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Abstract

We prove the existence of smooth positive potentials V (t,x), periodic in time
and with compact support in x for which the Cauchy problem for the wave equa-
tion utt − ∆xu +V (t,x)u = 0 has solutions with exponentially growing global
and local energy. Moreover, we show that there are resonances, z ∈ C, |z| > 1,
associated to V (t,x). c© 2000 Wiley Periodicals, Inc.
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1 Introduction

Consider the Cauchy problem for the wave equation with potential,

(1.1)

{
∂ 2

t u−∆xu+V (t,x)u = 0, (t,x) ∈ R1+3,

u
∣∣
t=s = f1(x), ut

∣∣
t=s = f2(x).

The potential, V ∈C∞(R1+3 ; R), is time periodic and compactly supported, that is

(1.2) ∃ρ,T > 0, ∀(t,x)∈R1+3, V (t +T,x) = V (t,x), suppV ⊂
{
|x| ≤ ρ

}
.

Denote by D the closure of C∞
0 (R3) with respect to the norm

‖ϕ‖D :=
(∫

R3
|∇ϕ(x)|2dx

)1/2
.

For initial data f = ( f1, f2) in the Hilbert space H := D× L2(R3) there is a
unique solution u ∈ C(R ; D) ∩C1(R ; L2(R3)) of (1.1). Define the propagator
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U(t,s) f := (u,ut)(t,x) and denote by U0(t,s) the propagator in the case V = 0.
We denote by

(
· , ·

)
H the scalar product in H. When V = 0 the coefficients are

independent of time so the propagator U0(t,s) depends only on t− s.
For

e :=
1
2
(
|ut |2 + |∇xu|2

)
one has the differential energy law

∂te − divx
(

Re(ut ∇xu)
)

= 2 Re
(
ut (utt −∆u)

)
.

Integrating over R3
x when V = 0 shows that U0 is unitary.

Since V is compactly supported there is a constant α depending only on V so
that,

(1.3) ‖Vu‖H1(R3) ≤ α ‖∇xu‖L2(R3).

Estimating∣∣∫ ut Vu dx
∣∣ ≤ ‖ut‖L2(R3) ‖Vu‖L2(R3) ≤ α ‖ut‖L2(R3) ‖∇xu‖L2(R3),

shows that for solutions of (1.1),

∂t

∫
e(t,x) dx ≤ 2α

∫
e(t,x) dx,

whence

(1.4) ‖U(t,s) f‖H ≤ eα|t−s| ‖ f‖H .

The perturbation U(t,s) f −U0(t,s) f is equal to (w(t),wt(t)), where w is the
unique solution of the Cauchy problem

wtt −∆w = −Vu, w|t=s = wt |t=s = 0 .

Estimate (1.3) shows that Vu ∈ C(R ; H1(R3)) and Vu is supported in |x| ≤ ρ . It
follows that

w ∈C(R ;H2(R3)) ∩ C1(R ;H1(R3)) , suppw(t) ⊂
{
|x| ≤ ρ + |t− s|

}
,

∃C, ∀|t− s| ≤ T,
∥∥(w(t) , wt(t))‖H2(R3)×H1(R3) ≤ C

∥∥(u(s) , ut(s))‖H .

In particular U(t,s) is a compact perturbation of the unitary operator U0(t,s).
Therefore, the spectrum of the Floquet or monodromy operator U(T,0) consists
of essential spectrum equal to the unit circle and at most a countable set of eigen-
values of finite algebraic multiplicity. In the present context, it is known that there
are at most a finite number of eigenvalues with modulus greater than 1 [12].

These results correspond to the intuitive idea that typical waves radiate to infin-
ity escaping the region where the potential can act. For large time such solutions
behave like solutions of the free wave equation. The pure point spectrum off the
unit circle, yield exceptional solutions which do not radiate to infinity.
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If there is a point z ∈ specU(T,0) with |z| > 1, then choosing f as an eigen-
function one has

U(nT,0) f = zn f , n ∈ Z .

Taking n→∞ shows that (1.4) cannot hold with α = 0, and there are solutions that
grow exponentially in time.

It is easy to construct examples of growing solutions when the potential V is per-
mitted to take negative values ([10], [7]). For example, if C∞

0 (R3) 3V = V (x)≤ 0
and is not identically equal to zero, then for g > 0 sufficiently large, the Schrödinger
operator −∆+gV has a strictly negative eigenvalue(

−∆+gV
)
ψ =−λ

2
ψ , ψ ∈S (R3) , λ > 0 .

Then u(t,x) := eλ tψ(x) is an exponentially growing solution. The propagator
U(T,0) for the potential gV (x) satisfies

U(T,0)(ψ,λψ) = eλT (ψ,λψ) , (ψ,λψ) ∈ H .

Consider the perturbed potential gV (x)+εW (t,x) with W smooth, T -periodic, and
compactly supported. The new evolution operator Uε(T,0) satisfies ‖Uε(T,0)−
U(T,0)‖ ≤C ε . So for ε small it has pure point spectrum near eλT .

When V ≥ 0 the situation is radically different. For the time independent case,
V = V (x), the energy ∫ [

e(t,x)+V (x)
|u(t,x)|2

2

]
dx

is conserved and there is no growth.
When Cooper and Strauss extended the Lax-Phillips theory to time periodic

scatterers [8], [9] more than thirty years ago, they conjectured that there exist pe-
riodic potentials V ≥ 0 with compact support so that specU(T,0)∩{|z|> 1} 6= /0.
Numerical computations [15], [17], [18] supported this conjecture. The conjec-
ture was further supported in Cooper [6] where certain perturbations were proved
to lead to slow decay. Cooper conjectured that larger perturbations could lead to
growth. Our main result proves the conjecture of Cooper and Strauss.

Theorem 1.1. There exists a nonnegative, smooth, T -periodic, compactly sup-
ported potential V (t,x) for which the Floquet operator U(T,0) has an eigenvalue
of modulus greater than one.

There are other constructions of growing solutions preceding ours, each failing
for the case of smooth, compact, positive periodic potentials. If one eschews com-
pact support then one can choose V = V (t) independent of x. Fourier transform in
x transforms the problem to

ûtt(t,ξ )+ |ξ |2û(t,ξ )+V (t) û(t,ξ ) = 0 .

One can then choose V ≥ 0 smooth and periodic so that there are ξ such that the
Hill’s operator d2/dt2 +(V (t)+ |ξ |2) has exponentially growing solutions. Such
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growth when the frozen operators have strictly positive conserved energies is called
parametric resonance. Choosing data whose Fourier transform is supported in in-
tervals of ξ where such resonance occurs, yields growing solutions.

For the wave equation with potential, the bicharacteristics are exactly the same
as those of the free wave equation. In particular they lie over rays in (t,x) which
travel along straight lines at speed one. These rays escape the region where the
potential acts and the problem is non trapping. There are examples of exponen-
tially growing solutions with compactly supported periodic perturbations which
trap rays.

In [5], [14] the Dirichlet problem for periodically moving obstacles having
trapped rays is examined. In particular, in [14] it was proved that if we have at least
one bicharacteristic with suitable amplifying properties, then there exist solutions
with exponentially growing local energy. The existence of a trapped bicharacter-
istic is exploited in [4] for the Cauchy problem for the equation

∂
2
t u − divx

(
a(t,x)gradu

)
= 0 ,

where a(t,x) is periodic in time, 0 < c ≤ a(t,x) ≤ C and a(t,x) = 1 for |x| ≥ ρ.
The growth associated to these trapped rays is connected with the presence of con-
tinuous spectrum of the monodromy operator U(T,0) outside the unit disk. In
that regard, recall the conjecture (see [13]) that for trapping periodic perturbations,
the cut-off resolvent χ(x)(U(T,0)− zI)−1χ(x) with χ ∈ C∞

0 (R3) equal to 1 for
|x| ≤ ρ +T does not have a meromorphic continuation from {z ∈C : |z| ≥ A� 1}
to {|z|> 1}.

Our strategy is to confine and pump. The pump is based on the equation with
potential q(t) in the ball {|x| ≤ L} and Dirichlet boundary conditions on the bound-
ary, {|x|= L}. Expanding in eigenfunctions of the Dirichlet Laplacian, yields Hill’s
equations

a′′n(t) + q(t)an(t) + λnan(t) = 0

for the Fourier coefficients an(t). One chooses q(t) so that one of these Hill’s equa-
tions has exponentially growing solutions. Choose a sequence of cutoff functions
χδ (x) ∈ C∞

0 (|x| < L), 0 ≤ χ ≤ 1, with χ = 1 except in layer of width δ of the
boundary. Replacing the potential q(t) by q(t)χδ (x) changes the evolution oper-
ator little in norm, so the operator Kδ (T ) taking Cauchy data at t = 0 to data at
t = T has an eigenvalue z1 of modulus greater than 1. That is the pump.

Next replace the Dirichlet condition by a potential bε(x) where bε(x)∈C∞
0 (R3)

is a barrier supported in {L ≤ |x| ≤ L + 1}, and equal to 1/ε for {L + ε ≤ |x| ≤
L + 1− ε}. Let V ε(t,x) := bε(x)+ q(t)χδ (x) with ε > 0. When ε is sufficiently
small, initial waves supported in |x| ≤ L are nearly confined to that ball. There is
leakage through the barrier. We prove that the growth from the pump beats the loss
by showing that there is an eigenvalue of modulus greater than one.
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Our construction is inspired by the analysis of Beale [2] for the Helmholtz res-
onator. For z1 and ϕ the eigenvalue and eigenfunction of Kδ (T ), the main difficulty
is to prove that the resolvents (Kδ (T )− zI)−1ϕ and (Uε(T,0)− zI)−1ϕ for z be-
longing to a small circle γ centered at z1 are close. Since Kδ (T ) has an eigenvalue
z1, |z1| > 1, the Cauchy contour integral of its resolvent over γ is non zero. It fol-
lows that the integral of the resolvent of Uε(0,T ) over γ is non zero, proving the
existence of an eigenvalue zε , |zε |> 1 of Uε(0,T ). For the problem of Beale with
time independent coefficients, it sufficed to compare the resolvents of the genera-
tors. For that, the analysis leaned heavily on elliptic regularity. The heart of our
proof is the convergence of(

ϕ , (Uε(T,0))− zI)−1
ϕ

)
H
→

(
ϕ , (Kδ (T )− zI)−1

ϕ

)
H

,

whose proof is more delicate.
For the problem (1.1) there is a notion of resonance and a Corollary of Theorem

1.1 proves the existence of resonances. The existence of such resonances for pos-
itive, compact, periodic potentials is conjectured in the same articles cited above.
Recall three equivalent definitions of resonances (see [12] [3], for details concern-
ing resonances). The first definition concerns smooth solutions u∈C∞(R ;D ′(R3))
of (1.1) which though not necessarily small for |x| → ∞ they are outgoing. Outgo-
ing solutions are defined as follows. For Φ∈C∞

0 (R3)×C∞
0 (R3) denote U0(t,0)Φ =(

wΦ(t),∂twΦ(t)
)
. A solution u is outgoing when for all Φ,

lim
t→−∞

(〈
u(t) , wΦ(t)

〉
+

〈
ut(t) , ∂twΦ(t)

〉)
= 0 ,

where 〈 , 〉 means the action in the sense of distributions. A point z = eiσT is a
resonance if there exists an outgoing solution u(t,x) of (1.1) with data 0 6= f =
( f1, f2) ∈H such that e−iσtu(t,x) is periodic in t with period T . In this case σ ∈C
is called a scattering frequency.

The second definition concerns cut-off resolvents. Suppose that χ ∈C∞
0 (R3) is

identically equal to one on a neighborhood of {x : dist(x,suppV )≤ T}. Then the
cut-off resolvent χ(U(T,0)− z)−1χ has a meromorphic extension from |z| � 1 to
z 6= 0 and the poles are the resonances.

Finally, the resonances z 6= 0 are the eigenvalues of the reduced Floquet opera-
tor,

Zb(T,0) := Pb
+U(T,0)Pb

− ,

where Pb
± are the orthogonal projections on the orthogonal complements of Lax-

Phillips [10] spaces,

Db
± := { f ∈ H : U0(t) f = 0, when |x| ≤ b± t, ±t ≥ 0}, b > ρ.

The spectrum of Zb(T,0) is independent on b > ρ and in C \ {0} it consists of a
discrete set of eigenvalues with finite multiplicity which can only accumulate at 0.

For T -periodic, compactly supported, smooth, V , it is known that the following
are equivalent (Theorem 5.5.3 in [12]):
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i. One has local energy decay in the sense that for any χ ∈ C∞
0 (R3) the operator

χU(t,0)χ tends strongly to zero as t → ∞.
ii. One has exponential decay of local energy in the sense that for any χ ∈C∞

0 (R3)
there is a constant C = C(χ) > 0 so that for t ≥ 0,∥∥χU(t,0)χ

∥∥
L (H) ≤ C e−Ct .

iii. The operator Zb(T,0) has no eigenvalues z with |z| ≥ 1.

The dichotomy given by the presence or absence of eigenvalues of Z(T,0) of
modulus greater or equal than one, determines whether the local energy decays or
not. There are some sufficient conditions guaranteeing the absence of such point
spectrum which do not pretend to be sharp [12]. Theorem 5.4.1 in [12] proves
that for |λ | > 1, the operator Pa

+, a > ρ, is an isomorphism from the generalized
eigenspace Gλ of U(T,0) corresponding to λ to the generalized eigenspace Fλ of
Z(T,0) corresponding to λ . Thus Z(T,0) has no eigenvalue λ , |λ |> 1, if and only
if U(T,0) has no such eigenvalue and we obtain the following.

Corollary 1.2. There exists a nonnegative, smooth, T -periodic, compactly sup-
ported potential V (t,x) for which the problem (1.1) has a resonance with modulus
greater than one.

Remark 1.3. 1. Our analysis of the confine and pump mechanism works for general
domains and dimensions. For ease of reading, we present the case of a ball in R3.
2. In Section 5 we give a proof independent of [12] that there are resonances near
the eigenvalues of the pump.

The paper is organized as follows. Section 2 is devoted to studying the pump.
Section 3 proves the weak convergence on space time of the solutions of the equa-
tion with potentials V ε to those of the uncoupled Dirichlet problems for suitably
restricted weakly convergent Cauchy data. In Section 4 we establish fixed time
weak convergence of the resolvent (Uε(T,0)− zI)−1ϕ to the corresponding resol-
vent of the decoupled Dirichlet problems when ϕ vanishes for L ≤ |x| ≤ L+1 and
z does not meet the spectra of Uε(T,0). The key step is a bound on the resolvents
independent of ε . The main results are derived from this in Section 5.

2 The pump

Define BL := {x ∈ R3 : |x| ≤ L}. The starting point of the construction is the
mixed initial boundary value problem in Rt ×BL,

(2.1)

{
utt −∆xu+q(t)u = 0, (t,x) ∈ R×BL,

u(t,x)
∣∣
|x|=L = 0 .

Choose a T -periodic smooth potential q(t)≥ 0 such that the equation

(2.2) a′′(t)+q(t)a(t)+λa(t) = 0
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has an interval of instability I =]α,β [⊂ R+ (see for instance [11]). Choose L > 0
and k ∈N so that λ = k2π2/L2 ∈ I. Then, there is a µ1 with |µ1|> 1 and a solution
a(t) of (2.2) so that (

a(T ),a′(T )
)

= µ1
(
a(0),a′(0)

)
.

Fix k and L. Then,

u(t,x) :=

|x|−1 a(t) sin(kπ|x|/L) if x 6= 0,

k π a(t)/L if x = 0,

is a solution of (2.1) which is exponentially growing as t →+∞.
Denote by K(T ) the operator taking Cauchy data (u0,u1)∈H1

0 (BL)×L2(BL) at
time t = 0 to Cauchy data (u(T ),ut(T )) at time T . Denote by K0(T ) the analogous
operator for the problem with q = 0. Then K0(T ) is unitary in the norm

‖(u(t),ut(t))‖2 :=
1
2

∫
BL

(
|∇xu(t,x)|2 + |ut(t,x)|2

)
dx .

The operator K(T ) is a compact perturbation of K0(T ) and, by construction, K(T )
has an isolated eigenvalue µ1 with |µ1|> 1.

For each 0 < δ < L/10, choose χδ (x) ∈C∞
0 (BL) with

0 ≤ χ
δ (x)≤ 1, χ

δ
∣∣
BL−δ

= 1 .

Denote by Kδ (T ) ∈ Hom(H1
0 (BL)×L2(BL)) the evolution operator associated to

the differential operator ∂ 2
t −∆x + q(t)χδ (x) with Dirichlet boundary conditions

on |x|= L. The energy method shows that as δ → 0 we have

(2.3)
∥∥Kδ (T ) − K(T )

∥∥
Hom(H1

0 (BL)×L2(BL)) → 0 .

Choose r < |µ1|−1, so that µ1 is the only eigenvalue of K(T ) belonging to the
disk Dr of radius r and center µ1. The norm convergence (2.3) implies that one can
choose 0 < δ � 1 so that Kδ (T ) has at least one eigenvalue z1 inside the disk Dr
and no eigenvalue on the boundary ∂Dr. The eigenvalue z1 may have multiplicity
greater than one.

In the following we will assume that 0 < δ � 1 is fixed so that Kδ (T ) has an
eigenvalue z1 ∈ Dr. Consider the wave equation

(2.4) utt −∆xu+V ε(t,x)u = 0 , V ε(t,x) := bε(x)+q(t)χ
δ (x)

with barrier potential

0≤ bε(x)∈C∞
0 ({L < |x|< L+1}), bε(x)= 1/ε on

{
L+ε < |x|< L+1−ε

}
.

For Cauchy data
(u(0,x),ut(0,x)) = w = (w1(x),w2(x))

which are supported in BL, and for ε > 0 sufficiently small, the solution at time
T is mostly confined to {|x| ≤ L} and is well approximated by the solution given
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as the extension by zero of Kδ (T )w. We prove that for 0 < ε � 1 and t = T the
evolution operator Uε(T,0) for (2.4) has an eigenvalue inside Dr.

3 Weak convergence

The first step is to study the weak limits as ε → 0 of the differential equations
on R1+3 with potentials V ε . Introduce the energy

Eε(u, t) :=
1
2

∫
R3

(
|∇t,xu(t,x)|2 +bε(x)|u(t,x)|2

)
dx .

When there is little risk of confusion the dependence on u will be suppressed. For
t > 0, the energy identity implies

Eε(t) − Eε(0) = −2Re
∫ t

0

∫
R3

q χ
δ uūt dt dx .

For (w1,w2) ∈ D×L2(R3) = H we use two norms

‖(w1,w2)‖2
ε =

∫
R3

(
|w2|2 + |∇xw1|2 + bε |w1|2

)
dx ,

and

‖(w1,w2)‖2
H =

∫
R3

(
|w2|2 + |∇xw1|2

)
dx.

Denote by D0 the elements of D which vanish for L≤ |x| ≤ L+1. On D0×L2(R3)
the norms ‖ ·‖H , and ‖ ·‖ε are equal. A function u ∈C(R ; D0) vanishes on |x|= L
and |x| = L + 1. It is in this way that Dirichlet conditions at these boundaries are
expressed in the following Proposition.

Proposition 3.1. Consider a sequence εn → 0 and weakly convergent Cauchy data
in H,

wn = (wn
1,w

n
2) ⇀ w ∈ H .

Suppose in addition that

(3.1) ∃C > 0, ∀n, ‖wn‖εn ≤ C .

Denote by un be the solution of the equation (2.4) with initial data wn. Then for
any T > 0 there exists u so that,

un ⇀ u weak star in L∞([0,T ] ; D) ,

and
∂tun ⇀ ∂tu weak star in L∞([0,T ] ; L2(R3)) .

Moreover, u(t) ∈ C(R ;D0) ∩ C1(R ; L2(R3)) and u(t) for |x| ≤ L is the unique
solution of the Dirichlet problem in R×BL

(3.2) utt −∆xu+q(t)χ
δ (x)u = 0 , (u(0),ut(0)) = w

∣∣
BL

, u
∣∣
|x|=L = 0,



EXPONENTIAL GROWTH FOR THE WAVE EQUATION 9

while u(t) for |x| ≥ L+1 is the unique solution of the Dirichlet problem in R×{x :
|x| ≥ L+1}

(3.3) utt −∆xu = 0 , (u(0),ut(0)) = w
∣∣
{|x|≥L+1}, u||x|=L+1 = 0.

Remark 3.2. The values of the initial time derivative ∂twn
∣∣
L≤|x|≤L+1 on {L ≤ |x| ≤

L+1} do not influence the limit.

Proof. Fix T > 0. The energy estimate shows that un is bounded in L∞([0,T ] ; D)
and ∂tun is bounded in L∞([0,T ] ; L2(R3)). It suffices to show that any weak star
limit point vanishes for L ≤ |x| ≤ L+1 and satisfies (3.2) and (3.3).

Passing to a subsequence, we can suppose that un converges weak star to v, ∂tun

converges weak star to ∂tv in L∞([0,T ] ; D) and L∞([0,T ] ; L2(R3)), respectively.
The energy estimate implies that v = 0 for L ≤ |x| ≤ L +1. That is, v takes values
in D0. Therefore vt = 0 for L ≤ |x| ≤ L+1.

To identify the limit in {|x| ≥ L + 1} where the lower order terms vanish, sup-
pose that ϕ ∈C∞

0 (Rt ×R3
x) vanishes when |x|= L+1 and t ≥ T . An integration by

parts shows that∫ T

0

∫
|x|≥L+1

un
(

∂
2
t −∆x

)
ϕ dt dx =∫ T

0

∫
|x|=L+1

un(t,x)ϕr(t,x)dtdSx +
∫
|x|≥L+1

(
wn

1 ϕ(0,x) − wn
2 ∂tϕ(0,x)

)
dx,

where ϕr denotes the radial derivative of ϕ.

Since un is weakly convergent in L2([0,T ] ; H1
loc{|x| ≤ L + 1}), its trace on

|x|= L+1 converges weakly in L2([0,T ] ; L2({|x|= L+1})) to the trace of v. On
the other hand, since the limit v vanishes for L≤ |x| ≤ L+1 the trace of v vanishes,
so passing to the limit yields∫ T

0

∫
|x|≥L+1

v
(

∂
2
t −∆x

)
ϕ dt dx =

∫
|x|≥L+1

(
w1 ϕ(0,x) − w2 ∂tϕ(0,x)

)
dx .

This is the weak form of the equation (3.2) with Dirichlet boundary condition on
|x| = L + 1. Uniqueness for that problem shows that v is equal to the advertised u
on that set.

To identify the limit v in |x| ≤ L, suppose that ψ ∈C∞(Rt ×BL) vanishes when
|x|= L and for t ≥ T . Integration by parts shows that∫ T

0

∫
BL

un
(

∂
2
t −∆x +q(t)χ

δ (x)
)

ψ dt dx =
∫

BL

(
wn

1(x)ψ(0,x)−wn
2(x)ψt(0,x)

)
dx

+
∫ T

0

∫
|x|=L

un(t,x)ψr(t,x)dt dSx +
∫ T

0

∫
BL

unq(t)χ
δ (x)ψ dt dx.
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Passing to the limit in the first line is easy. On the other hand, we have already
shown that the traces of un on {x : |x|= L} tend to zero weakly in L2([0,T ]; L2({|x|=
L})). Thus passing to the limit, we find∫ T

0

∫
BL

v
(

∂
2
t −∆x +q(t)χ

δ (x)
)

ψ dt dx =∫
BL

(
w1(x)ψx(0,x)−w2(x)ψt(0,x)

)
dx +

∫ T

0

∫
BL

vq(t)χ
δ (x)ψ dt dx.

This is the weak form of the initial boundary value problem (3.3) with Dirichlet
boundary conditions on {x : |x|= L}. This uniquely determines the restriction of v
to BL as the solution of (3.3). �

Proposition 3.1 proves weak convergence in regions of space time. The next
example shows that the sequence of solutions un(t) need not converge weakly for t
fixed.

Example. If wn
1 = 0 and wn

2 = 1 on a neighborhood of the sphere, {|x|= L+1/2}
in the center of the barrier, then finite speed of propagation implies that on a space
time neighborhood of {t = 0}×{|x| = L + 1/2}, un(t,x) = yn(t) where yn is the
solution of the ordinary differential equation,

d2yn

dt2 +
yn

εn
= 0, yn(0) = 0,

dyn

dt
(0) = 1 .

Then, yn(t) =
√

εn sin(t/
√

εn), dyn/dt = cos(t/
√

εn). Thus for typical εn → 0,
dyn(t)/dt does not converge weakly for t fixed.

The next corollary shows that one does have weak convergence in the comple-
ment of the barrier.

Corollary 3.3. Suppose that εn,wn,u and un are as in Proposition 3.1. Then, for
every fixed t > 0, the sequence

(
un(t) , ∂tun(t)

)
converges weakly to

(
u,∂tu

)
outside

the barrier, that is for every Φ = (Φ1,Φ2) ∈H with suppΦi∩{L < |x|< L+1}=
/0, i = 1,2,

lim
n→∞

((
un(t) , ∂tun(t)

)
, Φ

)
H

−→
((

u(t) , ∂tu(t)
)
,Φ

)
H
.

Proof. Since the un,un
t are bounded in H it suffices to prove the assertion for Φi ∈

C∞
0
(
R3 \{L ≤ |x| ≤ L+1}

)
since such data are dense in the desired Φ.

Estimate (3.1) implies that w1 vanishes for L ≤ |x| ≤ L+1.
An integration by parts in x yields,

0 =
∫ T

0

∫
R3

(
∂

2
t un−∆xun +V εnun)

Φ(x) dx

=
∫ T

0
(∂ 2

t un,Φ)L2 dt +
∫ T

0
(∇xun,∇xΦ)L2 dt +

∫ T

0
(q(t)χ

δ un,Φ)L2 dt.
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The boundary terms on |x|= L and |x|= L+1 vanish since suppΦ∩{x : L < |x|<
L+1}= /0.

Proposition 3.1 implies weak convergence of un in L2([0,T ] ; D) and weak con-
vergence of un

t in L2([0,T ] ; L2(R3)) to u and ut , respectively. The fundamental
theorem of calculus implies∫ T

0
∂t(un

t ,Φ)L2 dt = (un
t (T ),Φ)L2 − (wn

2,Φ)L2 .

Passing to the limit n → ∞, yields

(3.4)

lim
n→∞

(un
t (T ),Φ)L2 = (w2,Φ)L2

−
∫ T

0
(∇xv,∇xΦ)L2 dt−

∫ T

0

∫
|x|≤L

q(t)χ
δ vΦ dxdt.

Since Φ is supported outside of the barrier, a similar integration by parts yields

(3.5) (ut(T ),Φ)L2 = (w2,Φ)L2 −
∫ T

0
(∇xu,∇xΦ)L2dt−

∫ T

0

∫
|x|≤L

q(t)χ
δ uΦ dxdt.

Combining (3.4) and (3.5) shows that that un
t (T ) converges weakly to ut(T ) in

L2
(
R3 \{L ≤ |x| ≤ L+1}

)
.

Next

(3.6)
(∇xun(T ),∇xΦ)L2 − (∇xwn

1,∇Φ)L2 =−(un(T ),∆xΦ)L2 +(wn
1,∆xΦ)L2

=−
∫ T

0
∂t(un,∆xΦ)L2dt =−

∫ T

0
(un

t ,∆xΦ)L2dt.

The same computation with un replaced by u yields

(3.7) (∇xu(T ),∇xΦ)L2 = (∇xw1,∇Φ)L2 −
∫ T

0
(ut ,∆xΦ)L2dt.

In (3.6) use the weak convergence of un
t in L2

(
[0,T ] ; L2(R3)

)
and that of wn

1 in
D to find

lim
n→∞

(
∇xun(T ),∇xΦ

)
L2 =

(
∇xw1,∇xΦ

)
L2 −

∫ T

0

(
ut ,∆xΦ

)
L2dt .

Comparing with (3.7) completes the proof of weak convergence. �

4 Weak resolvent convergence

Denote by Sε(t) = Uε(t,0) the map from Cauchy data at time zero to Cauchy
data at time t for the solutions of the wave equation with periodic potential V ε .
Next denote by Sε

0(t) the map from Cauchy data at time zero to Cauchy data at
time t for the wave equation with time independent potential bε(x). Finally, given
w = (w1,w2) ∈ H such that both components vanish on {x : L ≤ |x| ≤ L + 1},
introduce the operator

D(t)w :=
(
u(t) , ut(t)

)
,
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where u is as in Proposition 3.1. More precisely, D(t)w = 0 for L≤ |x| ≤ L+1 and
if D(t)w = (u(t),∂tu(t)), then u is the solution of the Dirichlet problems in |x| ≤ L
and |x| ≥ L +1, respectively, for ∂ 2

t −∆x +q(t)χδ (x) and ∂ 2
t −∆x. Notice that for

w with the properties above if z /∈ spec D(t), we have (D(t)− zI)−1w = (g1,g2),
where g1 and g2 vanish for L ≤ |x| ≤ L+1.

The operator Sε
0(t) is not defined in terms of U0(t). Since bε(x) is independent

on t, the operator Sε
0(t) is unitary in the ε-dependent norm ‖ · ‖ε . More precisely,

for a bounded operator A ∈L (H) we use the operator norm

‖A‖ε = sup
f 6=0

‖A f‖ε

‖ f‖ε

,

‖.‖ε being the norm in H related to bε(x) defined in Section 3.
Therefore, for |z|> 1 we have∥∥(Sε

0(t)− zI)−1∥∥
ε
≤ 1

|z|−1
.

The time dependent lower order term, q(t)χδ (x), is a bounded perturbation.
Therefore,

∀T , ∃C, ∀t ∈ [0,T ], ε ∈]0,1], ϕ ∈ H, ‖Sε(t)ϕ‖ε ≤ C‖ϕ‖ε ,

with C > 0 depending on T > 0 but not on ε .

Lemma 4.1. For each ε > 0, T > 0, the operator Sε(T )−Sε
0(T ) ∈L (H) is com-

pact. In addition, if wn ⇀ 0 weakly in H and satisfies (3.1), then for n → ∞,

sup
0≤t≤T

sup
0<ε≤1

‖(Sε(t)−Sε
0(t))w

n‖ε → 0 .

Proof. Fix 0 < ε ≤ 1 and consider the solutions un and vn of the Cauchy problems

(∂ 2
t −∆x)un +V εun = 0, (un, ∂tun)(0,x) = wn,

(∂ 2
t −∆x)vn +bεvn = 0, (vn, ∂tvn)(0,x) = wn.

Then (un− vn) satisfies(
∂

2
t −∆+bε)(un− vn) = −q(t)χ

δ (x)un, (un− vn)(0) = ∂t(un− vn)(0) = 0 .

The energy identity implies that for 0 ≤ τ ≤ T ,

(4.1) ‖un(τ,x)− vn(τ,x)‖2
ε =−2Re

∫
τ

0

∫
R3

un q χ
δ

∂t(un− vn)dtdx.

Proposition 3.1 implies that

un → 0 weak star in L∞([0,T ] ; D),

and
∂t(un− vn) → 0 weak star in L∞([0,T ] ; L2(R3)).
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Since q χδ has compact spatial support it follows that

q χ
δ un → 0 strongly in L2([0,T ] ; L2(R3)).

On the other hand,

∂t(un− vn) → 0 weakly in L2([0,T ] ; L2(R3)) ,

and we deduce ∫
R3

un q χ
δ

∂t(un− vn)dx → 0 in L1([0,T ] ; C) .

This together with (4.1) completes the proof. �

Proposition 4.2. Let K ⊂ {z ∈ C : |z|> 1} be a compact set disjoint from

spec D(T )∪
(
∪0<ε≤ε0 specSε(T )

)
.

Then there exist ε0 > 0 and C0 > 0 so that

(4.2) ∀ ε ∈]0,ε0], z ∈ K, ‖(Sε(T )− zI)−1‖ε ≤ C0 .

Proof. In {z ∈ C : |z| � 1}, the operators Sε(T )− zI are compact perturbations
of the invertible operators Sε

0(T )− zI both depending analytically on z. The ana-
lytic Fredholm theory implies that for each ε , (Sε(T )− zI)−1 has a meromorphic
continuation in {z ∈ C : |z|> 1}.

If the proposition were false, there would exist εn → 0, zn ∈ K, and wn with

(4.3) ‖wn‖εn = 1 , ‖(Sεn(T )− znI)wn‖εn → 0 .

Both parts of (4.3) give strong control in the barrier. Passing to a subsequence, we
may suppose that wn converges weakly to a limit w in H and zn → z ∈ K. As in
Proposition 3.1, we deduce that w = 0 for L≤ |x| ≤ L+1 and the definition of D(T )
given in the beginning of this section implies (D(T )−zI)w = 0 for L≤ |x| ≤ L+1.

We claim that (D(T )−zI)w = 0 for every x. Corollary 3.3 implies that Sεn(T )wn
converges weakly to D(T )w outside of the barrier and the second expression in
(4.3) yields

‖Sεn(T )wn− znwn‖εn → 0.

Passing to the limit n → ∞, shows that D(T )w− zw = 0 for x ∈ R3 \ {L ≤ |x| ≤
L+1}, and the claim is established.

Consequently, D(T )w = zw for all x ∈ R3. Since z is not in the spectrum of
D(T ), it follows that w = 0. Next

‖(Sεn(T )− zI)wn‖εn = ‖(Sεn
0 (T )− zI)wn +(Sεn(T )−Sεn

0 (T ))wn‖εn

≥ ‖(Sεn
0 (T )− zI)wn‖εn +‖(Sεn(T )−Sεn

0 (T ))wn‖εn .

Lemma 4.1 implies that the second summand tends to zero so

‖(Sεn(T )− zI)wn‖εn ≥ (|z|−1)‖wn‖εn +o(1) = (|z|−1)+o(1) .

This contradicts (4.3) and therefore proves the proposition. �
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Remark 4.3. 1. It follows that for all ϕ and 0 < ε ≤ ε0,

‖(Sε(T )− zI)−1
ϕ‖H ≤ ‖(Sε(T )− zI)−1

ϕ‖ε ≤ C0 ‖ϕ‖ε ≤ C√
ε
‖ϕ‖H .

Therefore

(4.4) ‖(Sε(T )− zI)−1‖L (H) ≤
C√

ε
.

On the other hand, for ϕ vanishing in L ≤ |x| ≤ L+1 we get

‖(Sε(T )− zI)−1
ϕ‖H ≤C0‖ϕ‖H .

2. The compactness of the lower order term is related to the fact that it does not
affect the leading order effects in the propagation of singularities. On the negative
side, this eliminates one possible strategy for amplification and it prevents us from
using microlocal techniques. It is a key ingredient in the proofs of this section.

Proposition 4.4. Suppose that both components of ϕ ∈H vanish for L≤ |x| ≤ L+1
and z ∈ {z ∈ C : |z|> 1} satisfies

z /∈ specD(T ) ∪
(
∪0<ε≤ε0 specSε(T )

)
.

Then
lim
ε→0

(Sε(T )− zI)−1
ϕ = (D(T )− zI)−1

ϕ weakly in H .

Proof. Let

(4.5) ψ
ε := (Sε(T )− zI)−1

ϕ .

Since ‖ϕ‖ε is bounded independent of ε , the resolvent estimate (4.2) implies that
uniformly in ε we have

(4.6) ‖ψ
ε‖ε = ‖(Sε(T )− zI)−1

ϕ‖ε ≤ C .

Since ‖ψε‖H ≤ ‖ψε‖ε , every subsequence has a subsequence which is weakly
convergent. Denote by ψ the weak limit in H of such a weakly convergent sub-
sequence. Clearly, ψ vanishes for L ≤ |x| ≤ L + 1. It suffices to show that ψ =
(D(T )− zI)−1ϕ .

Applying Sε(T )− zI to (4.5), we find

(Sε(T )− zI)ψε = ϕ .

Since ψ vanishes for L ≤ |x| ≤ L + 1, an application of Corollary 3.3 shows that
Sε(T )ψε converges weekly to D(T )ψ in D0 × L2(R3 \ {L ≤ |x| ≤ L + 1}). Thus
passing to the limit ε → 0, we deduce

(D(T )− zI)ψ = ϕ .

Therefore ψ = (D(T )− zI)−1ϕ and the proof is complete. �
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5 Main theorem

Our construction in Section 2 shows that for r > 0 small enough the operator
Kδ (T ) with fixed δ > 0 has exactly one eigenvalue z1 inside the disk Dr = {z ∈C :
|z− z1| ≤ r} with eigenfunction ϕ . The next result is more precise than Theorem
1.1 and Corollary 1.2.

Theorem 5.1. Suppose that γ = {z ∈ C : |z− z1| = r, |z| > 1} is a circle disjoint
from the spectrum of Kδ (T ) so that Kδ (T ) has exactly one eigenvalue z1 in Dr.
Then there exists an ε0 so that for 0 < ε ≤ ε0 the operator Sε(T ) has an eigenvalue
in Dr. For the same values of ε the problem (1.1) with potential V ε(t,x) has a
resonance in Dr.

Proof. If Kδ (T )ϕ = z1ϕ, ϕ 6= 0, it is clear that we can extend ϕ as 0 outside BL
and D(T )ϕ = z1ϕ. First we prove that Sε(T ) has an eigenvalue. If Sε(T ) has an
eigenvalue on γ , the assertion holds, so we suppose that Sε(T ) has no eigenvalues
on γ.

For |z| � 1 we write

(D(T )− zI)−1
ϕ = f1(z)+ f2(z),

where f1(z) ∈ H vanishes outside BL, while f2(z) ∈ H vanishes for |x| ≤ L + 1.
Applying D(T )− zI, we deduce (D(T )− zI) f2(z) = 0 and since the propagator of
the Dirichlet problem in {x ∈ R3 : |x| ≥ L + 1} has no eigenvalues z, |z| > 1, we
obtain f2(z) = 0. Consequently,

(D(T )− zI)−1
ϕ = (Kδ (T )− zI)−1

ϕ = f1(z).

For z ∈ γ by analytic continuation we deduce

(D(T )− zI)−1
ϕ = (Kδ (T )− zI)−1

ϕ,

hence the operator D(T ) has no eigenvalues z ∈ γ. Next

1
2πi

∮
γ

(D(T )− zI)−1
ϕ dz =

1
2πi

∮
γ

(Kδ (T )− zI)−1
ϕdz = ϕ .

Since both components of ϕ vanish on {L ≤ |x| ≤ L+1}, we have weak resolvent
convergence given by Corollary 3.3. Moreover,∮

γ

(
ϕ , (D(T )− zI)−1

ϕ
)

H dz 6= 0 .

The estimate (4.2) implies that there is a constant C so that

sup
0<ε≤ε0

sup
z∈γ

∣∣∣(ϕ , (Sε(T )− zI)−1
ϕ

)
H

∣∣∣ ≤ C .
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Together with the weak convergence from Proposition 4.4, the dominated conver-
gence theorem implies that

lim
ε→0

∮
γ

(
ϕ , (Sε(T )− zI)−1

ϕ
)

H dz =
∮

γ

(
ϕ , (D(T )− zI)−1

ϕ
)

H dz 6= 0 .

Therefore, there exists an ε1 > 0 so that for 0 < ε ≤ ε1,

(5.1)
∮

γ

(
ϕ , (Sε(T )− zI)−1

ϕ
)

H dz 6= 0.

Consequently, for these ε , the operator (Sε(T )− zI)−1 is not analytic in Dr. Hence
Sε(T ) has an eigenvalue inside Dr.

Theorem 5.4.1 of [12] shows that every eigenvalue zε of Uε(T,0) with |zε |> 1
is automatically a resonance for the problem (1.1) with V ε(t,x). Moreover, the
algebraic multiplicities of the eigenvalue and the resonance are the same.

We give an independent proof of the weaker fact that there is a resonance in
Dr based on the second definition of resonances as the poles of the meromorphic
continuation of the cut-off resolvent given in Section 1.

Fix ε so that 0 < ε ≤ ε1 and (5.1) holds. Let Φ ∈C∞
0 (R3) be a cut-off function

such that Φ(x) = 1 for x ∈ BL. Then∮
γ

(
Φϕ , (Sε(T )− zI)−1

Φϕ
)

H dz =
∮

γ

(
ϕ,Φ(Sε(T )− zI)−1

Φϕ
)

Hdz 6= 0.

Therefore the cut-off resolvent Φ(Sε(T )− zI)−1Φ is not analytic in Dr which
proves the existence of a resonance in Dr. �
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