernel.



SCATTERING PROBLEMS 3the Dirihlet problem for the Laplaian but similar onsiderations an be applied to other boundaryvalue problems. To introdue the sattering amplitude a(�; �; !); (�; !) 2 Sn�1 � Sn�1, onsiderthe outgoing solution vs = vs(x; �) of the problem((� + �2)vs = 0 in Æ
;vs + e�i�hx;!i = 0 on �Ksatisfying the so alled (i�) - outgoing Sommerfeld radiation ondition. This ondition means thatas jxj = r �!1 we havevs(r�; �) = e�i�rr(n�1)=2�a(�; �; !) +O�1r��; x = r� :We an interpret vi = e�i�<x;!> as an inoming plane wave, while vs(x; �) is the outgoing waveobtained after the impat of vi on �K: To obtain a formula for the leading term a(�; �; !) we applythe Green formula ombined with the outgoing ondition and dedue the following representation(2.1) vs(x; �) = Z�KhE�(x� y)�vs�� (y; �)� �E��� (x� y)vs(y; �)idSy ;where E�(x) is the outgoing Green funtionE�(x) = (i�)(n�3)=22(2�)(n�1)=2 e�i�rr(n�1)=2 +O� 1r(n+1)=2�and �(x) is the unit normal to x 2 �K pointing into 
: Next, we multiply (2.1) by ei�rr(n�1)=2,put x = r�, and taking the limit r !1, we get(2.2) a(�; �; !) = (i�)(n�3)=22(2�)(n�1)=2 Z�K�i� < �(x); � > ei�<x;��!> + ei�<x;�>�vs�� (x; �)�dSx ;where < �; � > denotes the salar produt in Rn :Following the physial literature, a(�; �; !) is alled the sattering amplitude. The analysis ofthe leading term of its asymptoti as �! +1 has a long tradition in mathematial physis. Thesimplest ase to deal with is when � 6= ! and K is a stritly onvex obstale. In this ase theintegral I(�) = (i�)(n�1)=22(2�)(n�1)=2 Z�K < �(x); � > ei�<x;��!>dSxis rather easy to study. The phase funtion < x; � � ! > jx2�K has two ritial points x� with< x+; � � ! >= maxy2�K < y; � � ! >;< x�; � � ! >= miny2�K < y; � � ! >;�(x�) = � � � !j� � !j :Here x+ denotes the point in the illuminated region (see Figure 1)�K+(!) = fy 2 �K :< �(y); ! >< 0grelated to !, while x� lies in the shadow region�K�(!) = fy 2 �K :< �(y); ! >> 0g;



4 V. PETKOV AND L. STOYANOVand we have used the onvention that the obstale lies in the half-spaefx 2 Rn :< x; � � ! >< 0g:
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(xν +)Figure 1.Applying a stationary phase argument for the integral over �K+(!), one gets(2.3) (i�)(n�1)=22(2�)(n�1)=2 Z�K+(!) < �(x); � > ei�<x;��!>dSx= 12ei�<x+;��!>K(x+)�1=2 < �(x+); � >j� � !j(n�1)=2 +O(j�j�1) ;K(y) > 0 being the Gauss urvature at y 2 �K: We get a similar expression for the integral over�K�(!):The analysis of the term involving �vs�� is more ompliated. In mathematial physis manye�orts have been onerned with onstrution of an approximate outgoing solution w0(x; �) of theproblem ((� + �2)w0 = f(x; �) in Æ
;w0 + e�i�hx;!i = g(x; �) on �Kwith f(x; �) 2 C1(
); g(x; �) 2 C1(�K): This leads to onsiderable diÆulties when one has todesribe the form of the solution w0 in a domain lose to the grazing submanifoldG(!) = fy 2 �K :< �(y); ! >= 0g:The progress of the miroloal analysis in the seventies led to the investigation of the above prob-lem without a preise information for w0 in a neighborhood of G(!). This was done by Majda[14℄ exploiting the works of H�ormander [9℄, Taylor [30℄ and Melrose [17℄ for the propagation of the



SCATTERING PROBLEMS 5singularities. Below we present the idea of the approah of Majda and refer to [14℄ for more details.Consider the boundary problem((�2t ��)u0 = F (t; x) in R � Æ
;u0 + Æ(t� < x;! >) = G(t; x) on R � �K;where F (t; x) 2 C1(R � 
) vanishes for t � �t0, G(t; x) 2 C10 (R � �K) and t0 is hosen so thatsuppt Æ�t� < x;! > jx2�K� � ft : jtj � t0g :Taking a partition of unity f j(t; x)gMj=1 on [�t0; t0℄� �K, we pass to the analysis of the solutionsof the loalized problems(2.4) ((�2t ��)uj = Fj(t; x) in R � Æ
;uj +  jÆ(t� < x;! >) = Gj(t; x) on R � �Kwith Fj(t; x) 2 C1(R � 
); Gj(t; x) 2 C10 (R � �K) and Fj = 0 for t � t0: Then using the deayof loal energy for stritly onvex obstales we get�vs�� �����K = MXj=1 Z e�i�t �uj(t; x)�� ����R��K dt+O(j�j�N ); 8N :The results on the propagation of the wave front set WF (uj) of the solutions of (2.4) (see [30℄,[17℄) say that(2.5) WF� �uj�� ����R��K� �WF� jÆ(t� < x;! >)jR��K�:In the ase when supp j\�R�G(!)� = ; the above relation follows from the pseudo-loal propertyof pseudo-di�erential operators [10℄ sine we have, modulo smooth terms, the representation(2.6) �uj�� ����R��K = �Bjh jÆ(t� < x;! >)jR��Ki ;Bj being a �rst order pseudo-di�erential operator. In the ase supp  j \�R�G(!)� 6= ; we applythe results of Taylor [30℄ and Melrose [17℄ for di�ration problems. Thus we are going to study theexpression(2.7) Xj Z Z�K e�i�(t�<x;�>) �uj�� dt dSx ;where the integral is interpreted in the sense of distributions. From the de�nition of the wave frontit is easy to see that the ondition(t; y0; dt�; d0y�) \WF (u) = ;; y0 2 D � Rn�1implies ZR ZD e�i��(y0;t)u(y0; t) dt dy0 = O(j�j�N ); 8N :



6 V. PETKOV AND L. STOYANOVIn order to exploit this property, assume that in loal oordinates Uj \ �K is given byyn = g(y0); y0 = (y1; : : : ; yn�1) 2 D � Rn�1 :Then (2.5) yields WF� �uj�� ����R��K� � f(t; y; �; �) 2 T �(R � �K) : t =< y; ! >;y 2 supp  j(y;< y; ! >); (�; �) = �(�!0 �rg(y0)!n; 1)g :Clearly, for the phase funtion � = t� < y; � > jy2Uj\�K we have dy0;t� = (��0 � rg(y0)�n; 1)whih oinides with the diretions of the wave front of �uj�� ���R��K only in the ase�!0 �rg(y0)!n = ��0 �rg(y0)�n :Thus we dedue immediately � � !j� � !j = ��(y0; g(y0)) :The assumption � 6= ! implies that for y 2 G(!) the last ondition is impossible. Moreover, thesame argument shows that supp  j(y;< y; ! >) must be inluded in small neighborhood U� of x�with  j(y;< y; ! >) = 1 in a neighborhood of x�:Sine x� lies in the shadow region, we have < �(x�); ! >> 0 and the solution of the waveequation whih is smooth for t < 0 in a small neighborhood of (< x�; ! >; x�) has the formu� = �Æ(t� < x;! >): Thus we obtain�vs�� ����U�\�K = i� < �; ! > e�i�<x;!>jU�\�K ;and replaing �vs�� jU�\�K in the expression (2.7), we see that the shadow region gives no ontributionto a(�; �; !) beause < �(x�); � + ! >= 0 :Passing to the illuminated region, denote by  + and B+ the ut-o� funtion and the pseudo-di�erential operator related to U+. Then for the formally adjoint operators B�+ we obtain�Z ZU+ B�+�e�i�(t�<y0 ;�0>�g(y0)�n)� +Æ�t� < y0; !0 > �g(y0)!n��1 + jrg(y0)j2�1=2dtdy0= ��ZU+ ei�(<y0 ;�0�!0>+g(y0)(�n�!n))b+(y0; �)dy0 +O(1)with b+(y0; �) = �i�+�y0;�1; �0 +rg(y0)�n��1 + jrg(y0)j2�1=2;i�+ being the prinipal symbol of B+: Thus our task is redued to the study of an integral havingthe same form as I(�):Without loss of the generality we an assume that rg(x0+) = 0: From the onstrution of theasymptoti solution in a neighborhood of x+ we obtain�+(x0+; �1; �0) =< �(x+); � >> 0



SCATTERING PROBLEMS 7and we onlude that12� i�2��(n�1)=2 ZU+ ei�(<y0 ;�0�!0>+g(y0)(�n�!n))b+(y0; �)dy0= 12ei�<x+;��!>K(x+)�1=2 < �(x+); � >j� � !j(n�1)=2 +O(j�j�1) :Taking the sum of all ontributions, one getsa(�; �; !) = ei�<x+;��!>K(x+)�1=2 < �(x+); � > j� � !j(1�n)=2 +O(j�j�1) :Finally, in the illuminated region we have< �(x+); � >j� � !j = < � � !; � >j� � !j2 = 12and(2.8) a(�; �; !) = 12ei�<x+;��!>K(x+)�1=2j� � !j(3�n)=2 +O(j�j�1) :Thus from the limit ja(!; �)j = lim�!1 ja(�; !; �)jwe an determine the Gauss urvature K(x+) at x+. When (!; �) runs over a setV 2 Sn�1 � Sn�1 n f(!; !) : ! 2 Sn�1g ;we an reover the Gauss urvature K(y) at every point y 2 �K, provided the mapV 3 (!; �) �! � � !j� � !j 2 Sn�1is onto. On the other hand, the knowledge of the Gauss urvature at all points of �K determinesuniquely �K (see [14℄ for more details).The ase ! = � is more ompliated sine the singularities assoiated to di�rated rays mustbe taken into aount. We refer to [19℄ and [31℄ for results in this diretion.3. Singularities of the sattering kernelThroughout this setion we assume that � 6= !: To study the general ase of non-onvexobstales it is more onvenient to onsider the sattering kernel s(t; �; !) de�ned as the Fouriertransform of the sattering amplitude:s(t; �; !) = F�!t�� �2�i�(n�1)=2a(�; �; !)� ;where �F�!t'�(t) = (2�)�1 R eit�'(�)d� for funtions ' 2 S(R): Let V (t; x;!) be the solution ofthe problem 8><>:(�2t ��)V = 0 in R � Æ
;V + Æ(t� hx; !i) = 0 on R � �K;V jt<�t0 = 0:



8 V. PETKOV AND L. STOYANOVThen we have s(�; �; !) = (�1)(n+1)=22�n�1�n Z�K �n�2t ��V (hx; �i � �; x;!)dSx;where the integral is interpreted in the sense of distributions. Our aim will be to examine thesingularities of s(t; �; !) with respet to t:First we de�ne the so alled reeting (!; �)-rays. Given two diretions (�; !) 2 Sn�1 � Sn�1,onsider a urve  2 
 having the form = [mi=0li; m � 1;where li = [xi; xi+1℄ are �nite segments for i = 1; :::;m�1; xi 2 �K, and l0 (resp. lm) is the in�nitesegment starting at x1 (resp. at xm) and having diretion �! (resp. �). The urve  is alled areeting (!; �)-ray in 
 if for i = 0; 1; :::;m�1 the segments li and li+1 satisfy the law of reetionat xi+1 with respet to �K. The points x1; :::; xm are alled reetion points of  and this ray isalled ordinary reeting (or simply reeting) if  has no segments tangent to �K:

�K
U0

H��
Z���(u) �uu!Z!

x1 xmxm(u)x1(u)

Figure 2Next, we de�ne two important notions related to (!; �)-rays (also alled sattering rays). Fixan arbitrary open ball U0 with radius a > 0 ontaining K: For � 2 Sn�1 introdue the hyperplaneZ� orthogonal to � and suh that � is pointing into the interior of the open half spae H� withboundary Z� ontaining U0. Let �� : Rn �! Z� be the orthogonal projetion. For a reeting



SCATTERING PROBLEMS 9(!; �)-ray  in 
 with suessive reeting points x1; :::; xm the sojourn time T of  is de�ned byT = k�!(x1)� x1k+ m�1Xi=1 kxi � xi+1k+ kxm � ���(xm)k � 2a :Obviously, T + 2a oinides with the length of this part of  whih lies in H! \H�� (see Figure2). In fat, the sojourn time T does not depend on the hoie of the ball U0 sine it follows easilythat k�!(x1)� x1k = a+ hx1; !i; kxm � ���(xm)k = a� hxm; �i ;therefore T = hx1; !i+ m�1Xi=1 kxi � xi+1k � hxm; �i :Given an ordinary reeting (!; �)-ray  set u = �!(x1): There exists a small neighborhoodW of u in Z! suh that for every u 2 W there is an unique diretion �(u) 2 Sn�1 and pointsx1(u); :::; xm(u) whih are the suessive reetion points of a reeting (u; �(u))-ray in 
 with�!(x1(u)) = u: This de�nes a smooth mapJ :W 3 u �! �(u) 2 Sn�1and dJ(u) is alled a di�erential ross setion related to . We say that  is non-degenerate ifdet dJ(u) 6= 0 :The notion of sojourn time as well as that of di�erential ross setion are well known in the physialliterature. The de�nitions given above are due to Guillemin [5℄.For stritly onvex obstales all (non-trivial) reeting rays have only one reetion point x1and the orresponding sojourn time is equal to < x1; ! � � > : Moreover, the stationary phaseargument of the previous setion implies that a(�; !; �) has a omplete asymptoti expansiona(�; !; �) = eihx+; !��i NXj=0 j��j +O(j�j�N�1); 8N 2 N ;whih gives sing supp s(t; �; !) = f�T+g ;T+ = hx+; ! � �i being the sojourn time of the (!; �)-ray + reeting at x+: A simple geometriargument implies that jdet dJ+(u+)j = 4j� � !j(n�3)K(x+)and for t lose to �T+ we have(3.1) s(t; �; !) = ��12� �(n�1)=2���dJ+(u+)����1=2Æ(n�1)=2(t+ T+) + lower order singularities:For stritly onvex obstales T+ is an isolated singularity of s(t; �; !) related to an ordinaryreeting ray. This situation an be generalized for generi obstales if we onsider the baksattering diretion � = �!: Without loss of the generality we may assume that K lies in the halfspae fx 2 Rn : hx; !i > 0g: Then the funtion�K 3 x �! hx; !i 2 R+



10 V. PETKOV AND L. STOYANOVhas a positive minimum �(!) and there exists at least one reeting (!;�!)-ray  with sojourntime T = 2�(!): Of ourse we ould have many (!;�!)-rays with the same minimal sojourntime. A geometri argument based on Sard's theorem shows that there exists a subset B � Sn�1with full measure suh that for every ! 2 B we have only a �nite number of reeting (!; �)-rays with sojourn time 2�(!). Moreover, eah of these rays 1; : : : ; M , has only one reetionpoint xk 2 �K; k = 1; : : : ;M , and �K has a non-vanishing Gauss urvature K(xk) 6= 0 for everyk = 1; : : : ;M . Thus, repeating the argument from Setion 2, it follows that for ! 2 B the sojourntime T = �2�(!) is an isolated singularity of the sattering kernel s(t;�!; !), and for suh ! wehave max sing [suppt s(t;�!; !)℄ = �2�(!) ;and for t lose to �2�(!),s(t;�!; !) = 21�n�� 1��(n�1)=2 MXk=1 jK(xk)j�1=2Æ(n�1)=2(t+ 2�(!)) + lower order singularities :This result is due to Majda [15℄. From the maximal singularity of the bak sattering kernel oneobtains that the onvex hull of the obstale is given byonvex hullK =\! fx : hx; !i � �(!)g :Thus one an reover the geometry of a onvex obstale.It is muh more ompliated to get similar results in the ase of non-onvex obstales. Now theinformation obtained by means of rays having only one reetion is no longer suÆient. One needs toonsider multiple reeting (!; �)-rays leading to isolated singularities of s(t; �; !): Roughly speak-ing, the singularities of the sattering kernel are amongst the sojourn times of (!; �)-rays, howevernow one has to onsider not only simply reeting (!; �)-rays but all generalized geodesis inomingwith diretion ! and outgoing with diretion � (see Chapter 9 in [22℄ and [18℄) { these are simplyalled (!; �)-rays. In general, there exist (!; �)-rays with grazing or gliding segments (see Figure 3).The preise de�nition of an (!; �)-ray is based on the notion of a generalized biharateristi ofthe operator � = �2t ��x given as trajetories of the generalized Hamilton ow Ft in 
 generatedby the symbol Pni=1 �2i � �2 of � (see [20℄ for a preise de�nition). In general, Ft is not smoothand in some ases there may exist two di�erent integral urves issued from the same point in thephase spae (see [30℄ for an example). To avoid this situation we assume that the following generiondition is satis�ed.(G) If for (x; �) 2 T �(�K) the normal urvature of �K vanishes of in�nite order in dire-tion �, then �K is onvex at x in diretion �:



SCATTERING PROBLEMS 11
K

θ

ω

Figure 3.We will now sketh the de�nition of a generalized biharateristis of �: Let p(x; �) be therestrition of the prinipal symbol of � to the level surfae � = 1 (this is the ase of motionwith unit speed along geodesis). Notie that in this ase the so alled zero biharateristi set� = p�1(0) oinides with the osphere bundle S�(
) of 
. Given a point x 2 �K, we hoose loaloordinates x = (x1; : : : ; xn); � = (�1; : : : ; �n)in T �(Rn) so that loally �K is given by x1 = 0 and 
 by x1 � 0: The oordinates (x; �) an behosen so that, up to a non-zero smooth fator, p(x; �) has the formp(x; �) = �21 � r(x; �0)with x0 = (x2; : : : ; xn); �0 = (�2; : : : ; �n) and r(x; �0) homogeneous of order 2 in �0. Introdue thesets �0 = f(x; �) 2 T �(Rn) n f0g : x1 > 0g ;H = f(x; �) 2 � : x1 = 0; r(0; x0; �0) > 0g ;G = f(x; �) 2 � : x1 = 0; r(0; x0; �0) = 0g :The sets H and G are alled hyperboli and glaning set, respetively. Next onsider the symbolsr0(x0; �0) = r(0; x0; �0); r1(x0; �0) = �r�x1 (0; x0; �0) ;and de�ne the di�rative and gliding sets byGd = f(x; �) 2 G : r1(x0; �0) > 0g ;Gg = f(x; �) 2 G : r1(x0; �0) < 0g ;respetively. The generalized biharateristis are related to the following Hamilton vetor �eldsHp = nXj=1� �p��j : ��xj � �p�xj : ���j � ;



12 V. PETKOV AND L. STOYANOVHr0 = nXj=2��r0��j : ��xj � �r0�xj : ���j � :We have d�p(x; �) 6= 0 on S�(
) and d�0r0(x0; �0) 6= 0 on G. Moreover, the above de�nitions are in-dependent on the hoie of the loal oordinates. Using the above loal oordinates the generalizedbihareteristis of � are de�ned as follows.Let I � R be an open interval. A urve  : I �! S�(
) is alled a generalized biharateristiof � if there exists a disrete subset B � I suh that the following onditions hold:(i) If (t0) 2 �0 [Gd for some t0 2 I n B, then  is di�erentiable at t0 andddt(t0) = Hp((t0)):(ii) If (t0) 2 G nGd for some t0 2 I nB, then(t) = (x1(t); x0(t); �1(t); �0(t))is di�erentiable at t0 anddx1dt (t0) = d�1dt (t0) = 0; ddt (x0(t); �0(t))jt=t0 = Hr0((t0)) :(iii) If t0 2 B, then (t) 2 �0 for all t 6= t0; t 2 I with jt� t0j suÆiently small. Moreover, inthis ase for ��1 (x0; �0) = �pr0(x0; �0) we havelimt!t0 ;�(t�t0)>0 (t) = (0; x0(t); ��1 (x0(t0); �0(t0)) 2 H :Notie that the funtions x(t); �0(t); j�1(t)j are ontinuous on I, while the funtion �1(t) has ajump disontinuity at any point t 2 B: Finally, under the ondition (G) a generalized biharateris-ti  : R �! S�(
) of � is uniquely extendible in the sense that for eah t 2 R the only generalizedbiharateristi (up to the hange of parameter t) passing through (t) is  ([20℄; see also vol. IIIof [10℄).More generally, working with the restrition of the prinipal symbol of � to a level surfae� = �0 6= 0, one de�nes generalized biharaetristis on the set _T �(
) of all (x; �) 2 T �(
) suhthat � 6= 0. Given � = (x; �) 2 _T �(
), there exists a unique generalized biharateristi (x(t); �(t)) 2_T �(
) suh that x(0) = x and �(0) = �. Set Ft(x; �) = (x(t); �(t)) for all t 2 R. This de�nes aow Ft : _T �(
) �! _T �(
) ([20℄) whih is sometimes alled the generalized geodesi ow on _T �(
).Obviously, it leaves the osphere bundle S�(
) invariant. At points of transversal reetion at_T ��K(
) the ow Ft is disontinuous. To make it ontinuous, onsider the quotient spae _T �b (
) =_T �(
)= � of _T �(
) with respet to the following equivalene relation: � � � if and only if � = �or �; � 2 T ��K(
) and either limt%0 Ft(�) = � or limt&0Ft(�) = �. Let S�b (
) be the image ofS�(
) in _T �b (
). Melrose and Sj�ostrand ([20℄) proved that the natural projetion of Ft on _T �b (
) isontinuous.After these de�nitions a urve  = fx(t) 2 
 : t 2 Rg is alled an (!; �)-ray if there exist realnumbers t1 < t2 so that ~(t) = (x(t); �(t)) 2 S�(
)



SCATTERING PROBLEMS 13is a generalized biharateristi of � and�(t) = ! for t � t1; �(t) = � for t � t2;provided that the time t inreases when we move along ~: Denote by L!;�(
) the set of all (!; �)-rays in 
: The sojourn time TÆ of Æ 2 L!;�(
) is de�ned as the length of the part of Æ lying inH! \H��:Turning to the problem of the behavior of s(t; �; !) near singularities, assume that  is a �xednon-degenerate ordinary reeting (!; �)-ray suh that(3.2) T 6= TÆ for every Æ 2 L!;�(
) n fg:By using the ontinuity of the generalized Hamilton ow, it is easy to show that(�T � �;�T + �) \ sing supp s(t; �; !) = f�Tgfor � > 0 suÆiently small. The singularity of s(t; �; !) at t = �T an be investigated using aglobal onstrution of an asymptoti solution as a Fourier integral operator ([6℄, [21℄, Chapter 9 in[22℄).Theorem 1. ([21℄) Under the assumption (3.2) we have(3.3) �T 2 sing supp s(t; �; !)and for t lose to �T the sattering kernel has the form(3.4) s(t; �; !) = � 12�i�(n�1)=2(�1)m�1 exp�i�2������det dJ(u) < �(q1); ! >< �(qm); � > ����1=2Æ(n�1)=2(t+ T) + lower order singularities:Here m is the number of reetions of , q1 (resp. qm) is the �rst (resp. the last) reetion pointof  and � 2 Z.Notie that for stritly onvex obstales we have � = �n�12 ; q1 = qm and � � ! is parallel to�(q1): 4. Properties of refleting (!; �)- raysTo apply the result of the previous setion we need the ondition (3.2) and it is desirable toprove that there exists a subset S � Sn�1 � Sn�1 with zero Lebesgue measure suh that for alldiretions (!; �) 2 Sn�1 � Sn�1 n S the orresponding (!; �) - rays satisfy (3.2). Here one has todeal with all (generalized) (!; �)-rays and this makes the problem rather diÆult. We start with aresult onerning the ordinary reeting (!; �)-rays only.Theorem 2. ([23℄) For every ! 2 Sn�1 there exists a set S(!) � Sn�1 the omplement of whih isa ountable union of ompat subsets of Sn�1 of measure zero suh that if � 2 S(!), then any twodi�erent ordinary reeting (!; �)-rays in 
 have distint sojourn times.



14 V. PETKOV AND L. STOYANOVIn what follows we sketh the proof of the above theorem.Let U0 be an open ball with enter 0 and radius a ontaining K and let Z = Z! be thehyperplane introdued in Setion 3. Given an integer k � 1, denote by Uk the set of those u 2 Zfor whih the trajetory (u) of the generalized Hamiltonian ow starting in u with diretion ! isan ordinary reeting ray with exatly k reetion points. Let Jk(u) 2 Sn�1 be the diretion of(u) after the last reetion. Obviously, Uk is open in Z and the mapJk : Uk 3 z �! Jk(u) 2 Sn�1is smooth.Now let us �x two arbitrary integers k � 1; s � 1: For u 2 Uk denote by f(u) the sojourn timeof the sattering ray determined by (u). In the same way denote by g(v) the sojourn time of thesattering ray with s reetions determined by v 2 Vs: The funtions f : Uk �! R; g : Vs �! Rare smooth.For u 2 Uk denote by x1(u); : : : ; xk(u) the suessive reetion points of (u). The orrespond-ing maps xi : Uk �! �K are smooth and for every y 2 �K we denote by N(y) the unit normal to�K pointing into 
: Thus for u 2 Uk we obtainJk(u) = xk(u)� xk�1(u)kxk(u)� xk�1(u)k � 2D xk(u)� xk�1(u)kxk(u)� xk�1(u)k ; N(xk(u))EN(xk(u)) ;and f(u) = k�1Xi=0 kxi+1(u)� xi(u)k+ t� 2a ;where x0(u) (resp. xk+1(u)) denotes the orthogonal projetion of x1(u) (resp. xk(u)) on Z (resp.Z��)), � = Jk(u) and t = kxk(u)� xk+1(u)k: We obtain easily t = a� h�; xki, sof(u) = k�1Xi=0 kxi+1(u)� xi(u)k � hxk(u); Jk(u)i � a:For v 2 Vs the suessive reetion points of (v) will be denoted by y1(v); : : : ; ys(v). Next we sety0(v) = v and we de�ne ys+1(v) in the same way as xk+1(u): Now denote by W (k; s) the set ofthose (u; v) 2 Uk � Vs for whih Jk(u) = Js(v); f(u) = g(v)and rank dJk(u) = rank dJs(v) = n� 1:Lemma 1. W (k; s) is a smooth (n� 2)-dimensional submanifold of Uk � Us.Proof of Lemma 1. Consider a point w0 = (u0; v0) 2W (k; s): Sine rank dJk(u0) = rank dJs(v0) =n� 1; there exists a neighborhood U of w0 in Uk � Vs suh that for every (u; v) 2 U we haverank dJk(u) = rank dJs(v) = n� 1:De�ne the map L : U �! Rn byL(u; v) = ��(u; v); ��(j)(u; v)�1�j�n�1�with �(u; v) = f(u)� g(v); �(u; v) = Jk(u)� Js(v):



SCATTERING PROBLEMS 15Clearly, W (k; s) \ U � L�1(0) and to prove that W (k; s) is a smooth (n � 2)-dimensionalsubmanifold of Uk � Vs it is suÆient to show that L is a submersion at any point w0 of L�1(0):For this purpose we assume without loss of the generality that �n 6= 0: Suppose thatn�1Xj=1Aj grad �(j)(w0) +C grad �(w0) = 0with some onstants Aj ; C: Calulating the derivatives involved above and using the geometrialmeaning of f , g, Jk and Js, one derives A1 = : : : An�1 = C = 0. Thus L is a submersion at w0: Werefer to [23℄ for more details.Proof of Theorem 2: Consider the map ' : Uk � Vs �! Sn�1 given by '(u; v) = Jk(u): Thismap is smooth and dim W (k; s) = n � 2 shows that '(W (k; s)) is a ountable union of ompatsubsets of Sn�1 of measure zero. ClearlyFk = fu 2 Uk : rank dJk(u) � n� 2gis a ountable union of ompat subsets. By Sard's theorem, Jk(Fk) has measure 0 in Sn�1 for allk, so F = Sk Jk(Fk) also has measure zero in Sn�1. Hene the subsetS(!) = Sn�1 n �F [[k [s Jk(W (k; s))� ;of Sn�1 has the desired properties.Setting S = f(!; �) 2 Sn�1 � Sn�1 : � 2 S(!)g; we see that for (!; �) 2 S any two di�erentordinary reeting rays in 
 have distint sojourn times and the omplement of S in Sn�1 � Sn�1has measure 0.To deal with reeting rays with tangent segments, we introdue a more general type of tra-jetories. A urve  in Rn is alled an (!; �)-trajetory for 
 if it has the form  = Ssi=0 li; whereli = [xi; xi+1℄; i = 1; : : : ; s � 1; xi 2 �K for all i = 1; : : : ; s; while l0 (resp. ls) is the in�nite raystarting at x1 (resp. xs) with diretion �! (resp. �) and for every i = 0; 1; : : : ; s� 1; li and li+1satisfy the law of reetion at xi with respet to �K: It is lear that every reeting (!; �)-ray isan (!; �)-trajetory, but the onverse is not true in general sine some (!; �)-trajetory may inter-set transversally �K: On the other hand, every (!; �)-reeting ray with tangent segment is an(!; �)-trajetory. We have the following.Theorem 3. ([23℄) There exists T � Sn�1 � Sn�1 the omplement of whih is a ountable unionof ompat subsets of measure zero in Sn�1 � Sn�1 suh that for (!; �) 2 T all (!; �)-trajetoriesfor 
 are ordinary.The proof of the above result follows the idea of the proof of Theorem 2. For simpliity set�K = X: Fix two integers k and s so that s � 1; 0 � k � s: Let M(s; k) be the set of those� = (!;x; y; �) 2Ms = Sn�1 �X(s) �X � Sn�1with x = (x1; : : : ; xs) suh that there exists an (!; �)-trajetory for X with suessive transversalreetion points x1; : : : ; xs, the segment [xk; xk+1℄ of whih is tangent to X at y 2 (xk; xk+1): HereX(s) = f(x1; : : : ; xs) 2 Xs : xi 6= xj; i 6= jgand x0 (resp. xs+1) is the orthogonal projetion of x1 on Z! (resp. of xs on Z��).



16 V. PETKOV AND L. STOYANOVThe main step in the proof is to show that M(s; k) is a smooth submanifold ofMs of dimension2n� 3: This follows from a speially adapted parametrization of M(s; k); see [23℄ for details. Usingthis one obtains Theorem 3 easily. Consider the projetion�s :Ms = Sn�1 �X(s) �X � Sn�1 �! Sn�1 � Sn�1given by �s(!;x; y; �) = (!; �);and introdue the open subsets of MsUr(s; k) = f(!;x; y; �) 2Ms : x(r)k 6= x(r)k+1g; r = 1; : : : ; n:ThenMr(s; k) =M(s; k)\Ur(s; k) is a smooth submanifold ofMs of dimension 2n�3 < dim(Sn�1�Sn�1): Sine �s is smooth, the set Lr(s; k) = �s�Mr(s; k)� � Sn�1 � Sn�1 has measure zero.Consequently, for the overing Mr(s; k) = S1j=1Kj with Kj ompat, one gets thatLr(s; k) = 1[j=1�s(Kj)is a ountable union of ompat subsets of Sn�1 � Sn�1 of measure zero. SettingT = Sn�1 � Sn�1 n [0�k�s 1[r=1Lr(s; k) ;ompletes the proof of Theorem 3.Finally, we �nd a subset U � Sn�1 � Sn�1 suh that for (!; �) 2 T \ U all reeting (!; �)-rays are ordinary and non-degenerate. So there exists a subset A = T \ U \ S of Sn�1 � Sn�1of full measure so that for every (!; �) 2 A the orresponding (!; �)-reeting rays are ordinary,non-degenerate and with distint sojourn times.The study of the generalized (!; �)-rays leads to many diÆulties. However it is quite naturalto expet that for almost all (!; �) in Sn�1 � Sn�1 there are no generalized (!; �)-rays di�erentfrom reeting ones. This will be disuss in details in the next setion.5. Poisson relation for the sattering kernelLet K be an obstale in Rn ; n � 3; n odd, with C1 boundary �K so thatK � fx 2 Rn : jxj � �0gand let 
 = Rn nK. In what follows we assume that K satis�es the ondition (G) from Setion 3.Let � : T �(R � 
) �! 
 be the natural projetion.The following result of [21℄, [1℄ (f. also Chapter 8 in [22℄ and [18℄) shows that for ! 6= � allsingularities in t of s(t; �; !) are given by (negative) sojourn times.Theorem 4. ([21℄, [1℄) For ! 6= � we have(5.1) sing supp s(t; �; !) � f�T :  2 L!;�(
)g:



SCATTERING PROBLEMS 17In analogy with the well-known Poisson relation for the Laplaian on Riemannian manifolds,(5.1) is alled the Poisson relation for the sattering kernel, while the set of all T , where  2L!;�(
), (!; �) 2 Sn�1 � Sn�1, is alled the sattering length spetrum of K.The proof of the above theorem is based on results on propagation of singularities along gen-eralized biharataristis, using some properties of osillatory integrals. Below we present a briefidea of it. Consider a �xed t0 so that�t0 =2 f�T :  2 L(!;�)(
)g:Take T > 0 with jt0j < T and introdue the set�T = fT : jT j � T;  2 L(!;�)(
)g:The ontinuity of the generalized Hamiltonian ow implies that �T is losed, so we an hoose�0 > 0 so that T =2 [t0 � �0; t0 + �0℄; 8 2 L(!;�)(
) :Let �(t) 2 C10 (R); �(t) = 1 for jtj � 1=2; �(t) = 0 for jtj � 1: Set �Æ(t) = �(t=Æ) for 0 < Æ � �0=2.To prove that t0 =2 sing supp s(t; �; !), it is suÆient to show that the integralJ(�) = hs(t; �; !); �Æ(t+ t0)e�i�ti= n�2Xk=0 k(�i�)n�2�k ZR Z�
 ei�(t�hx;�i) dk�Ædtk (hx; �i � t+ t0)�w�� (t; x;!) dt dSx; k = onstis rapidly dereasing with respet to �: Here w(t; x;!) = V (t; x;!) + Æ(t� hx; !i); where V (t; x;!)is de�ned in Setion 3. Let us treat the term with k = 0, the other ones an be examined by asimilar argument.Without loss of the generality we may assume that ! = (0; : : : ; 0; 1): SetZ(�) = fx 2 Rn : xn = �g;where � < ��0 and let R+� = ft 2 R : t > �g: To loalize the problem, introdue a partition ofunity on Z(�) given by funtions'j(x0) 2 C10 (Rn�1); x0 = (x1; : : : ; xn�1):Consider the problems: 8><>:�vj = 0 in R+� � Rnx ;vj(�; x) = 'j(x0)Æ(� � x0);�vj�t (�; x) = 'j(x0)Æ0(� � xn) ;8>>>><>>>>:�Wj = 0 in R � Æ
;Wj = 0 on R � �
;Wj(�; x) = 'j(x0)Æ(� � x0);�Wj�t (�; x) = 'j(x0)Æ0(� � xn) :



18 V. PETKOV AND L. STOYANOVClearly, there exists a ompat set F 00 � Rn�1 suh that if supp 'j \ F 00 = ;; then the straightlines issued from (x0; �); x0 2 supp 'j , with diretion ! do not meet �
: For suh j and ! 6= � wehave(5.2) WF���Wj�� �jR��
� \ f(t; x; 1;��jTx(�
)) : jtj � T + �0 + 1; x 2 �
g = ; :This implies easily(5.3) ZR Z�
 ei�(t�hx;�i)�Æ(hx; �i � t+ t0)�Wj�� dtdSx = O(j�j�m); 8m 2 N :Now set F0 = fx 2 Rn : x0 2 F 00; xn = �g and denote by l(u0) the straight line passing throughu0 2 F0 with diretion !: There are three ases:(i) ; 6= l(u0) \K � �
;(ii) l(u0) meets transversally �
 at x1(u0);(iii) l(u0) is tangent to �
 at x1(u0) and ! is an asymptoti diretion for �
 at x1(u0):In the ase (i) the generalized bihareteristi 0 with Im (�Æ0) = l(u0) is uniquely extendible,and results on propagation of singularities lead to (5.2) whih in turn gives (5.3). To deal with thease (ii), set t1(u) = ju � x1(u)j; u 2 F0. The solution vj with suh j is given by an osillatoryintegral and WF (vj) is inluded in the set of all (t; x;��;�!) 2 T �(Rn+1) n f0g suh that � > 0and there exist x̂ 2 Z(�); x̂0 2 supp 'j ; s � 0 with t = � � �s; x = x̂� �s!: We modify vj on theintersetion of a small neighborhood of x1(u0) with the interior of K so that the modi�ed funtion~vj has the properties ~vj = vj for t < t1 + �; ~vj = 0 for t > t1 + 2�; � > 0:Here t1 = maxft1(u) : u 2 O(u0)g; where O(u0) is a suÆiently small neighborhood of u0 withsupp 'j � O(u0) and � is small enough. Moreover, we preserve the ondition�~vj = 0 in R+� � Æ
:Set hj = (~vj)jR+� ��
 and notie that hj = 0 for t suÆiently lose to �: We extend hj as 0 fort < � and onsider the solution wj of the problem8><>:�wj = 0 in R � Æ
;wj + hj = 0 on R � �
;wj = 0 for t < �:We have ��t (wj + ~vj)jR+� ��
 = 0 and we are going to study the integralsIj;Æ(�) = ZR Z�
 ei�(t�<x;�>)�Æ(< x; � > �t+ t0)� ���� < �; � > ��t�~vj dt dSx ;Jj;Æ(�) = ZR Z�
 ei�(t�<x;�>)�Æ(< x; � > �t+ t0)� ���� < �; � > ��t�wj dt dSx :



SCATTERING PROBLEMS 19This study is based on ertain information about the generalized wave front setWFb(v) � T �(R � Æ
) [ T �(R � �
) = ~T �(R � 
) ;where the map � is the one introdued in Setion 3 (see [20℄ for the properties of WFb(u)). Forx 2 �
 we have �: T �(R � 
) 3 (t; x; �; �) �! (t; x; �; �jTx(�
)) 2 T �(R � �
) :The ruial step in the analysis of Ij;Æ(�) and Jj;Æ(�) is the following.Proposition 1. Set T1 = �0 + jt0j+ 1 and suppose that there exists � > 0 suh thatWFb(wj) \ f� 2 ~T �(R � 
) : � =� (t; x; 1;��); T1 + � � t � T1 + 2�g = ;;WFb(~vj) \ f� 2 ~T �(R � 
) : � =� (t; x; 1;��); T1 + � � t � T1 + 2�g = ;:Then Ij;Æ(�) = O(j�j�m); Jj;Æ(�) = O(j�j�m); 8m 2 N:A similar argument an be applied in the ase (iii) whih ompletes the proof of Theorem 4.While in general the relation (5.1) is not an equality, it turns out that there exists a set R offull measure in Sn�1�Sn�1 suh that for (!; �) 2 R the Poisson relation beomes an equality. Thisis rather important for some inverse sattering problems.It is proved in [27℄ that for eah T > 0, S�(
) an be represented as a ountable union of Borelsubsets Si suh that on eah Si , fFtg0�t�T oinides with the restrition of an one-parameterfamily G(i)t of Lipshitz maps de�ned in a neighborhood of Si in _T �(
), taking values in T �(Rn)and suh that for all but �nitely many t, G(i)t is smooth and its restrition to smooth loal ross-setions is a ontat transformation. As a onsequene of this regularity property one gets thefollowing.Theorem 5. ([27℄) The generalized geodesi ow Ft preserves the Hausdor� dimension of Borelsubsets of S�(
).This would have been a trivial fat if the maps Ft were Lipshitz. However, it is well-knownand easy to see that this not the ase. Loally near a point � 2 S�(
), the map Ft is Lipshitz ona neighborhood of � for small jtj when � =2 S��K(
) or � is a transversal reetion point. Whenever� 2 G, the map Ft is not Lipshitz (f. [20℄ or [10℄, vol. III). For example, in the simplest ase ofa di�rative tangent point � 2 Gd, the map Ft has a singularity of "square root type" at �, so it islearly not Lipshitz.Let � : I �! S�(
) be a generalized geodesi in 
. We say that � is gliding on �K if the setof those t 2 I suh that �(t) 2 Gg is dense in I. In this ase the trajetory f�(t) : t 2 Ig is alleda gliding segment on �K.Given T > 0, denote by TT the set of those � 2 S�(
) suh that fFt(�) : 0 � t � TgTGg 6= ;;that is the trajetory fFt(�) : 0 � t � Tg ontains a non-trivial gliding segment on �K.



20 V. PETKOV AND L. STOYANOVLemma 2. ([27℄) Let L0 be an isotropi submanifold of S�(
)nS��K(
) of dimension n�1 suh thatHp(�) is not tangent to L0 at any � 2 L0. Then for every T > 0 we have dimH(FT (TT\L0)) � n�2.Moreover, if for a given T we have FT (L0) � S�(
) n S��K(
), then there exists a ountable familyfImg of smooth (n�2)-dimensional isotropi submanifolds of S�(
) suh that FT (TT \L0) �[m Im:Using Theorems 1{4 and Lemma 2 above, one derives the following.Theorem 6. ([27℄) There exists a subset R of full Lebesgue measure in Sn�1� Sn�1 suh that foreah (!; �) 2 R the only (!; �)-rays in 
 are reeting (!; �)-rays andsing supp s(t; �; !) = f�T :  2 L!;�(
)g :In what follows we sketh the proof of this theorem.It follows from the results of Melrose and Sj�ostrand [20℄ (see also Theorem 24.3.9 in [10℄, vol.III) that every (!; �)-ray  in 
 that does not ontain gliding segments is a reeting (!; �)-ray,i.e. it onsists of �nitely many straight line segments in 
 (f. Setion 3).Proof of Theorem 6:We are going to show that there exists a subset R of full Lebesgue measurein Sn�1 � Sn�1 suh that for eah (!; �) 2 R the only (!; �)-rays in 
 are reeting (!; �)-rays.As before, denote by U0 = fx 2 Rn : jxj < �0g an open ball in Rn ontaining the obstaleK and let C be the boundary sphere of U0. Fix ! 2 Sn�1, x0 2 C and onsider the generalizedgeodesi (x(t); �(t)) = Ft(x0; !). Let T > 0 be suh that x(T ) 2 C. DenoteS0 = f(x; �) 2 S�(
) : x 2 C; � is transversal to Cg:Sine � = p�1(0) = S�(
), using the notation S�C(
) = f(x; �) 2 S�(
) : x 2 Cg; we haveS00 = S0 \� = f(x; �) 2 S�C(
) : � is transversal to Cg: Then S00 is a sympleti submanifold of S.Let P : S0 �! S0 be the loal map de�ned in a neighborhood of (x0; !) using the shift along theow Ft; then P(S00) � S00. Consider the Lagrangian submanifoldL0 = f(x; �) 2 S00 : � = !gof S00. Setting T = TT and applying Lemma 2 to L0, gives that FT (L0 \ T ) is ontained in aountable union of isotropi (n� 2)-dimensional submanifolds of S. Sine loally near (x0; !) themap FT : S0 �! FT (S0) is smooth, FT (S0) is a (2n� 1)-dimensional submanifold of S transversalto the ow Ft at FT (x0; !). Consequently, loally near FT (x0; !) 2 FT (S0) \ S0 the shift Q alongFt from FT (S0) to S0 (forwards or bakwards) is a smooth map. Moreover Q maps FT (S00) into S00(sine p�1(0) is invariant under the ow Ft), the restrition Q : FT (S00) �! S00 is a loal sympletimap, and P = QÆFT . Hene the set P(L0\T ) = Q(FT (L0\T )) is ontained in a ountable unionof isotropi (n� 2)-dimensional submanifolds of S. The projetion j : S00 �! Sn�1, j(x; �) = �, issmooth, so Sard's theorem gives now that the set j(P(L0\T )) has Lebesgue measure zero in Sn�1.Hene there exists a neighborhood U of x0 in C and a subset R!(U) = Sn�1 n j(P(L \ T )) of fullLebesgue measure in Sn�1 suh that for x 2 U every generalized (!; �)-ray in 
 passing through xwith � 2 R!(U) is a reeting (!; �)-ray. Covering C by a �nite family of neighborhoods Ui, we�nd a subset R! = \iR!(Ui) of full Lebesgue measure in Sn�1 suh that every (!; �)-ray in 
 with� 2 R! is a reeting (!; �)-ray. It now follows from Fubini's theorem thatR0 = f(!; �) 2 Sn�1 � Sn�1 : � 2 R!g



SCATTERING PROBLEMS 21is a subset of full Lebesgue measure in Sn�1 � Sn�1. Moreover it is lear that for (!; �) 2 R0, all(!; �)-rays in 
 are reeting ones.Aording to Theorems 2 and 3 above, there exists a subset R00 = T \ S of full Lebesguemeasure in Sn�1�Sn�1 suh that for (!; �) 2 R00 every reeting (!; �)-ray in 
 has no tangeniesto �K and T 6= TÆ whenever  and Æ are di�erent reeting (!; �)-rays in 
. Then R = R0 \ R00has full Lebesgue measure in Sn�1 � Sn�1. Given (!; �) 2 R, it follows from Theorem 1 that�T 2 sing supp s(t; �; !) for all  2 L!;�(
). Combining this with Theorem 4 ompletes the proofof the theorem.Using Theorem 6 we will now derive a simple but rather important property of obstales ([12℄;f. also Proposition 2.3 in [27℄): most rays inoming from in�nity are not trapped by the obstaleK. Here it is essential that we onsider points in the setS�C(
) = f(x; �) 2 S�(
) : x 2 Cg ;where C as before is the boundary sphere of an open ball U0 ontaining K. In general it is nottrue that the trapped points (x; �) 2 S�(
K) with x near K form a set of Lebesgue measure zeroin S�(
K). The example of M. Livshitz (f. Setion 7 below ) shows that in some ases the set oftrapped points may even ontain a non-trivial open subset of S�(
K).Proposition 2. The set of those (x; �) 2 S�C(
) suh that the trajetory fFt(x; �) : t � 0g isbounded has Lebesgue measure zero in S�C(
).Proof. For (x; !) 2 S�C(
), let Æ(x; !) be the generalized geodesi in 
K issued from x in diretion !.Assume that there exists a subset W of positive Lebesgue measure in S�C(
) suh that Æ(x; !) � U0for all (x; !) 2 W . Aording to Theorem 3 and to an argument from the proof of Theorem6 above (or using Lemma 2 duiretly), we may assume that for all (x; !) 2 W the generalizedgeodesi Æ(x; !) does not ontain gliding segments on �K and has only transversal reetions at�K. Given (x; !) 2 W , denote by x0 the �rst ommon point of Æ(x; !) with �K andby !0 thereeted diretion of Æ(x; !) at x0, i.e. !0 = ! � 2h!; �(x0)i�(x0), where �(x0) is the outer unitnormal to K at x0. Then the set W 0 = f(x0; !0) 2 S��K(
) : (x; !) 2 Wg is a subset of positiveLebesgue measure in S��K(
).Denote by M � S��K(
) the set of those (y; �) 2 S��K(
) for whih the standard billiard ballmap B is well-de�ned. The map B (as a loal map) preserves the so alled Liouville's measure �on M whih is absolutely ontinuous with respet to the Lebesgue measure on S��K(
).Next, we use the argument from the proof of the Poinar�e Reurrene Theorem in ergoditheory. It follows from the de�nition of W 0 that Bk(W 0) � M and �(Bk(W 0)) = �(W 0) > 0for all k = 0; 1; 2; : : :. On the other hand, in the situation under onsideration we learly have�([1k=0Bk(W 0)) <1. Therefore there exist non-negative integers k < m with Bk(W 0)\Bm(W 0) 6=;. Sine B is invertible, this means that there exists (x0; !0) 2 W 0 \ Bm�k(W 0). Then (x0; !0) =B(y; �) for some (y; �) 2 Bm�k�1(W 0) � M . Now the hoie of W and the de�nition of W 0 showthat W 0 has no ommon points with B(M). This is a ontradition whih proves the proposition.6. Existene of sattering rays with sojourn times tending to infinityIn this setion we study the existene of (!; �)-rays for trapping obstales. The image S�b (
) =�(S�(
)) of the harateristi set S�(
) is alled the ompressed harateristi set and the image



22 V. PETKOV AND L. STOYANOV~ =� () of a generalized biharateristi de�ned in Setion 3 is alled a ompressed generalizedbiharateristi.Let again U0 be an open ball ontaining K and C be its boundary sphere. Given a pointz = (x; �) 2 S�b (
), onsider the ompressed generalized biharateristiz(t) = (x(t); �(t)) 2 S�b (
)parametrized by the time t and passing through z for t = 0: Denote by T (z) 2 R+ [1 the maximalT > 0 suh that x(t) 2 U0 for 0 � t � T (z): We introdue the trapping set�1 = f(x; �) 2 S�b (
) : x 2 C; T (z) =1g:It follows from the ontinuity of the generalized Hamiltonian ow that �1 is losed in �. Theobstale K is alled trapping if �1 6= ;: We have the following.Theorem 7. ([23℄) Let the obstale K be trapping and satisfy the ondition (G). Then there existsa sequene of ordinary reeting non-degenerate sattering rays m with sojourn times Tm �!1:Proof. It is easy to see that �1 6= S�b (
), hene the boundary ��1 of �1 in S�b (
) is not empty.Take a point ẑ 2 ��1: Sine S�b (
)n�1 6= ;, there exists a sequene zm = (xm; �m) 2 S�b (
); xm 2C, suh that zm =2 �1 for allm and zm �! ẑ: Consider the ompressed generalized biharateristiszm(t) = (zm; �m) passing through zm for t = 0 and suh that T (zm) <1: The sequene fT (zm)gis unbounded, sine otherwise we will have T (ẑ) < 1 in ontradition with ẑ 2 �1: Thus wemay assume that T (zm) �!m!1 +1: Set ym = xm(T (zm)) 2 C; !m = �m(T (zm)) 2 Sn�1: Takinga subsequene, we may assume that ym �! u 2 C; !m �! ! 2 Sn�1: For the generalizedbiharateristis �(t) = (y(t); �(t)) issued from � = (u; !) we have T (�) = 1 and y(t) 2 U0 fort � 0:Let Z! be the hyperplane passing through u and orthogonal to ! and let Z1 be the set ofthose points y 2 Z! for whih the generalized biharateristi �y passing through �y = (y; !) hasthe property T (�y) = 1: The set Z1 is losed in Z!, Z! 6= ; and Z1 6= Z!. Thus there existsa sequene of points um �! y0 for some y0 2 Z! with um 2 Z! n Z1 suh that T (�um) < 1 forall m and T (�um) �!1: Applying Proposition 2, we an approximate um by ordinary reetingrays Æm with sojourn times going to in�nity and by a seond approximation we may hoose theordinary reeting rays Æm to be non-degenerate.Now onsider a �xed ordinary reeting (!0m; �0m)-ray with sojourn time Tm whih is non-degenerate. In general it is possible to have other (generalized) (!0m; �0m)-rays with the same sojourntime and Tm ould be a non-isolated point in s(t; !0m; �0m): LetA � Sn�1�Sn�1 be the set introduedat the end of Setion 4 and let R � Sn�1 � Sn�1 be the set of Theorem 6. Let� = R\A � Sn�1 � Sn�1:Then for (!; �) 2 � eah (!; �)-ray is ordinary reeting and non-degenerate. By applying the in-verse mapping theorem, it is easy to see that we may approximate (!0m; �0m) by a pair (!00m; �00m) 2 �suÆiently lose to (!0m; �0m) so that there exist ordinary reeting non-degenerate (!00m; �00m)-rayswith sojourn times T 00m �!1 (see [23℄ for more details).The sojourn times T 00m are isolated points in s(t; !00m; �00m) and the argument of Setion 3 basedon (3.4) implies that following.



SCATTERING PROBLEMS 23Theorem 8. Under the assumptions of Theorem 7 there exists a sequene (!m; �m) 2 Sn�1�Sn�1and ordinary reeting non-degenerate reeting (!m; �m)-rays with sojourn times Tm �! 1 sothat(6.1) �Tm 2 sing supp s(t; !m; �m); 8m 2 N:The relation (6.1) was alled property (S) in [24℄, and there we onjetured that every trappingobstale has the property (S): The above result shows that for generi obstales this onjetureis true. Moreover, the above argument implies that for eah m 2 N there exists a set �m �Sn�1 � Sn�1 with positive measure �m > 0 so that the (!; �)-rays with (!; �) 2 �m produesingularities ��m � �m of the sattering kernel s(t; !; �): Thus for obstales satisfying (S) somesojourn times an be observed after a suÆiently long time.The property (S) leads to some interesting results onerning the behavior of the modi�edresolvent of the Laplaian [23℄. For Im� > 0 onsider the outgoing resolvent R(�) = (��� �2)�1of the Laplaian in 
 with Dirihlet boundary onditions on �
. The outgoing ondition meansthat for f 2 C10 (
) there exists g(x) 2 C10 (Rn) so that we haveR(�)f(x) = R0(�)g(x); jxj ! 1;where R0(�) = (��� �2)�1 : L2omp(Rn) �! H2lo(Rn)is the outgoing resolvent of the free Laplaian in Rn related to the outgoing Green funtion intro-dued in Setion 2. The operatorR(�) : L2omp(
) 3 f �! R(�)f 2 H2lo(
)has a meromorphi ontinuation in C with poles �j; Im�j < 0, alled resonanes ([12℄, [25℄). Let�i(x) 2 C10 (Rn); i = 1; 2 be ut-o� funtions suh that �i(x) = 1 on a neighborhood of K and�1(x) = 1 on supp �2(x). It is easy to see that the modi�ed resolvent~R(�) = �1R(�)�2has a meromorphi ontinuation in C . The poles of ~R(�) are independent of the hoie of �i andthey oinide with their multipliities with those of the resonanes (see [12℄, [25℄). On the otherhand, the sattering amplitude a(�; !; �) also admits a meromorphi ontinuation in C and thepoles of this ontinuation and their multipliities are the same as those of the resonanes (see [12℄).From the general results on propagation of singularities ([20℄) it follows that if K is non-trapping,there exist � > 0 and d > 0 so that ~R(�) has no poles in the domainU�;d = f� 2 C : d� � log(1 + j�j) � Im� � 0g:For trapping obstales we expet to have poles in all domains U�;d: For the moment this is anopen problem and we have a weaker result.Theorem 9. ([23℄) Assume that there exists a sequene of ordinary reeting (!m; �m)-rays in 
with sojourn times Tm !1: Let � 2 C10 (R) be suh that supp � � (�1; 1); �(t) = 1 for jtj � 12 :Assume that there exists a sequene m ! 0 of non-zero real numbers and an integer k independenton m suh that ���Ft!�h�� t+ Tmm �s(t; !m; �m)i��� � (m � om(1))j�jk; j�j ! 1;



24 V. PETKOV AND L. STOYANOVwhere m > 0: Then there are two possibilities:(i) For eah � > 0 and eah d > 0, the modi�ed resolvent ~R(�) has poles in the domain U�;d:(ii) For some � > 0; d > 0 the modi�ed resolvent ~R(�) is holomorphi in U�;d but for all� � 0; p 2 N; k 2 N we havesup�2U�;d; k'kHk(
)=1(1 + j�j)�pe��j Im�jk ~R(�)'kH1(
) = +1:It is natural to make the onjeture that under the assumption of Theorem 9 the ase (i) alwaystakes plae. 7. Rigidity of the sattering length spetrumFix again a large open ball U0 in Rn , n � 3, n odd2, and let C = �U0. Throughout thissetion we onsider obstales K in Rn ontained in U0 with smooth boundaries �K that satisfythe ondition (G) from Setion 3 and suh that K(�) is a non-degenerate simply reeting ray foralmost all � 2 S�C(
) suh that K(�) \ �K 6= ;. Denote by K0 the lass of obstales with theseproperties. One an derive from [22℄ (see Chapter 3 there) that K0 is of seond Baire ategory (withrespet to the C1 Whitney topology; f. [8℄) in the lass of all obstales with smooth boundaries.Sine in this setion we deal with more than one obstale, it is onvenient to replae thenotation 
, Ft, s(t; !; �), _T �b (
) and S�b (
) used so far (f. Setion 3 for the latter two) by 
K ,F (K)t , sK(t; !; �), _T �b (
K) and S�b (
K), respetively.A point � = (x; !) 2 _T �(
K) is alled a trapped point if at least one of the urves fpr1(F (K)t (�)) :t � 0g and fpr1(F (K)t (�)) : t � 0g in 
K is bounded. Here we use the notation pr1(y; �) = y andpr2(y; �) = �. Denote by Trap(
K) the set of all trapped points in _T �(
K). Notie that theset �1 used in Setion 6 oinides with Trap(
K) \ S�C(
K). It is easy to see that �1 6= ; i�Trap(
K) 6= ;. So, if Trap(
K) = ;, then K is a non-trapping obstale. It is known for examplethat all star-shaped obstales are non-trapping.The sattering length spetrum (SLS) of K is by de�nition the family of sets of real numbersSLK = fSLK(!; �)g(!;�) where (!; �) runs over Sn�1 � Sn�1 and SLK(!; �) is the set of sojourntimes T of all (!; �)-rays  in 
K . Thus, SLK is a map whih assigns to eah pair of diretions(!; �) a set SLK(!; �) of real numbers.In this setion we disuss the problem of reovering information about the geometry of theobstale K from its SLS. Two obstales K and L in Rn are said to have almost the same SLS ifthere exists a subset R of full Lebesgue measure in Sn�1 � Sn�1 suh that SLK(!; �) = SLL(!; �)for all (!; �) 2 R. We will say that a property P of obstales in Rn an be reovered by the SLSof the obstale if whenever K and L have almost the same SLS and K has property P, then L hasproperty P as well.It follows from results of A. Majda [15℄ (see also Majda and Ralston [16℄) and P. Lax and R.Phillips [13℄ that the onvex hull K̂ of K an be reovered from SLK . Consequently, in the lass2In fat, most of the onsiderations in this setion are purely geometrial and apply also in the ase when n iseven, n � 2.



SCATTERING PROBLEMS 25of onvex obstales and also in the lass of onneted obstales with real analyti boundaries, K isompletely determined by its SLS.EXAMPLE 7.1. The following example of M. Livshits (f. Chapter 5 in [18℄) shows that ingeneral SLK does not determine K uniquely. Here the part E is half an ellipse with foi F1 andF2. The ellipse has the property that any ray interseting the segment onneting the foi, afterreetion at the boundary, intersets the same segment again. It is now lear that no satteringray in the exterior of the obstale K has a ommon point with the parts P and Q, so these two\pokets\ annot be reovered from the SLS of the obstale. It should be mentioned that thisexample is in R2 and no examples like this in higher dimensions are known to the authors.

A
F1

Q

E

F2
B

PFigure 4. Livshits' Example (adapted from Ch. 5 of [18℄).The problem onsidered at the beginning of this setion is of a global nature. The following sim-ple example shows that in the orresponding loal problem there is no uniqueness (unless possiblysome non-degeneray onditions are imposed).EXAMPLE 7.2. Consider two obstales K and L = L1 [ L2 [ L3 in Rn , n � 2, as shown in the�gure below. Here K and L2 are (stritly) onvex domains, while L1 and L3 are onvex domains.Moreover K and L2 are symmetri with respet to the hyperplane � ontaining the at \top parts"of �L1 and �L3. The rays on the �gure are generated by some �0 (far from K and L). For any �lose to �0 we have F (K)t (�) = F (L)t (�) for t >> 0 and both trajetories have ommon points withthe orresponding obstales (and are non-degenerate). On the other hand, K \ L = ;.
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FIGURE 5.It should be mentioned however that the obstales K and L in this example do not satisfy theondition G. Whether suh examples exist with K and L satisfying G is an open problem.It turns out that if two obstales K and L have almost the same SLS, then their generalizedgeodesi ows are onjugate with a time preserving onjugay on the non-trapping parts of theirphase spaes.Theorem 10. ([28℄) If the obstales K;L 2 K0 have almost the same SLS, then there exists ahomeomorphism � : _T �b (
K) n Trap(
K) �! _T �b (
L) n Trap(
L)with the following properties:(i) � de�nes a sympleti map on an open dense subset of _T �b (
K) n Trap(
K);(ii) � maps S�b (
K) n Trap(
K) onto S�b (
L) n Trap(
L);(iii) F (L)t Æ � = � Æ F (K)t for all t 2 R;(iv) �(x; �) = (x; �) for any (x; �) 2 _T �b (
K)nTrap(
K) = _T �b (
L)nTrap(
L) suh that x =2 U0.Conversely, it is not diÆult to show that if K;L 2 K0 are two obstales for whih there existsa homeomorphism � : S�b (
K) n Trap(
K) �! S�b (
L) n Trap(
L) suh that F (L)t Æ � = � Æ F (K)tfor all t 2 R and � = id on S�(Rn n U0) n Trap(
K), then K and L have the same SLS ([28℄).There is a lear analogy between the property desribed above and the so alled lens equivaleneof geodesi ows on Riemannian manifolds without boundary (see [3℄ and the referenes there).We are now going to sketh the proof of Theorem 10. Assume that the obstales K and Lhave almost the same SLS. The existene of the onjugay � follows easily from the following mainlemma.Lemma 3. For every � 2 S�(Rn n U0) and every t 2 R with F (K)t (�) 2 S�(Rn n U0) we haveF (K)t (�) = F (L)t (�):



SCATTERING PROBLEMS 27Indeed, given � 2 _T �(
) n Trap(
K), take t 2 R so large that F (K)t (�) 2 S�(Rn n U0). Thende�ne �(�) = F (L)�t Æ F (K)t (�). It follows from the above lemma that the de�nition of � is orretand moreover F (L)t Æ � = � Æ F (K)t for all t 2 R and �(�) = � for � 2 _T �(Rn n U0) n Trap(
K).Clearly � is a homeomorphism and it follows from the properties of the generalized geodesi ows([20℄) that it is a sympleti map on an open dense subset of _T �b (
K) nTrap(
K). This shows howTheorem 10 is derived from Lemma 3.We now proeed to prove Lemma 3.Fix for a moment an arbitrary (!0; �0) 2 Sn�1 � Sn�1, and let Æ be a non-degenerate simplyreeting (!0; �0)-ray in 
K with reetion points x1; : : : ; xk (k � 1) and Æ0 is a non-degeneratesimply reeting (!0; �0)-ray in 
L with reetion points y1; : : : ; ym (m � 1). Using the non-degeneray of Æ and the Inverse Mapping Theorem one derives the existene of a neighborhood Uof (!0; �0) in Sn�1 � Sn�1 suh that for eah (!; �) 2 U there are a unique reeting (!; �)-rayÆ(!; �) in 
K with reetion points x1(!; �); : : : ; xk(!; �) lose to x1; : : : ; xk, resp., and a uniquereeting (!; �)-ray Æ0(!; �) in 
L with reetion points y1(!; �); : : : ; ym(!; �) lose to y1; : : : ; ym,respetively.Lemma 4. Under the above assumptions, suppose in addition that TÆ(!;�) = TÆ0(!;�) for all (!; �) 2U . Then for eah (!; �) 2 U there exist real numbers �(!; �) and �(!; �) suh that(7.1) y1(!; �) = x1(!; �) + �(!; �)! ; ym(!; �) = xk(!; �) + �(!; �)�:Proof of Lemma 4: Let (!; �) = (!(u); �(v)), (u; v) 2 Rn�1 �Rn�1 be a smooth parametrizationof U and let xj(u; v) = xj(!(u); �(v)) and yj(u; v) = yj(!(u); �(v)). For the funtionsf(u; v) = h!(u); x1(u; v)i + k�1Xi=1 kxi(u; v)� xi+1(u; v)k � hxk(u; v); �(v)i;g(u; v) = h!(u); y1(u; v)i + m�1Xi=1 kyi(u; v) � yi+1(u; v)k � hym(u; v); �(v)i;we have f(u; v) = g(u; v) for all (u; v), therefore the derivatives of these two funtions oinide. Asimple alulation gives�f�uj (u) = � �!�uj ; x1�+�!; �x1�uj�+ k�1Xi=1 � xi+1 � xikxi+1 � xik ; �xi+1�uj � �xi�uj����xk�uj ; �� :Using the notation ei = xi+1 � xikxi+1 � xik and the reetion law at the points x1; : : : ; xk�1, we �nd�f�uj (u) = � �!�uj ; x1�+�! � e1; �x1�uj�+�e1 � e2; �x2�uj�+ : : :+�ek�2 � ek�1; �xk�1�uj �+�ek�1 � �; �xk�uj � = � �!�uj ; x1� :In the same way one gets �g�uj = � �!�uj ; y1� : Hene � �!�uj ; x1� = � �!�uj ; y1� for all j = 1; : : : ; n�1,so y1 � x1 = �! for some � 2 R.



28 V. PETKOV AND L. STOYANOVSimilarly, ym = xk + �� for some � 2 R.In what follows we denote by ÆM the interior (i.e. the largest open subset) of a subsetM of Rn .Proof of Lemma 3: Let R be a subset of full Lebesgue measure in Sn�1 � Sn�1 suh that(7.2) SLK(!; �) = SLL(!; �) ; (!; �) 2 R:Shrinking R if neessary, we will assume that (!; !) =2 R for any ! 2 Sn�1. Then for (!; �) 2 R,any (!; �)-ray in 
K (and in fat in the exterior of any obstale) must have at least one reetionpoint. Furthermore, using Theorems 3, 4 and 6 above, we may assume that the set R is hosenin suh a way that: (i) for (!; �) 2 R all (!; �)-rays in 
K (resp. 
L) are non-degenerate simplyreeting (!; �)-rays; (ii) if (!; �) 2 R and  and Æ are (!; �)-rays in 
K (resp. 
L), then T 6= TÆ.It follows from [13℄ and [15℄ (see also [16℄) that K̂ = L̂.Let �0 = (u0; !0) 2 S�( Æ
K̂) and t0 2 R be suh that F (K)t0 (�0) 2 S�( Æ
K̂). We will show thatF (K)t0 (�0) = F (L)t0 (~�0). Using various results from [20℄, [23℄ and [28℄, one derives that it is enough toonsider the ase when �0 is non-trapped and (!0; �0) 2 R. Then Æ = K(�0) is a non-degeneratesimply reeting (!0; �0)-ray in 
K .The essential ase to onsider is when K(�0) \ �K 6= ;. Then there exists s0 2 R withF (K)s0 (~�0) = (x0; �0), x0 2 �K, and without loss of generality we will assume s0 > 0 and moreoverthat s0 is the minimal positive number with pr1(F (K)s0 (�0)) 2 �K. Let x1 = x0; x2; : : : ; xk bethe suessive reetion points of Æ. Aording to (7.2), there exists a reeting (!0; �0)-ray Æ0in 
L with TÆ0 = TÆ. Let y1; : : : ; ym be the suessive reetion points of Æ0. The hoie of Rand (!0; �0) 2 R imply that Æ0 is non-degenerate. From the latter one derives that there exist aneighborhood U of (!0; �0) in Sn�1�Sn�1 and a neighborhood Ui of xi in �K for eah i = 1; : : : ; ksuh that for every (!; �) 2 U there is a unique reeting (!; �)-ray Æ(!; �) in 
K with reetionpoints x1(!; �) 2 U1; : : : ; xk(!; �) 2 Uk smoothly depending on (!; �). Similarly, there exists aneighborhood U 0j of yj in �L for eah j = 1; : : : ;m suh that for every (!; �) 2 U there is a uniquereeting (!; �)-ray Æ0(!; �) in 
L with reetion points y1(!; �) 2 U 01; : : : ; ym(!; �) 2 U 0m smoothlydepending on (!; �). Moreover Æ(!0; �0) = Æ and Æ0(!0; �0) = Æ0.Aording to (7.2), for eah (!; �) 2 R \ U there exists a unique reeting (!; �)-ray Æ00(!; �)in 
L with(7.3) TÆ00(!;�) = TÆ(!;�):Assuming U is small enough, it then follows that Æ00(!; �) = Æ0(!; �) for eah (!; �) 2 R \ U .Indeed, otherwise there exists a sequene f(!p; �p)g1p=1 � R \ U onverging to (!0; �0) suh thatÆ00(!p; �p) 6= Æ0(!p; �p) for all p. Let Z = Z!0 . Denote by up the (inoming) intersetion pointof Æ00(!p; �p) with Z; then Æ00(!p; �p) = L(up; !p). Considering an appropriate subsequene, wemay assume that up ! u 2 Z as p ! 1. Then Æ00 = L(u; !0) is an (!0; �0)-ray in 
L andlearly TÆ00 = limp TÆ00(!p;�p) = TÆ00(!0;�0). Now (7.3) implies TÆ00 = TÆ(!0;�0) = TÆ and thereforeTÆ00 = TÆ0(!0;�0) = TÆ0 . This and (!0; �0) 2 R give Æ00 = Æ0. Hene u belongs to Æ0 = Æ0(!0; �0) andtherefore for large p, the ray Æ00(!p; �p) has m reetion points belonging to the neighborhoods U 0j ,respetively. From the hoie of U and the uniqueness of the (!; �)-rays Æ0(!; �) for (!; �) 2 U , itnow follows that Æ00(!p; �p) = Æ0(!p; �p). This is a ontradition with the hoie of the sequene



SCATTERING PROBLEMS 29f(!p; �p)gp whih proves that Æ00(!; �) = Æ0(!; �) for all (!; �) 2 R \ U . Hene(7.4) TÆ0(!;�) = TÆ(!;�)for (!; �) 2 R\U . This gives that (7.4) holds for all (!; �) 2 U , and then by Lemma 4 imply that(7.1) hold for some real numbers �(!; �) and �(!; �) for all (!; �) 2 U . In partiular, Æ0 = L(�0).Let F (K)t0 (�0) = (z; �). Then either � = !0 and z = x1 + s!0 for some s < 0, or � = �0 andz = xk + s�0 for some s > 0. The same holds for F (L)t0 (�0) = (z0; � 0). In both ases (7.1) and (7.4)imply (z; �) = (z0; � 0), i.e. F (K)t0 (�0) = F (L)t0 (�0). :Using the existene of the onjugay � and the fat that it is measure preserving with respetto the anonial measures on S�b (
K) and S�b (
L), one derives the following.Corollary 1. Let the obstales K and L have almost the same SLS. If the sets of trapped pointsof both K and L have Lebesgue measure zero, then Vol(K) = Vol(L).Livshits' example shows that the above onlusion is not true without any assumption aboutthe sets of trapped points. Notie that far from the obstale the trapping set is relatively small. Forexample, if C is a large sphere in Rn (i.e. it ontains K in its interior), a slight modi�ation of theproof of Proposition 2 above shows that dim(S�C(
K) \ Trap(
K)) � 2n � 3. On the other hand,in some ases (e.g. Livshits' example) we have dim(Trap(
K)\S�b (
K)) = 2n�1 = dim(S�b (
K)).Another simple onsequene of Theorem 10 onerns baksattering rays. Denote by Trap(n)(�K)the set of those x 2 �K suh that (x; �K(x)) 2 Trap(
K), where �K(x) is the outward unit normalto �K at x.Suppose that K and L are obstales with almost the same SLS. Let � be the onjugayfrom Theorem 10. Given x 2 �K n Trap(n)(�K), take an arbitrary t > 0 suh that (z; �) =F (K)t (x; �K(x)) 2 S�(Rn nU0). Then F (K)t (z;��) = (x; �K(x)) and F (K)2t (z;��) = (z; �). Therefore(z; �) = �(z; �) = � Æ F (K)2t (z;��) = F (L)2t Æ �(z;��) = F (L)2t (z;��) ;for (y; �) = F (L)t (z;��) we must have y 2 �L and � ? �L at y. Thus, �(x; �K(x)) = (y; �L(y)) forsome y 2 �L n Trap(n)(�L). Setting '(x) = y, one gets a homeomorphism' : �K n Trap(n)(�K) �! �L n Trap(n)(�L)suh that '(x) = y whenever �(x; �K(x)) = (y; �L(y)). In partiular, if dim(Trap(n)(�K)) < n� 2and dim(Trap(n)(�L)) < n� 2, it follows that K and L must have the same number of onnetedomponents.Here we denote by dim(X) the topologial dimension of X (f. for example [4℄). Sine dim(X) �dimH(X), where dimH(X) is the Hausdor� dimension of the metri spae X (f. e.g. [4℄), allassumptions of the form \dim(X) � a" an be replaed by \dimH(X) � a".It seems natural to onjeture that in the ase of non-trapping obstales the SLS uniquelydetermines the obstale. While this is still an open problem, using Theorem 10 and baksatteringrays as above, one an prove this onjeture at least for star-shaped obstales (as mentioned above,these are neessarily non-trapping).Proposition 3. ([28℄) Let K and L have almost the same SLS. If K is star-shaped, then L = K.



30 V. PETKOV AND L. STOYANOVEven though the trapping set is relatively small far from the obstale, in general it may be bigenough to topologially divide S�C(
K), i.e. it may happen that S�C(
K) nTrap(
K) has more thanone onneted omponent.We will denote by �K(ob) the union of all onneted omponents of �K that have a ommonpoint with at least one sattering ray in 
K , and all it the observable part of the boundary �K.The obstale K will be alled observable, if �K = �K(ob).Theorem 11. ([29℄) Let K;L be obstales in Rn with real analyti boundaries that have almost thesame SLS. If K is suh that Trap(
K) does not topologially divide S�C(
K), then �K(ob) = �L(ob).If in addition both K and L are observable, then K = L.The idea of the proof of Theorem 11 is rather simple. Let Y be the union of all onnetedomponents of �K(ob) that do not oinide with onneted omponents of L. Assuming Y 6= ;,one �nds � 2 S�(Rn n U) suh that K(�) = fpr1(F (K)t (�)) : t 2 Rg has a ommon point withY . Consider a smooth urve �(s) in S�(Rn n U) that onnets � to a point �(0) = �0 generatinga free ray, i.e. a ray without ommon points with K. After some regularization of the urve �(s)(imposing some transversality onditions on it), we hoose the smallest s with K(�(s)) \ Y 6= ;.For � = �(s), the sattering ray K(�) has only one ommon point y with Y whih is a tangentpoint, and all transversal reetion of its our at onneted omponents of �K that oinidewith onneted omponents of L. Then we show that y0 2 �L for a dense set of points y0 in aneighborhood of y in Y . Thus, �K = �L near y whih is a ontradition with the de�nition of Y .We refer the reader to [29℄ for details.It is not lear how restritive the ondition that Trap(
K) does not topologially divide S�C(
K)is. It turns out ([29℄) that this ondition is satis�ed when K is a �nite disjoint union of stritlyonvex domains with C1 boundaries. This and Theorem 11 imply the following.Corollary 2. ([29℄) If K is a �nite disjoint union of stritly onvex domains, K and L have almostthe same SLS and both �K and �L are real analyti, then K = L.It is an open problem whether the statement of Corollary 2 remains true for obstales with C1boundaries �K and �L.Next, we desribe a few results from [28℄ involving sattering rays having tangenies to theboundary.Denote by K(fin) the lass of obstales K 2 K0 suh that the normal urvature of K does notvanish of in�nite order. From now on until the end of this setion we assume that K;L 2 K(fin).Consider an arbitrary sattering ray  in 
K and let X and Y be arbitrary ross-setions ofthe inoming and outgoing rays of . De�ne the ross-setional map PK : S�X(Rn) �! S�Y (Rn) bythe shift along the ow F (K)t . Now assume that the obstale K and L have almost the same SLS.It then follows from Theorem 10 that PK = PL. In partiular the singularities of PK and PL arethe same, and this implies that for any �0 = (x0; �0) 2 S�(Rn n U0) n Trap(
K), the ray K(�0)ontains a point of tangeny to �K if and only if L(�0) ontains a point of tangeny to �L.Next, suppose that �(s), s 2 [0; a℄, is a ontinuous urve in S�(
K) onsisting of non-trappedpoints. Using an idea of Melrose and Sj�ostrand [20℄ involving winding numbers, one shows that ifK(�(s)) is simply reeting for eah s, then the number of reetion points of K(�(s)) is the samefor all s 2 [0; a℄. Now assume that � = �(0) generates a ray K(�) ontaining a gliding segment



SCATTERING PROBLEMS 31on �K. If sk & 0 are suh that eah K(�(sk)) is simply reeting, it follows from [20℄ that thenumber of reetion points of K(�(sk)) tends to1. Hene there must be in�nitely many s 2 (0; a℄suh that F (K)t (�(s)) 2 S�(�K) for some t = t(s). On the other hand if K(�) is tangent to �Kbut does not ontain a gliding segment, then it is not diÆult to onstrut a ontinuous urve �(s)(0 � s � a, a > 0) in S�(
K) with �(0) = � suh that (�(s)) is a simply reeting ray for alls 2 (0; a℄.These observation yield that from the SLS of an obstale one an determine whih points� 2 S�(
K) n Trap(
K) generate rays ontaining gliding segments on �K.Corollary 3. ([28℄) Let K;L have almost the same SLS. If there exists a sattering ray ontaininga gliding segment in 
K, then 
L has the same property. Consequently, if K is a �nite disjointunion of onvex domains in Rn and dim(Trap(
L) \ S�(�L)) < 2n � 3, then L is also a �nitedisjoint union of onvex domains, moreover K and L must have the same number of onnetedomponents and are therefore di�eomorphi.A point � 2 S�C(
K) will be alled aessible if it belongs to a onneted omponent ofS�C(
K)nTrap(
K) ontaining a point that generates a free ray. Presumably the SLS provides moresubstantial information about the behavior of the ow F (K)t near aessible points � 2 S�C(
K)and orrespondingly about parts of �K that an be reahed by rays generated by aessible points.The following result of [28℄ shows for example that the SLS determines uniquely the number ofreetion points of simply reeting rays K(�) generated by aessible points �.Proposition 4. ([28℄) Let K;L have almost the same SLS. For every onneted omponent W ofS�C(
K) n Trap(
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