MEROMORPHIC CONTINUATION OF THE SPECTRAL SHIFT FUNCTION
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ABSTRACT. We obtain a representation of the derivative of the spectral shift function (), k) in the
framework of semi-classical ”black box” perturbations. Our representation implies a meromorphic
continuation of £(A, k) involving the semi-classical resonances. Moreover, we obtain a Weyl type
asymptotics of the spectral shift function as well as a Breit-Wigner approximation in an interval
(A=0,24+46), 0< 6 <eh.
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1. INTRODUCTION

The purpose of this paper is to obtain a meromorphic continuation of the derivative of the
spectral shift function (X, h). This problem is closely related to the trace formulae (see [14], [35],
[36] [22], [24], [31], [29], [30]) and to resonances expansions ([8], [33]). For compact perturbations
the function &(A, h) coincides with the scattering phase

1
o(\h) = 5 -logdet S\, h). A€ R,

where S(A\,h) = I + A\ h) : L?(S™ 1) — L?(S™ ') is the scattering operator and for more
information about the spectral shift function we refer to [34]. In the classical case (h = 1) the first
result proving a representation of o(A) = o(A,1) containing the resonances z; € C. = {z € C:
Imz < 0} was established by Melrose [17] for obstacle scattering in odd dimensions n > 3. More
precisely, given a function x(t) € C*°(R) such that 0 < x(¢) <1, x(t) =1 for t <2, x(t) =0 for
t > 3, Melrose showed that
U(A) = Using(A) + Ureg(A)a
with p ) I
g (X) = —— %:X(ZTJ),\LZP ouing(0) =0, A € R,
Oreg(A) € S"(R).
Since o (A, h) is the logarithmic derivative of the scattering determinant

s(A,h) =det(I + A(X b)),

it is natural to examine the behavior of s(z, h) for z in the ”physical half plane”, where we have no
resonances. This idea was developed by Guillopé and Zworski [14] for the analysis of the scattering
resonances for certain Riemann surfaces and in the classical case h = 1, Zworski [35], [36] gave an
elegant proof of the trace formula for ”black box” compact perturbations based on the meromorphic
continuation of s(z) (see [35] for other works on trace formulae).

In [22], [24] the Breit-Wigner approximation for the scattering phase has been justified for

"black box” scattering with compact perturbations in the classical and the semi-classical cases.
1
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Among the ideas introduced in [22], [24], one of the main point in [24] was the estimate of the
holomorphic function g(z, h),

g(z.h)| < QL™ n# >n (1.1)
in the local factorization
P(z,h)
: h) = ‘g(zrh) ? Q
s(z,h) = e Peny 2 €Y

where

P(z,h) = H (z —w),

w€ERes L(h) NQe,
Im w#0

Q= (a,b) +i(—cc), 0<a<b ¢>0, Qe ={2€C:d(Q,2) <€}, e>0.
Here L(h) is a compactly supported perturbation of the operator —h2A, 0 < h < hg, and n#
depends on the estimates of the number of the eigenvalues of the reference operator. The local
factorization implies immediately

1 1

wERes L(h) N Qe,
Im w#0

1 1

zZ—W zZ—w

), Z€Q (1.2)

and for A € (a,b) we obtain an analogue of the formula of Melrose mentioned above. Combining
(1.2) with the Birman-Krein formula one obtains easily the trace formula of [29] exploiting the
meromorphic continuation of d,0(z,h) in {z € C: Im < 0} (see Theorem 1 in [24]). Moreover, a
similar factorization has been established in [24] in domains A + A2 with an improved estimate for
the holomorphic function g(z, h).

In the case of ”black box” long-range perturbations the existence of the scattering operator
and that of the scattering determinant are far from apparent. In this direction Sjostrand [29],
[30] proposed powerful techniques based on the complex scaling operators, introduced in [31], and
complex analysis. The scattering determinant is replaced by D(z, h) = det(I + K(z)), where K(z)
is trace class operator which is not uniquely determined and the resonances are the zeros of D(z, h).
Applying the approach of Sjostrand, J.-F. Bony [1], [2], established upper and lower bounds on the
number of the semi-classical resonances in small domains and the Breit-Wigner approximation has
been extended to long-range perturbations in [4]. For a pair of self-adjoint operators L;(h), j = 1,2,
satisfying some assumptions (see Section 2) the spectral shift function &(A, h) is a distribution in
D'(R) such that

<€), ) >y pm=tros (F(La(h)) = F(L1(R)), F(N) € CE(R),

where try, is a generalized trace defined in Section 2. We denote by Res Lj(h),j = 1,2 the set of
the resonances w € C_ of L;(h).

In this work we are strongly inspired by the approach in [24] and our main goal is to obtain
an analogue of (1.2) in the cases when a scattering determinant is not available. We show that
the representation (1.2) remains true in the general case of semi-classical ”black box” scattering,
replacing o’ (A, h) by the "regular part”

fon-[ X -w)]

wé€Res Lj(h) N(a,b) =t
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where here and throughout the paper we use the notation [a,j]zzl = ag — a1. Our principal result is

J
the following.

Theorem 1. Assume that Lj(h), j = 1,2, satisfy the assumptions of Section 2. Let Q CC
ei]’an’Qa“[]O,—l-oo[, 0 < 6y < /2, be an open simply connected set and let W CC Q be an open
simply connected and relatively compact set which is symmetric with respect to R. Assume that
J=QNR", I=WnNR' are intervals. Then for X\ € I we have the representation

1 —Imw 2
g =—Imr\R) + | Y —— Y O w)| (1.3)
Q0 w€ Res Ljﬂﬂ, 7T|>\ - w| weERes Ljﬂ] =1
Im w#0
where r(z,h) = g+ (2,h) — g+ (Z,h), g+(z,h) is a function holomorphic in Q and g1 (z,h) satisfies
the estimate

9+(2.0)] SCW)R™, zeW (1.4)
with C(W) > 0 independent on h €]0, ho].

Remarks.

e The terms related to the resonances are measures. In fact, the resonances w, Imw < 0, are
related to harmonic measures
1 Im w

we_ (w, B) = ——

MY h B CR=0C.
mJE |t —w|?

while the resonances w € Rt coincide with the embedded eigenvalues of Lj(h),j = 1,2.
Moreover, in a small neighborhood Uy (h) of every A € I'\ U?:1{)\ € R:Xeoy(Lih)}
the derivative ¢ (X, h) coincides with a real analytic function on Uy(h). In particular, if we
have no embedded positive eigenvalues of L;(h) in I, then &'(X, h) is real analytic in 1.

e The representations of &'(\, h) obtained in [26], [6] involve the traces of the cut-off resolvents
X(Lj—AF i0) " 'x, x € C§°(R™), and some regular terms whose meromorphic continuation
is far from apparent. The form of &'(\, h) in [26], [6] has been used for the investigation of
the Weyl type asymptotics of £(A, h) (see also [18], [5] for semi-classical asymptotics in the
trapping case).

The proof of (1.3) relies heavily on the work of Sjostrand [30], while the arguments in [24] were
self-contained and based on the semi-classical estimates of the scattering determinant. Having in
mind (1.3), we obtain in the general case of "black box” semi-classical scattering several results:

I) We establish a Weyl type asymptotics of the spectral shift function in the general framework
of semi-classical “black box” perturbations improving our previous result [6] and working without
any assumption on the behavior of the resonances close to the real axis. We generalize the results
of Christiansen [9] for compact perturbations and those of Robert [26] for long-range perturba-
tions. Theorem 1 allows to consider the sum of the harmonic measures related to the resonances
w, Imw # 0, as a monotonic function and to apply a Tauberian argument as in [17].

IT) We present a new direct and short proof of the recent result of J.-F. Bony and Sjostrand
[4] on the Breit-Wigner approximation in the long-range case (see Theorem 3). For this purpose
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the Weyl asymptotics obtained in Theorem 2 plays an essential role. Moreover, Theorem 2 and
Theorem 3 are established under the ”black box” assumptions in Section 2 and the condition
(5.1). Thus we have an unified approach to these problems. Next, assuming the existence of free
resonances domain, we obtain a Breit-Wigner approximation involving only the resonances w lying
in small “boxes”

{weC:|Rew— A < R(h), |[Imw| < Ry(h)}
with R(h) = /AR (h) = O(h™).

III) In the same way as in [24], we obtain the local trace formula of Sjostrand [29], [30] in a
slightly stronger version (see Section 7). Moreover, we prove a trace formula involving the unitary
groups efz%]‘f(h), j = 1,2 (see Theorem 5) which is a semi-classical version of the classical trace
formulae.

We expect that the approach of our work could be useful in other situations as in the analysis
of periodic potentials [11] or the study of matrix Schrodinger operators [19] if a representation like
(1.3) is established.

The plan of the paper is the following. In Section 2 we introduce the "black box” scattering
assumptions and in Section 3 we obtain a formula for &'(A, h) involving the limits of the functions
04(z) as Imz — 0. Theorem 1 is proved in Section 4 and in Section 5 we establish a Weyl type
asymptotics for the spectral shift function (A, h). The semi-classical Breit-Wigner approximation
is established in Section 6 together with a stronger approximation based on some recent results
of Stefanov [32]. In Section 7 we prove some trace formulae combining (1.3) with the arguments
of [24]. In particular, we obtain a trace formula involving the unitary groups e~ 7'Li  Finally,
in Section 8 the Breit-Wigner approximation is applied to establish the existence of clusters of
resonances close to the real axis.

Acknowledgments. The authors are grateful to J. Sjostrand and M. Zworski for many helpful
discussions. We would like to thank the referee for his remarks.

2. PRELIMINARIES

We start by the abstract “black box” scattering assumptions introduced in [31], [29] and [30].
The operators L;(h) = Lj,j = 1,2, 0 < h < hg, are defined in domains D; C H; of a complex
Hilbert space H; with an orthogonal decomposition

H; = Hp,; ® L*(R* \ B(0,Ry)), B(0,Ry) = {z € R" : |z| < Ry}, Ry >0, n>2.

Below h > 0 is a small parameter and we suppose the assumptions satisfied for ;7 = 1,2. We suppose
that D; satisfies

g\ 5(0,10) D = H*(R™ \ B(0, Ro)), (2.1)

uniformly with respect to h in the sense of [29]. More precisely, equip H?(R™ \ B(0, Ry)) with the
norm || < hD >? ull;2, < hD >?= 1+ (hD)?, and equip D; with the norm |[(L; + é)ul|3,. Then
we require that g\ p(o,ry) : Dj — H?(R™\ B(0, Ry)) is uniformly bounded with respect to h and
this map has a uniformly bounded right inverse.
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Assume that

U0, Ry) (L + i)~ 'is compact (2.2)
and
(L7u)|R"\B(O,R0) = Q] (U‘Rn\m)a (23)
where @ is a formally self-adjoint differential operator
Qju= Y aju(z;h)(hDy)" u, (2.4)
lv|<2

with a;,(z;h) = a;,(z) independent of h for |v| = 2 and «a;, € C;°(R") uniformly bounded with
respect to h.

We assume also the following properties:

There exists C' > 0 such that

Lo(z.€) = > aju ()¢ > Cl¢, (2.5)
lv|=2

S ajulz ) — €, |z] — oo (2.6)

lv|<2

uniformly with respect to h.
There exists n > n such that we have

a1u(w3h) = as,(2:h)|< O(1) () " (2.7)
uniformly with respect to h. This assumption will guarantee that for every f € C§°(R) the operator
f(Ly) = f(Ly) is “trace class near infinity”.

There exist 0y €]0,5[, € > 0 and Ry > Ry so that the coefficients a;,(z;h) of Q; can be
extended holomorphically in x to

= {rw; weC, dist (w,S" ) <e,reCre ei[ﬂ’a‘ﬂ]Rh—{—oo[} (2.8)

and (2.6), (2.7) extend to I'. .
Let R > Ry, T = (R/RZ)", R > 2R. Set

HF = Hp,; & L*(T\ B(0, Ro))
and consider a differential operator

QF = Y o, (a:h)(hD)"

v|<2
on T with afy(m;h) = a;,(z;h) for |z| < R satisfying (2.3), (2.4), (2.5) with R" replaced by T.
Consider a self-adjoint operator L;-éﬁ : 3’-[_?E — 3’-[_;-%'e defined by
qu = Ljpu + Q?&(l —p)u, u € Df,

with domain
D}i ={ue€ ’H}i tpu €Dy, (1 —pue HQ};

where ¢ € C§°(B(0, R);[0,1]) is equal to 1 near B(0, Ry).
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Denote by N(L}i, [—A, A]) the number of eigenvalues of L}# in the interval [—A, A]. Then we
assume that

N(L¥,[-AN) = (9((]71—2 ), nf >n, A >1. (2.9)

Finally, we suppose that with some constant C' > 0 independent on h we have
Sp L](h‘) - [70,00[1 7 = 172a (210)

where sp (L) denotes the spectrum of L. This condition is a technical one and we expect that by
a more fine version of Proposition 1 we could cover the general case.

Given f € C§°(R) independent on h and x € C§°(R") equal to 1 on B(0, Ry) we can define
tron[f (15)]7—1, as in [29], [30], by the equality

tron (£ (L2) = F(L1)) = [x(cf (Ly)x + xF (L) (1= x) + (1= x)F (L))

+rl(1— ) f (L) (1 = X)]j=1 -
Following [29], [30], we can define the resonances w € C_ by the complex scaling method as the
eigenvalues of the complex scaling operators L;g, j = 1,2. We denote by Res L;(h), j = 1,2, the
set of resonances and set n# = max{n?¥ n¥}.

3. REPRESENTATION OF THE DERIVATIVE OF THE SPECTRAL SHIFT FUNCTION

Consider the resolvents

+oo | . .
Rj(A +ic) = i / e ULTFO G A e R, € > 0.
J0

0 . . .
Rj(A —ie) = —i/ "L i) gt

— 0o

Given a function f(X) € Co R), we have

1 [,
/R (A +ie)f )dA:—/ f(=t)e tliteqy,
0

/R _ 7( / f 7itL]- +t6dt,
- 2mi

where f denotes the Fourier transform of f. Choose zy € R~ which is away from sp (Lj), 7=1,2,
and set g(A) = (A — 2z9)™f()), where the integer m > n/2 will be taken sufficiently large and
independent on h. Applying the above formula, we obtain

QLM, trpp '/[(Lj — 20) (A de — 20)™Ry(A+ i) — (A e — 20)" Rj(A - ie))]j_lf(A)d)\

- % trop | (Z; ZU)m(/OOO e TR (G(—t) +ieG (1)) dt
.
+'/7ooeft*“‘f (1) +ieG (¢ ))‘”)L-:l'

Here G4 (t) are some functions in S(R) related to the Fourier transform of A*f(X), 0 < k <m—1,
which are uniformly bounded with respect to 0 < € < 1. To justify the limit € | 0 in (3.1), we need

, (1)
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to establish the estimates of the trace uniformly with respect to € > 0. To do this we will prove
the following.

42
Lemma 1. For any t € R, the trace trbb[(Lj - zo)*me*"“:-f] - is well defined, and
]:

—m —itl; 2 —n#
tro (5 = 20) e ] = O (1 [1).

Proof. Let x € Cg°(R") be equal to 1 near B(0,R;), Ry > Ry. Since the operators x(L; — z9)™™
and (L; — z9) ™y are trace class (see [29]) and e "% is uniformly bounded with respect to ¢, it
is clear that x(L; — 29) ™e ™" and (L; — z9) ™e i x are trace class ones with trace bounded

by O(h~™"). To be more precise let us note that in [30] the condition (2.10) is not assumed and
we can formally apply the results of [30] for zp € C\ R. In our case zyp € R~ and according to the
resolvent equation we have

(Lj —z0) ™ =(Lj—2) " (1+ (20 — z1)(L; — 20)7])7”

So taking z; € C\ R, we obtain the trace class properties mentioned above.
Now consider the operator

[(1 —x)(Lj — zo)*mefithj (1— X)}j

j=1
By Duhamel formula we obtain

(1= x)(Lj —z0) e ™Hi(1—x) = e "9 (1 - x)(Lj — z0) ™(1 - x)
t )
—H’/ e Ht=5)Q; Ix, L] (L; — zo)fmefzSLjds.
0

The integrand is a trace class operator with trace bounded by (’)(hf"#) and it remains to study

the operator
2

|72 (1= X)(L; — 20)™(1 ~ x)]
For Ry > Ry, xo € C{°(R") equal to 1 near B(0, Ry) and x¢ < x we have

(Lj—2z0)" " (1= x) = (1 = x0)(Qj — 20) " (1 = x) + (Lj — 20) ' [Qj, x0l(Qj — 20) ' (1 = x) -
Here and below the notation ¢ < 1 means that ¥y = 1 on supp ¢. Choose cut-off functions
On < ... <01 < x sothat Oy =1 on B(0, Ry) and apply the telescopic formula

(Lj = 20) "' [Qj x0(Qj = 20) "' (1 = x)
= (Lj = 20) 7' [Qj, x0](Qj — 20) 7' [Q;, On](Q5 — 20) ' [Q5, O —1)---[Q5,61(Qj — 20) ' (1 = x) -
For N > n/2 this operator is trace class. In fact, for x € C§° equal to 1 on supp 0y the operator
X(Qj — 1) V2(Q; = )V1Qs,08)(Q) — 20) " [Q5: 61)(Q5 — )1 (1 = x)

is trace class, while (L; — 20) "*[Q}, x0](Q; — 20) ! is bounded. Here we have used the fact that Q;
are elliptic operators and

(Q; —20) ' =0(1): HN(R") — HY**(R"), VN € N,
Repeating this procedure, we obtain modulo trace class operators

e "9 (Lj — 20) "™ (1 = X)

=1
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— (L 0,)(Q) — 20) oL — 01)(Q5 — 20) (L - x)-

In the same way, since 0y < 01, each term 60;(Q; — 20) "' (1 — 1) in the above product is
trace class operator and modulo a trace class operator we are going to study

4 2
[efthj (Q] _ Zg)fm(l _ X)} .
j=1
Consider the difference
(Q2 — Zo)fmt?fitQ2 —(Q1 — zo)fme*”Q‘

=e "9 ((QQ —z0) " = (Q1— Zo)fm) + (efith - ffitQ])(Ql —z) "

For the first term at the right hand side observe that the operator (Q — z9) ™™ — (Q1 — 2z9) ™ for
m > n/2 is a trace class one (see [10], [25], [29]). To handle the second term, notice that

. ) t .
(efthg - eiZth)(Ql - Zo)im =3 / efz(tfs)Qg (Ql . QQ)(QI - Zo)imeiledS

0
and use the fact that (Q1 — Q2)(Q1 — z0) ™™ is trace class for m > 5 4 1. O

According to Lemma 1, in the equation (3.1) we can take the limit € | 0 with respect to the
norm in the space of trace class operators and taking into account the definition of trpy(.), we get

.1 _ O iDL )
lm o= trop [ (L — 20) ([ €77 G(1) 4+ e o 1))l

. /OOO pet—itl; (§(—t) + iEGaE(t))dt)]j—l
1

o 2
—-m —itL; ~
=5 oo {(Lj — 20) / e ’g(*t)dt}

J —00 Jj=1
2
= tron (L5 = 20) "g(Lg)] = tron (F (L) = F(L2)) =< €O, FO) >y ) -
Thus we have proved the folldwing.

Proposition 1. We have

, 1 . mir -
,s(A,h,)_%gfgtrbb[((xﬂew) (L; — A — i) (3.2)
2
—(\—ie — 20)"(Lj = A+ie) ) (L —2) "]
7j=1

where the limit is taken in the sense of distributions D'(R).
Introduce the functions

02(2) = (2 = 20)tron [ (Ly — 2) 7 (L zo)m]j_l, LImz > 0. (3.3)

which are well defined (see [30] and Proposition 2 below). The relation

2

= trpp [(Lj — (A +ie)) (L, — Zﬂ)fm] ’

2
tron (L — (A~ i)™ (L~ 20) "] -1

J=1
implies immediately

o (z) =04(Z), Imz < 0. (3.4)
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The equality (3.4) plays a crucial role in the proof of (1.3) and our choice of real z; is related to
the above relation.

4. MEROMORPHIC CONTINUATION OF THE SPECTRAIL SHIFT FUNCTION

In this section we prove our principal result given in Theorem 1. Taking 0 < 6 < 0y < 7/2,
consider the complex scaling operators L; g related to Lj;, 5 = 1,2, introduced by Sjostrand and
Zworski (see [31], [29] and Section 2 in [30]). More precisely, given ¢y > 0, Ry > Ry, consider a
function -

fﬂ(t) :]Oa E[X[Oa 00[9 (eat) = C
which is injection for every # and has the properties:
fg(t):t for 0 <t < Ry,

0 S argfﬂ(t) S 97 8tf€ 7é 07
arg fo(t) < arg 0y fp(t) < arg fo + €0,

fo(t) = €t fort > Ty,
where T depends on €5 and R;. Next consider the map
ko R' 3z =tw— fo(t)we C", t = |z

and introduce I'y = ky(R™) which coincides with R" along B(0, Ry). We define

Hip=Hr,,; ®L*(Ty\ B(0,Ry))
and Ljg: Hjp — H;g with domain D; as the operator

Ljou = Lj(x1u) + Qjlr, (1 — x1)u,
x1 € C8°(B(0, Ry)) being a function equal to 1 near B(0, Rp).

Let Q C eﬂ*%’%[]ﬂ, +oc[ be a simply connected open relatively compact set such that QNRT =
J is an interval. The spectrum of L,y outside of e2[0, +-00[ consists of the negative eigenvalues
of L; and the eigenvalues in e~*[02/[)0, +00[ (see [29]). Since the spectrum of L; is bounded from
below, we may choose zg € R, 29 ¢ €2, so that z; is away from sp (L;) and sp (L), j = 1,2.
Given a positive number ¢ > 0, we can apply Proposition 4.1 of Sjostrand [30], saying that for all
z€QN{z:Imz > §} we have

(3088 [(Lj —2) N (L; - Zo)fm]% = tryy, [(Lj,f) —2) M (Ljg — 20)77"']

where in the definition of the complex scaling operators L;g the parameter €y is chosen small

enough. Notice that the choice of zy € e3¢0, min(m, 27=20=3¢0)11 4 o[ in [30] says that we may take

zg € R™ , assuming 6 < § — %eo.

’ 4.1
. (4.1)

Below we assume ¢ and 6 fixed and we will drop in the notations L; the index j writing L.
when the properties are satisfied for both operators L;, j = 1,2. Following [30], Section 4, there

exists an operator L _g: D — H. so that

K. g=1.9— L ghas rank O(h™"")
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and for all N, M € N we have
K. =0(1): D(LY) — D(LM),

Secondly, K g is compactly supported, that is if x € C§°(R") is equal to 1 on B(0, R) for R > Ry
large enough, we have K g = xK gx and, finally, for every N € N we have

(Lo—2)""=00): DILY) — DELN*),
uniformly for z € Q. These properties imply for z € QN {Im z > 0} the representation
(Log—2)"=Lg—2) "+ (Lg—2)"KgLy—2"" (4.2)

1

The contributions related to the resolvent (i/_’g — z)~ " are examined in the following.

Proposition 2. There exists a function ay(z, h) holomorphic in 2 such that for z € QN{Imz > 0}
we have

71 (2) = (Lo~ ) KialLia —2)]_ +as(eh) (4.3)
Moreover,
las(z,h)| < C(OL ™, z€Q (4.4)
with a constant C(Q) independent on h €0, hg].

Remark. The singularities of o4 (z) for Imz | 0 are independent on zp € R~ and m € N.
Proof. According to (4.2), for z € 2N {Imz > §} we have

o4(2) = (2 — 20)™ trpp [(ij,e —2) (Ljg - Zo)m]j_l (4.5)

+ (2 — 20)™ [tr((Lj,H —2) 'K g(Ljg—2) ' (Ljp— Zo)m)]j]- (4.6)

From the resolvent equation we obtain

m

(2= 20)"(Ljp — 20) ™ (Ljo —2) " = (Ljo—2) " = D> (2 — 20)" (L0 — 20) "
k=1

To treat (4.6) we use the cyclicity of the trace and the above equality and conclude that this term
. 2
is equal to tr[(L]"g —2)'Kjo(Ljg — z)’]} ~modulo a function holomorphic in © and bounded

by O(h~"%).
Now we pass to the analysis of (4.5). Our purpose is to show that (4.5) is holomorphic in  and

bounded by (’)(hf”#). By construction, (ﬁj’g —2z)~ ! is holomorphic on  and for any cut-off function
x € C§°(R"), x = 1 on B(0, Ry) with supp x C B(0, Ry) the operators x(L;g—z0) ™, (Ljo—20) ™x
are trace class ones. Hence the function tr((f/]”g —z) YL — zo)*mx) is holomorphic in 2. On
the other hand,

(Ljg — 20) ™ (Ljp —2)"" — (Ljp— 2) " (Ljp— 20) ™ (4.7)

= (Ljp—20) ™(Ljo—2) 'Kjg(Ljg—2)" —(Ljg—2) 'Kjg(Ljg—2) ' (Ljg—20) ™
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Consequently, for Imz > 0 if x; € C§°(R") is a cut-off function and x; < x, applying the cyclicity
of the trace once more, we get

tr(x1(Ljo = 2) " (Ljg — 20) (1= x)) = 0.

Thus it remains to examine
mi(2) = tr[(1 = x1) (L = 2) 71 (1 = %) (Ljp — 20) ™(1 = %))

Consider the operator @y = Q |r, and note that for ¢ € C*° supported away from B(0, R;) we

2

j=1

have L _g1) = Q. 9. Repeating the construction of IA/,79 in Section 4, [30], we can find an operator
Q’g : H%(T'y) — L*(T'y) so that

Q.0 — Q. phas rank O(h™ "),
the operator Qﬂ — (.9 is compactly supported and for z € Q we have
(Q.o—2) ' =0(1): D@QY) — D@Q"*"), YN eN.

Moreover, for 1) € C* supported away from B(0, Ry) we have Il_ygq,b = Q.,Nﬁ and for x € C5°(I'y)
equal to 1 on a sufficiently large set, z € Q and x1 < xo < x we obtain

(Ly—2)"1-x)=0-x0)(Qp—2)""(1-x)

+(Lop = 2) [Qus x0)(Qu0 — 2) (1= )
As above, we assume that zg € R™ is chosen so that zy ¢ sp (Q;), z0 ¢ sp (@), 7 = 1,2. For
simplicity of the notations below we omit the index € and we get
. 2
m(2) = [ (1= x0) (@ = )7 (L= = 20) (1= x)] |

e[ 27 Q@ -2 () 20) M x|

Obviously, [Q,-,Xo] = [Qj,x0] + M; with a trace class operator M;. To show that the operator

=1

[Qj,XO](Qj —2z)" (1 — x) is a trace class one, we apply the telescopic formula choosing cut-off
functions Oy < Oy_1 < ... < 01 < x and write

[Qj, x0)(Q5 — 2) (1 = x) = [Q,x0)(Q; — 2) 'x(Q; —i) ™
X [(Q5 = )™[Q 0n1(Q; — 2) Qg On—1]-1Q5, 611(Q; — 2) (1= X))

with N > 2m > n. The operator in the brackets [...] and [Q;,X0](Q; — z)~" are bounded, while
x(Q; — 1)~ ™ is trace class. Thus the term involving [Qj,xg] is holomorphic in  and bounded by
o).

As in the proof of Proposition 1, we have

_ _ o
(1 =x)(Lj —20) ™ (1= x) = (1 =x)(Qj —20) " (1 = x)llr =OCR"").
Moreover, (Q; —20)~ ™ x is trace class and, consequently, there exists a function b(z, h) holomorphic
in Q and bounded by O(h~"") so that
2

() = bz )+ (1 =)@ = 2) 1@~ =) (=) (4.8)
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We write

(Qo—2) " (Qa—20) " = (@1 —2) Qi —2) "
= Q=) (@ —20) "= (@ = 20) "+ (@ =) = (@ = 2) Q= 20) =T +IT.

According to [29], [30], the operator (Q2 — 2z9)™™ — (Q1 — z0)~ ™ 1is trace class one and the
contribution of T is holomorphic and bounded by O(h*”#). For 1T we obtain the representation

IT=(Q2—2) Q1 — Q2)(Q1 — 2) " (Q1 — )™

It is clear that Ql — QQ = @1 — Q2 + K2 with a finite rank operator K12, and modulo a trace
class operator we have

IT=(Qs—2) " ((Q1 ~ Q2)(Qs —20) ™) ((Q2 — 20)™(Q1 — 2) "(Q1 — 20) ™).

The second factor is a trace class operator, while the first and the third ones are bounded operators.
Consequently, IT has the same property as I. Combining the above results, we conclude that 7, (2)

is holomorphic in © and bounded by O(h’"#).

To establish (4.3), notice that the right hand side of this equality is holomorphic for z €
QN {Imz > 0}. The left hand side is also holomorphic in this domain since we may apply (4.1)
with different § > 0, ¢g > 0and 0 <6 < 5 — %eo. By analytic continuation we deduce (4.3) and the
proof of Proposition 2 is complete. O

Proof of Theorem 1. To obtain a meromorphic continuation of o (z) through the real axis, it
suffices to do this for the trace involving K 9. Next we will follow closely the argument of Sjostrand
[30] and since 6 is fixed, we will omit it in the notations. Setting K (z) = K (z— L)™', from (4.31)
in [30] we get the representation

_ o -

—tr((L. — 2) UKL - 2) ) = e ((1+ K,(z))*lax(z))
= 0, logdet(1 + K (2))
and the resonances of L_are precisely the zeros of the function
D(z,h) = det(1 + K (2)) = O(1) exp(Ch 7). (4.9)

Notice that the multiplicities of the resonances and the zeros coincide. Below in the notations we
omit the subscript . since the argument does not depend on j = 1,2. Let Res (L) be the resonances
of L and let

D(Zah) :G(Z,h) H (Z_w)7
weRes (L)NQ

where G(z,h) and @ are holomorphic in 2 and the resonances in the product are repeated
following their multiplicity. Obviously,
1
d:log D(z,h) = 0,log G(z,h) + >~ ——
z—w

w€ERes (L)NQ
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and according to the estimate (4.54) in [30], we get
‘—logG 2, h) \ <CcEr ™, 2eq, (4.10)
where  CC Q is an arbitrary open simply connected domain and C(Q) is independent on h €]0, hg].

Going back to the representation (3.2) and taking into account (3.4), we observe that for
AelCR, Imw # 0, we have

1 .. ( 1 1 ) —Imw
——lim — =
210 el0 \X +ie —w A —ie—W A —wf?’

while for w € R we get

1 1 1

——1i - =d(A —
2mi elg)l()\—i-ie—w )\—ie—w) (A= w),

where both limits are taken in the sense of distributions. Combining Propositions 1, 2 and the

above arguments we complete the proof of Theorem 1. O

The representation (1.3) shows that modulo a constant the spectral shift function £(\, h) coin-
cides with the distribution

1 A | Im w| 9
EOh) = = [ )
s weR;j(h) Ing |pp —w|2 =1
Im w#0

A
[ e DA g€ o))+ [ tmr(u k)i, o> 0. %0 ¢ 1.

In particular, for A € T\ U _1{A € R: X €spy,(L;(h))} the distribution {(A, h) is continuous and
the function )

AR = €00 = [#{ € Do, A+ € 5oy (L ()Y
is real analytic in I.

5. WEYL ASYMPTOTICS

In this section we obtain a Weyl type asymptotics for the spectral shift function. We generalize
the results of Christiansen [9] and Robert [26] covering the "black box” long-range perturbations
of the Laplacian and we improve our previous result (see Theorem 2 in [6]) working without any
condition on the behavior of the resonances close to the real axis.

We will say that A € R is a non-critical energy level for Q if for all (z,¢) € Xy = {(x,¢) € R?" :
I(z,€) = A} we have V ¢l(x, &) # 0, I(x, &) being the principal symbol of ). Given a Hamiltonian
I(x,£), denote by

exp(tHl)('TOa 50) = (’I}(t, Zo, 60)1 E(ta Zo, 50))
the trajectory of the Hamilton flow exp(tH;) passing through (zg,&) € X). Recall that A € J
is a non-trapping energy level for [(x,&) if for every R > 0 there exists T(R) > 0 such that for
(0,&0) € X, |zo] < R, the z-component of the trajectory of exp(tH;) passing through (z¢, &)
satisfies
5(t,50.£0)| > R, Vit > T(R).
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Denote by N(L;'%, I) the number of eigenvalues of L;-i in the interval I. From the assumptions
(2.5) and (2.10) we deduce easily that there exists a constant C# such that the spectrums of L?&,
4 = 1,2, do not intersect the interval ] — oo, —C#] and consequently N(L?&,] — o0, ~C#]) = 0. In

fact, let xo0, x, x1 € C§°(B(0, R);[0,1]) be equal to 1 on B(0, Rg) and let x1 > x > xo. Using the
resolvent equality we get

(LF -2 = (WF -2 X+ -2 (1-x)
= (L —2) X = (LF =27 QF (L —2) 'x
+(1 = x0)(@F —2) 11— x) + (LF = 2R xol(@F —2) 7' (1 - x).
Then
(¥ =2 (14 [QF xal(Ly = 2) 'x — [QF x)(QF —2) 7' (1 - )

=x1(L; —2) x4+ (1= x0)(@F —2)7'(1-x).
According to the assumptions (2.5) and (2.10) there exists C# such that spectrums of L;, Q}i,

j = 1,2, do not intersect the interval | — co, —C7#], hence for z €] — oo, —~C#], the resolvents

(Lj —2)7 1, (Qfé — )~ are bounded and we obtain immediately

[QF, x1](Lj — 2) 'x — [QF, xo)(QF — 2) 7' (1 — x) = O(h).
Consequently, for h small enough and z €] — oo, —C#], the resolvent (Lff‘e — 2)~ ! is bounded and
z ¢ sp(L}#). In the following we will use the notation

N(LF, ) = N(LF,] - C#,\), j=1,2.

The spectral shift function &(X, h) is determined modulo a constant and from (2.10) we deduce
that £(X, h) is constant on | — oo, —C4] for C; sufficiently large. In the following, without loss of
the generality, we may choose &(\, h) so that £(X\,h) = 0 on | — oo, —C#]. Moreover, in this section
we consider £(A, h) = lim¢ g £(A + €, h) as a function continuous from the right. The main result in
this section is a Weyl type asymptotics for the spectral shift function.

Theorem 2. Assume that Lj;, j = 1,2 satisfy the assumptions of Section 2. Let 0 < Ey < Ey and

suppose that each X € [Fy, E1] is a non-critical energy level for Q;, Q#, j=1,2. Assume that there
exist positive constants B, €1, C1, hy such that for any A € [Ey — €1, E1 + €1], h/B < § < B and
h €]0, h1] we have

N(L#, [N =0, A+0)) < Cioh™, j=1.2. (5.1)
Then there exist w(\) € C1(R), hg > 0 such that

k) = [NEE ] +wh ™ +Oon ) (5.2)

uniformly with respect to X € [Ey, Fr] and h €]0, hg].

Remark. Notice that if A is a non-critical energy level, then for € > 0 small enough each
i €JX — €, X + €] is also non-critical one. Consequently, (5.2) remains valid on some interval

[Ey— o, E1+a], @ > 0. Recall that the operators L?&, j = 1,2, have been defined in Section 2 by us-
ing the operators Q#, j = 1,2, whose coefficients satisfy a;-%y(m; h) = aj,(x; h) for || < R, R > Ry.
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If the principal symbol [;(z.£) of (); is non-critical for A € [Fy, 1], we can extend a}%y(x; h) for
|z| > R in a such way that A € [Ey, E'1] become non-critical for Q?& This continuation changes the
operator Lf but as it has been proved by J.-F. Bony [1], the assumption (5.1) does not depend on

the continuation of aﬁ(w; h).

To prove Theorem 2, we will introduce an intermediate operator exploiting the following result
of J.-F. Bony (see also [28]).

Proposition 3. ([2]) Assume that L satisfy the assumptions of Section 2 and suppose that each
A € [Ey, E1] is a non-critical energy level for Q. Given a fized X € [Ey, 1], there exists a differen-
tial operator L, such that

(a) The pair (L, L) satisfies the assumptions of Section 2, with T = n + 1,

(b) There exists an interval Iy 5 X, such that each p € Iy is non-trapping and non-critical
energy level for L,

(¢) The operator L has no resonances in a complex neighborhood Qg of Iy and 2y is independent
on h.

Now denote by £(A; A, B) the spectral shift function related to the operators A and B. Using
the above proposition for the operator L; we can construct an operator L; and decompose the
spectral shift function &(A; Ly, Lo) as follows

EN; Ly Lo) = (N Ly, Ln) — €(X; Lo, Ly).

Here Lo, L satisfies the assumptions of Section 2 since we may estimate the difference Ly — Ly =
(Ly — L) + (L1 — Ly) by applying our assumptions on Q; — Qs. Thus it is sufficient to prove the
theorem for A € Iy C I and the pair (L1, L) with Ly = @9 being a differential operator having
no resonances in a complex neighborhood Qg of Iy and such that every A € I is non-trapping and
non-critical energy level for Ls. Then the assertion follows by applying the local result and covering
the compact interval [Ey, F1] by small intervals.

We denote (A, h) the spectral shift function for the operators (Lq, Ls). Applying Theorem 1
in the domain Qg, we deduce that there exists a function g4 (z, h) holomorphic in Qg such that for

Aely=WyNR, Wy CC Q4 we have

(A h) = %Im gr(Nh)+ ) _—Imw_ + Y - w), (5.3)

D)
weERes L1NQg, 7T|>\ U)| weRes L1NIgy
Im w#0
where g (z, h) satisfies the estimate
g4 (2, h)| < C(Wo)h ™", 2 e W (5.4)

with C' (W) > 0 independent on h €]0, hg].

In the following, we fix an open interval Iy C R so that each p € I is a non-critical energy level
for Q;, 7 = 1,2, and we introduce open intervals Iy CC I} CC Iy. It is convenient to decompose
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(A, h) for XA € I into a sum of a term independent on A and a second one localized in I; where

(5.3) holds.

Lemma 2. Let C# > 0 be such that the spectrums of L; and L?&, 7 = 1,2, do not intersect the

interval [—oo, —C#]. Let @1, w3 € C(R;RY) be such that supp o1 C (—oc,71), supp s C I,
0o =1 0on Iy = (71, 12) and ©1 + @3 = 1 on [~C# —ng,vs], no > 0. Then for X\ € Iy we have

2
EOh) = trop |1 (Lg)| _ + Gpa(N) + Mg, (M), (5.5)
where
1
GoN == [ Tmg(u W2l
T J]— 00,
—Imw

My, () = Z ./}oo,/\} m%(ﬂ)dﬂ + Z P2 (w) (5.6)

wERes LN,

, _C#
S weRes L] - C# )]

and we omit in M, and G, the dependence of h.

Proof. Roughly speaking, for A € I, if we express the action of the distributions as integrals, we
must have

A A
) = [ orwe i+ [ a0 u, ke

2
Since q vanishes on Iy, the first term is independent on A € I, and equal to trpy [gol(Lj)} . For
j=1

the second one we may apply (5.3) since @9 is supported in I; C Ij.
For a rigorous proof of the above representation, take f € C§°(I3) and introduce

+oo
FO) = (1 +92)(V) /A F ()

which is compactly supported. Since supp f C Is and @1 + w9 = 1 on Iy, we have

+oo
FIO) = =) + (& + ¢'2) () /A f(w)dp.

where the second term vanishes on [~C# — 59, +oc[. Our choice of £(A\,h) = 0 on | — oo, —C7]
makes possible to write

& oo ==& F)ypp= (. F)pp.
Next the equality @1 [y f = ¢1 [ f yields

(&, o /:OO oo = (/TR f)(i',%)D',D = (/TR f) trhh [<P1(Lj)]2.

.7:1.

For the term involving ¢9, we apply (5.3) and we get

+oo “+oc “+oc
(€ 0 /A forp = (G, 9 /A fop + (ML, 4 /A foo

for 1 € C°(R) equal to 1 on Rt and vanishing on ] — oo, —1]. The above relations imply (5.5) in
the sense of distributions since Gy, 9" = My,9)' =0 and ¢ f = f. [
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To prove Theorem 2, we will apply a Tauberian argument for the increasing function M, ().
Consider a function 6(t) € C§°(] — 01, d1]), 0(0) = 1, O(—t) = O(t), such that the Fourier transform
0 of 0 satisfies é()\) > 0 on R and assume that there exist 0 < ¢y < 1, g > 0 so that é()\) >0g >0
for | A |< €. Next introduce

(]—"}:19)0\) = (2wh)"! /eit’\/hﬁ(t)dt = (2wh) '0(—h"'N).

Remark. It is obvious that the Lemma 2 holds if we take a partition of unity ¢? + 3 over
[—C# — no,v2] with cut-off functions ¢;, j = 1,2.

The next lemma permits to establish a connection between the asymptotics of the functions

My, and N7, .

Lemma 3. Let py € C§°(I1;RY) and let Nj;()\) = tr(wg(Lfe)l}fc#’/\}(L#)). Then there exists
Wy, (A) € CY(Ip) such that for any X € R we have

d  __ d n _n#
(% 10« M,,)(\) = o Y9« N¥)YN) = GL,(N) +wy, (MR "+ O "), (5.7)
where (’)(h]’"#) is uniform with respect to A € R. Moreover, we have
My, () = (F;, 105 My, ) (V) + O(h' ") (5.8)

A
= (B0 NEYN = G+ [ wp(u)dph " + O )
uniformly with respect to \ € I.

Proof. For simplicity of the notations we omit the subscript @s and denote by M, G, N#, w the

functions M, G,,, N¥#, w,,. According to (5.6) and (5.3), for any X\ € R we have
®2 P2 P2 P2

%(HW « MYN) = (F 10 M)Y(N) = (F; 0% 026 )(N) — (Fp 10+ G') (V).

Using the Cauchy inequalities, it follows easily that G'(A) = O(h~"") and G"()) = O(h ") and
we obtain immediately

%(f,;la «G)(\) = G'(\) + O

uniformly with respect to A € R.
It remains to examine

1 Sy p—1 S —1 2
—1 ! _ itA\h —ith™ L, )
(05 02 )N = 5 [ @700 o[ ()]

We will prove that
d
—1 ! _

where w(\) € CJ(Iy) has compact support and O(h' ™) is uniform with respect to A € R. As in
Section 2, define the operator Lfé on the torus T = (R/RZ)" with R > 2R > 2Ry and introduce
x € C°({x : |z| < R}) equal to 1 for |z| < 2R > 2Ry. We have

trph [efithiw’j 902(Lj)}2 LT {tr(Xefitthj 902(Lj)X)r

F 0« NF)A) +wNR "+ Oh'™), XeR, (5.9)

- _ .:1.

TP 2
. +trbb |:€ ith L](,OQ(Lj)(l *XQ):|J
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Applying the Duhamel formula and the semi-classical Egorov theorem (see Section 6 of [6] for more
details), for |t| sufficiently small we obtain

b e oy (L) (1 )] = e (@)1 X))+ O,

T a1 #
tI"(X@ ith ILI(PZ(L])X) _ tI"(Xe ith™ L7 QOQ(L#)X) +O(h00)
-1 # _ap—1n#
= (e Ty (LF)) — tr(e7 ™ M0y (QF)(1 - 1Y) + O(h),
where Q# is a differential operator

Qf = 3 af (z;h)(RD)"

vl<2

on the torus T'; introduced in Section 2 and aﬁu(m; h) = a1, (z;h) for |z| < ro, 79 > 2Ry. Using

. . . . _ap—10o# _ap—17.
the classical constructions of a parametrix for small [#| for the unitary groups e=#"~ @1 g=ith™ Iz

combined with the fact that A € I is non-critical for Q#, Ly we deduce for A € I
(5,10 (A - QF ) (@)1 Xx?) = wi (WA + O™,

tr(x (7, '0) (A~ La)a(La)x) = wa(Ah " + O(h' ™),

with functions wy, wy € CJ(I;) and O(h'™™) uniform with respect to A € Iy. The problem can be
reduced to the application of the stationary phase method to some integrals where the integration
is over a compact set. We refer to Chapter 10, [10], for more details. Since 6 e S(R), we can extend
the above relations to all A € R with O(h' ™) uniform with respect to A € R.

For the trace involving Q;, j = 1,2, we have for A € I
—1 2 2 —n 1-n
[(F 10 (A = @5)e2(Q) (1= x| = wem Wb "+ OB ) (5.10)

with wezs € CJ(1p) and O(h! ™) uniform with respect to A € Iy. The proof of (5.10) is more technical
since we must integrate over a non-compact domain. In fact, it is similar to the calculation of the
traces in Section 4 in [2] and for the sake of completeness we present a proof in Appendix. Moreover,
we show in the Appendix that we can extend (5.10) to all A € R with O(h! ™) uniform with respect
to A € R. Taking together the asymptotics of the traces and the above relations, we obtain (5.9)
and (5.7).

Now we will apply a Tauberian theorem (see for example, Theorem V-13 of [25]) for the in-
creasing function M, (\). For this purpose we need the estimates

M,,(\) = O(h™™"), %(}",;10 « My,)(N) = O(h "), VAER (5.11)

The first one follows easily from (5.6). To establish the second one, we apply the equality (5.7).
Thus it suffices to prove the estimate
d - A

O TH#
ﬁ(3?,;19 « N7 )(A) = (%h)”tr(a(Ll -

Jor(LF)) = (™), WA e R (5.12)
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To do this, assume first that A € [Ey — €1, B + €1]. Taking into account (5.1), we obtain

N 5 A
w0 Deth) = X i ew) (5.13)
l pesp (L¥)nsupp ¢» '
C/h C/h 1on#
Al — A - (k+1)h o
< Z Z 9(T)<ﬂ2(ﬂ) < C(h] + Z T) < Ch] s
=0 b ju—a < B0 k=1

where we have used the inequality |6()| < C(1+|p|) 3. On the other hand, for A ¢ [Eg—e1, Ei+ei]
and p € supp @9, we have |u — A| > d2 > 0 and the term (5.11) is estimated by O(h*>). Now a
Tauberian argument implies the first assertion in (5.8). The second one is obtained by integration
of (5.7) over [inf Iy, A] combined with the equalities

My, (1) = Gy (1) = NZ, (1) = 0, p <infly
and the fact that 0(t) € S(R). O]
Proof of Theorem 2. As it was mentioned above, it remains to show that
E(A\h) =&\ Ly, Ly) = N(L#, A) +wo(AN)h "+ O(hI’”#), A€ Iy (5.14)

for a differential operator Ly = Q9 having no resonances in {2y and such that each A € I is non-
trapping and non-critical energy level for Ly. According to Lemma 2 and Lemma 3, for A € Iy we

have
2

-1 A — 1—n#
EOR) = trun[in(L)] (505 NEYN + [ woulu)duh ™ + O,

Given a function x € Cg°(R"), x = 1 on B(0, Ry), exploiting the functional calculus for smooth
functions and the estimates for the trace (see [30]), we obtain

trpp {@1(@7)]?1 = [tr(X‘Pl(Lj)X)]j] + trpp {%(Lj)(l - XQ)}

2
J=1

= tr(xwltL#)X)tr(xwl(La)x)-+tr[¢1@Qﬁ(1X2ﬂj_1-+<9(h“ﬁ

= (o)) + Cle)h ™ + O™,

where C(p1) is a constant depending on ;.

On the other hand, applying a Tauberian theorem for Nf’i()\) = O(h*”#), we deduce

_ _n#
NEA) = (F 0« NE)N) +O(R'™™"), VAER

Consequently, for A € Ir we get

€0h) = tr(o1(LF)) + tr(a (L)1 _cr n (L)) + (Cler) + /A W, ()dp) b~ + O(h' 7).

J =00

By construction we have
¥ L L)y =1 L), vael
1 (L) + @2 L) _on N (L)) = Y_c# (L)), YA€ D
and this implies (5.14) with wg(A) = C(p1) + fi‘oo Wy, (1)dp € CHR).
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To obtain (5.2), we construct a covering of the interval [Eg, E1] C U_,J, by small open intervals
Jy so that for every J, we can find an operator (), with the properties of Proposition 3, where I
is replaced by J,. Next we introduce a partition of unity

F
Z‘Pu(m) =1 on[Ey, Ei], ¢, € C(())O(JVER+)
v=1

and we apply the above argument. This completes the proof of Theorem 2. O

6. BREIT-WIGNER APPROXIMATION

In this section we consider small domains of width h and we prove a semi-classical analogue of
the Breit-Wigner approximation for £(A, h) (see [22], [24], [4] for similar results, [13] for the case of
a potential having the form of an ”well in the island” and [12] for a one dimensional critical case).
In the following n(A, h) denotes the real analytic function defined by

2
HOGB) = EOGR) = [#{ € [Bo, AL+ i € spp(Ly()}] -
Theorem 3. Assume that Lj(h), j = 1,2 satisfy the assumptions of Theorem 2. Then for any
A€ [Ey, Ey], any 0 < 0 < h/B, 0 < By < B, and h sufficiently small we have

n(A+3d,h) ~n(x—5,h) = | 3 we. (w,[Af(s,H(s])]% + O,

weRes L (h), j=1 (6.1)
Im w#0, [w—X|<h/Bj

where B > 0 is the constant introduced in Theorem 2.

Remark. Following the result of J.-F. Bony [1], the assumption (5.1) implies the existence of
positive constants D, C3, hs such that for A\ € [Fy, 1], h/D < § < D and h €]0, h3] we have

#{z€C:z€eResL(h) ,|z— A < 6} < C36h " (6.2)
Proof. We apply Theorem 1 in the interval Iy D (A — 0, A +6), 0 < § < h/Bq, and introduce the
function
F(zh) = | 3

weERes L]- (h), Im w#0,
h/By<lw=A|<Cy

1 1

Z—w zZ—w

)]j] z € D(A\h/B).

It is sufficient to show that
|F(z,h)] < Ch™™", |z~ A < h/B, (6.3)
We have

0,F(z,h) = [ Z (z lm)Q - : Q]j_l'

w€Res L; (h), Im w#0, (Z B “})
h/By<|lw—X<Cy

Let I € N be an integer such that D < 20=!'B. Following the argument in [24] and applying (6.2),
for any z € D(A, h/B) we obtain

>

wERes L]' , Im w#0,
h/B1<|w—X|<Cy

C'log(1/h)

D 2

k=l kp k+1p
0 F<lu-a<Ep

1

|z —w? ~

1

|z = w]?

1

|z = w]?

>

weRes L; (h), Im w#0,

ol
h/Bi<lw—A|< 250



MEROMORPHIC CONTINUATION 21

Clog(1/h)

2k+1h)hfn#
<coopipt* o T W
kZlO @h)?

Here and below we denote by C > 0 different constants which may change from line to line and
which are independent on h and the choice of X in the interval [Ey, F1]. Thus we get the estimate
0,F(2,h)| < Ch""~', 2 € D(\,h/B).

It remains to find an estimate of |F(uo, k)| = |Im F(uo, h)| at a suitable point pg = uo(h). 1 Set
v="< BL} and suppose that for all u € R, |u — A| < v, we have |Im F(u,h)| > Mh~ M > 0.
The continuity of the function Im F'(u, h) implies that Im F'(u, h) is either positive or negative in
[A — v, A+ v]. Assuming Im F'(u, h) positive, we get

Mp—n7+1 1 Ay 1 [rv 1 2
7§—/ ImF(u,h)duS—/ [ Z M] dp

_ 2],
Bﬂ- 271— JA-v T JIA—v weERes L]- (h), Im w#0 ‘M w‘ J 1
|lw—X|<C

< Op~tn"

Aty | Tm w|

_ . 1—n#
i S v k) = = v )+ OB

Sy
w€Res L (h) Im w#0, "u
Jw— /\\<h/B1

Here we have used the inequality

A Tm | < | Tmw|
[ e,
N A S Py
and (6.2) to estimate the number of resonances in {w : |w — A| < h/B;}. Notice that if D < By,

we have {w : |w — A\ < h/B1} C {w: |w — A] < h/D}. Next the assumption (5.1) combined with
Theorem 2 yield the estimate

€+ v,h) — E(A —v,h)| < OB,

Thus,
‘W(A+V7h) _U(A—Vah” < ‘§(>‘+V7h) _§(>‘_V7h)|

2
n#
+> t{uespy(Ly): ln—A <vp<Ch,
j=1
where for the second inequality we have used once more (6.2), observing that the positive eigenvalues
of L; coincide with the resonances on R*. Consequently, we obtain a bound for M. Hence there
exists a constant C' > 0 and pg € [A — v, A + v] so that

|F(uo, h)| < Ch™™". (6.4)
Writing
Fl(z,h) = Fuo, b) + / 0,F(2,h)dz, |z—\ <h/B,

Ho
we obtain (6.3). The case Im F'(u,h) < 0 can be treated by the same argument exploiting the
inequality — Im F'(pu, h) > th”#, i — Al < v. By an integration over the interval (A — 0, A + §),
we complete the proof of (6.1). O

IThere is some similarity between the proof of the existence of puo(h) and that of the existence of a suitable point
zo(h), Imzo(h) > 6 > 0 in Section 4 in [24] so that log | det S(zo(h), h)| > —ch—*.
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Remark. Our proof goes without a factorization in small domains {z € C: |z — A\| < Ch} and a
suitable trace formula (see Lemma 6.2 in [24] and Theorem 1.3 in [4]). The above argument can
be applied to simplify the proof of Lemma 6.2 in [24].

Next, the estimate (6.3) of F(z,h) yields immediately the following.

Corollary 1. Under the assumptions of Theorem 3 for p € R, | — A < h/B we have the repre-
sentation

1 —Imw 2
€ (k) = —Tmq(u, h) + | > —r Y dp-w)]|
T T — wl 3=1
w€ERes Lj(h), |w—X|<h/By w€ (Res L; (h)NR), (65)
Im w#0 |lw—XA|<h/B

where q(z,h) = p(z,h) — p(Z,h), p(z,h) is holomorphic in D(X\ h/B) and p(z,h) satisfies the
estimate

p(z.h)| < Ch™™", z € D(\h/B)
with C' > 0 independent on h €]0, hg] and X € [Ey, E1].

We may slightly improve Theorem 3, noting that for every 0 < e < 1 and | — A| < % we have

| Tm w| h 1_n# n#
2 o — wl|? < thQCh‘ T =0T,
weRes Lj(h), -

eh/B1<|lw—X|<h/B

Thus for 0 < § < % the equality (6.1) can be replaced by

2
n(A+3d,h) ~n(x—5,h) = | 3 we (W, A= 6 A+0)]  + O
wEResLj(h), Tm w#0, =1 (66)
lw—X|<eh/ By

To obtain a stronger version involving the resonances in smaller "boxes”, we need some addi-
tional information for the distribution of the resonances in {w € C: |w — A| < eh}. In the case of
the Schrodinger operator L(h) = —h2A + V(x) with V(z) € C§°(R") real valued this is possible
applying the recent result of Stefanov [32]. Set ag(z,£¢) = |£]? + V(2) and let 0 < Ey < E; be
non-critical values of aq(z, £). Let

(Zal[E[], El] = Wint U Wext 3

where Wey; is the unbounded connected component, while Wiy is the union of bounded ones if there
are such connected components. Assume that all points in Wey are non-trapping (see [32] for a
precise definition). Then, according to Theorem 6.1 in [32], there exists a function 0 < R;(h) =
O(h*°) such that for any M € N the operator L(h) has no resonances in the set

Qur( h) = [Eo, ] +i[-Mh, ~Ri(h)], 0<h < h(M). (6.7)
Setting 0 < R(h) = /hR1(h) = O(h*°), an elementary argument shows that for A\ € [Ey, F1] and
|w — Al < R(h)/2 we have

S Imwl - gyt

_ 2 =
weERes L(h), | Tmw|<Rq(h) |u w|
R(h)<|Rew—X|<h
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In the next result we treat a formally symmetric differential operator

Li(h) = Z ao(z,h)(hDy)®

laf<2

on L?(R") satisfying the assumptions of Section 2. Given a fixed A €]Ey, E1[, as in the previous
section, we may construct an operator Lo(h) having the properties (a) - (c) of Proposition 3.
Applying Theorem 3 for L;(h), j = 1,2, and {z € C: |z — A| < h/B;} C W, and assuming that we
have a free resonances domain, we obtain the following improvement of Corollary 1.

Corollary 2. Let Ey < A < Ey be fized. Let Lao(h) be chosen so that Lj(h), j = 1,2, satisfy the
assumptions of Theorem 3 and Lo(h) has no resonances in the disk {z € C : |z — A] < h/By}.
Suppose that there exists a function 0 < Ry(h) = O(h*>°) such that Li(h) has no resonances in the
set

[Eo, Eh] + i[—€h, —Ry(h)], e >0, 0 < h < h(e).

Then for |p — A < @ and h sufficiently small we have
1 —Imw
£ h) = = Tma(u, h) + > L L S
T wERes Ly (h), | Rew—X|<R(h) 7T|M - 71)|

w€ERes Ly (h) NR, (68)
0<|Imw|<Rqy(h) lw—X|<R(h)/2

with R(h) = \/hRi(h) = O(h*) and q(u,h) as in Corollary 1.

7. LOCAL TRACE FORMULA

In this section we prove a local trace formula which is a slightly stronger version of that in [29],
[30] (see [24] for compactly supported perturbations). Exploiting Theorem 1, we repeat with trivial
modifications the argument of Section 5, [24], to get the following.

Theorem 4. Assume that L;(h) satisfy the assumptions of Section 2. Let £ C el=200:200[10), oo be
an open, simply connected, relatively compact set such that I = QN R is an interval. Suppose that
f s holomorphic on a neighborhood of Q and that ¢ € C§°(R) satisfies

[0, d(I,X) > 2,
s={3 ary Ze
where € > 0 is sufficiently small. Then

o [@Nm)] =] X @)

-
J 2€Res I; (h) NQ

B (h) (1)
with
Bopu(h)| < M(y,Qsup {|f(2)] : 0<d(Q,2) <2, Imz < 0}h ™"
Proof. Choose an almost analytic extension 1 of 9 so that ¢ € C(C), ¥ =1o0nQ and
supp 0,1 C {z € C:e<d(,z) < 2e}.
Setting Q. = {z € C: d(Q, z) < e}, we have

trn [(A1) Ly W) =< €0 B, (B1)N) >
= (1) (w)]

wé€Res Lj(h) N supp

4o [N RN

2
j=1  2mi
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b [wnw] X%

2m1
wERes L (h) NQgy,
Im w#0

1 1 2
()\ R . w)]y':ld)\'

The integral involving r(\, h) can be estimated using (1.4) with W = Qs,. For the integral containing
the resonances we apply Green formula and we get the term

~ 2
> whe)|
z€Res Lj(h), Im 270 J=

1 o~
+— | (9:9)(2)f(2)
™ ./(C, [weRes L]Z(;;Z N Q.

1 1

zZ— W zZ— W

) L),

where L£(dz) is the Lebesgue measure on C. As in the proof of Theorem 1 in [24], we apply the

inequality
1
/ _L(d2) < 2y/27]0]
Jo, |z — w|
and an upper bound for the number of the resonances in Q9 to obtain the result. [l

Since we have no restrictions on the behavior of the holomorphic function f(z) on QN{Im z > 0},
we may apply the above argument choosing f(z) = e~ 2/h e R to get the following.

Theorem 5. Let Q2 and ¥ be as in Theorem 4 and let @ € C°(C) be an almost analytic extension
of 1 supported in Qoc. Then for any 0 < 6 < 1 and t > h® we have

y 2 - 4 2
trop [(L(R)e T W] = 3T lw)e ]+ 05(h™). (72)
=1 wé€Res Lj(h) N Q2. =t
Moreover, fort > € >0 and N € N there exists hy > 0 such that for 0 < h < hy we have
. 77231L.‘(h,) 2 _ 7 —itw/h 2
trpn [1(L; (h))e 7L L:] = X dwe ]

wERes L; (h) N Qg
| Im w|<—Nhlogh

Lt O (BN 7). (7.3)

Proof. Choose an almost analytic extension 1 of ¢ as in Theorem 4. Applying Green formula, we
must examine the integrals

[ e e n ).

/(C gzi(z)efitz/h[ Z

- weRes Lj(h) NQ2e
Choose >0, 0 <d+pu < 1. For —h* < Imz < 0 we have

0.9 < Cy|Im 2N < Cyh*Y, VN € N

and the integration over —h* < Imz < 0 combined with the argument of the proof of Theorem 4
yield a term bounded by O(h™). On the other hand, for t > h%, Imz < —h* we get

= Os(h™)

and this implies (7.2). For the second assertion we have |e "®/?| < e!Nlogh < pN¢ for |Tmw| >
—Nhlogh and this completes the proof. ]

1 1

zZ— W zZ— W

)| ).

_4 _tpr—1 _pot+p—1
‘6 ztz/h‘geth S@h
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Remark. For non-trapping compactly supported perturbations L(h) (see [33], [7]) and for
non-trapping long-range perturbations L(h) = —h?A + V(z) of the Laplacian (see [16]) there are
no resonances of L(h) in the domain

1
—Nhlogﬁglng(], 0<h<hpy.

hNefn#)

For such perturbations the right hand side of (7.3) is equal to O( and we obtain an

analogue of the classical trace formula for non-trapping perturbations.

8. EXISTENCE OF RESONANCES CLOSE TO THE REAL AXIS

In this section we consider the operator L(h) = —h2A,+V (z), where A, is symmetric Laplace-
Beltrami operator on L?(IR") associated to a metric g(z) = {gi,;(z) }1<ij<n and V(z) € C®(R") is
a real valued function. We assume that there exists p > n so that

09(gi g () = 6:))| + 105V (@) < Co <z > 710 1< <n, Va. (8.1)

Moreover, we assume that the coefficients {g; j(x)} and V(z) can be extended holomorphically in
z to the domain given in (2.8) and the estimate (8.1) holds in this domain.

Consider the symbol
ag(z,€) =< g(x) " '&,& > +V(z)
and denote by H,, the Hamilton vector field associated to ag and by ®' = exp(tH,,) the Hamilton
flow. Given A > 0, let ¥\ = {(z,{) € R” : ap(z,£) = A} be the energy surface and let Vag(z,£) # 0
on ¥y. A point v € ¥, is called periodic, if there exists T > 0 such that ®(v) = v and the smallest
T > 0 with this property is called period T'(v) of v. Given a periodic point v, consider the trajectory

V() ={2' (1) : 0 <t <T(W)} = {(2(1).£(#)) : 0 <t < T(v)}
and define the action S(v) along y(v) by

T(v) ,
S(w) = '/W) tda = /0 () (t)dt

Next we denote by m(v) € Z4 the Maslov index related to y(v) and set q(v) = —Fm(v). Let II be
the set of all periodic points on X and let

Q(h,r) = (27) ™" /n [ = hI8(W) + q(v) — rT(w)] T(w) dv, (8.2)

2

where dv is the Liouville measure on ¥ and the residue —7 < [z]o, < m is defined so that
z = [z]axr + 27k, k € Z. The set II is bounded, the integrand in (8.2) is a measurable function
and T'(v) > Ty > 0, Vv € II. The oscillatory function Q(h,r) has been introduced in [20] for the
analysis of the semi-classical behavior of the eigenvalues and it is a semi-classical analogue of the
oscillating function defined by Guriev and Safarov [15] and Safarov [27]. Notice that the limits
Q(h,r £0) = lim. g Q(h,r £ €) exist for each 7 and 0 < h < hy and, moreover,
dv
h,r +0) — Q(h,r —0) = (2r)' ™ —

Qr+0) - Qe 0= 0 [
where Q, = {v € Il : h"1S(v) — q(v) + rT(v) = 0(27)}. Following the arguments in Section 6,
[22], we will prove the following.



26 V. BRUNEAU, V. PETKOV

Theorem 6. Let L(h) = —h?A, + V(z), where the metric g(z) and V(z) satisfy the estimates
(8.1) and let Vag(x,&) # 0 on Xy, A > 0. Assume that there exist an integer p € Z and a subset
Iy C 1T with positive Liouville measure () > 0 so that

([q(u) - if]S(y)}27r + pr)T(y)f] =r(h), 0 <h<hg

does not depend on v € Ily. Then for for every 0 <n <1 and 0 < h < hy(n) we have
2mt-r dv
w € Res L(h) : lw—X—r(h)h| <nh} > h " .
#1 (h) | (Wh] < i} > =2 e

Remark. Clearly, |r(h)| < max{|2p — 1|, [2p + 1|}7(Ty) . Recently, J.-F. Bony [3] proved
that if the Liouville measure of the periodic points on Xy is zero, than for every 0 < n < 1 and for
h small enough we have the upper bound

#{w € Res L(h) : |w — X < nh} < Cymh' ™.
with a constant C' > 0 independent on 7 and h.

(8.3)

Proof. Consider the scattering phase o(), h) = 51— det S(X, h), where the scattering operator S(X, h)
is related to L(h) and Lo(h) = —h?A. According to Birman-Krein theory (see for instance [34]), the
scattering phase can be identified with the spectral shift function and, under our assumptions, we
have not embedded positive eigenvalues. Following Theorem 2.1 in [5], and taking |r(h)| < rg, 0 <
€ <€y 0<h<hgand A > 0 we have

o(A+ (r(h) + )b, h) — o (X + (r(h) — )b, h)

> hQ(h,r(h) + €/2) = Q(h,r(h) = €/2)] + 269 (\A " = Coeh! ™™ — o (h'),

o =en [ ([ e [ de)a,

)<A
Co > 0 is independent on r(h), € and h and o.(h'~") means that for any fixed ¢ > 0 we have
)

] Og(h] n
lhlJIf]l hl—n

where

=0.

On the other hand, for small 0 < € < 7 an application of (6.6) with § = eh yields the estimate
o(A+ (r(h) + )b, h) — o (X + (r(h) — )b, h)
< #{w € Res L(h) : |w — X —r(h)h| <nh}+ Cheh' ™, 0 < h < ha(n)
with C;, > 0 independent on €, (k) and h. We claim that

d
Qh,r(h) + ¢/2) — Q(h,r(h) — ¢/2) > —(2m) "ep(I) + (2m) " [ T
J 1o T(V)
In fact, according to the representation of the oscillatory function Q(h,r) (see for instance, Propo-
sition 1, [27]), we have

Q(h,r(h) +¢€/2) — Q(h,r(h) — €/2) = —e(2m) " u(IT) + (21)' " '/HTi](V)ZX;L,k(V)dV

kEZ

(8.4)
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where xj, . is the characteristic function of the set
Qp={vell: —eT'(v) < h'S(v) — q(v) + r(h)T(v) — 2kn < €T(v)}.
Obviously, for any v € 11 we get
h'S(v) — q(v) +r(W)T(v) + 2M (v, h)7 — 2pm = 0
with some M (v, h) € Z. Consequently,
vellp= sz,k(y) >1
keZ

and we obtain (8.4). Choosing € = ¢(n) > 0 small enough, we arrange the inequality

R ) (G G 22

with ag = (2m)' ™" [y, % Next we fix n > 0 and € = ¢() > 0 and choose 0 < hy(n) < ha(n) so
that for 0 < h < hq(n) we have

Qo

loc (R ™)| < 1 Rt

Combining the above estimates for the difference a()\ + (r(h) + €)h, h) - a()\ + (r(h) — €)h, h), we

complete the proof.

O
Example (see Section 7 in [5]). Let L(h) = —h?A + V() with

V(@) = @z = yo) (| - gl +b) .

where a > 0, b > 0 and yo € R" are fixed and ®,(z) € C°(R"), ®,(x) =1 for |z] < 2a. Let 0 <
€ < a2, ]&| =X~ band let A €]b,b+ a?[ be a non-critical energy level for ag(z, &) = €2+ V (z).
Therefore the set

Mo = {(z,€) € Bx: [€ — &l + |z — yol* < €}
has a positive Liouville measure and I1y C II. Moreover, for every v € Il we have

Tw)=m, Sw)=(\—b)r, q)= gm

with m € 7Z independent on v. We may apply Theorem 6 with r,(h) = %[%m —h '\ - b)ﬂ'] - +
2p, p € Z, to conclude that
#{w € Res L(h) : [w — X\ — rp(h)h| < nh} > (2m) "u(Ilg)n' ™.
On the other hand, for p # j and 0 < h < hy we have
{w:|Rew — X —rp(h)h| <nh}N{w:|Rew — X —rj(h)h| < nh} =0
and the clusters related to p # j produce different resonances. Choosing 6 > 0 so that |A—d, A+4J[C
]b,b + a?|, one obtains easily
#{w € Res L(h) : |lw — A <} > ad(2m) "u(Ilg)h™"

with @ > 0 independent on §. A stronger asymptotic for the number of the resonances in [b,b +
a?] +i[—R(h),0] has been obtained by Stefanov [32]. Notice that in the above result we count only
the resonances lying in clusters.



28 V. BRUNEAU, V. PETKOV

9. APPENDIX

In this Appendix we present a proof of (5.10). Following the Remark after Lemma 2, we will
assume that o = ¥?, ¢ € C(I1;RY), I C Iy. Recall that A € Iy, supp 6(t) C [-d1,01] and
x(z) =1 for || < 2R, R > Ry. It is easy to see that

s [OO ga2(Q,) (1 - xat]

= ﬁ /eit,\hfle(t)tr([q,b?(Qj)r 1efitQ2/h(1 —XQ))dt
J

This representation is _]uqtlﬁed by applying Lemma 4.1 in [ ] saying that
. 2
[ [W(Q;‘)] e = O™, [92(@0)]e ] e =0T,

We treat below A following closely the analysis of J.-F. Bony in Section 4.2, [2]. Put A = A; + Ao,
where

A= m/ D)t (H(@Q1) — B(Q2))e "R Y(Qa) (1 — X))t

Ay = o [ 000)tr (9(Q0) (H(Q1) — (@) M1~ )t

We deal with the analysis of A; only, since that of Ay is similar (see also Section 4.2, [2]). First,
we find a pseudodifferential operator ) with symbol in S°(1) so that

A= o [P b0 (e 1 HQQQ1 - Q2)Q2)) dh,

where 1 € C§°(R) is such that ¥ = 1 on supp ¥. We use the notations of [10] for h-pseudodifferential
operators and set (z) = (1 + |z/?)'/2. Moreover, modulo a term in SV (1), the symbol of Q is
supported in {(z,€) : |z| > 2R}. Secondly, we obtain the existence of a pseudodifferential operator
S with symbol

sy, &) € S°((0) O TY), YN EN,

having compact support in & and (z — y) and support in {(z,¢) : |z| > 2R, (2,€) € Iy ' (I1)} so that
1 g .
A = —tr(/e“)‘h 19(t)e*Zth/hSdt) + O(h™).
2rh  \

Applying Theorem 2 in [2], we obtain the existence of a Fourier integral operator U; such that for
|t| < &1 and 47 sufficiently small we have

ity — =19/l = O(h™).
Next, we write the kernel of the operator fe“"\h‘f] 0(t)Udt in the form

tA+<I> (t,@,€)—y. f)/h

K(z,y;h O(t)A(t, z,y, & h)dtdE

and deduce that

A= [ ] € (00682 ) 41yt i+ 0
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Here ®(t,z,&) is the solution of the eikonal equation

8t¢ + lQ (xa 8:E®) = 05
@(0”1}’5) = Tfa

lj(x, &) being the principal symbol of Q;, j = 1,2, and all derivatives ataagag ((I>(t, x, &) — 'I'S) are

uniformly bounded for (t,z,&) € [—d1,d1] x R” x B(0,C;) and (¢, 8,7) # (0,0,0). Moreover, the
symbol A(t,z,z,&) has support in {(z,&) : |z| > 2R, || < C4, (z,§) € l;(h)} so that for all «
and |t| < 0; we have

0% A(t, z, 2, )| < Cofz) " ", (9.1)
The last estimate enables us to calculate A; by using an infinite partition of unity

Z U(x—a)=1, Vx e R",

aceNn

U e C°(K), ¥(z) > 0, K being a neighborhood of the unit cube. Consequently, for every fixed

h €]0, hg] we have
1‘/\—|—‘1> (tyx,&)—x. 5)/
A= (27rh @rhy Jm [ [ [¢ oo

. o0\ __ o o]
X > Uz~ a)Alt,z,z,& h)dt do dé + O(h™) = im T, + O(h™)
la|<m
and we reduce the problem to the analysis of the integrals I,,, over a compact set in (¢,z,&).
Concerning the phase function, we observe that

A+ 0(t2.6) - 2.6 = t(A— D) + O(1)) .

where O(t) is uniformly bounded on the support of (¢) A(¢, x, x, &) since the derivatives of (@(t, x,&)—

x.{) are bounded on this set. Finally, to have an uniform bound for the remainder with respect to
m — oo, notice that

|Op.ela(z,8)| = 02 >0 (9.2)

for |¢] < C1, (x,€) €151 (M), A € Iy. The last condition follows easily from the form of the principal
symbol
la(2,6) = €7+ Y ba,r(@)E" + Y ba,r(2)€”
|a|=2 la|<1

of the operator @, constructed in [2], and the fact that |by r(z)| + |Ozba,r(z)| < €1(R) with
€1(R) — 0 as R — +o0o (see Section 2.3 in [2] for more details). Taking R > 1 sufficiently large,
we arrange (9.2) uniformly with respect to |£| < Oy and (z,€) € I;'(\). Now the critical points of
the phase function (tA + ®(t,z,&) — z.£) become t = 0, lo(z,£) = X and by the stationary phase
method we obtain

1 1-n
= g [ X W a0 E V(L X)) alde) + OB,

\a\<m
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where L) (dw) is the Liouville measure on ls(z,£) = A and the remainder O(h' ") is uniform with
respect to A € Iy and m € N. Taking the limit m — oo, we obtain an asymptotics of Aj;.

For the analysis of B we use the representation
1
[efitczj/hr _ i/ ei1QU/R () — Qy)e—i1-1@a/h g
j=1 ih Jy

Following the argument in Section 4.3, [2], we find pseudodifferential operators

Q € Opy ($°((a) " &) ™)), Q € Opy (S°((&) ™))
with symbols g(x,y,&; h), ¢(x,y,&; h) having compact support in £ and (z — y) so that

. 1 . . -
= —ur( / My (1) / ¢ 91/ QT2 Qdsr) + O(h)
2mh? "\, Jo

Moreover, modulo a term in SV (1), the symbol of Q is supported in {(x,¢) : |z| > 2R}. Applying
an approximation of the unitary groups e 181Q1/h o—i(1=5)tQa2/h by Fourier integral operators, we
are reduced to study the integral

1 B i st,x,&)—z. h i —s)t,z,n)—x. h
J = W// /ezt)\/h,tg(t)e (‘Mf £) 6)/ . (%((1 Ye,2.m) 7,)/
’ 0

X B(t, s, X)dtdsdX ,

where X = (z, z,£,n) and the phase functions @4 (¢, z, &), ®o(s, z,n) are related to the eikonal equa-
tions with symbols 1 (z,£) and l3(z,n), respectively. The amplitude B(t, s, X) has a compact sup-
port with respect to (£, 7n) and its support with respect to z is included in the set {(z,€) : |z| > 2R}.
Moreover, 0“B(t, s, X) satisfy decreasing estimates with respect to (z, z) like those in (9.1).

In the same way, as in [2], we check that the critical points of the phase in the integral J are
related to the closed trajectories composed as union of a curve

{exp (THh)(,O) 1 0 <7 < st}
of the Hamilton field H), starting at same point p € {(z,£) € R" : |z| > 2R} and a curve
{eXp(’THlQ)(O') :0< 7 < (1—9)t}, o=exp(stHy,)(p)

of the Hamilton field H;,. For 0 < ¢t < 4;, d; sufficiently small and R > 0 large enough, there are
no such closed trajectories and the critical points are obtained for ¢+ = 0, only. We write the phase
function in the form

EA = sl (2,€) = (1= 8)la(z,m) + O@®)] + (z = 2)(¢ = n)
and the critical points become
=0, () + (1 )& = A o=z E=1.
For |z] > 2R and 0 < s < 1, according to (2.6), we deduce
m(x,€) = sh(x,€) + (1 = s)la(z, &) = € + no(R)|£]?
= li(z,€) + m(R) ] = lz(x. €) + m(R)[€]*
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with n;(R) — 0 as R — 400, i =0,1,2. Thus for A € I and R large enough the energy surface

is non-degenerate. Repeating the argument used for Ay, and applying the stationary phase method,
we get an asymptotics

1

1
J= b [ B0 Loa(dw)ds + ORI,
(2wh)™ Jo Jmg(z,6)=x ’

where L; )(dw) is the Liouville measure on 4(\). Notice that the first term with power A~ 17"
vanishes because we have the factor t0(t) and the term involving h~" yields the contribution to the
leading term in (5.10). Moreover, b(A) has support in a small neighborhood of I; and taking R > 0
large, we may assume that b(\) € C§(Iy). This completes the proof of (5.10).

The above argument shows that for A ¢ I the phase functions in I,,, and J have no critical
points over the support of the integrand. Consequently, by an integration by parts, we obtain

w710 (A - @)@ X)) = 00™)

7=1
uniformly with respect to A ¢ Ij.
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