
MEROMORPHIC CONTINUATION OF THE SPECTRAL SHIFT FUNCTIONVINCENT BRUNEAU AND VESSELIN PETKOVAbstrat. We obtain a representation of the derivative of the spetral shift funtion �(�; h) in theframework of semi-lassial "blak box" perturbations. Our representation implies a meromorphiontinuation of �(�; h) involving the semi-lassial resonanes. Moreover, we obtain a Weyl typeasymptotis of the spetral shift funtion as well as a Breit-Wigner approximation in an interval(�� Æ; �+ Æ); 0 < Æ < �h:AMS lassi�ation: 35B34, 35P25 1. IntrodutionThe purpose of this paper is to obtain a meromorphi ontinuation of the derivative of thespetral shift funtion �(�; h). This problem is losely related to the trae formulae (see [14℄, [35℄,[36℄ [22℄, [24℄, [31℄, [29℄, [30℄) and to resonanes expansions ([8℄, [33℄). For ompat perturbationsthe funtion �(�; h) oinides with the sattering phase�(�; h) = 12�i log detS(�; h); � 2 R ;where S(�; h) = I + A(�; h) : L2(Sn�1) �! L2(Sn�1) is the sattering operator and for moreinformation about the spetral shift funtion we refer to [34℄. In the lassial ase (h = 1) the �rstresult proving a representation of �(�) = �(�; 1) ontaining the resonanes zj 2 C � = fz 2 C :Im z < 0g was established by Melrose [17℄ for obstale sattering in odd dimensions n � 3: Morepreisely, given a funtion �(t) 2 C1(R) suh that 0 � �(t) � 1; �(t) = 1 for t � 2; �(t) = 0 fort � 3, Melrose showed that �(�) = �sing(�) + �reg(�);with dd��sing(�) = � 1�Xj �� jzj j� � Im zjj�� zj j2 ; �sing(0) = 0; � 2 R ;�reg(�) 2 Sn(R) :Sine �(�; h) is the logarithmi derivative of the sattering determinants(�; h) = det(I +A(�; h)) ;it is natural to examine the behavior of s(z; h) for z in the "physial half plane", where we have noresonanes. This idea was developed by Guillop�e and Zworski [14℄ for the analysis of the satteringresonanes for ertain Riemann surfaes and in the lassial ase h = 1, Zworski [35℄, [36℄ gave anelegant proof of the trae formula for "blak box" ompat perturbations based on the meromorphiontinuation of s(z) (see [35℄ for other works on trae formulae).In [22℄, [24℄ the Breit-Wigner approximation for the sattering phase has been justi�ed for"blak box" sattering with ompat perturbations in the lassial and the semi-lassial ases.1



2 V. BRUNEAU, V. PETKOVAmong the ideas introdued in [22℄, [24℄, one of the main point in [24℄ was the estimate of theholomorphi funtion g(z; h), jg(z; h)j � C(
)h�n# ; n# � n (1.1)in the loal fatorization s(z; h) = eg(z;h)P (z; h)P (z; h) ; z 2 
 ;where P (z; h) = Yw2Res L(h) \
�;Imw 6=0 (z � w) ;
 = (a; b) + i(�; ); 0 < a < b;  > 0; 
� = fz 2 C : d(
; z) < �g; � > 0 :Here L(h) is a ompatly supported perturbation of the operator �h2�; 0 < h � h0; and n#depends on the estimates of the number of the eigenvalues of the referene operator. The loalfatorization implies immediately�z�(z; h) = 12�i�zg(z; h) + 12�i Xw2Res L(h) \ 
�;Imw 6=0 � 1z � w � 1z � w�; z 2 
 (1.2)and for � 2 (a; b) we obtain an analogue of the formula of Melrose mentioned above. Combining(1.2) with the Birman-Krein formula one obtains easily the trae formula of [29℄ exploiting themeromorphi ontinuation of �z�(z; h) in fz 2 C : Im � 0g (see Theorem 1 in [24℄). Moreover, asimilar fatorization has been established in [24℄ in domains �+ h
 with an improved estimate forthe holomorphi funtion g(z; h):In the ase of "blak box" long-range perturbations the existene of the sattering operatorand that of the sattering determinant are far from apparent. In this diretion Sj�ostrand [29℄,[30℄ proposed powerful tehniques based on the omplex saling operators, introdued in [31℄, andomplex analysis. The sattering determinant is replaed by D(z; h) = det(I + ~K(z)), where ~K(z)is trae lass operator whih is not uniquely determined and the resonanes are the zeros of D(z; h):Applying the approah of Sj�ostrand, J.-F. Bony [1℄, [2℄, established upper and lower bounds on thenumber of the semi-lassial resonanes in small domains and the Breit-Wigner approximation hasbeen extended to long-range perturbations in [4℄. For a pair of self-adjoint operators Lj(h); j = 1; 2;satisfying some assumptions (see Setion 2) the spetral shift funtion �(�; h) is a distribution inD0(R) suh that< �0(�; h); f(�) >D0(R);D(R)= trbb�f(L2(h)) � f(L1(h))�; f(�) 2 C10 (R) ;where trbb is a generalized trae de�ned in Setion 2. We denote by Res Lj(h); j = 1; 2 the set ofthe resonanes w 2 C � of Lj(h):In this work we are strongly inspired by the approah in [24℄ and our main goal is to obtainan analogue of (1.2) in the ases when a sattering determinant is not available. We show thatthe representation (1.2) remains true in the general ase of semi-lassial "blak box" sattering,replaing �0(�; h) by the "regular part"�0(�; h) � h Xw2Res Lj(h) \(a;b) Æ(�� w)i2j=1;



MEROMORPHIC CONTINUATION 3where here and throughout the paper we use the notation [aj℄2j=1 = a2� a1: Our prinipal result isthe following.Theorem 1. Assume that Lj(h); j = 1; 2; satisfy the assumptions of Setion 2. Let 
 ��ei℄�2�0;2�0[℄0;+1[; 0 < �0 < �=2, be an open simply onneted set and let W �� 
 be an opensimply onneted and relatively ompat set whih is symmetri with respet to R. Assume thatJ = 
 \ R+ ; I =W \ R+ are intervals. Then for � 2 I we have the representation�0(�; h) = 1� Im r(�; h) + h Xw2Res Lj\
;Imw 6=0 � Imw�j�� wj2 + Xw2Res Lj\J Æ(� � w)i2j=1; (1.3)where r(z; h) = g+(z; h) � g+(z; h); g+(z; h) is a funtion holomorphi in 
 and g+(z; h) satis�esthe estimate jg+(z; h)j � C(W )h�n# ; z 2W (1.4)with C(W ) > 0 independent on h 2℄0; h0℄:Remarks.� The terms related to the resonanes are measures. In fat, the resonanes w; Imw < 0; arerelated to harmoni measures!C� (w;E) = � 1� ZE Imwjt� wj2 dt; E � R = �C � ;while the resonanes w 2 R+ oinide with the embedded eigenvalues of Lj(h); j = 1; 2.Moreover, in a small neighborhood U�(h) of every � 2 I n [2j=1f� 2 R : � 2 �pp(Lj(h))gthe derivative �0(�; h) oinides with a real analyti funtion on U�(h). In partiular, if wehave no embedded positive eigenvalues of Lj(h) in I, then �0(�; h) is real analyti in I:� The representations of �0(�; h) obtained in [26℄, [6℄ involve the traes of the ut-o� resolvents�(Lj ��� i0)�1�; � 2 C10 (Rn); and some regular terms whose meromorphi ontinuationis far from apparent. The form of �0(�; h) in [26℄, [6℄ has been used for the investigation ofthe Weyl type asymptotis of �(�; h) (see also [18℄, [5℄ for semi-lassial asymptotis in thetrapping ase).The proof of (1.3) relies heavily on the work of Sj�ostrand [30℄, while the arguments in [24℄ wereself-ontained and based on the semi-lassial estimates of the sattering determinant. Having inmind (1.3), we obtain in the general ase of "blak box" semi-lassial sattering several results:I) We establish a Weyl type asymptotis of the spetral shift funtion in the general frameworkof semi-lassial \blak box" perturbations improving our previous result [6℄ and working withoutany assumption on the behavior of the resonanes lose to the real axis. We generalize the resultsof Christiansen [9℄ for ompat perturbations and those of Robert [26℄ for long-range perturba-tions. Theorem 1 allows to onsider the sum of the harmoni measures related to the resonanesw; Imw 6= 0, as a monotoni funtion and to apply a Tauberian argument as in [17℄.II) We present a new diret and short proof of the reent result of J.-F. Bony and Sj�ostrand[4℄ on the Breit-Wigner approximation in the long-range ase (see Theorem 3). For this purpose



4 V. BRUNEAU, V. PETKOVthe Weyl asymptotis obtained in Theorem 2 plays an essential role. Moreover, Theorem 2 andTheorem 3 are established under the "blak box" assumptions in Setion 2 and the ondition(5.1). Thus we have an uni�ed approah to these problems. Next, assuming the existene of freeresonanes domain, we obtain a Breit-Wigner approximation involving only the resonanes w lyingin small \boxes" fw 2 C : jRew � �j � R(h); j Imwj � R1(h)gwith R(h) = phR1(h) = O(h1):III) In the same way as in [24℄, we obtain the loal trae formula of Sj�ostrand [29℄, [30℄ in aslightly stronger version (see Setion 7). Moreover, we prove a trae formula involving the unitarygroups e�i thLj(h); j = 1; 2 (see Theorem 5) whih is a semi-lassial version of the lassial traeformulae.We expet that the approah of our work ould be useful in other situations as in the analysisof periodi potentials [11℄ or the study of matrix Shr�odinger operators [19℄ if a representation like(1.3) is established.The plan of the paper is the following. In Setion 2 we introdue the "blak box" satteringassumptions and in Setion 3 we obtain a formula for �0(�; h) involving the limits of the funtions��(z) as Im z ! 0: Theorem 1 is proved in Setion 4 and in Setion 5 we establish a Weyl typeasymptotis for the spetral shift funtion �(�; h). The semi-lassial Breit-Wigner approximationis established in Setion 6 together with a stronger approximation based on some reent resultsof Stefanov [32℄. In Setion 7 we prove some trae formulae ombining (1.3) with the argumentsof [24℄. In partiular, we obtain a trae formula involving the unitary groups e�ih�1Lj . Finally,in Setion 8 the Breit-Wigner approximation is applied to establish the existene of lusters ofresonanes lose to the real axis.Aknowledgments. The authors are grateful to J. Sj�ostrand and M. Zworski for many helpfuldisussions. We would like to thank the referee for his remarks.2. PreliminariesWe start by the abstrat \blak box" sattering assumptions introdued in [31℄, [29℄ and [30℄.The operators Lj(h) = Lj ; j = 1; 2; 0 < h � h0; are de�ned in domains Dj � Hj of a omplexHilbert spae Hj with an orthogonal deompositionHj = HR0;j � L2(Rn n B(0; R0)); B(0; R0) = fx 2 Rn : jxj � R0g; R0 > 0; n � 2:Below h > 0 is a small parameter and we suppose the assumptions satis�ed for j = 1; 2:We supposethat Dj satis�es 1lRnnB(0;R0)Dj = H2(Rn n B(0; R0)); (2.1)uniformly with respet to h in the sense of [29℄. More preisely, equip H2(Rn n B(0; R0)) with thenorm k < hD >2 ukL2 ; < hD >2= 1 + (hD)2, and equip Dj with the norm k(Lj + i)ukHj : Thenwe require that 1lRnnB(0;R0) : Dj �! H2(Rn nB(0; R0)) is uniformly bounded with respet to h andthis map has a uniformly bounded right inverse.



MEROMORPHIC CONTINUATION 5Assume that 1lB(0;R0)(Lj + i)�1is ompat (2.2)and (Lju)jRnnB(0;R0) = Qj�ujRnnB(0;R0)�; (2.3)where Qj is a formally self-adjoint di�erential operatorQju = Xj�j�2aj;�(x;h)(hDx)�u; (2.4)with aj;�(x;h) = aj;�(x) independent of h for j�j = 2 and aj;� 2 C1b (Rn) uniformly bounded withrespet to h.We assume also the following properties:There exists C > 0 suh thatlj;0(x; �) = Xj�j=2aj;�(x)�� � Cj�j2; (2.5)Xj�j�2aj;�(x;h)�� �! j�j2; jxj �! 1 (2.6)uniformly with respet to h.There exists n > n suh that we have���a1;�(x;h) � a2;�(x;h)���� O(1)hxi�n (2.7)uniformly with respet to h. This assumption will guarantee that for every f 2 C10 (R) the operatorf(L1)� f(L2) is \trae lass near in�nity".There exist �0 2℄0; �2 [; � > 0 and R1 > R0 so that the oeÆients aj;�(x;h) of Qj an beextended holomorphially in x to� = fr!; ! 2 C n ; dist (!; Sn�1) < �; r 2 C ; r 2 ei[0;�0℄℄R1;+1[g (2.8)and (2.6), (2.7) extend to �.Let R > R0; T = (R= ~RZ)n; ~R > 2R: SetH#j = HR0;j � L2(T n B(0; R0))and onsider a di�erential operator Q#j = Xj�j�2a#j;�(x;h)(hD)�on T with a#j;�(x;h) = aj;�(x;h) for jxj � R satisfying (2.3), (2.4), (2.5) with Rn replaed by T .Consider a self-adjoint operator L#j : H#j �! H#j de�ned byL#j u = Lj'u+Q#j (1� ')u; u 2 D#j ;with domain D#j = fu 2 H#j : 'u 2 Dj ; (1� ')u 2 H2g;where ' 2 C10 (B(0; R); [0; 1℄) is equal to 1 near B(0; R0):



6 V. BRUNEAU, V. PETKOVDenote by N(L#j ; [��; �℄) the number of eigenvalues of L#j in the interval [��; �℄. Then weassume that N(L#j ; [��; �℄) = O(� �h2�n#j =2); n#j � n; � � 1: (2.9)Finally, we suppose that with some onstant C � 0 independent on h we havesp Lj(h) � [�C;1[; j = 1; 2; (2.10)where sp (L) denotes the spetrum of L: This ondition is a tehnial one and we expet that bya more �ne version of Proposition 1 we ould over the general ase.Given f 2 C10 (R) independent on h and � 2 C10 (Rn) equal to 1 on B(0; R0) we an de�netrbb[f(Lj)℄2j=1, as in [29℄, [30℄, by the equalitytrbb�f(L2)� f(L1)� = [tr(�f(Lj)�+ �f(Lj)(1 � �) + (1� �)f(Lj)�)℄2j=1+tr[(1� �)f(Lj)(1� �)℄2j=1 :Following [29℄, [30℄, we an de�ne the resonanes w 2 C � by the omplex saling method as theeigenvalues of the omplex saling operators Lj;�; j = 1; 2. We denote by Res Lj(h); j = 1; 2; theset of resonanes and set n# = maxfn#1 ; n#2 g:3. Representation of the derivative of the spetral shift funtionConsider the resolventsRj(�� i�) = i Z �10 eit�e�it(Lj�i�)dt; � 2 R; � > 0:Rj(�� i�) = �i Z 0�1 eit�e�it(Lj+i�)dt:Given a funtion f(�) 2 C10 (R), we have12�i Z Rj(�+ i�)f(�)d� = 12� Z 10 f̂(�t)e�itLj�t�dt;� 12�i Z Rj(�� i�)f(�)d� = 12� Z 0�1 f̂(�t)e�itLj+t�dt;where f̂ denotes the Fourier transform of f: Choose z0 2 R� whih is away from sp (Lj); j = 1; 2;and set g(�) = (� � z0)mf(�), where the integer m > n=2 will be taken suÆiently large andindependent on h. Applying the above formula, we obtain12�i trbb Z h(Lj � z0)�m�(�+ i�� z0)mRj(�+ i�)� (�� i�� z0)mRj(�� i�)�i2j=1f(�)d�= 12� trbbh(Lj � z0)�m�Z 10 e��t�itLj (ĝ(�t) + i�G+;�(t))dt+ Z 0�1 e�t�tLj (ĝ(�t) + i�G�;�(t))dt�i2j=1:(3.1)Here G�;�(t) are some funtions in S(R) related to the Fourier transform of �kf(�); 0 � k � m�1;whih are uniformly bounded with respet to 0 < � < 1: To justify the limit � # 0 in (3.1), we need



MEROMORPHIC CONTINUATION 7to establish the estimates of the trae uniformly with respet to � > 0. To do this we will provethe following.Lemma 1. For any t 2 R, the trae trbbh(Lj � z0)�me�itLj i2j=1 is well de�ned, andtrbbh(Lj � z0)�me�itLj i2j=1 = O(h�n#(1 + jtj)):Proof. Let � 2 C10 (Rn) be equal to 1 near B(0; R1); R1 > R0. Sine the operators �(Lj � z0)�mand (Lj � z0)�m� are trae lass (see [29℄) and e�itLj is uniformly bounded with respet to t, itis lear that �(Lj � z0)�me�itLj and (Lj � z0)�me�itLj� are trae lass ones with trae boundedby O(h�n#). To be more preise let us note that in [30℄ the ondition (2.10) is not assumed andwe an formally apply the results of [30℄ for z0 2 C n R: In our ase z0 2 R� and aording to theresolvent equation we have(Lj � z0)�m = (Lj � z1)�m�I + (z0 � z1)(Lj � z0)�1�m :So taking z1 2 C n R, we obtain the trae lass properties mentioned above.Now onsider the operatorh(1� �)(Lj � z0)�me�itLj (1� �)i2j=1:By Duhamel formula we obtain(1� �)(Lj � z0)�me�itLj (1� �) = e�itQj (1� �)(Lj � z0)�m(1� �)+i Z t0 e�i(t�s)Qj [�;Lj ℄(Lj � z0)�me�isLjds :The integrand is a trae lass operator with trae bounded by O(h�n#) and it remains to studythe operator he�itQj (1� �)(Lj � z0)�m(1� �)i2j=1 :For R1 > R0; �0 2 C10 (Rn) equal to 1 near B(0; R1) and �0 � � we have(Lj � z0)�1(1� �) = (1� �0)(Qj � z0)�1(1� �) + (Lj � z0)�1[Qj ; �0℄(Qj � z0)�1(1� �) :Here and below the notation ' �  means that  = 1 on supp ': Choose ut-o� funtions�N � ::: � �1 � � so that �N = 1 on B(0; R0) and apply the telesopi formula(Lj � z0)�1[Qj; �0℄(Qj � z0)�1(1� �)= (Lj � z0)�1[Qj; �0℄(Qj � z0)�1[Qj; �N ℄(Qj � z0)�1[Qj ; �N�1℄:::[Qj ; �1℄(Qj � z0)�1(1� �) :For N > n=2 this operator is trae lass. In fat, for ~� 2 C10 equal to 1 on supp �N the operator~�(Qj � i)�N=2(Qj � i)N=2[Qj ; �N ℄(Qj � z0)�1:::[Qj ; �1℄(Qj � z0)�1(1� �)is trae lass, while (Lj � z0)�1[Qj ; �0℄(Qj � z0)�1 is bounded. Here we have used the fat that Qjare ellipti operators and(Qj � z0)�1 = O(1) : HN (Rn) �! HN+2(Rn); 8N 2 N:Repeating this proedure, we obtain modulo trae lass operatorse�itQj (Lj � z0)�m(1� �)



8 V. BRUNEAU, V. PETKOV= e�itQj (1� �m)(Qj � z0)�1:::(1 � �1)(Qj � z0)�1(1� �) :In the same way, sine �k � �k�1; eah term �k(Qj � z0)�1(1 � �k�1) in the above produt istrae lass operator and modulo a trae lass operator we are going to studyhe�itQj (Qj � z0)�m(1� �)i2j=1:Consider the di�erene (Q2 � z0)�me�itQ2 � (Q1 � z0)�me�itQ1= e�itQ2�(Q2 � z0)�m � (Q1 � z0)�m�+ �e�itQ2 � e�itQ1�(Q1 � z0)�m:For the �rst term at the right hand side observe that the operator (Q2 � z0)�m � (Q1 � z0)�m form > n=2 is a trae lass one (see [10℄, [25℄, [29℄). To handle the seond term, notie that�e�itQ2 � e�itQ1�(Q1 � z0)�m = i Z t0 e�i(t�s)Q2(Q1 �Q2)(Q1 � z0)�me�isQ1dsand use the fat that (Q1 �Q2)(Q1 � z0)�m is trae lass for m > n2 + 1: �Aording to Lemma 1, in the equation (3.1) we an take the limit � # 0 with respet to thenorm in the spae of trae lass operators and taking into aount the de�nition of trbb(:), we getlim�#0 12� trbbh(Lj � z0)�m�Z 10 e��t�itLj (ĝ(�t) + i�G+;�(t))dt+ Z 0�1 e�t�itLj (ĝ(�t) + i�G�;�(t))dt�i2j=1= 12� trbbh(Lj � z0)�m Z 1�1 e�itLj ĝ(�t)dti2j=1= trbbh(Lj � z0)�mg(Lj)i2j=1 = trbb�f(L1)� f(L2)� =< �0(�; h); f(�) >D0(R);D(R) :Thus we have proved the following.Proposition 1. We have�0(�; h) = 12�i lim�#0 trbbh�(�+ i�� z0)m(Lj � �� i�)�1 (3.2)�(�� i�� z0)m(Lj � �+ i�)�1�(Lj � z0)�mi2j=1 ;where the limit is taken in the sense of distributions D0(R):Introdue the funtions��(z) = (z � z0)mtrbbh(Lj � z)�1(Lj � z0)�mi2j=1; � Im z > 0: (3.3)whih are well de�ned (see [30℄ and Proposition 2 below). The relationtrbbh(Lj � (�� i�))�1(Lj � z0)�mi2j=1 = trbbh(Lj � (�+ i�))�1(Lj � z0)�mi2j=1 ;implies immediately ��(z) = �+(z); Im z < 0: (3.4)



MEROMORPHIC CONTINUATION 9The equality (3.4) plays a ruial role in the proof of (1.3) and our hoie of real z0 is related tothe above relation.4. Meromorphi ontinuation of the spetral shift funtionIn this setion we prove our prinipal result given in Theorem 1. Taking 0 < � � �0 < �=2,onsider the omplex saling operators Lj;� related to Lj; j = 1; 2; introdued by Sj�ostrand andZworski (see [31℄, [29℄ and Setion 2 in [30℄). More preisely, given �0 > 0; R1 > R0, onsider afuntion f�(t) : ℄0; �2 [�[0;1[3 (�; t) 7! Cwhih is injetion for every � and has the properties:f�(t) = t for 0 � t � R1 ;0 � arg f�(t) � �; �tf� 6= 0 ;arg f�(t) � arg �tf�(t) � arg f� + �0 ;f�(t) = ei�t; for t � T0 ;where T0 depends on �0 and R1: Next onsider the map�� : Rn 3 x = t! 7! f�(t)! 2 C n ; t = jxjand introdue �� = ��(Rn) whih oinides with Rn along B(0; R1): We de�neHj;� = HR0;j � L2(�� n B(0; R0))and Lj;� : Hj;� �! Hj;� with domain Dj as the operatorLj;�u = Lj(�1u) +Qjj�� (1� �1)u ;�1 2 C10 (B(0; R1)) being a funtion equal to 1 near B(0; R0).Let 
 � ei℄�2�;2�[℄0;+1[ be a simply onneted open relatively ompat set suh that 
\R+ =J is an interval. The spetrum of Lj;� outside of e�2i�[0;+1[ onsists of the negative eigenvaluesof Lj and the eigenvalues in e�i[0;2�[℄0;+1[ (see [29℄). Sine the spetrum of Lj is bounded frombelow, we may hoose z0 2 R� ; z0 =2 
, so that z0 is away from sp (Lj) and sp (Lj;�); j = 1; 2:Given a positive number Æ > 0, we an apply Proposition 4.1 of Sj�ostrand [30℄, saying that for allz 2 
 \ fz : Im z � Æg we havetrbbh(Lj � z)�1(Lj � z0)�mi2j=1 = trbbh(Lj;� � z)�1(Lj;� � z0)�mi2j=1; (4.1)where in the de�nition of the omplex saling operators Lj;� the parameter �0 is hosen smallenough. Notie that the hoie of z0 2 ei[3�0; min(�; 2��2��3�0)℄℄0;+1[ in [30℄ says that we may takez0 2 R� , assuming � < �2 � 32�0:Below we assume Æ and � �xed and we will drop in the notations Lj the index j writing L:when the properties are satis�ed for both operators Lj; j = 1; 2: Following [30℄, Setion 4, thereexists an operator L̂:;� : D: �! H: so thatK:;� = L̂:;� � L:;� has rankO(h�n#)



10 V. BRUNEAU, V. PETKOVand for all N; M 2 N we have K:;� = O(1) : D(LN: ) �! D(LM: ):Seondly, K:;� is ompatly supported, that is if � 2 C10 (Rn) is equal to 1 on B(0; R) for R � R0large enough, we have K:;� = �K:;�� and, �nally, for every N 2 N we have(L̂:;� � z)�1 = O(1) : D(LN: ) �! D(LN+1: );uniformly for z 2 
: These properties imply for z 2 
 \ fIm z > 0g the representation(L:;� � z)�1 = (L̂:;� � z)�1 + (L:;� � z)�1K:;�(L̂:;� � z)�1: (4.2)The ontributions related to the resolvent (L̂:;� � z)�1 are examined in the following.Proposition 2. There exists a funtion a+(z; h) holomorphi in 
 suh that for z 2 
\fIm z > 0gwe have �+(z) = trh(Lj;� � z)�1Kj;�(L̂j;� � z)�1i2j=1 + a+(z; h): (4.3)Moreover, ja+(z; h)j � C(
)h�n# ; z 2 
 (4.4)with a onstant C(
) independent on h 2℄0; h0℄:Remark. The singularities of �+(z) for Im z # 0 are independent on z0 2 R� and m 2 N:Proof. Aording to (4.2), for z 2 
 \ fIm z � Æg we have�+(z) = (z � z0)m trbbh(L̂j;� � z)�1(Lj;� � z0)�mi2j=1 (4.5)+ (z � z0)mhtr�(Lj;� � z)�1Kj;�(L̂j;� � z)�1(Lj;� � z0)�m�i2j=1: (4.6)From the resolvent equation we obtain(z � z0)m(Lj;� � z0)�m(Lj;� � z)�1 = (Lj;� � z)�1 � mXk=1(z � z0)k�1(Lj;� � z0)�k:To treat (4.6) we use the yliity of the trae and the above equality and onlude that this termis equal to trh(Lj;� � z)�1Kj;�(L̂j;� � z)�1i2j=1 modulo a funtion holomorphi in 
 and boundedby O(h�n#):Now we pass to the analysis of (4.5). Our purpose is to show that (4.5) is holomorphi in 
 andbounded by O(h�n#): By onstrution, (L̂j;��z)�1 is holomorphi on 
 and for any ut-o� funtion� 2 C10 (Rn); � = 1 on B(0; R0) with supp � � B(0; R1) the operators �(Lj;��z0)�m; (Lj;��z0)�m�are trae lass ones. Hene the funtion tr�(L̂j;� � z)�1(Lj;� � z0)�m�� is holomorphi in 
. Onthe other hand, (Lj;� � z0)�m(L̂j;� � z)�1 � (L̂j;� � z)�1(Lj;� � z0)�m (4.7)= (Lj;� � z0)�m(Lj;� � z)�1Kj;�(L̂j;� � z)�1 � (Lj;� � z)�1Kj;�(L̂j;� � z)�1(Lj;� � z0)�m:



MEROMORPHIC CONTINUATION 11Consequently, for Im z > 0 if �1 2 C10 (Rn) is a ut-o� funtion and �1 � �, applying the yliityof the trae one more, we gettr��1(L̂j;� � z)�1(Lj;� � z0)�m(1� �)� = 0:Thus it remains to examine�+(z) = trh(1� �1)(L̂j;� � z)�1(1� �)(Lj;� � z0)�m(1� �)i2j=1:Consider the operator Q:;� = Q:j�� and note that for  2 C1 supported away from B(0; R1) wehave L:;� = Q:;� : Repeating the onstrution of L̂:;� in Setion 4, [30℄, we an �nd an operatorQ̂:;� : H2(��) �! L2(��) so that Q̂:;� �Q:;� has rankO(h�n);the operator Q̂:;� �Q:;� is ompatly supported and for z 2 
 we have(Q̂:;� � z)�1 = O(1) : D(QN: ) �! D(QN+1: ); 8N 2 N:Moreover, for  2 C1 supported away from B(0; R1) we have L̂:;� = Q̂:;� and for � 2 C10 (��)equal to 1 on a suÆiently large set, z 2 
 and �1 � �0 � � we obtain(L̂:;� � z)�1(1� �) = (1� �0)(Q̂:;� � z)�1(1� �)+(L̂:;� � z)�1[Q̂:;�; �0℄(Q̂:;� � z)�1(1� �):As above, we assume that z0 2 R� is hosen so that z0 =2 sp (Qj); z0 =2 sp (Qj;�); j = 1; 2: Forsimpliity of the notations below we omit the index � and we get�+(z) = trh(1� �0)(Q̂j � z)�1(1� �)(Lj � z0)�m(1� �)i2j=1+trh(1� �1)(L̂j � z)�1[Q̂j ; �0℄(Q̂j � z)�1(1� �)(Lj � z0)�m(1� �)i2j=1:Obviously, [Q̂j; �0℄ = [Qj ; �0℄ +Mj with a trae lass operator Mj . To show that the operator[Qj ; �0℄(Q̂j � z)�1(1 � �) is a trae lass one, we apply the telesopi formula hoosing ut-o�funtions �N � �N�1 � ::: � �1 � � and write[Qj ; �0℄(Q̂j � z)�1(1� �) = [Qj; �0℄(Q̂j � z)�1�(Qj � i)�m�h(Qj � i)m[Q̂j; �N ℄(Q̂j � z)�1[Q̂j; �N�1℄:::[Q̂j ; �1℄(Q̂j � z)�1(1� �)iwith N � 2m > n: The operator in the brakets [:::℄ and [Qj ; �0℄(Q̂j � z)�1 are bounded, while�(Qj � i)�m is trae lass. Thus the term involving [Q̂j; �0℄ is holomorphi in 
 and bounded byO(h�n#):As in the proof of Proposition 1, we havek(1� �)(Lj � z0)�m(1� �)� (1� �)(Qj � z0)�m(1� �)ktr = O(h�n#):Moreover, (Qj�z0)�m� is trae lass and, onsequently, there exists a funtion b(z; h) holomorphiin 
 and bounded by O(h�n#) so that�+(z) = b(z; h) + trh(1� �)(Q̂j � z)�1(Qj � z0)�m(1� �)i2j=1: (4.8)



12 V. BRUNEAU, V. PETKOVWe write (Q̂2 � z)�1(Q2 � z0)�m � (Q̂1 � z)�1(Q1 � z0)�m= (Q̂2 � z)�1h(Q2 � z0)�m � (Q1 � z0)�mi+ h(Q̂2 � z)�1 � (Q̂1 � z)�1i(Q1 � z0)�m = I + II :Aording to [29℄, [30℄, the operator (Q2 � z0)�m � (Q1 � z0)�m is trae lass one and theontribution of I is holomorphi and bounded by O(h�n#). For II we obtain the representationII = (Q̂2 � z)�1(Q̂1 � Q̂2)(Q̂1 � z)�1(Q1 � z0)�m :It is lear that Q̂1 � Q̂2 = Q1 � Q2 +K1;2 with a �nite rank operator K1;2, and modulo a traelass operator we haveII = (Q̂2 � z)�1�(Q1 �Q2)(Q2 � z0)�m��(Q2 � z0)m(Q̂1 � z)�1(Q1 � z0)�m� :The seond fator is a trae lass operator, while the �rst and the third ones are bounded operators.Consequently, II has the same property as I. Combining the above results, we onlude that �+(z)is holomorphi in 
 and bounded by O(h�n#).To establish (4.3), notie that the right hand side of this equality is holomorphi for z 2
 \ fIm z > 0g: The left hand side is also holomorphi in this domain sine we may apply (4.1)with di�erent Æ > 0; �0 > 0 and 0 < � < �2 � 32�0: By analyti ontinuation we dedue (4.3) and theproof of Proposition 2 is omplete. 2Proof of Theorem 1. To obtain a meromorphi ontinuation of �+(z) through the real axis, itsuÆes to do this for the trae involving Kj;�: Next we will follow losely the argument of Sj�ostrand[30℄ and sine � is �xed, we will omit it in the notations. Setting ~K:(z) = K:(z� L̂:)�1; from (4.31)in [30℄ we get the representation�tr((L: � z)�1K:(L̂: � z)�1) = tr�(1 + ~K:(z))�1 ��z ~K:(z)�= �z log det(1 + ~K:(z))and the resonanes of L: are preisely the zeros of the funtionD(z; h) = det(1 + ~K:(z)) = O(1) exp(Ch�n#): (4.9)Notie that the multipliities of the resonanes and the zeros oinide. Below in the notations weomit the subsript . sine the argument does not depend on j = 1; 2. Let Res (L) be the resonanesof L and let D(z; h) = G(z; h) Yw2Res (L)\
(z � w) ;where G(z; h) and 1G(z;h) are holomorphi in 
 and the resonanes in the produt are repeatedfollowing their multipliity. Obviously,�z logD(z; h) = �z logG(z; h) + Xw2Res (L)\
 1z � w



MEROMORPHIC CONTINUATION 13and aording to the estimate (4.54) in [30℄, we get��� ��z logG(z; h)��� � C(~
)h�n# ; z 2 ~
; (4.10)where ~
 �� 
 is an arbitrary open simply onneted domain and C(~
) is independent on h 2℄0; h0℄:Going bak to the representation (3.2) and taking into aount (3.4), we observe that for� 2 I � R+ ; Imw 6= 0; we have� 12�i lim�#0� 1�+ i�� w � 1�� i�� w� = � Imw�j�� wj2 ;while for w 2 R we get � 12�i lim�#0� 1�+ i�� w � 1�� i�� w� = Æ(� � w) ;where both limits are taken in the sense of distributions. Combining Propositions 1, 2 and theabove arguments we omplete the proof of Theorem 1. 2The representation (1.3) shows that modulo a onstant the spetral shift funtion �(�; h) oin-ides with the distribution �(�; h) = 1� � Xw2Res Lj(h)Imw 6=0 Z ��0 j Imwjj�� wj2 d��2j=1+h#f� 2 [�0; �℄ : � 2 �pp(Lj(h))gi2j=1 + 1� Z ��0 Im r(�; h)d�; �0 > 0; �0 =2 I :In partiular, for � 2 I n [2j=1f� 2 R : � 2 sppp(Lj(h))g the distribution �(�; h) is ontinuous andthe funtion �(�; h) = �(�; h) � h#f� 2 [�0; �℄ : � 2 sppp(Lj(h))gi2j=1is real analyti in I. 5. Weyl asymptotisIn this setion we obtain a Weyl type asymptotis for the spetral shift funtion. We generalizethe results of Christiansen [9℄ and Robert [26℄ overing the "blak box" long-range perturbationsof the Laplaian and we improve our previous result (see Theorem 2 in [6℄) working without anyondition on the behavior of the resonanes lose to the real axis.We will say that � 2 R is a non-ritial energy level for Q if for all (x; �) 2 �� = f(x; �) 2 R2n :l(x; �) = �g we have rx;�l(x; �) 6= 0; l(x; �) being the prinipal symbol of Q: Given a Hamiltonianl(x; �), denote by exp(tHl)(x0; �0) = (x(t; x0; �0); �(t; x0; �0))the trajetory of the Hamilton ow exp(tHl) passing through (x0; �0) 2 ��: Reall that � 2 Jis a non-trapping energy level for l(x; �) if for every R > 0 there exists T (R) > 0 suh that for(x0; �0) 2 ��, jx0j < R, the x-omponent of the trajetory of exp(tHl) passing through (x0; �0)satis�es jx(t; x0; �0)j > R; 8jtj > T (R):



14 V. BRUNEAU, V. PETKOVDenote by N(L#j ; I) the number of eigenvalues of L#j in the interval I. From the assumptions(2.5) and (2.10) we dedue easily that there exists a onstant C# suh that the spetrums of L#j ,j = 1; 2, do not interset the interval ℄ �1;�C#℄ and onsequently N(L#j ; ℄ �1;�C#℄) = 0. Infat, let �0, �, �1 2 C10 (B(0; R); [0; 1℄) be equal to 1 on B(0; R0) and let �1 � � � �0. Using theresolvent equality we get(L#j � z)�1 = (L#j � z)�1�+ (L#j � z)�1(1� �)= �1(Lj � z)�1�� (L#j � z)�1[Q#j ; �1℄(Lj � z)�1�+(1� �0)(Q#j � z)�1(1� �) + (L#j � z)�1[Q#j ; �0℄(Q#j � z)�1(1� �):Then (L#j � z)�1�1 + [Q#j ; �1℄(Lj � z)�1�� [Q#j ; �0℄(Q#j � z)�1(1� �)�= �1(Lj � z)�1�+ (1� �0)(Q#j � z)�1(1� �):Aording to the assumptions (2.5) and (2.10) there exists C# suh that spetrums of Lj, Q#j ;j = 1; 2, do not interset the interval ℄ � 1;�C#℄, hene for z 2℄ � 1;�C#℄, the resolvents(Lj � z)�1, (Q#j � z)�1 are bounded and we obtain immediately[Q#j ; �1℄(Lj � z)�1�� [Q#j ; �0℄(Q#j � z)�1(1� �) = O(h):Consequently, for h small enough and z 2℄ �1;�C#℄, the resolvent (L#j � z)�1 is bounded andz =2 sp(L#j ). In the following we will use the notationN(L#j ; �) = N(L#j ; ℄� C#; �℄); j = 1; 2 :The spetral shift funtion �(�; h) is determined modulo a onstant and from (2.10) we deduethat �(�; h) is onstant on ℄ �1;�C1℄ for C1 suÆiently large. In the following, without loss ofthe generality, we may hoose �(�; h) so that �(�; h) = 0 on ℄�1;�C#℄: Moreover, in this setionwe onsider �(�; h) = lim�#0 �(�+ �; h) as a funtion ontinuous from the right. The main result inthis setion is a Weyl type asymptotis for the spetral shift funtion.Theorem 2. Assume that Lj; j = 1; 2 satisfy the assumptions of Setion 2. Let 0 < E0 < E1 andsuppose that eah � 2 [E0; E1℄ is a non-ritial energy level for Qj ; Q#j ; j = 1; 2. Assume that thereexist positive onstants B; �1; C1; h1 suh that for any � 2 [E0 � �1; E1 + �1℄; h=B � Æ � B andh 2℄0; h1℄ we have N(L#; [�� Æ; �+ Æ℄) � C1Æh�n# ; j = 1; 2: (5.1)Then there exist !(�) 2 C1(R); h0 > 0 suh that�(�; h) = hN(L#j ; �℄)i2j=1 + !(�)h�n +O(h1�n#) (5.2)uniformly with respet to � 2 [E0; E1℄ and h 2℄0; h0℄.Remark. Notie that if � is a non-ritial energy level, then for � > 0 small enough eah� 2℄� � �; � + �[ is also non-ritial one. Consequently, (5:2) remains valid on some interval[E0��;E1+�℄; � > 0. Reall that the operators L#j ; j = 1; 2; have been de�ned in Setion 2 by us-ing the operators Q#j ; j = 1; 2; whose oeÆients satisfy a#j;�(x;h) = aj;�(x;h) for jxj � R; R > R0:



MEROMORPHIC CONTINUATION 15If the prinipal symbol lj(x:�) of Qj is non-ritial for � 2 [E0; E1℄; we an extend a#j;�(x;h) forjxj > R in a suh way that � 2 [E0; E1℄ beome non-ritial for Q#j . This ontinuation hanges theoperator L#j but as it has been proved by J.-F. Bony [1℄, the assumption (5.1) does not depend onthe ontinuation of a#j;�(x;h).To prove Theorem 2, we will introdue an intermediate operator exploiting the following resultof J.-F. Bony (see also [28℄).Proposition 3. ([2℄) Assume that L satisfy the assumptions of Setion 2 and suppose that eah� 2 [E0; E1℄ is a non-ritial energy level for Q. Given a �xed � 2 [E0; E1℄, there exists a di�eren-tial operator ~L, suh that(a) The pair (L; ~L) satis�es the assumptions of Setion 2, with n = n+ 1,(b) There exists an interval I0 3 �, suh that eah � 2 I0 is non-trapping and non-ritialenergy level for ~L,() The operator ~L has no resonanes in a omplex neighborhood 
0 of I0 and 
0 is independenton h.Now denote by �(�;A;B) the spetral shift funtion related to the operators A and B. Usingthe above proposition for the operator L1 we an onstrut an operator ~L1 and deompose thespetral shift funtion �(�;L1; L2) as follows�(�;L1; L2) = �(�;L1; ~L1)� �(�;L2; ~L1):Here L2; ~L1 satis�es the assumptions of Setion 2 sine we may estimate the di�erene L2 � ~L1 =(L2 � L1) + (L1 � ~L1) by applying our assumptions on Q1 �Q2: Thus it is suÆient to prove thetheorem for � 2 I2 � I0 and the pair (L1; L2) with L2 = Q2 being a di�erential operator havingno resonanes in a omplex neighborhood 
0 of I0 and suh that every � 2 I0 is non-trapping andnon-ritial energy level for L2. Then the assertion follows by applying the loal result and overingthe ompat interval [E0; E1℄ by small intervals.We denote �(�; h) the spetral shift funtion for the operators (L1; L2). Applying Theorem 1in the domain 
0, we dedue that there exists a funtion g+(z; h) holomorphi in 
0 suh that for� 2 I0 =W0 \ R, W0 �� 
0 we have�0(�; h) = 1� Im g+(�; h) + Xw2Res L1\
0;Imw 6=0 � Imw�j�� wj2 + Xw2Res L1\I0 Æ(�� w); (5.3)where g+(z; h) satis�es the estimatejg+(z; h)j � C(W0)h�n# ; z 2W0 (5.4)with C(W0) > 0 independent on h 2℄0; h0℄:In the following, we �x an open interval I0 � R+ so that eah � 2 I0 is a non-ritial energy levelfor Qj , j = 1; 2; and we introdue open intervals I2 �� I1 �� I0. It is onvenient to deompose



16 V. BRUNEAU, V. PETKOV�(�; h) for � 2 I2 into a sum of a term independent on � and a seond one loalized in I0 where(5.3) holds.Lemma 2. Let C# > 0 be suh that the spetrums of Lj and L#j ; j = 1; 2; do not interset theinterval [�1;�C#℄. Let '1, '2 2 C10 (R;R+) be suh that supp '1 � (�1; 1); supp '2 � I1,'2 = 1 on I2 = (1; 2) and '1 + '2 = 1 on [�C# � �0; 2℄; �0 > 0. Then for � 2 I2 we have�(�; h) = trbbh'1(Lj)i2j=1 +G'2(�) +M'2(�); (5.5)where G'2(�) = 1� Z℄�1;�℄ Im g+(�; h)'2(�)d�;M'2(�) = Xw2Res L1\
0;Imw 6=0 Z℄�1;�℄ � Imw�j�� wj2'2(�)d�+ Xw2Res L1\℄�C#;�℄'2(w) (5.6)and we omit in M'2 and G'2 the dependene of h.Proof. Roughly speaking, for � 2 I2, if we express the ation of the distributions as integrals, wemust have �(�; h) = Z ��1 '1(�)�0(�; h)d� + Z ��1 '2(�)�0(�; h)d�:Sine '1 vanishes on I2, the �rst term is independent on � 2 I2 and equal to trbbh'1(Lj)i2j=1. Forthe seond one we may apply (5.3) sine '2 is supported in I1 � I0.For a rigorous proof of the above representation, take f 2 C10 (I2) and introdueF (�) = ('1 + '2)(�) Z +1� f(�)d�whih is ompatly supported. Sine supp f � I2 and '1 + '2 = 1 on I2, we haveF 0(�) = �f(�) + ('01 + '02)(�) Z +1� f(�)d�;where the seond term vanishes on [�C# � �0;+1[. Our hoie of �(�; h) = 0 on ℄ �1;�C#℄makes possible to write h�; fiD0;D = �h�; F 0iD0;D = h�0; F iD0;D:Next the equality '1 R+1� f = '1 RR f yieldsh�0; '1 Z +1� fiD0;D = �ZR f�h�0; '1iD0;D = �ZR f� trbbh'1(Lj)i2j=1:For the term involving '2, we apply (5.3) and we geth�0; '2 Z +1� fiD0;D = hG0'2 ;  Z +1� fiD0;D + hM 0'2 ;  Z +1� fiD0;Dfor  2 C1(R) equal to 1 on R+ and vanishing on ℄�1;�1℄. The above relations imply (5.5) inthe sense of distributions sine G'2 0 =M'2 0 = 0 and  f = f . �



MEROMORPHIC CONTINUATION 17To prove Theorem 2, we will apply a Tauberian argument for the inreasing funtion M'2(�).Consider a funtion �(t) 2 C10 (℄� Æ1; Æ1[), �(0) = 1, �(�t) = �(t), suh that the Fourier transform�̂ of � satis�es �̂(�) � 0 on R and assume that there exist 0 < �0 < 1, Æ0 > 0 so that �̂(�) � Æ0 > 0for j � j� �0. Next introdue�F�1h ��(�) = (2�h)�1 Z eit�=h�(t)dt = (2�h)�1�̂(�h�1�):Remark. It is obvious that the Lemma 2 holds if we take a partition of unity '21 + '22 over[�C# � �0; 2℄ with ut-o� funtions 'j ; j = 1; 2.The next lemma permits to establish a onnetion between the asymptotis of the funtionsM'2 and N#'2 :Lemma 3. Let '2 2 C10 (I1;R+) and let N#'2(�) = tr�'2(L#1 )1℄�C#;�℄(L#1 )�. Then there exists!'2(�) 2 C00 (I0) suh that for any � 2 R we havedd�(F�1h � �M'2)(�) = dd�(F�1h � �N#'2)(�) �G0'2(�) + !'2(�)h�n +O(h1�n#); (5.7)where O(h1�n#) is uniform with respet to � 2 R: Moreover, we haveM'2(�) = (F�1h � �M'2)(�) +O(h1�n#) (5.8)= (F�1h � �N#'2)(�)�G'2(�) + Z ��1 !'2(�)d�h�n +O(h1�n#)uniformly with respet to � 2 I0.Proof. For simpliity of the notations we omit the subsript '2 and denote by M , G, N#, ! thefuntions M'2 , G'2 , N#'2 , !'2 . Aording to (5.6) and (5.3), for any � 2 R we havedd�(F�1h � �M)(�) = (F�1h � �M 0)(�) = (F�1h � � '2�0)(�)� (F�1h � �G0)(�):Using the Cauhy inequalities, it follows easily that G0(�) = O(h�n#) and G00(�) = O(h�n#) andwe obtain immediately dd�(F�1h � �G)(�) = G0(�) +O(h1�n#)uniformly with respet to � 2 R.It remains to examine(F�1h � � '2�0)(�) = 12�h Z eit�h�1�(t) trbbhe�ith�1Lj'2(Lj)i2j=1dt:We will prove that(F�1h � � '2�0)(�) = dd� (F�1h � �N#)(�) + !(�)h�n +O(h1�n); � 2 R; (5.9)where !(�) 2 C00 (I0) has ompat support and O(h1�n) is uniform with respet to � 2 R: As inSetion 2, de�ne the operator L#1 on the torus T ~R = (R= ~RZ)n with ~R > 2R > 2R0 and introdue� 2 C10 (fx : jxj � ~Rg) equal to 1 for jxj � 2R > 2R0. We havetrbbhe�ith�1Lj'2(Lj)i2j=1 = htr��e�ith�1Lj'2(Lj)��i2j=1 + trbbhe�ith�1Lj'2(Lj)(1� �2)i2j=1:



18 V. BRUNEAU, V. PETKOVApplying the Duhamel formula and the semi-lassial Egorov theorem (see Setion 6 of [6℄ for moredetails), for jtj suÆiently small we obtaintrbbhe�ith�1Lj'2(Lj)(1� �2)i2j=1 = trhe�ith�1Qj'2(Qj)(1� �2)i2j=1 +O(h1);tr��e�ith�1L1'2(L1)�� = tr��e�ith�1L#1 '2(L#1 )��+O(h1)= tr�e�ith�1L#1 '2(L#1 )�� tr�e�ith�1Q#1 '2(Q#1 )(1� �2)�+O(h1);where Q#1 is a di�erential operator Q#1 = Xj�j�2 a#1;�(x;h)(hD)�on the torus T ~R introdued in Setion 2 and a#1;�(x;h) = a1;�(x;h) for jxj < r0, r0 > 2R0. Usingthe lassial onstrutions of a parametrix for small jtj for the unitary groups e�ith�1Q#1 ; e�ith�1L2 ;ombined with the fat that � 2 I0 is non-ritial for Q#1 ; L2 we dedue for � 2 I0tr�(F�1h �)���Q#1 �'2(Q#1 )(1� �2)� = !1(�)h�n +O(h1�n);tr��(F�1h �)��� L2�'2(L2)�� = !2(�)h�n +O(h1�n);with funtions !1, !2 2 C00 (I1) and O(h1�n) uniform with respet to � 2 I0: The problem an beredued to the appliation of the stationary phase method to some integrals where the integrationis over a ompat set. We refer to Chapter 10, [10℄, for more details. Sine �̂ 2 S(R), we an extendthe above relations to all � 2 R with O(h1�n) uniform with respet to � 2 R:For the trae involving Qj; j = 1; 2; we have for � 2 I0trh(F�1h �)���Qj�'2(Qj)(1� �2)i2j=1 = !ext(�)h�n +O(h1�n) (5.10)with !ext 2 C00 (I0) andO(h1�n) uniform with respet to � 2 I0: The proof of (5.10) is more tehnialsine we must integrate over a non-ompat domain. In fat, it is similar to the alulation of thetraes in Setion 4 in [2℄ and for the sake of ompleteness we present a proof in Appendix. Moreover,we show in the Appendix that we an extend (5.10) to all � 2 R with O(h1�n) uniform with respetto � 2 R: Taking together the asymptotis of the traes and the above relations, we obtain (5.9)and (5.7).Now we will apply a Tauberian theorem (see for example, Theorem V-13 of [25℄) for the in-reasing funtion M'2(�). For this purpose we need the estimatesM'2(�) = O(h�n#); dd�(F�1h � �M'2)(�) = O(h�n#); 8� 2 R: (5.11)The �rst one follows easily from (5.6). To establish the seond one, we apply the equality (5.7).Thus it suÆes to prove the estimatedd�(F�1h � �N#'2)(�) = (2�h)�1tr��̂(L#1 � �h )'2(L#1 )� = O(h�n#); 8� 2 R: (5.12)



MEROMORPHIC CONTINUATION 19To do this, assume �rst that � 2 [E0 � �1; E1 + �1℄. Taking into aount (5.1), we obtaintr��̂(L#1 � �h )'2(L#1 )� = X�2sp (L#1 )\supp '2 �̂(�� �h )'2(�) (5.13)� C=hXk=0 XkhB �j���j� (k+1)hB �̂(�� �h )'2(�) � C�h1�n# + C=hXk=1 (k + 1)h1�n#k3 � � Ch1�n# ;where we have used the inequality j�̂(�)j � C(1+j�j)�3. On the other hand, for � =2 [E0��1; E1+�1℄and � 2 supp '2, we have j� � �j � Æ2 > 0 and the term (5.11) is estimated by O(h1): Now aTauberian argument implies the �rst assertion in (5.8). The seond one is obtained by integrationof (5.7) over [inf I0; �℄ ombined with the equalitiesM'2(�) = G'2(�) = N#'2(�) = 0; � � inf I1and the fat that �̂(t) 2 S(R). �Proof of Theorem 2. As it was mentioned above, it remains to show that�(�; h) = �(�;L1; L2) = N(L#1 ; �) + !0(�)h�n +O(h1�n#); � 2 I2 (5.14)for a di�erential operator L2 = Q2 having no resonanes in 
0 and suh that eah � 2 I0 is non-trapping and non-ritial energy level for L2. Aording to Lemma 2 and Lemma 3, for � 2 I2 wehave �(�; h) = trbbh'1(Lj)i2j=1 + (F�1h � �N#'2)(�) + Z ��1 !'2(�)d�h�n +O(h1�n#):Given a funtion � 2 C10 (Rn), � = 1 on B(0; R0), exploiting the funtional alulus for smoothfuntions and the estimates for the trae (see [30℄), we obtaintrbbh'1(Lj)i2j=1 = htr��'1(Lj)��i2j=1 + trbbh'1(Lj)(1� �2)i2j=1= tr��'1(L#1 )��� tr��'1(L2)��+ trh'1(Qj)(1 � �2)i2j=1 +O(h1)= tr�'1(L#1 )�+ C('1)h�n +O(h1�n);where C('1) is a onstant depending on '1:On the other hand, applying a Tauberian theorem for N#'2(�) = O(h�n#), we dedueN#'2(�) = (F�1h � �N#'2)(�) +O(h1�n#); 8� 2 R:Consequently, for � 2 I2 we get�(�; h) = tr�'1(L#1 )�+ tr�'2(L#1 )1℄�C#;�℄(L#1 )�+ �C('1) + Z ��1 !'2(�)d��h�n +O(h1�n#):By onstrution we have'1(L#j ) + '2(L#j )1℄�C#;�℄(L#j ) = 1℄�C#;�℄(L#j ); 8� 2 I2and this implies (5.14) with !0(�) = C('1) + R ��1 !'2(�)d� 2 C1(R):



20 V. BRUNEAU, V. PETKOVTo obtain (5.2), we onstrut a overing of the interval [E0; E1℄ � [F�=1J� by small open intervalsJ� so that for every J� we an �nd an operator Q� with the properties of Proposition 3, where I0is replaed by J� . Next we introdue a partition of unityFX�=1'�(x) = 1 on [E0; E1℄; '� 2 C10 (J� ;R+)and we apply the above argument. This ompletes the proof of Theorem 2. 26. Breit-Wigner approximationIn this setion we onsider small domains of width h and we prove a semi-lassial analogue ofthe Breit-Wigner approximation for �(�; h) (see [22℄, [24℄, [4℄ for similar results, [13℄ for the ase ofa potential having the form of an "well in the island" and [12℄ for a one dimensional ritial ase).In the following �(�; h) denotes the real analyti funtion de�ned by�(�; h) = �(�; h)� h#f� 2 [E0; �℄ : � 2 sppp(Lj(h))gi2j=1:Theorem 3. Assume that Lj(h); j = 1; 2 satisfy the assumptions of Theorem 2. Then for any� 2 [E0; E1℄, any 0 < Æ < h=B; 0 < B1 < B; and h suÆiently small we have�(�+ Æ; h) � �(�� Æ; h) = h Xw2Res Lj (h);Imw 6=0; jw��j<h=B1 !C� (w; [� � Æ; � + Æ℄)i2j=1 +O(Æ)h�n# ; (6.1)where B > 0 is the onstant introdued in Theorem 2.Remark. Following the result of J.-F. Bony [1℄, the assumption (5.1) implies the existene ofpositive onstants D; C3; h3 suh that for � 2 [E0; E1℄; h=D � Æ � D and h 2℄0; h3℄ we have#fz 2 C : z 2 Res L(h) ; jz � �j � Æg � C3Æh�n# : (6.2)Proof. We apply Theorem 1 in the interval I0 � (� � Æ; � + Æ); 0 < Æ � h=B1; and introdue thefuntion F (z; h) = h Xw2Res Lj (h); Imw 6=0;h=B1�jw��j�C4 � 1z � w � 1z � w�i2j=1; z 2 D(�; h=B) :It is suÆient to show that jF (z; h)j � Ch�n#; jz � �j � h=B: (6.3)We have �zF (z; h) = h Xw2Res Lj (h); Imw 6=0;h=B1�jw��j�C4 1(z � w)2 � 1(z � w)2 i2j=1 :Let l0 2 N be an integer suh that D � 2l0�1B. Following the argument in [24℄ and applying (6.2),for any z 2 D(�; h=B) we obtainXw2Res Lj ; Imw 6=0;h=B1�jw��j<C4 1jz � wj2 � Xw2Res Lj (h); Imw 6=0;h=B1�jw��j� 2l0hD 1jz � wj2 + C log(1=h)Xk=l0 X2khD �jw��j� 2k+1hD 1jz � wj2



MEROMORPHIC CONTINUATION 21� C2l0D�1h�1�n# + C C log(1=h)Xk=l0 (2k+1h)h�n#(2kh)2 � Ch�1�n# :Here and below we denote by C > 0 di�erent onstants whih may hange from line to line andwhih are independent on h and the hoie of � in the interval [E0; E1℄: Thus we get the estimatej�zF (z; h)j � Ch�n#�1; z 2 D(�; h=B) :It remains to �nd an estimate of jF (�0; h)j = j ImF (�0; h)j at a suitable point �0 = �0(h): 1 Set� = hB < hB1 and suppose that for all � 2 R; j�� �j � �, we have j ImF (�; h)j �Mh�n# ; M > 0:The ontinuity of the funtion ImF (�; h) implies that ImF (�; h) is either positive or negative in[�� �; �+ �℄: Assuming ImF (�; h) positive, we getMh�n#+1B� � 12� Z �+���� ImF (�; h)d� � 1� Z �+���� h Xw2Res Lj (h); Imw 6=0jw��j�C j Imwjj�� wj2 i2j=1d�+1� 2Xj=1 Z �+���� Xw2Res Lj (h); Imw 6=0;jw��j<h=B1 j Imwjj�� wj2 d� � j�(�+ �; h)� �(�� �; h)j+ Ch1�n# :Here we have used the inequalityZ �+���� j Imwjj�� wj2 d� � Z 1�1 j Imwjj�� wj2 d� � �and (6.2) to estimate the number of resonanes in fw : jw � �j < h=B1g. Notie that if D � B1,we have fw : jw � �j < h=B1g � fw : jw � �j < h=Dg: Next the assumption (5.1) ombined withTheorem 2 yield the estimate j�(�+ �; h)� �(�� �; h)j � Ch1�n#:Thus, j�(� + �; h)� �(�� �; h)j � j�(�+ �; h)� �(�� �; h)j+ 2Xj=1 ℄f� 2 sppp(Lj) : j�� �j � �g � Ch1�n# ;where for the seond inequality we have used one more (6.2), observing that the positive eigenvaluesof Lj oinide with the resonanes on R+ : Consequently, we obtain a bound for M . Hene thereexists a onstant C > 0 and �0 2 [�� �; �+ �℄ so thatjF (�0; h)j � Ch�n#: (6.4)Writing F (z; h) = F (�0; h) + Z z�0 �zF (z; h)dz; jz � �j � h=B ;we obtain (6.3). The ase ImF (�; h) < 0 an be treated by the same argument exploiting theinequality � ImF (�; h) � Mh�n# ; j� � �j � �: By an integration over the interval (� � Æ; � + Æ);we omplete the proof of (6.1). �1There is some similarity between the proof of the existene of �0(h) and that of the existene of a suitable pointz0(h); Im z0(h) � Æ > 0 in Setion 4 in [24℄ so that log j detS(z0(h); h)j � �Ch�n# :



22 V. BRUNEAU, V. PETKOVRemark. Our proof goes without a fatorization in small domains fz 2 C : jz � �j � Chg and asuitable trae formula (see Lemma 6.2 in [24℄ and Theorem 1.3 in [4℄). The above argument anbe applied to simplify the proof of Lemma 6.2 in [24℄.Next, the estimate (6.3) of F (z; h) yields immediately the following.Corollary 1. Under the assumptions of Theorem 3 for � 2 R; j�� �j < h=B we have the repre-sentation�0(�; h) = 1� Im q(�; h) + h Xw2Res Lj(h); jw��j<h=B1Imw 6=0 � Imw�j�� wj2 + Xw2(Res Lj (h)\R);jw��j<h=B Æ(�� w)i2j=1; (6.5)where q(z; h) = p(z; h) � p(z; h); p(z; h) is holomorphi in D(�; h=B) and p(z; h) satis�es theestimate jp(z; h)j � Ch�n# ; z 2 D(�; h=B)with C > 0 independent on h 2℄0; h0℄ and � 2 [E0; E1℄:We may slightly improve Theorem 3, noting that for every 0 < � < 1 and j�� �j � �hB we haveXw2Res Lj (h);�h=B1�jw��j�h=B1 j Imwjj�� wj2 � h�2h2Ch1�n# = O�(h�n#) :Thus for 0 < Æ � �hB the equality (6.1) an be replaed by�(�+ Æ; h) � �(�� Æ; h) = h Xw2ResLj (h); Imw 6=0;jw��j��h=B1 !C� (w; [� � Æ; �+ Æ℄)i2j=1 +O�(Æ)h�n# : (6.6)To obtain a stronger version involving the resonanes in smaller "boxes", we need some addi-tional information for the distribution of the resonanes in fw 2 C : jw � �j � �hg: In the ase ofthe Shr�odinger operator L(h) = �h2� + V (x) with V (x) 2 C10 (Rn) real valued this is possibleapplying the reent result of Stefanov [32℄. Set a0(x; �) = j�j2 + V (x) and let 0 < E0 < E1 benon-ritial values of a0(x; �): Let a�10 [E0; E1℄ =Wint [Wext ;whereWext is the unbounded onneted omponent, whileWint is the union of bounded ones if thereare suh onneted omponents. Assume that all points in Wext are non-trapping (see [32℄ for apreise de�nition). Then, aording to Theorem 6.1 in [32℄, there exists a funtion 0 < R1(h) =O(h1) suh that for any M 2 N the operator L(h) has no resonanes in the set
M(�; h) = [E0; E1℄ + i[�Mh;�R1(h)℄; 0 < h � h(M): (6.7)Setting 0 < R(h) = phR1(h) = O(h1), an elementary argument shows that for � 2 [E0; E1℄ andj�� �j � R(h)=2 we have Xw2Res L(h); j Imwj�R1(h)R(h)�jRew��j�h j Imwjj�� wj2 � Ch�n# :



MEROMORPHIC CONTINUATION 23In the next result we treat a formally symmetri di�erential operatorL1(h) = Xj�j�2 a�(x; h)(hDx)�on L2(Rn) satisfying the assumptions of Setion 2. Given a �xed � 2℄E0; E1[, as in the previoussetion, we may onstrut an operator L2(h) having the properties (a) - () of Proposition 3.Applying Theorem 3 for Lj(h); j = 1; 2; and fz 2 C : jz� �j � h=B1g �W , and assuming that wehave a free resonanes domain, we obtain the following improvement of Corollary 1.Corollary 2. Let E0 < � < E1 be �xed. Let L2(h) be hosen so that Lj(h); j = 1; 2; satisfy theassumptions of Theorem 3 and L2(h) has no resonanes in the disk fz 2 C : jz � �j � h=B1g:Suppose that there exists a funtion 0 < R1(h) = O(h1) suh that L1(h) has no resonanes in theset [E0; E1℄ + i[��h;�R1(h)℄; � > 0; 0 < h � h(�) :Then for j�� �j < R(h)2 and h suÆiently small we have�0(�; h) = 1� Im q(�; h) + Xw2Res L1(h); jRew��j<R(h)0<j Imwj�R1(h) � Imw�j�� wj2 + Xw2Res L1(h) \R;jw��j<R(h)=2 Æ(�� w) (6.8)with R(h) =phR1(h) = O(h1) and q(�; h) as in Corollary 1.7. Loal trae formulaIn this setion we prove a loal trae formula whih is a slightly stronger version of that in [29℄,[30℄ (see [24℄ for ompatly supported perturbations). Exploiting Theorem 1, we repeat with trivialmodi�ations the argument of Setion 5, [24℄, to get the following.Theorem 4. Assume that Lj(h) satisfy the assumptions of Setion 2. Let 
 � ei℄�2�0;2�0[℄0;1[ bean open, simply onneted, relatively ompat set suh that I = 
 \ R is an interval. Suppose thatf is holomorphi on a neighborhood of 
 and that  2 C10 (R) satis�es (�) = � 0; d(I; �) > 2�;1; d(I; �) < �;where � > 0 is suÆiently small. Thentrbbh( f)(Lj(h))i2j=1 = h Xz2Res Lj(h) \
 f(z)i2j=1 +E
;f; (h) (7.1)with jE
;f; (h)j �M( ;
)sup fjf(z)j : 0 � d(
; z) � 2� ; Im z � 0gh�n# :Proof. Choose an almost analyti extension ~ of  so that ~ 2 C1 (C ), ~ = 1 on 
 andsupp �z ~ � fz 2 C : � � d(
; z) � 2�g:Setting 
� = fz 2 C : d(
; z) � �g; we havetrbbh( f)(Lj(h))i2j=1 =< �0(�; h); ( f)(�) >= h Xw2Res Lj(h) \ supp  ( f)(w)i2j=1 + 12�i Z ( f)(�)r(�; h)d�



24 V. BRUNEAU, V. PETKOV+ 12�i Z ( f)(�)h Xw2Res Lj (h) \
2�;Imw 6=0 � 1�� w � 1�� w�i2j=1d� :The integral involving r(�; h) an be estimated using (1.4) withW = 
2�: For the integral ontainingthe resonanes we apply Green formula and we get the termh Xz2Res Lj(h); Im z 6=0( ~ f)(z)i2j=1+1� ZC� (�z ~ )(z)f(z)h Xw2Res Lj(h) \ 
2�;Imw 6=0 � 1z � w � 1z � w�i2j=1L(dz) ;where L(dz) is the Lebesgue measure on C : As in the proof of Theorem 1 in [24℄, we apply theinequality Z
1 1jz �wjL(dz) � 2q2�j
1jand an upper bound for the number of the resonanes in 
2� to obtain the result. �Sine we have no restritions on the behavior of the holomorphi funtion f(z) on 
\fIm z > 0g,we may apply the above argument hoosing f(z) = e�itz=h; t 2 R, to get the following.Theorem 5. Let 
 and  be as in Theorem 4 and let ~ 2 C1 (C ) be an almost analyti extensionof  supported in 
2�. Then for any 0 < Æ < 1 and t � hÆ we havetrbbh (Lj(h))e�i thLj(h)i2j=1 = h Xw2Res Lj(h) \
2� ~ (w)e�itw=hi2j=1 +OÆ(h1): (7.2)Moreover, for t � � > 0 and N 2 N there exists hN > 0 suh that for 0 < h � hN we havetrbbh (Lj(h))e�i thLj(h)i2j=1 = h Xw2Res Lj (h) \ 
2�j Imwj��Nh log h ~ (w)e�itw=hi2j=1 +O�(hN��n#): (7.3)Proof. Choose an almost analyti extension ~ of  as in Theorem 4. Applying Green formula, wemust examine the integrals ZC� �z ~ (z)e�itz=hr(z; h)L(dz) ;ZC� �z ~ (z)e�itz=hh Xw2Res Lj(h) \
2�� 1z � w � 1z �w�i2j=1L(dz) :Choose � > 0; 0 < Æ + � < 1: For �h� � Im z � 0 we havej�z ~ j � CN j Im zjN � CNh�N ; 8N 2 Nand the integration over �h� � Im z � 0 ombined with the argument of the proof of Theorem 4yield a term bounded by O(h1): On the other hand, for t � hÆ; Im z � �h� we getje�itz=hj � e�th��1 � e�hÆ+��1 = OÆ(h1)and this implies (7.2). For the seond assertion we have je�itw=hj � etN log h � hN� for j Imwj ��Nh log h and this ompletes the proof. �



MEROMORPHIC CONTINUATION 25Remark. For non-trapping ompatly supported perturbations L(h) (see [33℄, [7℄) and fornon-trapping long-range perturbations L(h) = �h2�+ V (x) of the Laplaian (see [16℄) there areno resonanes of L(h) in the domain�Nh log 1h � Im z � 0; 0 < h � hN :For suh perturbations the right hand side of (7.3) is equal to O�(hN��n#) and we obtain ananalogue of the lassial trae formula for non-trapping perturbations.8. Existene of resonanes lose to the real axisIn this setion we onsider the operator L(h) = �h2�g+V (x); where �g is symmetri Laplae-Beltrami operator on L2(Rn) assoiated to a metri g(x) = fgi;j(x)g1�i;j�n and V (x) 2 C1(Rn) isa real valued funtion. We assume that there exists � > n so thatj��x (gi;j(x)� Æi;j)j+ j��xV (x)j � C� < x >���j�j; 1 � i; j � n; 8�: (8.1)Moreover, we assume that the oeÆients fgi;j(x)g and V (x) an be extended holomorphially inx to the domain given in (2.8) and the estimate (8.1) holds in this domain.Consider the symbol a0(x; �) =< g(x)�1�; � > +V (x)and denote by Ha0 the Hamilton vetor �eld assoiated to a0 and by �t = exp(tHa0) the Hamiltonow. Given � > 0; let �� = f(x; �) 2 Rn : a0(x; �) = �g be the energy surfae and let ra0(x; �) 6= 0on ��: A point � 2 �� is alled periodi, if there exists T > 0 suh that �T (�) = � and the smallestT > 0 with this property is alled period T (�) of �: Given a periodi point �, onsider the trajetory(�) = f�t(�) : 0 � t � T (�)g = f(x(t); �(t)) : 0 � t � T (�)gand de�ne the ation S(�) along (�) byS(�) = Z(�) �dx = Z T (�)0 �(t)x0(t)dt :Next we denote by m(�) 2 Z4 the Maslov index related to (�) and set q(�) = ��2m(�): Let � bethe set of all periodi points on �� and letQ(h; r) = (2�)�n Z�h� � h�1S(�) + q(�)� rT (�)i2�T (�)�1d�; (8.2)where d� is the Liouville measure on �� and the residue �� < [z℄2� � � is de�ned so thatz = [z℄2� + 2�k; k 2 Z: The set � is bounded, the integrand in (8.2) is a measurable funtionand T (�) � T0 > 0; 8� 2 �: The osillatory funtion Q(h; r) has been introdued in [20℄ for theanalysis of the semi-lassial behavior of the eigenvalues and it is a semi-lassial analogue of theosillating funtion de�ned by Guriev and Safarov [15℄ and Safarov [27℄. Notie that the limitsQ(h; r � 0) = lim�#0Q(h; r � �) exist for eah r and 0 < h � h0 and, moreover,Q(h; r + 0)�Q(h; r � 0) = (2�)1�n Z
h;r d�T (�) ;where 
h;r = f� 2 � : h�1S(�) � q(�) + rT (�) � 0(2�)g. Following the arguments in Setion 6,[22℄, we will prove the following.



26 V. BRUNEAU, V. PETKOVTheorem 6. Let L(h) = �h2�g + V (x), where the metri g(x) and V (x) satisfy the estimates(8:1) and let ra0(x; �) 6= 0 on ��; � > 0: Assume that there exist an integer p 2 Z and a subset�0 � � with positive Liouville measure �(�0) > 0 so that�hq(�)� h�1S(�)i2� + 2�p�T (�)�1 = r(h); 0 < h � h0does not depend on � 2 �0: Then for for every 0 < � � 1 and 0 < h � h1(�) we have#fw 2 Res L(h) : jw � �� r(h)hj � �hg � (2�)1�n2 h1�n Z�0 d�T (�) : (8.3)Remark. Clearly, jr(h)j � maxfj2p � 1j; j2p + 1jg�(T0)�1. Reently, J.-F. Bony [3℄ provedthat if the Liouville measure of the periodi points on �� is zero, than for every 0 < � � 1 and forh small enough we have the upper bound#fw 2 Res L(h) : jw � �j � �hg � Cp�h1�n :with a onstant C > 0 independent on � and h.Proof. Consider the sattering phase �(�; h) = 12�i detS(�; h), where the sattering operator S(�; h)is related to L(h) and L0(h) = �h2�: Aording to Birman-Krein theory (see for instane [34℄), thesattering phase an be identi�ed with the spetral shift funtion and, under our assumptions, wehave not embedded positive eigenvalues. Following Theorem 2.1 in [5℄, and taking jr(h)j � r0; 0 <� � �0; 0 < h � h0 and � > 0 we have���+ (r(h) + �)h; h�� ���+ (r(h)� �)h; h�� h1�nhQ�h; r(h) + �=2��Q�h; r(h) � �=2�i+ 2�00(�)h1�n � C0�h1�n � o�(h1�n) ;where 0(�) = (2�)�n ZRn�Za0(x;�)�� d� � Zj�j2�� d��dx ;C0 > 0 is independent on r(h); � and h and o�(h1�n) means that for any �xed � > 0 we havelimh#0 o�(h1�n)h1�n = 0:On the other hand, for small 0 < � < � an appliation of (6.6) with Æ = �h yields the estimate���+ (r(h) + �)h; h�� ���+ (r(h)� �)h; h�� #fw 2 Res L(h) : jw � �� r(h)hj � �hg+ C��h1�n; 0 < h � h2(�)with C� > 0 independent on �; r(h) and h. We laim thatQ(h; r(h) + �=2)�Q(h; r(h) � �=2) � �(2�)�n��(�) + (2�)1�n Z�0 d�T (�) : (8.4)In fat, aording to the representation of the osillatory funtion Q(h; r) (see for instane, Propo-sition 1, [27℄), we haveQ(h; r(h) + �=2) �Q(h; r(h) � �=2) = ��(2�)�n�(�) + (2�)1�n Z� T�1(�)Xk2Z��h;k(�)d� ;



MEROMORPHIC CONTINUATION 27where ��h;k is the harateristi funtion of the set
�h;k = f� 2 � : ��T (�) � h�1S(�)� q(�) + r(h)T (�)� 2k� < �T (�)g :Obviously, for any � 2 �0 we geth�1S(�)� q(�) + r(h)T (�) + 2M(�; h)� � 2p� = 0with some M(�; h) 2 Z. Consequently,� 2 �0 =)Xk2Z��h;k(�) � 1and we obtain (8.4). Choosing � = �(�) > 0 small enough, we arrange the inequality��(2�)�n�(�)� �(C0 + C�) + 2�00(�) � ��04 ;with �0 = (2�)1�n R�0 d�T (�) . Next we �x � > 0 and � = �(�) > 0 and hoose 0 < h1(�) � h2(�) sothat for 0 < h � h1(�) we have jo�(h1�n)j � �04 h1�n :Combining the above estimates for the di�erene ���+ (r(h) + �)h; h�� ���+ (r(h)� �)h; h�; weomplete the proof. �Example (see Setion 7 in [5℄). Let L(h) = �h2�+ V (x) withV (x) = �a(x� y0)�jx� y0j2 + b� ;where a > 0; b > 0 and y0 2 Rn are �xed and �a(x) 2 C10 (Rn); �a(x) = 1 for jxj � 2a: Let 0 <� < a=2, j�0j = p�� b and let � 2℄b; b+a2[ be a non-ritial energy level for a0(x; �) = j�j2+V (x).Therefore the set �0 = f(x; �) 2 �� : j� � �0j2 + jx� y0j2 � �2ghas a positive Liouville measure and �0 � �: Moreover, for every � 2 �0 we haveT (�) = �; S(�) = (�� b)�; q(�) = �2mwith m 2 Z independent on �: We may apply Theorem 6 with rp(h) = 1� h�2m� h�1(�� b)�i2� +2p; p 2 Z, to onlude that#fw 2 Res L(h) : jw � �� rp(h)hj < �hg � (2�)�n�(�0)h1�n :On the other hand, for p 6= j and 0 < h � h0 we havefw : jRew � �� rp(h)hj < �hg \ fw : jRew � �� rj(h)hj < �hg = ;and the lusters related to p 6= j produe di�erent resonanes. Choosing Æ > 0 so that ℄��Æ; �+Æ[�℄b; b+ a2[, one obtains easily#fw 2 Res L(h) : jw � �j � Æg � �Æ(2�)�n�(�0)h�nwith � > 0 independent on Æ: A stronger asymptoti for the number of the resonanes in [b; b +a2℄ + i[�R(h); 0℄ has been obtained by Stefanov [32℄. Notie that in the above result we ount onlythe resonanes lying in lusters.



28 V. BRUNEAU, V. PETKOV9. AppendixIn this Appendix we present a proof of (5.10). Following the Remark after Lemma 2, we willassume that '2 =  2;  2 C10 (I1;R+); I1 � I0. Reall that � 2 I0; supp �(t) � [�Æ1; Æ1℄ and�(x) = 1 for jxj � 2R; R > R0: It is easy to see thattrh 12�h Z eit(��Qj)h�1�(t) 2(Qj)(1 � �2)dti2j=1= 12�h Z eit�h�1�(t)tr�h 2(Qj)i2j=1e�itQ2=h(1� �2)�dt+ 12�h Z eit�h�1 �(t) tr� 2(Q1)he�itQj=hi2j=1(1� �2)�dt = A+ B :This representation is justi�ed by applying Lemma 4.1 in [2℄ saying thatkh 2(Qj)i2j=1ktr = O(h�n); k 2(Q1)he�itQj=hi2j=1ktr = O(h�1�n) :We treat below A following losely the analysis of J.-F. Bony in Setion 4.2, [2℄. Put A = A1+A2;where A1 = 12�h Z eit�h�1�(t)tr�( (Q1)�  (Q2))e�itQ2=h (Q2)(1 � �2)�dt ;A2 = 12�h Z eit�h�1�(t)tr� (Q1)( (Q1)�  (Q2))e�itQ2=h(1� �2)�dt :We deal with the analysis of A1 only, sine that of A2 is similar (see also Setion 4.2, [2℄). First,we �nd a pseudodi�erential operator Q with symbol in S0(1) so thatA1 = 12�h Z eit�h�1�(t)tr�e�itQ2=h (Q2)Q(Q1 �Q2) ~ (Q2)�dt ;where ~ 2 C10 (R) is suh that ~ = 1 on supp  :We use the notations of [10℄ for h-pseudodi�erentialoperators and set hxi = (1 + jxj2)1=2. Moreover, modulo a term in SN (1), the symbol of Q issupported in f(x; �) : jxj > 2Rg. Seondly, we obtain the existene of a pseudodi�erential operatorS with symbol s(x; y; �;h) 2 S0�hxi�n�1h�i�N�; 8N 2 N;having ompat support in � and (x�y) and support in f(x; �) : jxj > 2R; (x; �) 2 l�12 (I1)g so thatA1 = 12�h tr�Z eit�h�1�(t)e�itQ2=hSdt�+O(h1) :Applying Theorem 2 in [2℄, we obtain the existene of a Fourier integral operator Ut suh that forjtj � Æ1 and Æ1 suÆiently small we havekUt � e�itQ2=hSktr = O(h1):Next, we write the kernel of the operator R eit�h�1�(t)Utdt in the formK(x; y;h) = 1(2�h)n Z Z ei�t�+�(t;x;�)�y:��=h�(t)A(t; x; y; �;h)dtd�and dedue thatA1 = 1(2�h)n+1 Z Z Z ei�t�+�(t;x;�)�x:��=h�(t)A(t; x; x; �;h)dt dx d� +O(h1) :



MEROMORPHIC CONTINUATION 29Here �(t; x; �) is the solution of the eikonal equation(�t�+ l2(x; �x�) = 0;�(0; x; �) = x:�;lj(x; �) being the prinipal symbol of Qj ; j = 1; 2, and all derivatives ��t ��x�� ��(t; x; �)� x:�� areuniformly bounded for (t; x; �) 2 [�Æ1; Æ1℄ � Rn � B(0; C1) and (�; �; ) 6= (0; 0; 0): Moreover, thesymbol A(t; x; x; �) has support in f(x; �) : jxj > 2R; j�j � C1; (x; �) 2 l�12 (I1)g so that for all �and jtj � Æ1 we have j��A(t; x; x; �)j � C�hxi�n�1: (9.1)The last estimate enables us to alulate A1 by using an in�nite partition of unityX�2Nn 	(x� �) = 1; 8x 2 Rn ;	 2 C10 (K); 	(x) � 0, K being a neighborhood of the unit ube. Consequently, for every �xedh 2℄0; h0℄ we have A1 = 1(2�h)n+1 limm!1 Z Z Z ei�t�+�(t;x;�)�x:��=h�(t)� Xj�j�m	(x� �)A(t; x; x; �;h)dt dx d� +O(h1) = limm!1 Im +O(h1)and we redue the problem to the analysis of the integrals Im over a ompat set in (t; x; �):Conerning the phase funtion, we observe thatt�+�(t; x; �)� x:� = t��� l2(x; �) +O(t)� ;whereO(t) is uniformly bounded on the support of �(t)A(t; x; x; �) sine the derivatives of ��(t; x; �)�x:�� are bounded on this set. Finally, to have an uniform bound for the remainder with respet tom!1, notie that j�x;�l2(x; �)j � Æ2 > 0 (9.2)for j�j � C1; (x; �) 2 l�12 (�); � 2 I0: The last ondition follows easily from the form of the prinipalsymbol l2(x; �) = j�j2 + Xj�j=2 b�;R(x)�� + Xj�j�1 b�;R(x)��of the operator Q2, onstruted in [2℄, and the fat that jb�;R(x)j + j�xb�;R(x)j � �1(R) with�1(R) �! 0 as R �! +1 (see Setion 2.3 in [2℄ for more details). Taking R� 1 suÆiently large,we arrange (9.2) uniformly with respet to j�j � C1 and (x; �) 2 l�12 (�): Now the ritial points ofthe phase funtion (t� + �(t; x; �) � x:�) beome t = 0; l2(x; �) = � and by the stationary phasemethod we obtainIm = 1(2�h)n (�) Zl2(x;�)=� Xj�j�m	(x� �)A1(0; x; �; �)(1 � �2)(x)L�(d!) +O(h1�n) ;



30 V. BRUNEAU, V. PETKOVwhere L�(d!) is the Liouville measure on l2(x; �) = � and the remainder O(h1�n) is uniform withrespet to � 2 I0 and m 2 N: Taking the limit m!1, we obtain an asymptotis of A1:For the analysis of B we use the representationhe�itQj=hi2j=1 = tih Z 10 e�istQ1=h(Q1 �Q2)e�i(1�s)tQ2=hds :Following the argument in Setion 4.3, [2℄, we �nd pseudodi�erential operatorsQ 2 Oph�S0(hxi�n�1h�i�N )�; ~Q 2 Oph�S0(h�i�N )�with symbols q(x; y; �;h); ~q(x; y; �;h) having ompat support in � and (x� y) so thatB = 12�h2 tr�Z eit�=ht�(t) Z 10 e�istQ1=hQe�i(1�s)tQ2=h ~Qdsdt�+O(h1) :Moreover, modulo a term in SN (1), the symbol of ~Q is supported in f(x; �) : jxj > 2Rg. Applyingan approximation of the unitary groups e�istQ1=h; e�i(1�s)tQ2=h by Fourier integral operators, weare redued to study the integralJ = 1(2�h)2n+2 Z Z 10 Z eit�=ht�(t)ei��1(st;x;�)�z:��=hei��2((1�s)t;z;�)�x:��=h�B(t; s;X)dtdsdX ;where X = (x; z; �; �) and the phase funtions �1(t; x; �); �2(s; z; �) are related to the eikonal equa-tions with symbols l1(x; �) and l2(z; �), respetively. The amplitude B(t; s;X) has a ompat sup-port with respet to (�; �) and its support with respet to x is inluded in the set f(x; �) : jxj � 2Rg:Moreover, ��B(t; s;X) satisfy dereasing estimates with respet to (x; z) like those in (9.1).In the same way, as in [2℄, we hek that the ritial points of the phase in the integral J arerelated to the losed trajetories omposed as union of a urvefexp��Hl1�(�) : 0 � � � stgof the Hamilton �eld Hl1 starting at same point � 2 f(x; �) 2 Rn : jxj > 2Rg and a urvefexp��Hl2�(�) : 0 � � � (1� s)tg; � = exp(stHl1)(�)of the Hamilton �eld Hl2 . For 0 < t � Æ1, Æ1 suÆiently small and R > 0 large enough, there areno suh losed trajetories and the ritial points are obtained for t = 0, only. We write the phasefuntion in the form th�� sl1(x; �)� (1� s)l2(z; �) +O(t)i+ (x� z)(� � �)and the ritial points beomet = 0; sl1(x; �) + (1� s)l2(x; �) = �; x = z; � = � :For jxj � 2R and 0 � s � 1, aording to (2.6), we deduems(x; �) = sl1(x; �) + (1� s)l2(x; �) = j�j2 + �0(R)j�j2= l1(x; �) + �1(R)j�j2 = l2(x; �) + �2(R)j�j2



MEROMORPHIC CONTINUATION 31with �i(R) �! 0 as R! +1; i = 0; 1; 2: Thus for � 2 I0 and R large enough the energy surfae�s(�) = f(x; �) : ms(x; �) = �; jxj � 2Rgis non-degenerate. Repeating the argument used for A1, and applying the stationary phase method,we get an asymptotisJ = 1(2�h)n b(�) Z 10 Zms(x;�)=�B1(s; x; �; �)Ls;�(d!)ds+O(h1�n) ;where Ls;�(d!) is the Liouville measure on �s(�): Notie that the �rst term with power h�1�nvanishes beause we have the fator t�(t) and the term involving h�n yields the ontribution to theleading term in (5.10). Moreover, b(�) has support in a small neighborhood of I1 and taking R > 0large, we may assume that b(�) 2 C00(I0): This ompletes the proof of (5.10).The above argument shows that for � =2 I0 the phase funtions in Im and J have no ritialpoints over the support of the integrand. Consequently, by an integration by parts, we obtaintrh(F�1h �)���Qj�'2(Qj)(1� �2)i2j=1 = O(h1)uniformly with respet to � =2 I0: Referenes[1℄ J. -F. Bony, R�esonanes dans des domaines de taille h, Inter. Math. Res. Not. 16 (2001), 817-847.[2℄ J. -F. Bony,Minoration du nombre de r�esonanes engendr�ees par une trajetoire ferm�ee, Preprint 2000, Commun.P.D.E. (to appear).[3℄ J. -F. Bony, Trajetoires ferm�ees et r�esonanes, Th�ese de Dotorat, Universit�e Paris XI, 2001.[4℄ J.-F. Bony, J. Sj�ostrand, Trae formula for resonanes in small domains, J. Funt. Anal. 184 (2001), 402-418.[5℄ V. Bruneau, Semi-lassial behaviour of the sattering phase for trapping perturbations of the Laplaian, Commun.P.D.E. 24, 5 & 6, (1999), 1095-1125.[6℄ V. Bruneau, V. Petkov, Representation of the spetral shift funtion and spetral asymptotis for trapping per-turbations, Commun. P.D.E. (to appear).[7℄ N. Burq, Semi-lassial estimates for the resolvent in non trapping geometries, Preprint, 2000.[8℄ N. Burq and M. Zworski, Resonane expansions in semi-lassial propagation, Commun. Math. Phys. 223 (2001),1- 12.[9℄ T. Christiansen, Spetral asymptotis for general ompatly supported perturbations of the Laplaian on Rn,Commun. P.D.E. 23 (1998), 933-947.[10℄ M. Dimassi, J. Sj�ostrand, Spetral asymptotis in the semi-lassial limit, London Mathematial Soiety, LetureNotes Series 268, Cambridge University Press, 1999.[11℄ M. Dimassi, M. Zerzeri, A loal trae formula for resonanes of perturbed periodi Shr�odinger operators, Preprint2001.[12℄ S. Fujiie, T. Ramond, Semilassial asymptoti behavior of the sattering phase near a ritial value, Preprint2001.[13℄ C. G�erard, A. Martinez and D. Robert, Breit-Wigner formulas for the sattering poles and total satteringross-setion in the semi-lassial limit, Commun. Math. Phys. 121 (1989), 323-336.[14℄ L. Guillop�e and M. Zworski, Sattering asymptotis for Riemann surfaes, Ann. of Math. 129 (1997), 597-660.[15℄ T. Guriev, Yu. Safarov, Sharp asymptotis of the spetrum of the Laplae operator on a manifold with periodigeodesis, Pro. Steklov Inst. Math. 179 (1989), 35-53, translation from Tr. Mat. Inst. Steklova 179 (1988),36-53.[16℄ A. Martinez, Resonane free domains for non-analyti potentials, Preprint, 2001.[17℄ R. Melrose, Weyl asymptotis for the phase in obstale sattering, Comm. P.D.E., 13 (1988), 1431-1439.[18℄ Sh. Nakamura, Spetral shift funtion for trapping energies in the semilassial limit, Commun. Math. Physis,208 (1999), 173-193.



32 V. BRUNEAU, V. PETKOV[19℄ L. Nedele, Resonanes for matrix Shr�odinger operators, Duke Math. J. 106 (2001), 209{236.[20℄ V. Petkov and G. Popov, Semi-lassial trae formula and lustering of eigenvalues for Shr�odinger operators,Ann. Inst. H. Poinar�e (Phys. th�eorique), 68 (1998), 17-83.[21℄ V. Petkov, D. Robert, Asymptotique semi-lassique du spetre d'hamiltoniens quantiques et trajetoires lassiquesp�eriodiques, Commun. P.D.E. 10 (1985), 365-390.[22℄ V. Petkov, M. Zworski, Breit-Wigner approximation and the distribution of resonanes, Commun. Math. Phys.204 (1999), 329-351.[23℄ V. Petkov, M. Zworski, Erratum to [22℄, Commun. Math. Phys. 214 (2000), 733-735.[24℄ V. Petkov, M. Zworski, Semi-lassial estimates on the sattering determinant, Annales H. Poinar�e, 2 (2001),675-711.[25℄ D. Robert, Autour de l'approximation semi-lassique PM, 68, Basel, Birkh�auser 1987.[26℄ D. Robert, Relative time-delay for perturbations of ellipti operators and semilassial asymptotis, J. Funt.Anal. 126 (1994), 36-82.[27℄ Yu. Safarov, Asymptotis of the spetrum of pseudodi�erential operators with periodi harateristis, J. SovietMath. 40 (1988), 645-652, translation from Zap. Nauhnin. Sem. Leningrad. Otdel Math. Inst. Steklov 152(1986), 94-104.[28℄ J. Sj�ostrand, A trae formula for resonanes and appliation to semi-lassial Shr�odinger operator, Expos�e II,S�eminaire EDP, Eole Polytehnique, 1996 - 1997.[29℄ J. Sj�ostrand, A trae formula and review of some estimates for resonanes, in Miroloal analysis and spetraltheory (Lua, 1996), 377{437, NATO Adv. Si. Inst. Ser. C Math. Phys. Si., 490, Dordreht, Kluwer Aad.Publ.1997.[30℄ J. Sj�ostrand, Resonanes for bottles and trae formulae, Math. Nahrihten, 221 (2001), 95-149.[31℄ J. Sj�ostrand and M. Zworski, Complex saling and the distribution of sattering poles, J. Amer. Math. So. 4(1991), 729-769.[32℄ P. Stefanov, Sharp upper bounds on the number of resonanes near the real axis for trapped systems, Preprint,2001.[33℄ S. Tang and M. Zworski, Resonanes expansions of sattered waves, Comm. Pure Appl. Math. 53 (2000), 1305-1334.[34℄ D. Yafaev, Mathematial Sattering Theory, AMS, Providene, RI, 1992.[35℄ M. Zworski, Poisson formulae for resonanes, S�eminaire E.D.P., Eole Polytehnique, Expos�e XIII, 1966-1997.[36℄ M. Zworski, Poisson formula for resonanes in even dimensions, Asian J. Math. 2 (1998), 615-624.D�epartement de Math�ematiques Appliqu�ees, Universit�e Bordeaux I,351, Cours de la Lib�eration, 33405 Talene, FRANCEvbruneau�math.u-bordeaux.frpetkov�math.u-bordeaux.fr


