
MEROMORPHIC CONTINUATION OF THE SPECTRAL SHIFT FUNCTIONVINCENT BRUNEAU AND VESSELIN PETKOVAbstra
t. We obtain a representation of the derivative of the spe
tral shift fun
tion �(�; h) in theframework of semi-
lassi
al "bla
k box" perturbations. Our representation implies a meromorphi

ontinuation of �(�; h) involving the semi-
lassi
al resonan
es. Moreover, we obtain a Weyl typeasymptoti
s of the spe
tral shift fun
tion as well as a Breit-Wigner approximation in an interval(�� Æ; �+ Æ); 0 < Æ < �h:AMS 
lassi�
ation: 35B34, 35P25 1. Introdu
tionThe purpose of this paper is to obtain a meromorphi
 
ontinuation of the derivative of thespe
tral shift fun
tion �(�; h). This problem is 
losely related to the tra
e formulae (see [14℄, [35℄,[36℄ [22℄, [24℄, [31℄, [29℄, [30℄) and to resonan
es expansions ([8℄, [33℄). For 
ompa
t perturbationsthe fun
tion �(�; h) 
oin
ides with the s
attering phase�(�; h) = 12�i log detS(�; h); � 2 R ;where S(�; h) = I + A(�; h) : L2(Sn�1) �! L2(Sn�1) is the s
attering operator and for moreinformation about the spe
tral shift fun
tion we refer to [34℄. In the 
lassi
al 
ase (h = 1) the �rstresult proving a representation of �(�) = �(�; 1) 
ontaining the resonan
es zj 2 C � = fz 2 C :Im z < 0g was established by Melrose [17℄ for obsta
le s
attering in odd dimensions n � 3: Morepre
isely, given a fun
tion �(t) 2 C1(R) su
h that 0 � �(t) � 1; �(t) = 1 for t � 2; �(t) = 0 fort � 3, Melrose showed that �(�) = �sing(�) + �reg(�);with dd��sing(�) = � 1�Xj �� jzj j� � Im zjj�� zj j2 ; �sing(0) = 0; � 2 R ;�reg(�) 2 Sn(R) :Sin
e �(�; h) is the logarithmi
 derivative of the s
attering determinants(�; h) = det(I +A(�; h)) ;it is natural to examine the behavior of s(z; h) for z in the "physi
al half plane", where we have noresonan
es. This idea was developed by Guillop�e and Zworski [14℄ for the analysis of the s
atteringresonan
es for 
ertain Riemann surfa
es and in the 
lassi
al 
ase h = 1, Zworski [35℄, [36℄ gave anelegant proof of the tra
e formula for "bla
k box" 
ompa
t perturbations based on the meromorphi

ontinuation of s(z) (see [35℄ for other works on tra
e formulae).In [22℄, [24℄ the Breit-Wigner approximation for the s
attering phase has been justi�ed for"bla
k box" s
attering with 
ompa
t perturbations in the 
lassi
al and the semi-
lassi
al 
ases.1



2 V. BRUNEAU, V. PETKOVAmong the ideas introdu
ed in [22℄, [24℄, one of the main point in [24℄ was the estimate of theholomorphi
 fun
tion g(z; h), jg(z; h)j � C(
)h�n# ; n# � n (1.1)in the lo
al fa
torization s(z; h) = eg(z;h)P (z; h)P (z; h) ; z 2 
 ;where P (z; h) = Yw2Res L(h) \
�;Imw 6=0 (z � w) ;
 = (a; b) + i(�
; 
); 0 < a < b; 
 > 0; 
� = fz 2 C : d(
; z) < �g; � > 0 :Here L(h) is a 
ompa
tly supported perturbation of the operator �h2�; 0 < h � h0; and n#depends on the estimates of the number of the eigenvalues of the referen
e operator. The lo
alfa
torization implies immediately�z�(z; h) = 12�i�zg(z; h) + 12�i Xw2Res L(h) \ 
�;Imw 6=0 � 1z � w � 1z � w�; z 2 
 (1.2)and for � 2 (a; b) we obtain an analogue of the formula of Melrose mentioned above. Combining(1.2) with the Birman-Krein formula one obtains easily the tra
e formula of [29℄ exploiting themeromorphi
 
ontinuation of �z�(z; h) in fz 2 C : Im � 0g (see Theorem 1 in [24℄). Moreover, asimilar fa
torization has been established in [24℄ in domains �+ h
 with an improved estimate forthe holomorphi
 fun
tion g(z; h):In the 
ase of "bla
k box" long-range perturbations the existen
e of the s
attering operatorand that of the s
attering determinant are far from apparent. In this dire
tion Sj�ostrand [29℄,[30℄ proposed powerful te
hniques based on the 
omplex s
aling operators, introdu
ed in [31℄, and
omplex analysis. The s
attering determinant is repla
ed by D(z; h) = det(I + ~K(z)), where ~K(z)is tra
e 
lass operator whi
h is not uniquely determined and the resonan
es are the zeros of D(z; h):Applying the approa
h of Sj�ostrand, J.-F. Bony [1℄, [2℄, established upper and lower bounds on thenumber of the semi-
lassi
al resonan
es in small domains and the Breit-Wigner approximation hasbeen extended to long-range perturbations in [4℄. For a pair of self-adjoint operators Lj(h); j = 1; 2;satisfying some assumptions (see Se
tion 2) the spe
tral shift fun
tion �(�; h) is a distribution inD0(R) su
h that< �0(�; h); f(�) >D0(R);D(R)= trbb�f(L2(h)) � f(L1(h))�; f(�) 2 C10 (R) ;where trbb is a generalized tra
e de�ned in Se
tion 2. We denote by Res Lj(h); j = 1; 2 the set ofthe resonan
es w 2 C � of Lj(h):In this work we are strongly inspired by the approa
h in [24℄ and our main goal is to obtainan analogue of (1.2) in the 
ases when a s
attering determinant is not available. We show thatthe representation (1.2) remains true in the general 
ase of semi-
lassi
al "bla
k box" s
attering,repla
ing �0(�; h) by the "regular part"�0(�; h) � h Xw2Res Lj(h) \(a;b) Æ(�� w)i2j=1;



MEROMORPHIC CONTINUATION 3where here and throughout the paper we use the notation [aj℄2j=1 = a2� a1: Our prin
ipal result isthe following.Theorem 1. Assume that Lj(h); j = 1; 2; satisfy the assumptions of Se
tion 2. Let 
 ��ei℄�2�0;2�0[℄0;+1[; 0 < �0 < �=2, be an open simply 
onne
ted set and let W �� 
 be an opensimply 
onne
ted and relatively 
ompa
t set whi
h is symmetri
 with respe
t to R. Assume thatJ = 
 \ R+ ; I =W \ R+ are intervals. Then for � 2 I we have the representation�0(�; h) = 1� Im r(�; h) + h Xw2Res Lj\
;Imw 6=0 � Imw�j�� wj2 + Xw2Res Lj\J Æ(� � w)i2j=1; (1.3)where r(z; h) = g+(z; h) � g+(z; h); g+(z; h) is a fun
tion holomorphi
 in 
 and g+(z; h) satis�esthe estimate jg+(z; h)j � C(W )h�n# ; z 2W (1.4)with C(W ) > 0 independent on h 2℄0; h0℄:Remarks.� The terms related to the resonan
es are measures. In fa
t, the resonan
es w; Imw < 0; arerelated to harmoni
 measures!C� (w;E) = � 1� ZE Imwjt� wj2 dt; E � R = �C � ;while the resonan
es w 2 R+ 
oin
ide with the embedded eigenvalues of Lj(h); j = 1; 2.Moreover, in a small neighborhood U�(h) of every � 2 I n [2j=1f� 2 R : � 2 �pp(Lj(h))gthe derivative �0(�; h) 
oin
ides with a real analyti
 fun
tion on U�(h). In parti
ular, if wehave no embedded positive eigenvalues of Lj(h) in I, then �0(�; h) is real analyti
 in I:� The representations of �0(�; h) obtained in [26℄, [6℄ involve the tra
es of the 
ut-o� resolvents�(Lj ��� i0)�1�; � 2 C10 (Rn); and some regular terms whose meromorphi
 
ontinuationis far from apparent. The form of �0(�; h) in [26℄, [6℄ has been used for the investigation ofthe Weyl type asymptoti
s of �(�; h) (see also [18℄, [5℄ for semi-
lassi
al asymptoti
s in thetrapping 
ase).The proof of (1.3) relies heavily on the work of Sj�ostrand [30℄, while the arguments in [24℄ wereself-
ontained and based on the semi-
lassi
al estimates of the s
attering determinant. Having inmind (1.3), we obtain in the general 
ase of "bla
k box" semi-
lassi
al s
attering several results:I) We establish a Weyl type asymptoti
s of the spe
tral shift fun
tion in the general frameworkof semi-
lassi
al \bla
k box" perturbations improving our previous result [6℄ and working withoutany assumption on the behavior of the resonan
es 
lose to the real axis. We generalize the resultsof Christiansen [9℄ for 
ompa
t perturbations and those of Robert [26℄ for long-range perturba-tions. Theorem 1 allows to 
onsider the sum of the harmoni
 measures related to the resonan
esw; Imw 6= 0, as a monotoni
 fun
tion and to apply a Tauberian argument as in [17℄.II) We present a new dire
t and short proof of the re
ent result of J.-F. Bony and Sj�ostrand[4℄ on the Breit-Wigner approximation in the long-range 
ase (see Theorem 3). For this purpose



4 V. BRUNEAU, V. PETKOVthe Weyl asymptoti
s obtained in Theorem 2 plays an essential role. Moreover, Theorem 2 andTheorem 3 are established under the "bla
k box" assumptions in Se
tion 2 and the 
ondition(5.1). Thus we have an uni�ed approa
h to these problems. Next, assuming the existen
e of freeresonan
es domain, we obtain a Breit-Wigner approximation involving only the resonan
es w lyingin small \boxes" fw 2 C : jRew � �j � R(h); j Imwj � R1(h)gwith R(h) = phR1(h) = O(h1):III) In the same way as in [24℄, we obtain the lo
al tra
e formula of Sj�ostrand [29℄, [30℄ in aslightly stronger version (see Se
tion 7). Moreover, we prove a tra
e formula involving the unitarygroups e�i thLj(h); j = 1; 2 (see Theorem 5) whi
h is a semi-
lassi
al version of the 
lassi
al tra
eformulae.We expe
t that the approa
h of our work 
ould be useful in other situations as in the analysisof periodi
 potentials [11℄ or the study of matrix S
hr�odinger operators [19℄ if a representation like(1.3) is established.The plan of the paper is the following. In Se
tion 2 we introdu
e the "bla
k box" s
atteringassumptions and in Se
tion 3 we obtain a formula for �0(�; h) involving the limits of the fun
tions��(z) as Im z ! 0: Theorem 1 is proved in Se
tion 4 and in Se
tion 5 we establish a Weyl typeasymptoti
s for the spe
tral shift fun
tion �(�; h). The semi-
lassi
al Breit-Wigner approximationis established in Se
tion 6 together with a stronger approximation based on some re
ent resultsof Stefanov [32℄. In Se
tion 7 we prove some tra
e formulae 
ombining (1.3) with the argumentsof [24℄. In parti
ular, we obtain a tra
e formula involving the unitary groups e�ih�1Lj . Finally,in Se
tion 8 the Breit-Wigner approximation is applied to establish the existen
e of 
lusters ofresonan
es 
lose to the real axis.A
knowledgments. The authors are grateful to J. Sj�ostrand and M. Zworski for many helpfuldis
ussions. We would like to thank the referee for his remarks.2. PreliminariesWe start by the abstra
t \bla
k box" s
attering assumptions introdu
ed in [31℄, [29℄ and [30℄.The operators Lj(h) = Lj ; j = 1; 2; 0 < h � h0; are de�ned in domains Dj � Hj of a 
omplexHilbert spa
e Hj with an orthogonal de
ompositionHj = HR0;j � L2(Rn n B(0; R0)); B(0; R0) = fx 2 Rn : jxj � R0g; R0 > 0; n � 2:Below h > 0 is a small parameter and we suppose the assumptions satis�ed for j = 1; 2:We supposethat Dj satis�es 1lRnnB(0;R0)Dj = H2(Rn n B(0; R0)); (2.1)uniformly with respe
t to h in the sense of [29℄. More pre
isely, equip H2(Rn n B(0; R0)) with thenorm k < hD >2 ukL2 ; < hD >2= 1 + (hD)2, and equip Dj with the norm k(Lj + i)ukHj : Thenwe require that 1lRnnB(0;R0) : Dj �! H2(Rn nB(0; R0)) is uniformly bounded with respe
t to h andthis map has a uniformly bounded right inverse.



MEROMORPHIC CONTINUATION 5Assume that 1lB(0;R0)(Lj + i)�1is 
ompa
t (2.2)and (Lju)jRnnB(0;R0) = Qj�ujRnnB(0;R0)�; (2.3)where Qj is a formally self-adjoint di�erential operatorQju = Xj�j�2aj;�(x;h)(hDx)�u; (2.4)with aj;�(x;h) = aj;�(x) independent of h for j�j = 2 and aj;� 2 C1b (Rn) uniformly bounded withrespe
t to h.We assume also the following properties:There exists C > 0 su
h thatlj;0(x; �) = Xj�j=2aj;�(x)�� � Cj�j2; (2.5)Xj�j�2aj;�(x;h)�� �! j�j2; jxj �! 1 (2.6)uniformly with respe
t to h.There exists n > n su
h that we have���a1;�(x;h) � a2;�(x;h)���� O(1)hxi�n (2.7)uniformly with respe
t to h. This assumption will guarantee that for every f 2 C10 (R) the operatorf(L1)� f(L2) is \tra
e 
lass near in�nity".There exist �0 2℄0; �2 [; � > 0 and R1 > R0 so that the 
oeÆ
ients aj;�(x;h) of Qj 
an beextended holomorphi
ally in x to� = fr!; ! 2 C n ; dist (!; Sn�1) < �; r 2 C ; r 2 ei[0;�0℄℄R1;+1[g (2.8)and (2.6), (2.7) extend to �.Let R > R0; T = (R= ~RZ)n; ~R > 2R: SetH#j = HR0;j � L2(T n B(0; R0))and 
onsider a di�erential operator Q#j = Xj�j�2a#j;�(x;h)(hD)�on T with a#j;�(x;h) = aj;�(x;h) for jxj � R satisfying (2.3), (2.4), (2.5) with Rn repla
ed by T .Consider a self-adjoint operator L#j : H#j �! H#j de�ned byL#j u = Lj'u+Q#j (1� ')u; u 2 D#j ;with domain D#j = fu 2 H#j : 'u 2 Dj ; (1� ')u 2 H2g;where ' 2 C10 (B(0; R); [0; 1℄) is equal to 1 near B(0; R0):



6 V. BRUNEAU, V. PETKOVDenote by N(L#j ; [��; �℄) the number of eigenvalues of L#j in the interval [��; �℄. Then weassume that N(L#j ; [��; �℄) = O(� �h2�n#j =2); n#j � n; � � 1: (2.9)Finally, we suppose that with some 
onstant C � 0 independent on h we havesp Lj(h) � [�C;1[; j = 1; 2; (2.10)where sp (L) denotes the spe
trum of L: This 
ondition is a te
hni
al one and we expe
t that bya more �ne version of Proposition 1 we 
ould 
over the general 
ase.Given f 2 C10 (R) independent on h and � 2 C10 (Rn) equal to 1 on B(0; R0) we 
an de�netrbb[f(Lj)℄2j=1, as in [29℄, [30℄, by the equalitytrbb�f(L2)� f(L1)� = [tr(�f(Lj)�+ �f(Lj)(1 � �) + (1� �)f(Lj)�)℄2j=1+tr[(1� �)f(Lj)(1� �)℄2j=1 :Following [29℄, [30℄, we 
an de�ne the resonan
es w 2 C � by the 
omplex s
aling method as theeigenvalues of the 
omplex s
aling operators Lj;�; j = 1; 2. We denote by Res Lj(h); j = 1; 2; theset of resonan
es and set n# = maxfn#1 ; n#2 g:3. Representation of the derivative of the spe
tral shift fun
tionConsider the resolventsRj(�� i�) = i Z �10 eit�e�it(Lj�i�)dt; � 2 R; � > 0:Rj(�� i�) = �i Z 0�1 eit�e�it(Lj+i�)dt:Given a fun
tion f(�) 2 C10 (R), we have12�i Z Rj(�+ i�)f(�)d� = 12� Z 10 f̂(�t)e�itLj�t�dt;� 12�i Z Rj(�� i�)f(�)d� = 12� Z 0�1 f̂(�t)e�itLj+t�dt;where f̂ denotes the Fourier transform of f: Choose z0 2 R� whi
h is away from sp (Lj); j = 1; 2;and set g(�) = (� � z0)mf(�), where the integer m > n=2 will be taken suÆ
iently large andindependent on h. Applying the above formula, we obtain12�i trbb Z h(Lj � z0)�m�(�+ i�� z0)mRj(�+ i�)� (�� i�� z0)mRj(�� i�)�i2j=1f(�)d�= 12� trbbh(Lj � z0)�m�Z 10 e��t�itLj (ĝ(�t) + i�G+;�(t))dt+ Z 0�1 e�t�tLj (ĝ(�t) + i�G�;�(t))dt�i2j=1:(3.1)Here G�;�(t) are some fun
tions in S(R) related to the Fourier transform of �kf(�); 0 � k � m�1;whi
h are uniformly bounded with respe
t to 0 < � < 1: To justify the limit � # 0 in (3.1), we need



MEROMORPHIC CONTINUATION 7to establish the estimates of the tra
e uniformly with respe
t to � > 0. To do this we will provethe following.Lemma 1. For any t 2 R, the tra
e trbbh(Lj � z0)�me�itLj i2j=1 is well de�ned, andtrbbh(Lj � z0)�me�itLj i2j=1 = O(h�n#(1 + jtj)):Proof. Let � 2 C10 (Rn) be equal to 1 near B(0; R1); R1 > R0. Sin
e the operators �(Lj � z0)�mand (Lj � z0)�m� are tra
e 
lass (see [29℄) and e�itLj is uniformly bounded with respe
t to t, itis 
lear that �(Lj � z0)�me�itLj and (Lj � z0)�me�itLj� are tra
e 
lass ones with tra
e boundedby O(h�n#). To be more pre
ise let us note that in [30℄ the 
ondition (2.10) is not assumed andwe 
an formally apply the results of [30℄ for z0 2 C n R: In our 
ase z0 2 R� and a

ording to theresolvent equation we have(Lj � z0)�m = (Lj � z1)�m�I + (z0 � z1)(Lj � z0)�1�m :So taking z1 2 C n R, we obtain the tra
e 
lass properties mentioned above.Now 
onsider the operatorh(1� �)(Lj � z0)�me�itLj (1� �)i2j=1:By Duhamel formula we obtain(1� �)(Lj � z0)�me�itLj (1� �) = e�itQj (1� �)(Lj � z0)�m(1� �)+i Z t0 e�i(t�s)Qj [�;Lj ℄(Lj � z0)�me�isLjds :The integrand is a tra
e 
lass operator with tra
e bounded by O(h�n#) and it remains to studythe operator he�itQj (1� �)(Lj � z0)�m(1� �)i2j=1 :For R1 > R0; �0 2 C10 (Rn) equal to 1 near B(0; R1) and �0 � � we have(Lj � z0)�1(1� �) = (1� �0)(Qj � z0)�1(1� �) + (Lj � z0)�1[Qj ; �0℄(Qj � z0)�1(1� �) :Here and below the notation ' �  means that  = 1 on supp ': Choose 
ut-o� fun
tions�N � ::: � �1 � � so that �N = 1 on B(0; R0) and apply the teles
opi
 formula(Lj � z0)�1[Qj; �0℄(Qj � z0)�1(1� �)= (Lj � z0)�1[Qj; �0℄(Qj � z0)�1[Qj; �N ℄(Qj � z0)�1[Qj ; �N�1℄:::[Qj ; �1℄(Qj � z0)�1(1� �) :For N > n=2 this operator is tra
e 
lass. In fa
t, for ~� 2 C10 equal to 1 on supp �N the operator~�(Qj � i)�N=2(Qj � i)N=2[Qj ; �N ℄(Qj � z0)�1:::[Qj ; �1℄(Qj � z0)�1(1� �)is tra
e 
lass, while (Lj � z0)�1[Qj ; �0℄(Qj � z0)�1 is bounded. Here we have used the fa
t that Qjare ellipti
 operators and(Qj � z0)�1 = O(1) : HN (Rn) �! HN+2(Rn); 8N 2 N:Repeating this pro
edure, we obtain modulo tra
e 
lass operatorse�itQj (Lj � z0)�m(1� �)



8 V. BRUNEAU, V. PETKOV= e�itQj (1� �m)(Qj � z0)�1:::(1 � �1)(Qj � z0)�1(1� �) :In the same way, sin
e �k � �k�1; ea
h term �k(Qj � z0)�1(1 � �k�1) in the above produ
t istra
e 
lass operator and modulo a tra
e 
lass operator we are going to studyhe�itQj (Qj � z0)�m(1� �)i2j=1:Consider the di�eren
e (Q2 � z0)�me�itQ2 � (Q1 � z0)�me�itQ1= e�itQ2�(Q2 � z0)�m � (Q1 � z0)�m�+ �e�itQ2 � e�itQ1�(Q1 � z0)�m:For the �rst term at the right hand side observe that the operator (Q2 � z0)�m � (Q1 � z0)�m form > n=2 is a tra
e 
lass one (see [10℄, [25℄, [29℄). To handle the se
ond term, noti
e that�e�itQ2 � e�itQ1�(Q1 � z0)�m = i Z t0 e�i(t�s)Q2(Q1 �Q2)(Q1 � z0)�me�isQ1dsand use the fa
t that (Q1 �Q2)(Q1 � z0)�m is tra
e 
lass for m > n2 + 1: �A

ording to Lemma 1, in the equation (3.1) we 
an take the limit � # 0 with respe
t to thenorm in the spa
e of tra
e 
lass operators and taking into a

ount the de�nition of trbb(:), we getlim�#0 12� trbbh(Lj � z0)�m�Z 10 e��t�itLj (ĝ(�t) + i�G+;�(t))dt+ Z 0�1 e�t�itLj (ĝ(�t) + i�G�;�(t))dt�i2j=1= 12� trbbh(Lj � z0)�m Z 1�1 e�itLj ĝ(�t)dti2j=1= trbbh(Lj � z0)�mg(Lj)i2j=1 = trbb�f(L1)� f(L2)� =< �0(�; h); f(�) >D0(R);D(R) :Thus we have proved the following.Proposition 1. We have�0(�; h) = 12�i lim�#0 trbbh�(�+ i�� z0)m(Lj � �� i�)�1 (3.2)�(�� i�� z0)m(Lj � �+ i�)�1�(Lj � z0)�mi2j=1 ;where the limit is taken in the sense of distributions D0(R):Introdu
e the fun
tions��(z) = (z � z0)mtrbbh(Lj � z)�1(Lj � z0)�mi2j=1; � Im z > 0: (3.3)whi
h are well de�ned (see [30℄ and Proposition 2 below). The relationtrbbh(Lj � (�� i�))�1(Lj � z0)�mi2j=1 = trbbh(Lj � (�+ i�))�1(Lj � z0)�mi2j=1 ;implies immediately ��(z) = �+(z); Im z < 0: (3.4)



MEROMORPHIC CONTINUATION 9The equality (3.4) plays a 
ru
ial role in the proof of (1.3) and our 
hoi
e of real z0 is related tothe above relation.4. Meromorphi
 
ontinuation of the spe
tral shift fun
tionIn this se
tion we prove our prin
ipal result given in Theorem 1. Taking 0 < � � �0 < �=2,
onsider the 
omplex s
aling operators Lj;� related to Lj; j = 1; 2; introdu
ed by Sj�ostrand andZworski (see [31℄, [29℄ and Se
tion 2 in [30℄). More pre
isely, given �0 > 0; R1 > R0, 
onsider afun
tion f�(t) : ℄0; �2 [�[0;1[3 (�; t) 7! Cwhi
h is inje
tion for every � and has the properties:f�(t) = t for 0 � t � R1 ;0 � arg f�(t) � �; �tf� 6= 0 ;arg f�(t) � arg �tf�(t) � arg f� + �0 ;f�(t) = ei�t; for t � T0 ;where T0 depends on �0 and R1: Next 
onsider the map�� : Rn 3 x = t! 7! f�(t)! 2 C n ; t = jxjand introdu
e �� = ��(Rn) whi
h 
oin
ides with Rn along B(0; R1): We de�neHj;� = HR0;j � L2(�� n B(0; R0))and Lj;� : Hj;� �! Hj;� with domain Dj as the operatorLj;�u = Lj(�1u) +Qjj�� (1� �1)u ;�1 2 C10 (B(0; R1)) being a fun
tion equal to 1 near B(0; R0).Let 
 � ei℄�2�;2�[℄0;+1[ be a simply 
onne
ted open relatively 
ompa
t set su
h that 
\R+ =J is an interval. The spe
trum of Lj;� outside of e�2i�[0;+1[ 
onsists of the negative eigenvaluesof Lj and the eigenvalues in e�i[0;2�[℄0;+1[ (see [29℄). Sin
e the spe
trum of Lj is bounded frombelow, we may 
hoose z0 2 R� ; z0 =2 
, so that z0 is away from sp (Lj) and sp (Lj;�); j = 1; 2:Given a positive number Æ > 0, we 
an apply Proposition 4.1 of Sj�ostrand [30℄, saying that for allz 2 
 \ fz : Im z � Æg we havetrbbh(Lj � z)�1(Lj � z0)�mi2j=1 = trbbh(Lj;� � z)�1(Lj;� � z0)�mi2j=1; (4.1)where in the de�nition of the 
omplex s
aling operators Lj;� the parameter �0 is 
hosen smallenough. Noti
e that the 
hoi
e of z0 2 ei[3�0; min(�; 2��2��3�0)℄℄0;+1[ in [30℄ says that we may takez0 2 R� , assuming � < �2 � 32�0:Below we assume Æ and � �xed and we will drop in the notations Lj the index j writing L:when the properties are satis�ed for both operators Lj; j = 1; 2: Following [30℄, Se
tion 4, thereexists an operator L̂:;� : D: �! H: so thatK:;� = L̂:;� � L:;� has rankO(h�n#)



10 V. BRUNEAU, V. PETKOVand for all N; M 2 N we have K:;� = O(1) : D(LN: ) �! D(LM: ):Se
ondly, K:;� is 
ompa
tly supported, that is if � 2 C10 (Rn) is equal to 1 on B(0; R) for R � R0large enough, we have K:;� = �K:;�� and, �nally, for every N 2 N we have(L̂:;� � z)�1 = O(1) : D(LN: ) �! D(LN+1: );uniformly for z 2 
: These properties imply for z 2 
 \ fIm z > 0g the representation(L:;� � z)�1 = (L̂:;� � z)�1 + (L:;� � z)�1K:;�(L̂:;� � z)�1: (4.2)The 
ontributions related to the resolvent (L̂:;� � z)�1 are examined in the following.Proposition 2. There exists a fun
tion a+(z; h) holomorphi
 in 
 su
h that for z 2 
\fIm z > 0gwe have �+(z) = trh(Lj;� � z)�1Kj;�(L̂j;� � z)�1i2j=1 + a+(z; h): (4.3)Moreover, ja+(z; h)j � C(
)h�n# ; z 2 
 (4.4)with a 
onstant C(
) independent on h 2℄0; h0℄:Remark. The singularities of �+(z) for Im z # 0 are independent on z0 2 R� and m 2 N:Proof. A

ording to (4.2), for z 2 
 \ fIm z � Æg we have�+(z) = (z � z0)m trbbh(L̂j;� � z)�1(Lj;� � z0)�mi2j=1 (4.5)+ (z � z0)mhtr�(Lj;� � z)�1Kj;�(L̂j;� � z)�1(Lj;� � z0)�m�i2j=1: (4.6)From the resolvent equation we obtain(z � z0)m(Lj;� � z0)�m(Lj;� � z)�1 = (Lj;� � z)�1 � mXk=1(z � z0)k�1(Lj;� � z0)�k:To treat (4.6) we use the 
y
li
ity of the tra
e and the above equality and 
on
lude that this termis equal to trh(Lj;� � z)�1Kj;�(L̂j;� � z)�1i2j=1 modulo a fun
tion holomorphi
 in 
 and boundedby O(h�n#):Now we pass to the analysis of (4.5). Our purpose is to show that (4.5) is holomorphi
 in 
 andbounded by O(h�n#): By 
onstru
tion, (L̂j;��z)�1 is holomorphi
 on 
 and for any 
ut-o� fun
tion� 2 C10 (Rn); � = 1 on B(0; R0) with supp � � B(0; R1) the operators �(Lj;��z0)�m; (Lj;��z0)�m�are tra
e 
lass ones. Hen
e the fun
tion tr�(L̂j;� � z)�1(Lj;� � z0)�m�� is holomorphi
 in 
. Onthe other hand, (Lj;� � z0)�m(L̂j;� � z)�1 � (L̂j;� � z)�1(Lj;� � z0)�m (4.7)= (Lj;� � z0)�m(Lj;� � z)�1Kj;�(L̂j;� � z)�1 � (Lj;� � z)�1Kj;�(L̂j;� � z)�1(Lj;� � z0)�m:



MEROMORPHIC CONTINUATION 11Consequently, for Im z > 0 if �1 2 C10 (Rn) is a 
ut-o� fun
tion and �1 � �, applying the 
y
li
ityof the tra
e on
e more, we gettr��1(L̂j;� � z)�1(Lj;� � z0)�m(1� �)� = 0:Thus it remains to examine�+(z) = trh(1� �1)(L̂j;� � z)�1(1� �)(Lj;� � z0)�m(1� �)i2j=1:Consider the operator Q:;� = Q:j�� and note that for  2 C1 supported away from B(0; R1) wehave L:;� = Q:;� : Repeating the 
onstru
tion of L̂:;� in Se
tion 4, [30℄, we 
an �nd an operatorQ̂:;� : H2(��) �! L2(��) so that Q̂:;� �Q:;� has rankO(h�n);the operator Q̂:;� �Q:;� is 
ompa
tly supported and for z 2 
 we have(Q̂:;� � z)�1 = O(1) : D(QN: ) �! D(QN+1: ); 8N 2 N:Moreover, for  2 C1 supported away from B(0; R1) we have L̂:;� = Q̂:;� and for � 2 C10 (��)equal to 1 on a suÆ
iently large set, z 2 
 and �1 � �0 � � we obtain(L̂:;� � z)�1(1� �) = (1� �0)(Q̂:;� � z)�1(1� �)+(L̂:;� � z)�1[Q̂:;�; �0℄(Q̂:;� � z)�1(1� �):As above, we assume that z0 2 R� is 
hosen so that z0 =2 sp (Qj); z0 =2 sp (Qj;�); j = 1; 2: Forsimpli
ity of the notations below we omit the index � and we get�+(z) = trh(1� �0)(Q̂j � z)�1(1� �)(Lj � z0)�m(1� �)i2j=1+trh(1� �1)(L̂j � z)�1[Q̂j ; �0℄(Q̂j � z)�1(1� �)(Lj � z0)�m(1� �)i2j=1:Obviously, [Q̂j; �0℄ = [Qj ; �0℄ +Mj with a tra
e 
lass operator Mj . To show that the operator[Qj ; �0℄(Q̂j � z)�1(1 � �) is a tra
e 
lass one, we apply the teles
opi
 formula 
hoosing 
ut-o�fun
tions �N � �N�1 � ::: � �1 � � and write[Qj ; �0℄(Q̂j � z)�1(1� �) = [Qj; �0℄(Q̂j � z)�1�(Qj � i)�m�h(Qj � i)m[Q̂j; �N ℄(Q̂j � z)�1[Q̂j; �N�1℄:::[Q̂j ; �1℄(Q̂j � z)�1(1� �)iwith N � 2m > n: The operator in the bra
kets [:::℄ and [Qj ; �0℄(Q̂j � z)�1 are bounded, while�(Qj � i)�m is tra
e 
lass. Thus the term involving [Q̂j; �0℄ is holomorphi
 in 
 and bounded byO(h�n#):As in the proof of Proposition 1, we havek(1� �)(Lj � z0)�m(1� �)� (1� �)(Qj � z0)�m(1� �)ktr = O(h�n#):Moreover, (Qj�z0)�m� is tra
e 
lass and, 
onsequently, there exists a fun
tion b(z; h) holomorphi
in 
 and bounded by O(h�n#) so that�+(z) = b(z; h) + trh(1� �)(Q̂j � z)�1(Qj � z0)�m(1� �)i2j=1: (4.8)



12 V. BRUNEAU, V. PETKOVWe write (Q̂2 � z)�1(Q2 � z0)�m � (Q̂1 � z)�1(Q1 � z0)�m= (Q̂2 � z)�1h(Q2 � z0)�m � (Q1 � z0)�mi+ h(Q̂2 � z)�1 � (Q̂1 � z)�1i(Q1 � z0)�m = I + II :A

ording to [29℄, [30℄, the operator (Q2 � z0)�m � (Q1 � z0)�m is tra
e 
lass one and the
ontribution of I is holomorphi
 and bounded by O(h�n#). For II we obtain the representationII = (Q̂2 � z)�1(Q̂1 � Q̂2)(Q̂1 � z)�1(Q1 � z0)�m :It is 
lear that Q̂1 � Q̂2 = Q1 � Q2 +K1;2 with a �nite rank operator K1;2, and modulo a tra
e
lass operator we haveII = (Q̂2 � z)�1�(Q1 �Q2)(Q2 � z0)�m��(Q2 � z0)m(Q̂1 � z)�1(Q1 � z0)�m� :The se
ond fa
tor is a tra
e 
lass operator, while the �rst and the third ones are bounded operators.Consequently, II has the same property as I. Combining the above results, we 
on
lude that �+(z)is holomorphi
 in 
 and bounded by O(h�n#).To establish (4.3), noti
e that the right hand side of this equality is holomorphi
 for z 2
 \ fIm z > 0g: The left hand side is also holomorphi
 in this domain sin
e we may apply (4.1)with di�erent Æ > 0; �0 > 0 and 0 < � < �2 � 32�0: By analyti
 
ontinuation we dedu
e (4.3) and theproof of Proposition 2 is 
omplete. 2Proof of Theorem 1. To obtain a meromorphi
 
ontinuation of �+(z) through the real axis, itsuÆ
es to do this for the tra
e involving Kj;�: Next we will follow 
losely the argument of Sj�ostrand[30℄ and sin
e � is �xed, we will omit it in the notations. Setting ~K:(z) = K:(z� L̂:)�1; from (4.31)in [30℄ we get the representation�tr((L: � z)�1K:(L̂: � z)�1) = tr�(1 + ~K:(z))�1 ��z ~K:(z)�= �z log det(1 + ~K:(z))and the resonan
es of L: are pre
isely the zeros of the fun
tionD(z; h) = det(1 + ~K:(z)) = O(1) exp(Ch�n#): (4.9)Noti
e that the multipli
ities of the resonan
es and the zeros 
oin
ide. Below in the notations weomit the subs
ript . sin
e the argument does not depend on j = 1; 2. Let Res (L) be the resonan
esof L and let D(z; h) = G(z; h) Yw2Res (L)\
(z � w) ;where G(z; h) and 1G(z;h) are holomorphi
 in 
 and the resonan
es in the produ
t are repeatedfollowing their multipli
ity. Obviously,�z logD(z; h) = �z logG(z; h) + Xw2Res (L)\
 1z � w



MEROMORPHIC CONTINUATION 13and a

ording to the estimate (4.54) in [30℄, we get��� ��z logG(z; h)��� � C(~
)h�n# ; z 2 ~
; (4.10)where ~
 �� 
 is an arbitrary open simply 
onne
ted domain and C(~
) is independent on h 2℄0; h0℄:Going ba
k to the representation (3.2) and taking into a

ount (3.4), we observe that for� 2 I � R+ ; Imw 6= 0; we have� 12�i lim�#0� 1�+ i�� w � 1�� i�� w� = � Imw�j�� wj2 ;while for w 2 R we get � 12�i lim�#0� 1�+ i�� w � 1�� i�� w� = Æ(� � w) ;where both limits are taken in the sense of distributions. Combining Propositions 1, 2 and theabove arguments we 
omplete the proof of Theorem 1. 2The representation (1.3) shows that modulo a 
onstant the spe
tral shift fun
tion �(�; h) 
oin-
ides with the distribution �(�; h) = 1� � Xw2Res Lj(h)Imw 6=0 Z ��0 j Imwjj�� wj2 d��2j=1+h#f� 2 [�0; �℄ : � 2 �pp(Lj(h))gi2j=1 + 1� Z ��0 Im r(�; h)d�; �0 > 0; �0 =2 I :In parti
ular, for � 2 I n [2j=1f� 2 R : � 2 sppp(Lj(h))g the distribution �(�; h) is 
ontinuous andthe fun
tion �(�; h) = �(�; h) � h#f� 2 [�0; �℄ : � 2 sppp(Lj(h))gi2j=1is real analyti
 in I. 5. Weyl asymptoti
sIn this se
tion we obtain a Weyl type asymptoti
s for the spe
tral shift fun
tion. We generalizethe results of Christiansen [9℄ and Robert [26℄ 
overing the "bla
k box" long-range perturbationsof the Lapla
ian and we improve our previous result (see Theorem 2 in [6℄) working without any
ondition on the behavior of the resonan
es 
lose to the real axis.We will say that � 2 R is a non-
riti
al energy level for Q if for all (x; �) 2 �� = f(x; �) 2 R2n :l(x; �) = �g we have rx;�l(x; �) 6= 0; l(x; �) being the prin
ipal symbol of Q: Given a Hamiltonianl(x; �), denote by exp(tHl)(x0; �0) = (x(t; x0; �0); �(t; x0; �0))the traje
tory of the Hamilton 
ow exp(tHl) passing through (x0; �0) 2 ��: Re
all that � 2 Jis a non-trapping energy level for l(x; �) if for every R > 0 there exists T (R) > 0 su
h that for(x0; �0) 2 ��, jx0j < R, the x-
omponent of the traje
tory of exp(tHl) passing through (x0; �0)satis�es jx(t; x0; �0)j > R; 8jtj > T (R):



14 V. BRUNEAU, V. PETKOVDenote by N(L#j ; I) the number of eigenvalues of L#j in the interval I. From the assumptions(2.5) and (2.10) we dedu
e easily that there exists a 
onstant C# su
h that the spe
trums of L#j ,j = 1; 2, do not interse
t the interval ℄ �1;�C#℄ and 
onsequently N(L#j ; ℄ �1;�C#℄) = 0. Infa
t, let �0, �, �1 2 C10 (B(0; R); [0; 1℄) be equal to 1 on B(0; R0) and let �1 � � � �0. Using theresolvent equality we get(L#j � z)�1 = (L#j � z)�1�+ (L#j � z)�1(1� �)= �1(Lj � z)�1�� (L#j � z)�1[Q#j ; �1℄(Lj � z)�1�+(1� �0)(Q#j � z)�1(1� �) + (L#j � z)�1[Q#j ; �0℄(Q#j � z)�1(1� �):Then (L#j � z)�1�1 + [Q#j ; �1℄(Lj � z)�1�� [Q#j ; �0℄(Q#j � z)�1(1� �)�= �1(Lj � z)�1�+ (1� �0)(Q#j � z)�1(1� �):A

ording to the assumptions (2.5) and (2.10) there exists C# su
h that spe
trums of Lj, Q#j ;j = 1; 2, do not interse
t the interval ℄ � 1;�C#℄, hen
e for z 2℄ � 1;�C#℄, the resolvents(Lj � z)�1, (Q#j � z)�1 are bounded and we obtain immediately[Q#j ; �1℄(Lj � z)�1�� [Q#j ; �0℄(Q#j � z)�1(1� �) = O(h):Consequently, for h small enough and z 2℄ �1;�C#℄, the resolvent (L#j � z)�1 is bounded andz =2 sp(L#j ). In the following we will use the notationN(L#j ; �) = N(L#j ; ℄� C#; �℄); j = 1; 2 :The spe
tral shift fun
tion �(�; h) is determined modulo a 
onstant and from (2.10) we dedu
ethat �(�; h) is 
onstant on ℄ �1;�C1℄ for C1 suÆ
iently large. In the following, without loss ofthe generality, we may 
hoose �(�; h) so that �(�; h) = 0 on ℄�1;�C#℄: Moreover, in this se
tionwe 
onsider �(�; h) = lim�#0 �(�+ �; h) as a fun
tion 
ontinuous from the right. The main result inthis se
tion is a Weyl type asymptoti
s for the spe
tral shift fun
tion.Theorem 2. Assume that Lj; j = 1; 2 satisfy the assumptions of Se
tion 2. Let 0 < E0 < E1 andsuppose that ea
h � 2 [E0; E1℄ is a non-
riti
al energy level for Qj ; Q#j ; j = 1; 2. Assume that thereexist positive 
onstants B; �1; C1; h1 su
h that for any � 2 [E0 � �1; E1 + �1℄; h=B � Æ � B andh 2℄0; h1℄ we have N(L#; [�� Æ; �+ Æ℄) � C1Æh�n# ; j = 1; 2: (5.1)Then there exist !(�) 2 C1(R); h0 > 0 su
h that�(�; h) = hN(L#j ; �℄)i2j=1 + !(�)h�n +O(h1�n#) (5.2)uniformly with respe
t to � 2 [E0; E1℄ and h 2℄0; h0℄.Remark. Noti
e that if � is a non-
riti
al energy level, then for � > 0 small enough ea
h� 2℄� � �; � + �[ is also non-
riti
al one. Consequently, (5:2) remains valid on some interval[E0��;E1+�℄; � > 0. Re
all that the operators L#j ; j = 1; 2; have been de�ned in Se
tion 2 by us-ing the operators Q#j ; j = 1; 2; whose 
oeÆ
ients satisfy a#j;�(x;h) = aj;�(x;h) for jxj � R; R > R0:



MEROMORPHIC CONTINUATION 15If the prin
ipal symbol lj(x:�) of Qj is non-
riti
al for � 2 [E0; E1℄; we 
an extend a#j;�(x;h) forjxj > R in a su
h way that � 2 [E0; E1℄ be
ome non-
riti
al for Q#j . This 
ontinuation 
hanges theoperator L#j but as it has been proved by J.-F. Bony [1℄, the assumption (5.1) does not depend onthe 
ontinuation of a#j;�(x;h).To prove Theorem 2, we will introdu
e an intermediate operator exploiting the following resultof J.-F. Bony (see also [28℄).Proposition 3. ([2℄) Assume that L satisfy the assumptions of Se
tion 2 and suppose that ea
h� 2 [E0; E1℄ is a non-
riti
al energy level for Q. Given a �xed � 2 [E0; E1℄, there exists a di�eren-tial operator ~L, su
h that(a) The pair (L; ~L) satis�es the assumptions of Se
tion 2, with n = n+ 1,(b) There exists an interval I0 3 �, su
h that ea
h � 2 I0 is non-trapping and non-
riti
alenergy level for ~L,(
) The operator ~L has no resonan
es in a 
omplex neighborhood 
0 of I0 and 
0 is independenton h.Now denote by �(�;A;B) the spe
tral shift fun
tion related to the operators A and B. Usingthe above proposition for the operator L1 we 
an 
onstru
t an operator ~L1 and de
ompose thespe
tral shift fun
tion �(�;L1; L2) as follows�(�;L1; L2) = �(�;L1; ~L1)� �(�;L2; ~L1):Here L2; ~L1 satis�es the assumptions of Se
tion 2 sin
e we may estimate the di�eren
e L2 � ~L1 =(L2 � L1) + (L1 � ~L1) by applying our assumptions on Q1 �Q2: Thus it is suÆ
ient to prove thetheorem for � 2 I2 � I0 and the pair (L1; L2) with L2 = Q2 being a di�erential operator havingno resonan
es in a 
omplex neighborhood 
0 of I0 and su
h that every � 2 I0 is non-trapping andnon-
riti
al energy level for L2. Then the assertion follows by applying the lo
al result and 
overingthe 
ompa
t interval [E0; E1℄ by small intervals.We denote �(�; h) the spe
tral shift fun
tion for the operators (L1; L2). Applying Theorem 1in the domain 
0, we dedu
e that there exists a fun
tion g+(z; h) holomorphi
 in 
0 su
h that for� 2 I0 =W0 \ R, W0 �� 
0 we have�0(�; h) = 1� Im g+(�; h) + Xw2Res L1\
0;Imw 6=0 � Imw�j�� wj2 + Xw2Res L1\I0 Æ(�� w); (5.3)where g+(z; h) satis�es the estimatejg+(z; h)j � C(W0)h�n# ; z 2W0 (5.4)with C(W0) > 0 independent on h 2℄0; h0℄:In the following, we �x an open interval I0 � R+ so that ea
h � 2 I0 is a non-
riti
al energy levelfor Qj , j = 1; 2; and we introdu
e open intervals I2 �� I1 �� I0. It is 
onvenient to de
ompose



16 V. BRUNEAU, V. PETKOV�(�; h) for � 2 I2 into a sum of a term independent on � and a se
ond one lo
alized in I0 where(5.3) holds.Lemma 2. Let C# > 0 be su
h that the spe
trums of Lj and L#j ; j = 1; 2; do not interse
t theinterval [�1;�C#℄. Let '1, '2 2 C10 (R;R+) be su
h that supp '1 � (�1; 
1); supp '2 � I1,'2 = 1 on I2 = (
1; 
2) and '1 + '2 = 1 on [�C# � �0; 
2℄; �0 > 0. Then for � 2 I2 we have�(�; h) = trbbh'1(Lj)i2j=1 +G'2(�) +M'2(�); (5.5)where G'2(�) = 1� Z℄�1;�℄ Im g+(�; h)'2(�)d�;M'2(�) = Xw2Res L1\
0;Imw 6=0 Z℄�1;�℄ � Imw�j�� wj2'2(�)d�+ Xw2Res L1\℄�C#;�℄'2(w) (5.6)and we omit in M'2 and G'2 the dependen
e of h.Proof. Roughly speaking, for � 2 I2, if we express the a
tion of the distributions as integrals, wemust have �(�; h) = Z ��1 '1(�)�0(�; h)d� + Z ��1 '2(�)�0(�; h)d�:Sin
e '1 vanishes on I2, the �rst term is independent on � 2 I2 and equal to trbbh'1(Lj)i2j=1. Forthe se
ond one we may apply (5.3) sin
e '2 is supported in I1 � I0.For a rigorous proof of the above representation, take f 2 C10 (I2) and introdu
eF (�) = ('1 + '2)(�) Z +1� f(�)d�whi
h is 
ompa
tly supported. Sin
e supp f � I2 and '1 + '2 = 1 on I2, we haveF 0(�) = �f(�) + ('01 + '02)(�) Z +1� f(�)d�;where the se
ond term vanishes on [�C# � �0;+1[. Our 
hoi
e of �(�; h) = 0 on ℄ �1;�C#℄makes possible to write h�; fiD0;D = �h�; F 0iD0;D = h�0; F iD0;D:Next the equality '1 R+1� f = '1 RR f yieldsh�0; '1 Z +1� fiD0;D = �ZR f�h�0; '1iD0;D = �ZR f� trbbh'1(Lj)i2j=1:For the term involving '2, we apply (5.3) and we geth�0; '2 Z +1� fiD0;D = hG0'2 ;  Z +1� fiD0;D + hM 0'2 ;  Z +1� fiD0;Dfor  2 C1(R) equal to 1 on R+ and vanishing on ℄�1;�1℄. The above relations imply (5.5) inthe sense of distributions sin
e G'2 0 =M'2 0 = 0 and  f = f . �



MEROMORPHIC CONTINUATION 17To prove Theorem 2, we will apply a Tauberian argument for the in
reasing fun
tion M'2(�).Consider a fun
tion �(t) 2 C10 (℄� Æ1; Æ1[), �(0) = 1, �(�t) = �(t), su
h that the Fourier transform�̂ of � satis�es �̂(�) � 0 on R and assume that there exist 0 < �0 < 1, Æ0 > 0 so that �̂(�) � Æ0 > 0for j � j� �0. Next introdu
e�F�1h ��(�) = (2�h)�1 Z eit�=h�(t)dt = (2�h)�1�̂(�h�1�):Remark. It is obvious that the Lemma 2 holds if we take a partition of unity '21 + '22 over[�C# � �0; 
2℄ with 
ut-o� fun
tions 'j ; j = 1; 2.The next lemma permits to establish a 
onne
tion between the asymptoti
s of the fun
tionsM'2 and N#'2 :Lemma 3. Let '2 2 C10 (I1;R+) and let N#'2(�) = tr�'2(L#1 )1℄�C#;�℄(L#1 )�. Then there exists!'2(�) 2 C00 (I0) su
h that for any � 2 R we havedd�(F�1h � �M'2)(�) = dd�(F�1h � �N#'2)(�) �G0'2(�) + !'2(�)h�n +O(h1�n#); (5.7)where O(h1�n#) is uniform with respe
t to � 2 R: Moreover, we haveM'2(�) = (F�1h � �M'2)(�) +O(h1�n#) (5.8)= (F�1h � �N#'2)(�)�G'2(�) + Z ��1 !'2(�)d�h�n +O(h1�n#)uniformly with respe
t to � 2 I0.Proof. For simpli
ity of the notations we omit the subs
ript '2 and denote by M , G, N#, ! thefun
tions M'2 , G'2 , N#'2 , !'2 . A

ording to (5.6) and (5.3), for any � 2 R we havedd�(F�1h � �M)(�) = (F�1h � �M 0)(�) = (F�1h � � '2�0)(�)� (F�1h � �G0)(�):Using the Cau
hy inequalities, it follows easily that G0(�) = O(h�n#) and G00(�) = O(h�n#) andwe obtain immediately dd�(F�1h � �G)(�) = G0(�) +O(h1�n#)uniformly with respe
t to � 2 R.It remains to examine(F�1h � � '2�0)(�) = 12�h Z eit�h�1�(t) trbbhe�ith�1Lj'2(Lj)i2j=1dt:We will prove that(F�1h � � '2�0)(�) = dd� (F�1h � �N#)(�) + !(�)h�n +O(h1�n); � 2 R; (5.9)where !(�) 2 C00 (I0) has 
ompa
t support and O(h1�n) is uniform with respe
t to � 2 R: As inSe
tion 2, de�ne the operator L#1 on the torus T ~R = (R= ~RZ)n with ~R > 2R > 2R0 and introdu
e� 2 C10 (fx : jxj � ~Rg) equal to 1 for jxj � 2R > 2R0. We havetrbbhe�ith�1Lj'2(Lj)i2j=1 = htr��e�ith�1Lj'2(Lj)��i2j=1 + trbbhe�ith�1Lj'2(Lj)(1� �2)i2j=1:



18 V. BRUNEAU, V. PETKOVApplying the Duhamel formula and the semi-
lassi
al Egorov theorem (see Se
tion 6 of [6℄ for moredetails), for jtj suÆ
iently small we obtaintrbbhe�ith�1Lj'2(Lj)(1� �2)i2j=1 = trhe�ith�1Qj'2(Qj)(1� �2)i2j=1 +O(h1);tr��e�ith�1L1'2(L1)�� = tr��e�ith�1L#1 '2(L#1 )��+O(h1)= tr�e�ith�1L#1 '2(L#1 )�� tr�e�ith�1Q#1 '2(Q#1 )(1� �2)�+O(h1);where Q#1 is a di�erential operator Q#1 = Xj�j�2 a#1;�(x;h)(hD)�on the torus T ~R introdu
ed in Se
tion 2 and a#1;�(x;h) = a1;�(x;h) for jxj < r0, r0 > 2R0. Usingthe 
lassi
al 
onstru
tions of a parametrix for small jtj for the unitary groups e�ith�1Q#1 ; e�ith�1L2 ;
ombined with the fa
t that � 2 I0 is non-
riti
al for Q#1 ; L2 we dedu
e for � 2 I0tr�(F�1h �)���Q#1 �'2(Q#1 )(1� �2)� = !1(�)h�n +O(h1�n);tr��(F�1h �)��� L2�'2(L2)�� = !2(�)h�n +O(h1�n);with fun
tions !1, !2 2 C00 (I1) and O(h1�n) uniform with respe
t to � 2 I0: The problem 
an beredu
ed to the appli
ation of the stationary phase method to some integrals where the integrationis over a 
ompa
t set. We refer to Chapter 10, [10℄, for more details. Sin
e �̂ 2 S(R), we 
an extendthe above relations to all � 2 R with O(h1�n) uniform with respe
t to � 2 R:For the tra
e involving Qj; j = 1; 2; we have for � 2 I0trh(F�1h �)���Qj�'2(Qj)(1� �2)i2j=1 = !ext(�)h�n +O(h1�n) (5.10)with !ext 2 C00 (I0) andO(h1�n) uniform with respe
t to � 2 I0: The proof of (5.10) is more te
hni
alsin
e we must integrate over a non-
ompa
t domain. In fa
t, it is similar to the 
al
ulation of thetra
es in Se
tion 4 in [2℄ and for the sake of 
ompleteness we present a proof in Appendix. Moreover,we show in the Appendix that we 
an extend (5.10) to all � 2 R with O(h1�n) uniform with respe
tto � 2 R: Taking together the asymptoti
s of the tra
es and the above relations, we obtain (5.9)and (5.7).Now we will apply a Tauberian theorem (see for example, Theorem V-13 of [25℄) for the in-
reasing fun
tion M'2(�). For this purpose we need the estimatesM'2(�) = O(h�n#); dd�(F�1h � �M'2)(�) = O(h�n#); 8� 2 R: (5.11)The �rst one follows easily from (5.6). To establish the se
ond one, we apply the equality (5.7).Thus it suÆ
es to prove the estimatedd�(F�1h � �N#'2)(�) = (2�h)�1tr��̂(L#1 � �h )'2(L#1 )� = O(h�n#); 8� 2 R: (5.12)



MEROMORPHIC CONTINUATION 19To do this, assume �rst that � 2 [E0 � �1; E1 + �1℄. Taking into a

ount (5.1), we obtaintr��̂(L#1 � �h )'2(L#1 )� = X�2sp (L#1 )\supp '2 �̂(�� �h )'2(�) (5.13)� C=hXk=0 XkhB �j���j� (k+1)hB �̂(�� �h )'2(�) � C�h1�n# + C=hXk=1 (k + 1)h1�n#k3 � � Ch1�n# ;where we have used the inequality j�̂(�)j � C(1+j�j)�3. On the other hand, for � =2 [E0��1; E1+�1℄and � 2 supp '2, we have j� � �j � Æ2 > 0 and the term (5.11) is estimated by O(h1): Now aTauberian argument implies the �rst assertion in (5.8). The se
ond one is obtained by integrationof (5.7) over [inf I0; �℄ 
ombined with the equalitiesM'2(�) = G'2(�) = N#'2(�) = 0; � � inf I1and the fa
t that �̂(t) 2 S(R). �Proof of Theorem 2. As it was mentioned above, it remains to show that�(�; h) = �(�;L1; L2) = N(L#1 ; �) + !0(�)h�n +O(h1�n#); � 2 I2 (5.14)for a di�erential operator L2 = Q2 having no resonan
es in 
0 and su
h that ea
h � 2 I0 is non-trapping and non-
riti
al energy level for L2. A

ording to Lemma 2 and Lemma 3, for � 2 I2 wehave �(�; h) = trbbh'1(Lj)i2j=1 + (F�1h � �N#'2)(�) + Z ��1 !'2(�)d�h�n +O(h1�n#):Given a fun
tion � 2 C10 (Rn), � = 1 on B(0; R0), exploiting the fun
tional 
al
ulus for smoothfun
tions and the estimates for the tra
e (see [30℄), we obtaintrbbh'1(Lj)i2j=1 = htr��'1(Lj)��i2j=1 + trbbh'1(Lj)(1� �2)i2j=1= tr��'1(L#1 )��� tr��'1(L2)��+ trh'1(Qj)(1 � �2)i2j=1 +O(h1)= tr�'1(L#1 )�+ C('1)h�n +O(h1�n);where C('1) is a 
onstant depending on '1:On the other hand, applying a Tauberian theorem for N#'2(�) = O(h�n#), we dedu
eN#'2(�) = (F�1h � �N#'2)(�) +O(h1�n#); 8� 2 R:Consequently, for � 2 I2 we get�(�; h) = tr�'1(L#1 )�+ tr�'2(L#1 )1℄�C#;�℄(L#1 )�+ �C('1) + Z ��1 !'2(�)d��h�n +O(h1�n#):By 
onstru
tion we have'1(L#j ) + '2(L#j )1℄�C#;�℄(L#j ) = 1℄�C#;�℄(L#j ); 8� 2 I2and this implies (5.14) with !0(�) = C('1) + R ��1 !'2(�)d� 2 C1(R):



20 V. BRUNEAU, V. PETKOVTo obtain (5.2), we 
onstru
t a 
overing of the interval [E0; E1℄ � [F�=1J� by small open intervalsJ� so that for every J� we 
an �nd an operator Q� with the properties of Proposition 3, where I0is repla
ed by J� . Next we introdu
e a partition of unityFX�=1'�(x) = 1 on [E0; E1℄; '� 2 C10 (J� ;R+)and we apply the above argument. This 
ompletes the proof of Theorem 2. 26. Breit-Wigner approximationIn this se
tion we 
onsider small domains of width h and we prove a semi-
lassi
al analogue ofthe Breit-Wigner approximation for �(�; h) (see [22℄, [24℄, [4℄ for similar results, [13℄ for the 
ase ofa potential having the form of an "well in the island" and [12℄ for a one dimensional 
riti
al 
ase).In the following �(�; h) denotes the real analyti
 fun
tion de�ned by�(�; h) = �(�; h)� h#f� 2 [E0; �℄ : � 2 sppp(Lj(h))gi2j=1:Theorem 3. Assume that Lj(h); j = 1; 2 satisfy the assumptions of Theorem 2. Then for any� 2 [E0; E1℄, any 0 < Æ < h=B; 0 < B1 < B; and h suÆ
iently small we have�(�+ Æ; h) � �(�� Æ; h) = h Xw2Res Lj (h);Imw 6=0; jw��j<h=B1 !C� (w; [� � Æ; � + Æ℄)i2j=1 +O(Æ)h�n# ; (6.1)where B > 0 is the 
onstant introdu
ed in Theorem 2.Remark. Following the result of J.-F. Bony [1℄, the assumption (5.1) implies the existen
e ofpositive 
onstants D; C3; h3 su
h that for � 2 [E0; E1℄; h=D � Æ � D and h 2℄0; h3℄ we have#fz 2 C : z 2 Res L(h) ; jz � �j � Æg � C3Æh�n# : (6.2)Proof. We apply Theorem 1 in the interval I0 � (� � Æ; � + Æ); 0 < Æ � h=B1; and introdu
e thefun
tion F (z; h) = h Xw2Res Lj (h); Imw 6=0;h=B1�jw��j�C4 � 1z � w � 1z � w�i2j=1; z 2 D(�; h=B) :It is suÆ
ient to show that jF (z; h)j � Ch�n#; jz � �j � h=B: (6.3)We have �zF (z; h) = h Xw2Res Lj (h); Imw 6=0;h=B1�jw��j�C4 1(z � w)2 � 1(z � w)2 i2j=1 :Let l0 2 N be an integer su
h that D � 2l0�1B. Following the argument in [24℄ and applying (6.2),for any z 2 D(�; h=B) we obtainXw2Res Lj ; Imw 6=0;h=B1�jw��j<C4 1jz � wj2 � Xw2Res Lj (h); Imw 6=0;h=B1�jw��j� 2l0hD 1jz � wj2 + C log(1=h)Xk=l0 X2khD �jw��j� 2k+1hD 1jz � wj2



MEROMORPHIC CONTINUATION 21� C2l0D�1h�1�n# + C C log(1=h)Xk=l0 (2k+1h)h�n#(2kh)2 � Ch�1�n# :Here and below we denote by C > 0 di�erent 
onstants whi
h may 
hange from line to line andwhi
h are independent on h and the 
hoi
e of � in the interval [E0; E1℄: Thus we get the estimatej�zF (z; h)j � Ch�n#�1; z 2 D(�; h=B) :It remains to �nd an estimate of jF (�0; h)j = j ImF (�0; h)j at a suitable point �0 = �0(h): 1 Set� = hB < hB1 and suppose that for all � 2 R; j�� �j � �, we have j ImF (�; h)j �Mh�n# ; M > 0:The 
ontinuity of the fun
tion ImF (�; h) implies that ImF (�; h) is either positive or negative in[�� �; �+ �℄: Assuming ImF (�; h) positive, we getMh�n#+1B� � 12� Z �+���� ImF (�; h)d� � 1� Z �+���� h Xw2Res Lj (h); Imw 6=0jw��j�C j Imwjj�� wj2 i2j=1d�+1� 2Xj=1 Z �+���� Xw2Res Lj (h); Imw 6=0;jw��j<h=B1 j Imwjj�� wj2 d� � j�(�+ �; h)� �(�� �; h)j+ Ch1�n# :Here we have used the inequalityZ �+���� j Imwjj�� wj2 d� � Z 1�1 j Imwjj�� wj2 d� � �and (6.2) to estimate the number of resonan
es in fw : jw � �j < h=B1g. Noti
e that if D � B1,we have fw : jw � �j < h=B1g � fw : jw � �j < h=Dg: Next the assumption (5.1) 
ombined withTheorem 2 yield the estimate j�(�+ �; h)� �(�� �; h)j � Ch1�n#:Thus, j�(� + �; h)� �(�� �; h)j � j�(�+ �; h)� �(�� �; h)j+ 2Xj=1 ℄f� 2 sppp(Lj) : j�� �j � �g � Ch1�n# ;where for the se
ond inequality we have used on
e more (6.2), observing that the positive eigenvaluesof Lj 
oin
ide with the resonan
es on R+ : Consequently, we obtain a bound for M . Hen
e thereexists a 
onstant C > 0 and �0 2 [�� �; �+ �℄ so thatjF (�0; h)j � Ch�n#: (6.4)Writing F (z; h) = F (�0; h) + Z z�0 �zF (z; h)dz; jz � �j � h=B ;we obtain (6.3). The 
ase ImF (�; h) < 0 
an be treated by the same argument exploiting theinequality � ImF (�; h) � Mh�n# ; j� � �j � �: By an integration over the interval (� � Æ; � + Æ);we 
omplete the proof of (6.1). �1There is some similarity between the proof of the existen
e of �0(h) and that of the existen
e of a suitable pointz0(h); Im z0(h) � Æ > 0 in Se
tion 4 in [24℄ so that log j detS(z0(h); h)j � �Ch�n# :



22 V. BRUNEAU, V. PETKOVRemark. Our proof goes without a fa
torization in small domains fz 2 C : jz � �j � Chg and asuitable tra
e formula (see Lemma 6.2 in [24℄ and Theorem 1.3 in [4℄). The above argument 
anbe applied to simplify the proof of Lemma 6.2 in [24℄.Next, the estimate (6.3) of F (z; h) yields immediately the following.Corollary 1. Under the assumptions of Theorem 3 for � 2 R; j�� �j < h=B we have the repre-sentation�0(�; h) = 1� Im q(�; h) + h Xw2Res Lj(h); jw��j<h=B1Imw 6=0 � Imw�j�� wj2 + Xw2(Res Lj (h)\R);jw��j<h=B Æ(�� w)i2j=1; (6.5)where q(z; h) = p(z; h) � p(z; h); p(z; h) is holomorphi
 in D(�; h=B) and p(z; h) satis�es theestimate jp(z; h)j � Ch�n# ; z 2 D(�; h=B)with C > 0 independent on h 2℄0; h0℄ and � 2 [E0; E1℄:We may slightly improve Theorem 3, noting that for every 0 < � < 1 and j�� �j � �hB we haveXw2Res Lj (h);�h=B1�jw��j�h=B1 j Imwjj�� wj2 � h�2h2Ch1�n# = O�(h�n#) :Thus for 0 < Æ � �hB the equality (6.1) 
an be repla
ed by�(�+ Æ; h) � �(�� Æ; h) = h Xw2ResLj (h); Imw 6=0;jw��j��h=B1 !C� (w; [� � Æ; �+ Æ℄)i2j=1 +O�(Æ)h�n# : (6.6)To obtain a stronger version involving the resonan
es in smaller "boxes", we need some addi-tional information for the distribution of the resonan
es in fw 2 C : jw � �j � �hg: In the 
ase ofthe S
hr�odinger operator L(h) = �h2� + V (x) with V (x) 2 C10 (Rn) real valued this is possibleapplying the re
ent result of Stefanov [32℄. Set a0(x; �) = j�j2 + V (x) and let 0 < E0 < E1 benon-
riti
al values of a0(x; �): Let a�10 [E0; E1℄ =Wint [Wext ;whereWext is the unbounded 
onne
ted 
omponent, whileWint is the union of bounded ones if thereare su
h 
onne
ted 
omponents. Assume that all points in Wext are non-trapping (see [32℄ for apre
ise de�nition). Then, a

ording to Theorem 6.1 in [32℄, there exists a fun
tion 0 < R1(h) =O(h1) su
h that for any M 2 N the operator L(h) has no resonan
es in the set
M(�; h) = [E0; E1℄ + i[�Mh;�R1(h)℄; 0 < h � h(M): (6.7)Setting 0 < R(h) = phR1(h) = O(h1), an elementary argument shows that for � 2 [E0; E1℄ andj�� �j � R(h)=2 we have Xw2Res L(h); j Imwj�R1(h)R(h)�jRew��j�h j Imwjj�� wj2 � Ch�n# :



MEROMORPHIC CONTINUATION 23In the next result we treat a formally symmetri
 di�erential operatorL1(h) = Xj�j�2 a�(x; h)(hDx)�on L2(Rn) satisfying the assumptions of Se
tion 2. Given a �xed � 2℄E0; E1[, as in the previousse
tion, we may 
onstru
t an operator L2(h) having the properties (a) - (
) of Proposition 3.Applying Theorem 3 for Lj(h); j = 1; 2; and fz 2 C : jz� �j � h=B1g �W , and assuming that wehave a free resonan
es domain, we obtain the following improvement of Corollary 1.Corollary 2. Let E0 < � < E1 be �xed. Let L2(h) be 
hosen so that Lj(h); j = 1; 2; satisfy theassumptions of Theorem 3 and L2(h) has no resonan
es in the disk fz 2 C : jz � �j � h=B1g:Suppose that there exists a fun
tion 0 < R1(h) = O(h1) su
h that L1(h) has no resonan
es in theset [E0; E1℄ + i[��h;�R1(h)℄; � > 0; 0 < h � h(�) :Then for j�� �j < R(h)2 and h suÆ
iently small we have�0(�; h) = 1� Im q(�; h) + Xw2Res L1(h); jRew��j<R(h)0<j Imwj�R1(h) � Imw�j�� wj2 + Xw2Res L1(h) \R;jw��j<R(h)=2 Æ(�� w) (6.8)with R(h) =phR1(h) = O(h1) and q(�; h) as in Corollary 1.7. Lo
al tra
e formulaIn this se
tion we prove a lo
al tra
e formula whi
h is a slightly stronger version of that in [29℄,[30℄ (see [24℄ for 
ompa
tly supported perturbations). Exploiting Theorem 1, we repeat with trivialmodi�
ations the argument of Se
tion 5, [24℄, to get the following.Theorem 4. Assume that Lj(h) satisfy the assumptions of Se
tion 2. Let 
 � ei℄�2�0;2�0[℄0;1[ bean open, simply 
onne
ted, relatively 
ompa
t set su
h that I = 
 \ R is an interval. Suppose thatf is holomorphi
 on a neighborhood of 
 and that  2 C10 (R) satis�es (�) = � 0; d(I; �) > 2�;1; d(I; �) < �;where � > 0 is suÆ
iently small. Thentrbbh( f)(Lj(h))i2j=1 = h Xz2Res Lj(h) \
 f(z)i2j=1 +E
;f; (h) (7.1)with jE
;f; (h)j �M( ;
)sup fjf(z)j : 0 � d(
; z) � 2� ; Im z � 0gh�n# :Proof. Choose an almost analyti
 extension ~ of  so that ~ 2 C1
 (C ), ~ = 1 on 
 andsupp �z ~ � fz 2 C : � � d(
; z) � 2�g:Setting 
� = fz 2 C : d(
; z) � �g; we havetrbbh( f)(Lj(h))i2j=1 =< �0(�; h); ( f)(�) >= h Xw2Res Lj(h) \ supp  ( f)(w)i2j=1 + 12�i Z ( f)(�)r(�; h)d�



24 V. BRUNEAU, V. PETKOV+ 12�i Z ( f)(�)h Xw2Res Lj (h) \
2�;Imw 6=0 � 1�� w � 1�� w�i2j=1d� :The integral involving r(�; h) 
an be estimated using (1.4) withW = 
2�: For the integral 
ontainingthe resonan
es we apply Green formula and we get the termh Xz2Res Lj(h); Im z 6=0( ~ f)(z)i2j=1+1� ZC� (�z ~ )(z)f(z)h Xw2Res Lj(h) \ 
2�;Imw 6=0 � 1z � w � 1z � w�i2j=1L(dz) ;where L(dz) is the Lebesgue measure on C : As in the proof of Theorem 1 in [24℄, we apply theinequality Z
1 1jz �wjL(dz) � 2q2�j
1jand an upper bound for the number of the resonan
es in 
2� to obtain the result. �Sin
e we have no restri
tions on the behavior of the holomorphi
 fun
tion f(z) on 
\fIm z > 0g,we may apply the above argument 
hoosing f(z) = e�itz=h; t 2 R, to get the following.Theorem 5. Let 
 and  be as in Theorem 4 and let ~ 2 C1
 (C ) be an almost analyti
 extensionof  supported in 
2�. Then for any 0 < Æ < 1 and t � hÆ we havetrbbh (Lj(h))e�i thLj(h)i2j=1 = h Xw2Res Lj(h) \
2� ~ (w)e�itw=hi2j=1 +OÆ(h1): (7.2)Moreover, for t � � > 0 and N 2 N there exists hN > 0 su
h that for 0 < h � hN we havetrbbh (Lj(h))e�i thLj(h)i2j=1 = h Xw2Res Lj (h) \ 
2�j Imwj��Nh log h ~ (w)e�itw=hi2j=1 +O�(hN��n#): (7.3)Proof. Choose an almost analyti
 extension ~ of  as in Theorem 4. Applying Green formula, wemust examine the integrals ZC� �z ~ (z)e�itz=hr(z; h)L(dz) ;ZC� �z ~ (z)e�itz=hh Xw2Res Lj(h) \
2�� 1z � w � 1z �w�i2j=1L(dz) :Choose � > 0; 0 < Æ + � < 1: For �h� � Im z � 0 we havej�z ~ j � CN j Im zjN � CNh�N ; 8N 2 Nand the integration over �h� � Im z � 0 
ombined with the argument of the proof of Theorem 4yield a term bounded by O(h1): On the other hand, for t � hÆ; Im z � �h� we getje�itz=hj � e�th��1 � e�hÆ+��1 = OÆ(h1)and this implies (7.2). For the se
ond assertion we have je�itw=hj � etN log h � hN� for j Imwj ��Nh log h and this 
ompletes the proof. �



MEROMORPHIC CONTINUATION 25Remark. For non-trapping 
ompa
tly supported perturbations L(h) (see [33℄, [7℄) and fornon-trapping long-range perturbations L(h) = �h2�+ V (x) of the Lapla
ian (see [16℄) there areno resonan
es of L(h) in the domain�Nh log 1h � Im z � 0; 0 < h � hN :For su
h perturbations the right hand side of (7.3) is equal to O�(hN��n#) and we obtain ananalogue of the 
lassi
al tra
e formula for non-trapping perturbations.8. Existen
e of resonan
es 
lose to the real axisIn this se
tion we 
onsider the operator L(h) = �h2�g+V (x); where �g is symmetri
 Lapla
e-Beltrami operator on L2(Rn) asso
iated to a metri
 g(x) = fgi;j(x)g1�i;j�n and V (x) 2 C1(Rn) isa real valued fun
tion. We assume that there exists � > n so thatj��x (gi;j(x)� Æi;j)j+ j��xV (x)j � C� < x >���j�j; 1 � i; j � n; 8�: (8.1)Moreover, we assume that the 
oeÆ
ients fgi;j(x)g and V (x) 
an be extended holomorphi
ally inx to the domain given in (2.8) and the estimate (8.1) holds in this domain.Consider the symbol a0(x; �) =< g(x)�1�; � > +V (x)and denote by Ha0 the Hamilton ve
tor �eld asso
iated to a0 and by �t = exp(tHa0) the Hamilton
ow. Given � > 0; let �� = f(x; �) 2 Rn : a0(x; �) = �g be the energy surfa
e and let ra0(x; �) 6= 0on ��: A point � 2 �� is 
alled periodi
, if there exists T > 0 su
h that �T (�) = � and the smallestT > 0 with this property is 
alled period T (�) of �: Given a periodi
 point �, 
onsider the traje
tory
(�) = f�t(�) : 0 � t � T (�)g = f(x(t); �(t)) : 0 � t � T (�)gand de�ne the a
tion S(�) along 
(�) byS(�) = Z
(�) �dx = Z T (�)0 �(t)x0(t)dt :Next we denote by m(�) 2 Z4 the Maslov index related to 
(�) and set q(�) = ��2m(�): Let � bethe set of all periodi
 points on �� and letQ(h; r) = (2�)�n Z�h� � h�1S(�) + q(�)� rT (�)i2�T (�)�1d�; (8.2)where d� is the Liouville measure on �� and the residue �� < [z℄2� � � is de�ned so thatz = [z℄2� + 2�k; k 2 Z: The set � is bounded, the integrand in (8.2) is a measurable fun
tionand T (�) � T0 > 0; 8� 2 �: The os
illatory fun
tion Q(h; r) has been introdu
ed in [20℄ for theanalysis of the semi-
lassi
al behavior of the eigenvalues and it is a semi-
lassi
al analogue of theos
illating fun
tion de�ned by Guriev and Safarov [15℄ and Safarov [27℄. Noti
e that the limitsQ(h; r � 0) = lim�#0Q(h; r � �) exist for ea
h r and 0 < h � h0 and, moreover,Q(h; r + 0)�Q(h; r � 0) = (2�)1�n Z
h;r d�T (�) ;where 
h;r = f� 2 � : h�1S(�) � q(�) + rT (�) � 0(2�)g. Following the arguments in Se
tion 6,[22℄, we will prove the following.



26 V. BRUNEAU, V. PETKOVTheorem 6. Let L(h) = �h2�g + V (x), where the metri
 g(x) and V (x) satisfy the estimates(8:1) and let ra0(x; �) 6= 0 on ��; � > 0: Assume that there exist an integer p 2 Z and a subset�0 � � with positive Liouville measure �(�0) > 0 so that�hq(�)� h�1S(�)i2� + 2�p�T (�)�1 = r(h); 0 < h � h0does not depend on � 2 �0: Then for for every 0 < � � 1 and 0 < h � h1(�) we have#fw 2 Res L(h) : jw � �� r(h)hj � �hg � (2�)1�n2 h1�n Z�0 d�T (�) : (8.3)Remark. Clearly, jr(h)j � maxfj2p � 1j; j2p + 1jg�(T0)�1. Re
ently, J.-F. Bony [3℄ provedthat if the Liouville measure of the periodi
 points on �� is zero, than for every 0 < � � 1 and forh small enough we have the upper bound#fw 2 Res L(h) : jw � �j � �hg � Cp�h1�n :with a 
onstant C > 0 independent on � and h.Proof. Consider the s
attering phase �(�; h) = 12�i detS(�; h), where the s
attering operator S(�; h)is related to L(h) and L0(h) = �h2�: A

ording to Birman-Krein theory (see for instan
e [34℄), thes
attering phase 
an be identi�ed with the spe
tral shift fun
tion and, under our assumptions, wehave not embedded positive eigenvalues. Following Theorem 2.1 in [5℄, and taking jr(h)j � r0; 0 <� � �0; 0 < h � h0 and � > 0 we have���+ (r(h) + �)h; h�� ���+ (r(h)� �)h; h�� h1�nhQ�h; r(h) + �=2��Q�h; r(h) � �=2�i+ 2�
00(�)h1�n � C0�h1�n � o�(h1�n) ;where 
0(�) = (2�)�n ZRn�Za0(x;�)�� d� � Zj�j2�� d��dx ;C0 > 0 is independent on r(h); � and h and o�(h1�n) means that for any �xed � > 0 we havelimh#0 o�(h1�n)h1�n = 0:On the other hand, for small 0 < � < � an appli
ation of (6.6) with Æ = �h yields the estimate���+ (r(h) + �)h; h�� ���+ (r(h)� �)h; h�� #fw 2 Res L(h) : jw � �� r(h)hj � �hg+ C��h1�n; 0 < h � h2(�)with C� > 0 independent on �; r(h) and h. We 
laim thatQ(h; r(h) + �=2)�Q(h; r(h) � �=2) � �(2�)�n��(�) + (2�)1�n Z�0 d�T (�) : (8.4)In fa
t, a

ording to the representation of the os
illatory fun
tion Q(h; r) (see for instan
e, Propo-sition 1, [27℄), we haveQ(h; r(h) + �=2) �Q(h; r(h) � �=2) = ��(2�)�n�(�) + (2�)1�n Z� T�1(�)Xk2Z��h;k(�)d� ;



MEROMORPHIC CONTINUATION 27where ��h;k is the 
hara
teristi
 fun
tion of the set
�h;k = f� 2 � : ��T (�) � h�1S(�)� q(�) + r(h)T (�)� 2k� < �T (�)g :Obviously, for any � 2 �0 we geth�1S(�)� q(�) + r(h)T (�) + 2M(�; h)� � 2p� = 0with some M(�; h) 2 Z. Consequently,� 2 �0 =)Xk2Z��h;k(�) � 1and we obtain (8.4). Choosing � = �(�) > 0 small enough, we arrange the inequality��(2�)�n�(�)� �(C0 + C�) + 2�
00(�) � ��04 ;with �0 = (2�)1�n R�0 d�T (�) . Next we �x � > 0 and � = �(�) > 0 and 
hoose 0 < h1(�) � h2(�) sothat for 0 < h � h1(�) we have jo�(h1�n)j � �04 h1�n :Combining the above estimates for the di�eren
e ���+ (r(h) + �)h; h�� ���+ (r(h)� �)h; h�; we
omplete the proof. �Example (see Se
tion 7 in [5℄). Let L(h) = �h2�+ V (x) withV (x) = �a(x� y0)�jx� y0j2 + b� ;where a > 0; b > 0 and y0 2 Rn are �xed and �a(x) 2 C10 (Rn); �a(x) = 1 for jxj � 2a: Let 0 <� < a=2, j�0j = p�� b and let � 2℄b; b+a2[ be a non-
riti
al energy level for a0(x; �) = j�j2+V (x).Therefore the set �0 = f(x; �) 2 �� : j� � �0j2 + jx� y0j2 � �2ghas a positive Liouville measure and �0 � �: Moreover, for every � 2 �0 we haveT (�) = �; S(�) = (�� b)�; q(�) = �2mwith m 2 Z independent on �: We may apply Theorem 6 with rp(h) = 1� h�2m� h�1(�� b)�i2� +2p; p 2 Z, to 
on
lude that#fw 2 Res L(h) : jw � �� rp(h)hj < �hg � (2�)�n�(�0)h1�n :On the other hand, for p 6= j and 0 < h � h0 we havefw : jRew � �� rp(h)hj < �hg \ fw : jRew � �� rj(h)hj < �hg = ;and the 
lusters related to p 6= j produ
e di�erent resonan
es. Choosing Æ > 0 so that ℄��Æ; �+Æ[�℄b; b+ a2[, one obtains easily#fw 2 Res L(h) : jw � �j � Æg � �Æ(2�)�n�(�0)h�nwith � > 0 independent on Æ: A stronger asymptoti
 for the number of the resonan
es in [b; b +a2℄ + i[�R(h); 0℄ has been obtained by Stefanov [32℄. Noti
e that in the above result we 
ount onlythe resonan
es lying in 
lusters.



28 V. BRUNEAU, V. PETKOV9. AppendixIn this Appendix we present a proof of (5.10). Following the Remark after Lemma 2, we willassume that '2 =  2;  2 C10 (I1;R+); I1 � I0. Re
all that � 2 I0; supp �(t) � [�Æ1; Æ1℄ and�(x) = 1 for jxj � 2R; R > R0: It is easy to see thattrh 12�h Z eit(��Qj)h�1�(t) 2(Qj)(1 � �2)dti2j=1= 12�h Z eit�h�1�(t)tr�h 2(Qj)i2j=1e�itQ2=h(1� �2)�dt+ 12�h Z eit�h�1 �(t) tr� 2(Q1)he�itQj=hi2j=1(1� �2)�dt = A+ B :This representation is justi�ed by applying Lemma 4.1 in [2℄ saying thatkh 2(Qj)i2j=1ktr = O(h�n); k 2(Q1)he�itQj=hi2j=1ktr = O(h�1�n) :We treat below A following 
losely the analysis of J.-F. Bony in Se
tion 4.2, [2℄. Put A = A1+A2;where A1 = 12�h Z eit�h�1�(t)tr�( (Q1)�  (Q2))e�itQ2=h (Q2)(1 � �2)�dt ;A2 = 12�h Z eit�h�1�(t)tr� (Q1)( (Q1)�  (Q2))e�itQ2=h(1� �2)�dt :We deal with the analysis of A1 only, sin
e that of A2 is similar (see also Se
tion 4.2, [2℄). First,we �nd a pseudodi�erential operator Q with symbol in S0(1) so thatA1 = 12�h Z eit�h�1�(t)tr�e�itQ2=h (Q2)Q(Q1 �Q2) ~ (Q2)�dt ;where ~ 2 C10 (R) is su
h that ~ = 1 on supp  :We use the notations of [10℄ for h-pseudodi�erentialoperators and set hxi = (1 + jxj2)1=2. Moreover, modulo a term in SN (1), the symbol of Q issupported in f(x; �) : jxj > 2Rg. Se
ondly, we obtain the existen
e of a pseudodi�erential operatorS with symbol s(x; y; �;h) 2 S0�hxi�n�1h�i�N�; 8N 2 N;having 
ompa
t support in � and (x�y) and support in f(x; �) : jxj > 2R; (x; �) 2 l�12 (I1)g so thatA1 = 12�h tr�Z eit�h�1�(t)e�itQ2=hSdt�+O(h1) :Applying Theorem 2 in [2℄, we obtain the existen
e of a Fourier integral operator Ut su
h that forjtj � Æ1 and Æ1 suÆ
iently small we havekUt � e�itQ2=hSktr = O(h1):Next, we write the kernel of the operator R eit�h�1�(t)Utdt in the formK(x; y;h) = 1(2�h)n Z Z ei�t�+�(t;x;�)�y:��=h�(t)A(t; x; y; �;h)dtd�and dedu
e thatA1 = 1(2�h)n+1 Z Z Z ei�t�+�(t;x;�)�x:��=h�(t)A(t; x; x; �;h)dt dx d� +O(h1) :



MEROMORPHIC CONTINUATION 29Here �(t; x; �) is the solution of the eikonal equation(�t�+ l2(x; �x�) = 0;�(0; x; �) = x:�;lj(x; �) being the prin
ipal symbol of Qj ; j = 1; 2, and all derivatives ��t ��x�
� ��(t; x; �)� x:�� areuniformly bounded for (t; x; �) 2 [�Æ1; Æ1℄ � Rn � B(0; C1) and (�; �; 
) 6= (0; 0; 0): Moreover, thesymbol A(t; x; x; �) has support in f(x; �) : jxj > 2R; j�j � C1; (x; �) 2 l�12 (I1)g so that for all �and jtj � Æ1 we have j��A(t; x; x; �)j � C�hxi�n�1: (9.1)The last estimate enables us to 
al
ulate A1 by using an in�nite partition of unityX�2Nn 	(x� �) = 1; 8x 2 Rn ;	 2 C10 (K); 	(x) � 0, K being a neighborhood of the unit 
ube. Consequently, for every �xedh 2℄0; h0℄ we have A1 = 1(2�h)n+1 limm!1 Z Z Z ei�t�+�(t;x;�)�x:��=h�(t)� Xj�j�m	(x� �)A(t; x; x; �;h)dt dx d� +O(h1) = limm!1 Im +O(h1)and we redu
e the problem to the analysis of the integrals Im over a 
ompa
t set in (t; x; �):Con
erning the phase fun
tion, we observe thatt�+�(t; x; �)� x:� = t��� l2(x; �) +O(t)� ;whereO(t) is uniformly bounded on the support of �(t)A(t; x; x; �) sin
e the derivatives of ��(t; x; �)�x:�� are bounded on this set. Finally, to have an uniform bound for the remainder with respe
t tom!1, noti
e that j�x;�l2(x; �)j � Æ2 > 0 (9.2)for j�j � C1; (x; �) 2 l�12 (�); � 2 I0: The last 
ondition follows easily from the form of the prin
ipalsymbol l2(x; �) = j�j2 + Xj�j=2 b�;R(x)�� + Xj�j�1 b�;R(x)��of the operator Q2, 
onstru
ted in [2℄, and the fa
t that jb�;R(x)j + j�xb�;R(x)j � �1(R) with�1(R) �! 0 as R �! +1 (see Se
tion 2.3 in [2℄ for more details). Taking R� 1 suÆ
iently large,we arrange (9.2) uniformly with respe
t to j�j � C1 and (x; �) 2 l�12 (�): Now the 
riti
al points ofthe phase fun
tion (t� + �(t; x; �) � x:�) be
ome t = 0; l2(x; �) = � and by the stationary phasemethod we obtainIm = 1(2�h)n (�) Zl2(x;�)=� Xj�j�m	(x� �)A1(0; x; �; �)(1 � �2)(x)L�(d!) +O(h1�n) ;



30 V. BRUNEAU, V. PETKOVwhere L�(d!) is the Liouville measure on l2(x; �) = � and the remainder O(h1�n) is uniform withrespe
t to � 2 I0 and m 2 N: Taking the limit m!1, we obtain an asymptoti
s of A1:For the analysis of B we use the representationhe�itQj=hi2j=1 = tih Z 10 e�istQ1=h(Q1 �Q2)e�i(1�s)tQ2=hds :Following the argument in Se
tion 4.3, [2℄, we �nd pseudodi�erential operatorsQ 2 Oph�S0(hxi�n�1h�i�N )�; ~Q 2 Oph�S0(h�i�N )�with symbols q(x; y; �;h); ~q(x; y; �;h) having 
ompa
t support in � and (x� y) so thatB = 12�h2 tr�Z eit�=ht�(t) Z 10 e�istQ1=hQe�i(1�s)tQ2=h ~Qdsdt�+O(h1) :Moreover, modulo a term in SN (1), the symbol of ~Q is supported in f(x; �) : jxj > 2Rg. Applyingan approximation of the unitary groups e�istQ1=h; e�i(1�s)tQ2=h by Fourier integral operators, weare redu
ed to study the integralJ = 1(2�h)2n+2 Z Z 10 Z eit�=ht�(t)ei��1(st;x;�)�z:��=hei��2((1�s)t;z;�)�x:��=h�B(t; s;X)dtdsdX ;where X = (x; z; �; �) and the phase fun
tions �1(t; x; �); �2(s; z; �) are related to the eikonal equa-tions with symbols l1(x; �) and l2(z; �), respe
tively. The amplitude B(t; s;X) has a 
ompa
t sup-port with respe
t to (�; �) and its support with respe
t to x is in
luded in the set f(x; �) : jxj � 2Rg:Moreover, ��B(t; s;X) satisfy de
reasing estimates with respe
t to (x; z) like those in (9.1).In the same way, as in [2℄, we 
he
k that the 
riti
al points of the phase in the integral J arerelated to the 
losed traje
tories 
omposed as union of a 
urvefexp��Hl1�(�) : 0 � � � stgof the Hamilton �eld Hl1 starting at same point � 2 f(x; �) 2 Rn : jxj > 2Rg and a 
urvefexp��Hl2�(�) : 0 � � � (1� s)tg; � = exp(stHl1)(�)of the Hamilton �eld Hl2 . For 0 < t � Æ1, Æ1 suÆ
iently small and R > 0 large enough, there areno su
h 
losed traje
tories and the 
riti
al points are obtained for t = 0, only. We write the phasefun
tion in the form th�� sl1(x; �)� (1� s)l2(z; �) +O(t)i+ (x� z)(� � �)and the 
riti
al points be
omet = 0; sl1(x; �) + (1� s)l2(x; �) = �; x = z; � = � :For jxj � 2R and 0 � s � 1, a

ording to (2.6), we dedu
ems(x; �) = sl1(x; �) + (1� s)l2(x; �) = j�j2 + �0(R)j�j2= l1(x; �) + �1(R)j�j2 = l2(x; �) + �2(R)j�j2



MEROMORPHIC CONTINUATION 31with �i(R) �! 0 as R! +1; i = 0; 1; 2: Thus for � 2 I0 and R large enough the energy surfa
e�s(�) = f(x; �) : ms(x; �) = �; jxj � 2Rgis non-degenerate. Repeating the argument used for A1, and applying the stationary phase method,we get an asymptoti
sJ = 1(2�h)n b(�) Z 10 Zms(x;�)=�B1(s; x; �; �)Ls;�(d!)ds+O(h1�n) ;where Ls;�(d!) is the Liouville measure on �s(�): Noti
e that the �rst term with power h�1�nvanishes be
ause we have the fa
tor t�(t) and the term involving h�n yields the 
ontribution to theleading term in (5.10). Moreover, b(�) has support in a small neighborhood of I1 and taking R > 0large, we may assume that b(�) 2 C00(I0): This 
ompletes the proof of (5.10).The above argument shows that for � =2 I0 the phase fun
tions in Im and J have no 
riti
alpoints over the support of the integrand. Consequently, by an integration by parts, we obtaintrh(F�1h �)���Qj�'2(Qj)(1� �2)i2j=1 = O(h1)uniformly with respe
t to � =2 I0: Referen
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