
EIGENVALUES OF THE REFERENCE OPERATOR ANDSEMICLASSICAL RESONANCESVINCENT BRUNEAU AND VESSELIN PETKOVAbstrat. We prove that the estimate of the number of the eigenvalues in intervals [��Æ; �+Æ℄; 0 <hC � Æ � C, of the referene operator L#(h) related to a self-adjoint operator L(h) is equivalentto the estimate of the integral over [� � Æ; � + Æ℄ of the sum of harmoni measures assoiated tothe resonanes of L(h) lying in a omplex neighborhood 
 of � > 0 and the number of the positiveeigenvalues of L(h) in [�� Æ; �+ Æ℄. We apply this result to obtain a Breit-Wigner approximationof the derivative of the spetral shift funtion near ritial energy levels.1. IntrodutionThis paper is devoted to the analysis of the onnetion between the distribution of the semi-lassial resonanes zj(h) of a Shr�odinger type operator L = L(h); 0 < h � h0, and the behaviorof the ounting funtionN(L#(h); [�; �℄) = #f� 2 R : � 2 spppL#(h); � � � � �gof the so alled referene operator L#(h) related to L(h) (see Setion 2). Under the general "blakbox" assumptions (2.1)-(2.7) we may de�ne the semi-lassial resonanes w 2 C � by omplexsaling [26℄, [23℄. Let Res L be the set of resonanes of L. Then for every relatively ompat opendomain 
 �� fz 2 C : Re z > 0g the estimateN(L#(h); [��; �℄) = O�� �h2�n#=2�; n# � n; � � 1implies the bound #fw 2 Res L \ 
g � C(
)h�n# ; 0 < h � h0 (1.1)(see [26℄, [23℄ and, [27℄ for the lassial ase). Given an interval [E0; E1℄; 0 < E0 < E1, suh thatevery � 2 [E0; E1℄ is a non-ritial energy level for the prinipal symbol of L, a more preise resultholds and reently J. F. Bony [1℄ proved (see also [3℄ for similar results onerning ritial energylevels) that the ondition N(L#(h); [� � Æ; �+ Æ℄) � CÆh�n# (1.2)for all � 2 [E0; E1℄; 0 < hC1 � Æ � C1, implies#fw 2 C : w 2 Res L; jw � �j � Æg � CÆh�n# (1.3)for � 2 [E0; E1℄ and 0 < hB � Æ � B (see also [19℄ for the ase of ompat perturbations).Moreover, under the assumption (1.2) we an obtain a Weyl type asymptotis and a Breit-Wignerapproximation of the spetral shift funtion �(�; h) (see [8℄ for more details). Finally, there existsa lose relation between the behavior of �(�; h) and that of N(�) = N(L#; ℄�1; �℄). This relationhas been studied by S. Nakamura [16℄ in the ase of short range perturbations of the Shr�odinger1



2 V. BRUNEAU, V. PETKOVoperator L = �h2� + V (x) and by the authors [7℄, [8℄ in the setup of "blak box" long rangesattering.It is natural to expet that some information on the distribution of the resonanes in a omplexneighborhood 
 of [E0; E1℄ will imply (1.2) and via the results in [8℄ the asymptotis of �(�; h). Toour best knowledge it seems that there are no suh results in the literature. The purpose of thispaper is to show that (1.2) is equivalent to a similar ondition involving the sum of the harmonimeasures !C� (w; J) = ZJ j Imwj�jt� wj2 dt; J � R = �C �related to the resonanes w; Imw < 0; lying in a omplex neighborhood of [E0; E1℄. We refer to [15℄,[13℄, [18℄, [19℄, [4℄ for the results onerning the Breit-Wigner approximations and the harmonimeasures !C� (w; :). More preisely, the ondition (1.2) is equivalent to the same ondition for thefuntion M
(�) = Xw2Res L; w2
;Imw 6=0 !C� (w; ℄ �1; �℄) + #f� 2℄�1; �℄ \
 : � 2 sppp Lg(Theorem 1) whih may be onsidered as an analogue of the ounting funtion of eigenvalues. No-tie that the positive eigenvalues � 2 sppp L oinide with the resonanes w 2 R+ and the funtionM
(�) is ompletely determined by the resonanes in 
: In partiular, from Theorem 1 we obtaina new proof of the impliation (1.1) ) (1.2) established by J. F. Bony [1℄ (Corollary 2).We an de�ne the spetral shift funtion �(�; h) for L(h) and ~L(h), where ~L(h) is an inter-mediate operator de�ned in Proposition 1. On the other hand, for short range perturbations thespetral shift funtion �(�; h) = �(L; ~L) an be de�ned for the pair of operators L;L0 = �h2�. Theimportane of Theorem 1 is that we have the equivalene of three onditions i)� iii) and exploitingi) and iii) we obtain after minor modi�ations of the arguments of Setion 6 in [8℄ a Breit-Wignerapproximation of the derivative of the spetral shift funtion �(�; h) (Theorem 2).In the ase when we have no "blak box" and L(h) is a h-pseudodi�erential self-adjoint op-erator in L2(Rn) with prinipal symbol l0(x; �) we should stress that the assumptions (2.1)-(2.9)do not onern the eventual ritial points of l0(x; �) lying in f(x; �) 2 Rn : jxj � R0 > 0g: Thuswe an over the ase of ritial energy levels hoosing an appropriate weight fator r(h) withinfh2℄0;h0℄ r(h) > 0: For non-degenerate ritial points the results of J. F. Bony [3℄ imply the as-sumption i) of Theorem 1 with suitable r(h) and ombining this with Theorem 2 we obtain someappliations for non-degenerate ritial points (see Setion 4). There are only few results onerninga Breit-Wigner approximation of ����(�; h) near ritial energy levels (see [13℄, [11℄, [12℄). In thisdiretion Theorem 2 and Corollary 3 present some general results. In Setion 5 we ompare ourresults in the one dimensional ase with those obtained reently by Fujii�e and Ramond [11℄, [12℄. Inthe paper we denote by C positive onstants, independent on h, whih may hange from line to line.Aknowledgments. The authors would like to thank Jean-Fran�ois Bony for many usefuldisussions onerning the appliation of Propositions 1 and 4. We would like to thank also MouezDimassi and the referee for their remarks onerning the paper.



REFERENCE OPERATOR AND SEMICLASSICAL RESONANCES 32. Assumptions and resultsWe start by the abstrat \blak box" sattering assumptions introdued in [26℄, [23℄ and [25℄.The operator L(h) = L; 0 < h � h0; is de�ned in a domain D � H of a omplex Hilbert spae Hwith an orthogonal deompositionH = HR0 � L2(Rn n B(0; R0)); B(0; R0) = fx 2 Rn : jxj � R0g; R0 > 0; n � 1:Below h > 0 is a small parameter. We suppose that D satis�es1lRnnB(0;R0)D = H2(Rn n B(0; R0)); (2.1)uniformly with respet to h in the sense of [23℄. More preisely, equip H2(Rn n B(0; R0)) with thenorm k < hD >2 ukL2 ; < hD >2= 1 + (hD)2, and equip D with the norm k(L + i)ukH: Then werequire that 1lRnnB(0;R0) : D �! H2(Rn nB(0; R0)) is uniformly bounded with respet to h and thismap has a uniformly bounded right inverse.Assume that 1lB(0;R0)(L+ i)�1is ompat (2.2)and (Lu)jRnnB(0;R0) = Q�ujRnnB(0;R0)�; (2.3)where Q is a formally self-adjoint di�erential operatorQu = Xj�j�2a�(x;h)(hDx)�u (2.4)with a�(x;h) = a�(x) independent of h for j�j = 2 and a� 2 C1b (Rn) uniformly bounded withrespet to h.We assume also the following properties:There exists C > 0 suh thatl0(x; �) = Xj�j=2 a�(x)�� � Cj�j2; 8� 2 Rn ; (2.5)Xj�j�2a�(x;h)�� �! j�j2; jxj �! 1 (2.6)uniformly with respet to h.There exist �0 2℄0; �2 [; � > 0 and R1 > R0 so that the oeÆients a�(x;h) of Q an be extendedholomorphially in x to� = fr! : ! 2 C n ; dist (!; Sn�1) < �; r 2 C ; r 2 ei[0;�0℄℄R1;+1[g (2.7)and (2.5), (2.6) extend to �.Let R > R0; T ~R = (R= ~RZ)n; ~R > 2R: SetH# = HR0 � L2(T ~R n B(0; R0))and onsider a di�erential operator Q# = Xj�j�2 a#� (x;h)(hD)�



4 V. BRUNEAU, V. PETKOVon T ~R with a#� (x;h) = a�(x;h) for jxj � R satisfying (2.3), (2.4), (2.5) with Rn replaed by T ~R.Consider a self-adjoint operator L# : H# �! H# de�ned byL#u = L'u+Q#(1� ')u; u 2 D#;with domain D# = fu 2 H# : 'u 2 D; (1� ')u 2 H2g;where ' 2 C10 (B(0; R); [0; 1℄) is equal to 1 near B(0; R0): Denote by N(L#; [��; �℄) the number ofeigenvalues of L# in the interval [��; �℄. Then we assume thatN(L#; [��; �℄) = O(� �h2�n#=2); n# � n; � � 1: (2.8)Finally, we suppose that with some onstant C � 0 independent on h we havesp L(h) � [�C;1[; (2.9)where sp (L) denotes the spetrum of L:Following [23℄, [25℄, we de�ne the resonanes w 2 C � by the omplex saling method as theeigenvalues of the omplex saling operator L�. Denote by ResL(h); the set of resonanes. We willsay that � 2 R is a non-ritial energy level for Q if for all (x; �) 2 �� = f(x; �) 2 R2n : l(x; �) = �gwe have rx;�l(x; �) 6= 0; l(x; �) being the prinipal symbol of Q: Sine L(h) tends to �h2�, for� > 0 �xed, the set of the ritial points of the Hamiltonian l(x; �) in �� is ompat. Then takingR0 suÆiently large, we an suppose that � is non ritial for Q and we an onstrut Q# so that� is non ritial for Q#, too.We �x E1 > E0 > 0 and introdue an intermediate operator ~L(h) having no resonanes in aomplex neighborhood of [E0; E1℄ and eah � 2 [E0; E1℄ is a non ritial energy level for ~L (seeProposition 1). Moreover, the estimate (3.1) makes possible to introdue the spetral shift funtion�(�; h) for the pair (L(h); ~L(h)) (see Setion 3) and, as in [8℄, we de�ne�(�; h) = lim�!0; �>0 �(�+ �; h):Our main result is the following.Theorem 1. Assume that L satis�es the assumptions (2:1) � (2:9) and suppose that eah � 2[E0; E1℄ is a non-ritial energy level for Q and Q#. Then for any real valued funtion r(h),h 2℄0; h0℄ suh that infh2℄0;h0℄ r(h) > 0, the following assertions are equivalent:i) There exist positive onstants B1; C1, �1, h1 suh that for any � 2 [E0��1; E1+�1℄, h 2℄0; h1℄and h=B1 � Æ � B1 we have#f� 2 R : � 2 sp(L#(h)) \ [�� Æ; �+ Æ℄g � C1Ær(h)h�n# :ii) For every omplex relatively ompat neighborhood 
 � fz 2 C : Re z > 0g of [E0; E1℄,independent on h, there exist positive onstants B2; C2, �2; h2, depending on 
, suh that for any� 2 [E0 � �2; E1 + �2℄, h 2℄0; h2℄ and h=B2 � Æ � B2 we haveXw2Res L(h)\
;Imw 6=0 !C� (w; [� � Æ; �+ Æ℄) + #f� 2 R : � 2 sppp(L(h)) \ [�� Æ; � + Æ℄g � C2Ær(h)h�n# :



REFERENCE OPERATOR AND SEMICLASSICAL RESONANCES 5iii) There exist positive onstants B3; C3; �3; h3 suh that for any � 2 [E0��3; E1+�3℄, h 2℄0; h3℄and hB3 � Æ � B3 we have j�(�+ Æ; h) � �(�� Æ; h)j � C3Ær(h)h�n# :Remarks. 1. In the assertion ii) it is suÆient to establish the bound for one omplex neigh-borhood 
 of [E0; E1℄ with onstants depending on 
. Then for every other omplex neighborhood
1 � 
 the sum of the harmoni measures related to the resonanes lying in 
1 n 
 is easily es-timated by O(h�n#) by using the bound of the funtion ounting the resonanes. On the otherhand, it is lear that if every � 2 [E0; E1℄ is a non-ritial energy level for Q the same is true for asmall neighborhood of [E0; E1℄.2. The assumption iii) does not depend on the hoie of the operator ~L. This follows from theequivalene of ii) and iii), as well as from the observation that if we have two operators ~Li; i = 1; 2;with the properties of Proposition 1, then �(L; ~L1) � �(L; ~L2) = �( ~L2; ~L1) and for �( ~L2; ~L1) weobtain easily iii) sine the operators ~Li; i = 1; 2; have non-trapping energy levels in [E0; E1℄: Inthe ase of short range perturbations we an take ~L(h) = L0 = �h2� and the estimate (3.1) (seeSetion 3) holds for the oeÆients of L and L0. Thus we an de�ne the spetral shift funtionrelated to L and L0.3. If L is h-pseudodi�erential operator in L2(Rn), then the assumptions (2.2)-(2.9) don't ex-lude the existene of ritial points (x; �) of the prinipal symbol of L lying in B(0; R0). ThusTheorem 1 overs the ase of ritial energy levels and we will present some appliations in Setions4 and 5.The assertion ii) is independent of the hoie of a referene operator L#(h) so we obtain thefollowing.Corollary 1. Let L#1 , L#2 be two referene operators for L satisfying the onditions (2:1) � (2:9)and suppose that eah � 2 [E0; E1℄ is a non-ritial energy level for Q, Q#1 and Q#2 . Then L#1satis�es i) if and only if L#2 satis�es i):From the impliation i)) ii) we dedue an upper bound for the ounting funtion of resonanesin small domains. In fat, as in the proof of Lemma 6.1 in [19℄, for 0 < y < Æ and jx � �j < Æ wehave Z �+2Æ��2Æ y(x� �)2 + y2 d� � Z Æ=y�Æ=y 11 + r2dr � �=2:Thus we dedueXw2Res L(h)\
;Imw 6=0 !C� (w; [� � 2Æ; � + 2Æ℄) + #f� 2 R : � 2 sppp(L(h)) \ [�� Æ; �+ Æ℄g� 12#fz 2 Res L(h); Im z 6= 0; jz � �j � Æg +#fz 2 Res L(h) \ [�� Æ; � + Æ℄gand we obtain the following.Corollary 2. The assumption i) of Theorem 1 implies the existene of positive onstants C; B ,b; h0 suh that for any � 2 [E0 � b; E1 + b℄, h 2℄0; h0℄ and h=B � Æ � B we have#fz 2 C : z 2 Res L(h); jz � �j � Æg � CÆr(h)h�n# :



6 V. BRUNEAU, V. PETKOVIn the non-ritial ase we an take r(h) = 1 and this orollary gives a new proof of a reentresult of J. F. Bony [1℄ (see also [19℄ for the ase of ompat perturbations). In the ritial asethe statement of Corollary 2 implies the results of J. F. Bony [3℄ for di�erential operators L anddimension n � 2 (see Setion 4). The results in [3℄ in the ase n = 1 for h-pseudodi�erentialoperators L are more preise sine the upper bounds r(h) is replaed by r(Æ).We may obtain a Breit-Wigner approximation for the derivative of the spetral shift funtion�(�; h) de�ned before Theorem 1. In fat, by using the assertions i) and iii) of Theorem 1 andrepeating with minor modi�ations the arguments of Setion 6 in [8℄, we obtain the followinggeneralization of Corollary 1 in [8℄.Theorem 2. Assume that L satis�es the assumptions (2:1) � (2:9) and suppose that [E0; E1℄ isa non-ritial energy level for Q and Q#: Let r(h); h 2℄0; h0℄; be a real valued funtion suh thatinfh2℄0;h0℄ r(h) > 0: Then if one of the assumptions i) � iii) of Theorem 1 holds, then for eahE 2℄E0; E1[ there exist onstants C2 > C1 > 0; h00 > 0 so that for j� � Ej � C1h; h 2℄0; h00℄; wehave ����(�; h) = � 1� XjE�wj�C2h;w2Res L(h) Imwj�� wj2 + XjE�wj�C1h;w 2sppp L(h) Æ(�� w) +O�r(h)h�n#�: (2.10)3. Proof of Theorem 1The proof of Theorem 1 is based on a representation formula for the spetral shift funtion (seeTheorem 1 in [8℄). Given a Hamiltonian l(x; �), denote byexp(tHl)(x0; �0) = (x(t; x0; �0); �(t; x0; �0))the trajetory of the Hamilton ow exp(tHl) passing through (x0; �0) 2 ��: Reall that � 2 Jis a non-trapping energy level for l(x; �) if for every R > 0 there exists T (R) > 0 suh that for(x0; �0) 2 ��, jx0j < R, the x-omponent of the trajetory of exp(tHl) passing through (x0; �0)satis�es jx(t; x0; �0)j > R; 8jtj > T (R):We introdue an intermediate operator exploiting the following result of J. F. Bony (see also[24℄).Proposition 1 ([2℄). Let L satisfy the assumptions of Setion 2 and let 0 < E0 < E1. Then thereexists a di�erential operator ~L(h) = Xj�j�2 ~a�(x;h)(hDx)� ;satisfying the assumptions (2:4) � (2:7) and the following properties:(a) There exists n > n suh that we have���a�(x;h) � ~a�(x;h)���� O(1)hxi�n; j�j � 2 (3.1)for x 2 � introdued in (2:7), uniformly with respet to h,



REFERENCE OPERATOR AND SEMICLASSICAL RESONANCES 7(b) The operator ~L has no resonanes in a omplex neighborhood 
0 of [E0; E1℄ and 
0 is in-dependent on h,() There exists an open interval I0 �℄0;+1[ ontaining [E0; E1℄, suh that eah � 2 I0 isnon-trapping energy level for ~L.The property (a) guarantees that for every f 2 C10 (R) the operator f(L)� f(~L) is \trae lassnear in�nity". More preisely, if we denote L2 = L and L1 = ~L, given f 2 C10 (R), independenton h, and � 2 C10 (Rn) equal to 1 on B(0; R0) we an de�ne trbb[f(Lj)℄2j=1, as in [23℄, [25℄, by theequality trbb�f(L2)� f(L1)� = [tr(�f(Lj)�+ �f(Lj)(1 � �) + (1� �)f(Lj)�)℄2j=1+tr[(1� �)f(Lj)(1� �)℄2j=1 ;where we use the notation [aj ℄2j=1 = a2 � a1: The spetral shift funtion �(�; h) is a distribution inD0(R) suh that< �0(�; h); f(�) >D0(R);D(R)= trbb�f(L(h)) � f(~L(h))�; f(�) 2 C10 (R) :Applying Theorem 1 of [8℄ in the domain 
0, we dedue that there exists a funtion g+(z; h),holomorphi in 
0, suh that for � 2 I0 =W0 \ R, W0 �� 
0 we have�0(�; h) = 1� Im g+(�; h) + Xw2Res L\
0;Imw 6=0 � Imw�j�� wj2 + Xw2Res L\I0 Æ(�� w); (3.2)where g+(z; h) satis�es the estimatejg+(z; h)j � C(W0)h�n# ; z 2W0 (3.3)with C(W0) > 0 independent on h 2℄0; h0℄:Property () shows that ~L has no ritial energy levels � 2 [E0; E1℄. In the following, we �x anopen interval I0 � R+ \ 
0 ontaining [E0; E1℄ so that eah � 2 I0 is a non-ritial energy levelfor the operators Q, ~L and we introdue open intervals I2 �� I1 �� I0 ontaining [E0; E1℄. Wesuppose that j�� zj � �0 > 0 for � 2 I1; z =2 
0:Consider a funtion � 2 C10 (℄� �4; �4[), �(0) = 1, �(�t) = �(t) suh that the Fourier transformof � satis�es �̂(�) � 0 on R. Assume that there exist �0 > 0, Æ0 > 0 so that �̂(�) � Æ0 > 0 forj � j� �0 and introdue the funtion�F�1h ��(�) = (2�h)�1 Z eit�=h�(t)dt = (2�h)�1�̂(�h�1�):The next lemma, established in [8℄, yields a onnetion between the derivatives of the funtionsM';
0 and N#' :Proposition 2 ([8℄). Let ' 2 C10 (I1;R+) and letN#' (�) = tr�'(L#)1℄�C#;�℄(L#)�;G'(�) = 1� Z℄�1;�℄ Im g+(�; h)'(�)d�;



8 V. BRUNEAU, V. PETKOVM';
0(�) = Xw2Res L\
0;Imw 6=0 Z℄�1;�℄ � Imw�j� � wj2'(�)d� + Xw2Res L\℄�1;�℄'(w): (3.4)Then there exists !' 2 C00 (R) suh thatdd� (F�1h � �M';
0)(�) = dd�(F�1h � �N#' )(�)�G0'(�) + !'(�)h�n +O(h1�n#); (3.5)where O(h1�n#) is uniform with respet to � 2 R:For our argument we need a Tauberian theorem involving the fator r(h). A suh theoreman be obtained by modifying the proof of the Tauberian theorem in [17℄, [20℄. For the sake ofompleteness we present a version of the Tauberian theorem related to a real valued funtion r(h),h 2℄0; h0℄ suh that infh2℄0;h0℄ r(h) > 0.Theorem 3. Let �(�; h), h 2℄0; h0℄; be a set of real valued inreasing funtions. Assume that thereexist a; b;  2 R and d 2 N independent of h so that�(�; h) = 0 for � � a, �(�; h) =  for � � b,�(�; h) = O(h�d) uniformly with respet to � 2 R and h 2℄0; h0℄.Then the following assertions are equivalents:i) There exists positive onstant C1 suh that for any � 2 R, h 2℄0; h0℄ we have��� dd�(F�1h � � �(:; h))(�)��� � C1r(h)h�d:ii) There exists positive onstant C2 suh that for any � 2 R, h 2℄0; h0℄ and � � 0 we have�(�+ �; h) � �(�� �; h) � C2(� + h)r(h)h�d:Moreover, ii) impliesiii) There exists positive onstant C3 suh that for any � 2 R, h 2℄0; h0℄ we havej�(�; h) � (F�1h � � �(:; h))(�)j � C3r(h)h1�d:Proof. We assume i) and we are going to prove ii). It is lear that we an assume that � is bounded.Sine �(�; h) is onstant outside [a; b℄, it is suÆient to prove ii) for Æ bounded and � in a ompatset. As in the proof of the Tauberian theorem (see [20℄ or [17℄ for more details), the inequality�̂(�) � Æ0 for j�j � �0, impliesj�(�+ �h; h) � �(�� �h; h)j � 2�hÆ0 dd�(F�1h � � �(:; h))(�); j�j � �0; 8� 2 R:Exploiting i) for � � �0h, we have�(�+ �; h) � �(�� �; h) � Cr(h)h1�d:On the other hand, for � � �0h applying the above inequality for � = � + � � (2j + 1)�0h at theright hand side of�(�+ �; h) � �(�� �; h) � [�=�0h℄Xj=0 ��(�+ � � 2j�0h; h) � �(�+ � � 2(j + 1)�0h; h)�;we obtain �(�+ �; h) � �(�� �; h) � C( ��0h + 1)r(h)h1�d



REFERENCE OPERATOR AND SEMICLASSICAL RESONANCES 9and this implies ii).Now let us assume ii) ful�lled. Thendd�(F�1h � � �(:; h))(�) = 12�h ZR �̂(�� �h )d�(�; h)and this implies ��� dd�(F�1h � � �(:; h))(�)��� � C2�h (�(�+ h; h) � �(�� h; h))+ 12�h 1Xk=1 Zkh�j���j<(k+1)h �̂(�� �h )d�(�; h):Combining this with the estimate j�̂(�)j � C(1 + j�j)�2 and applying ii), we deduej dd� (F�1h � � �(:; h))(�)j � Cr(h)h�d + C2�h 1Xk=1 1k2 r(h)h1�d;whih yields i). Here we have used thatj�(�� (k + 1)h; h) � �(�� kh; h)j � Cr(h)h1�d:The proof of ii)) iii) follows from the relation�(�; h) � (F�1h � � �(:; h))(�) = 12� ZR(�(�; h) � �(�+ �h; h))�̂(�)d�;where we have used that �(0) = 1: �Remark. In the appliations below we will use the estimate�(�+ �)� �(�� �) � C2�r(h)h�dfor hB � � � B. Sine �(�; h) is inreasing, this is equivalent to the assumption ii) of Theorem 3for � � 0:Proof of Theorem 1. We assume i) and we are going to prove ii). Let [E0; E1℄ � I2 �� I1 �� I0be as above and let eah � 2 I0 be a non ritial energy level for Q; Q#. Choosing ' 2 C10 (I1;R+),' = 1 on I2 as above, we will show that for hB2 � Æ � B2 we haveM';
0(�+ Æ)�M';
0(�� Æ) = O'(Æ)r(h)h�n# ; � 2 [E0 � �2; E1 + �2℄: (3.6)Aording to Theorem 3, to obtain (3.6) it is suÆient to show thatdd� (F�1h � �M';
0)(�) = O(r(h)h�n#) (3.7)uniformly with respet to � 2 R. Exploiting the assumption i), Theorem 3 and the Remark above,we get the estimate dd�(F�1h � �N#' )(�) = O(r(h)h�n#)uniformly with respet to � 2 R: This implies (3.7) using the representation of Proposition 2.



10 V. BRUNEAU, V. PETKOVNow let 
 �� fz 2 C : Re z > 0g be a relatively ompat open neighborhood of [E0; E1℄ infz 2 C : Re z > 0g ontaining 
0. Then taking into aount (1.1), we obtainXw2Res L\(
n
0);Imw 6=0 Z �+Æ��Æ � Imw�j� � wj2'(�)d� � CÆ�20 h�n# ; 8Æ > 0:Consequently, the funtionM'; 
(�) = Xw2Res L\
;Imw 6=0 Z℄�1;�℄ � Imw�j� � wj2'(�)d� + Xw2Res L\℄�1;�℄'(w)satis�es the estimateM';
(�+ Æ)�M'; 
(�� Æ) � C'Ær(h)h�n# ; � 2 [E0 � 2�2; E1 + 2�2℄; hC1 � Æ � C1with a suÆiently small �2 > 0: Moreover, the onstant C' > 0 depends on �0; 
 and C' is inde-pendent on h. Sine ' is equal to 1 on a neighborhood of [E0; E1℄, we dedue ii).The proof of the impliation ii)) i) is very similar. As in the analysis of the funtionM';
0(�),the estimate of N#' (�+ Æ)�N#' (�� Æ) is a onsequene of the bounddd� (F�1h � �N#' )(�) = O'(r(h)h�n#); � 2 R:Aording to the representation given in Proposition 2, we have to prove thatdd�(F�1h � �M';
0)(�) = O'(r(h)h�n#): (3.8)First, using the notations introdued above, notie thatM';
0(�+ Æ) �M';
0(�� Æ) �M'; 
(�+ Æ) �M';
(�� Æ) + C'Æh�n# :Seondly, it is lear thatM';
(�+ Æ)�M'; 
(�� Æ) � Xw2Res L(h)\
;Imw 6=0 !C� (w; [� � Æ; � + Æ℄)+#f� 2 R : � 2 sppp(L(h)) \ [�� Æ; � + Æ℄g � CÆr(h)h�n# ;where in the seond inequality we have used ii). Combining these estimates, we getM';
0(�+ Æ)�M';
0(�� Æ) � C'Ær(h)h�n# ; hC2 � Æ: (3.9)It is lear that for 0 � Æ � hC2 the last estimate remains true if we replae C' by C'C2 (Æ + h): Thuswe an apply Theorem 3 for M';
0(�+ Æ) �M';
0(�� Æ) and this implies (3.8). By using that 'is equal to 1 on a neighborhood of [E0; E1℄, we omplete the proof of i). The equivalene ii), iii)is a onsequene of (3.2) and (3.3). 2



REFERENCE OPERATOR AND SEMICLASSICAL RESONANCES 114. Appliations of Theorems 1 and 2First we will examine the onnetion between the ondition (1.3) and Theorems 1 and 2. Wehave the following.Proposition 3. Assume that L satis�es the assumptions (2:1) � (2:9) and suppose that eah � 2[E0; E1℄ is a non-ritial energy level for Q and Q#: Assume that for � 2 [E0 � �2; E1 + �2℄; �2 > 0and 0 < hB � Æ � B we have#fw 2 C : w 2 Res L; jw � �j � Æg � CÆh�n# : (4.1)Then we an apply Theorem 1 and Theorem 2 with r(h) = ln(1=h).Proof. It is suÆient to prove that the assertion ii) of Theorem 1 holds with r(h) = ln(1=h). It iseasy to show that (4.1) impliesXw2 (Res L) \
 ;0<j Imwj�AÆ !C� (w; [� � Æ; �+ Æ℄) � O(Æ)h�n# ; hB2 � Æ � B2: (4.2)In fat, taking into aount the estimateZ �� j Imwjj� �wj2 d� � �; �1 � � < � � 1; (4.3)we obtain Xw2Res L; Imw 6=0;jw��j�2Æ Z �+Æ��Æ j Imwj�jt�wj2 dt � CÆh�n# : (4.4)On the other hand, for jt� �j � Æ � 1=2 we getXw2Res L; 0<j Imwj�AÆ;jw��j>2Æ j Imwjjt� wj2� C log 1ÆXk=1 X2kÆ<jw��j�2k+1Æ;j Imwj�AÆ j Imwjjt� wj2 � C log 1ÆXk=1 CÆ(2k+1Æ)h�n#(2kÆ)2 � Ch�n# ;and after an integration over the interval [�� Æ; � + Æ℄ we obtain immediately (4.2) sine the aseÆ > 1=2 is trivial.To obtain the assumption ii), we will show thatXw2 (Res L) \
;Imw 6=0 !C� (w; [� � Æ; � + Æ℄) � O(Æ)max�log 1Æ ; 1�h�n# ; hB2 � Æ � B2: (4.5)To see this, �rst we apply (4.2) with A = 2. Next for jt� �j � Æ � 1=2 we haveXw2 (Res L) \
; j Imwj�2Æ 1jt� wj� C log 1ÆXk=1 X2kÆ�jw��j�2k+1Æ 1jt�wj � C log 1ÆXk=1 C2k+1Æh�n#2kÆ � C�log 1Æ �h�n# :



12 V. BRUNEAU, V. PETKOVSo writing j Imwjjt� wj2 = 12i� 1t� w � 1t� w� ;we obtain (4.4) for Æ � 1=2: The analysis of the ase 1=2 < Æ � B2 is trivial. �Remark. There are examples, where the result of Proposition 3 is sharp. In fat onsider thease n = 1 and let L(h) = �h2�+V (x). If V (x) has an absolute non-degenerate maximum at onlyone point �, then the analysis in [22℄ shows that (4.1) holds, while following the approximation ofthe resonanes given in [5℄, [21℄, [10℄ the assumption iii) of Theorem 1 is satis�ed with r(h) = log 1h :We will disuss with more details this example in the next Setion.Next onsider a lassial h-pseudodi�erential operator L(h) = L on L2(Rn) with symboll(x; �;h) �Xj�0 lj(x; �)hj ; lj(x; �) 2 S�j0 (< � >2);where we use the notations of [9℄ for the symbols of h-pseudodi�erential operators. Assume thatthere is no "blak box" and that L(h) satis�es the onditions (2.2)-(2.9). Moreover, we supposethat there exist onstants C1 > 0; C0 > 0 so thatl0(x; �) � C1j�j2 � C0; 8(x; �) 2 Rn ; (4.6)l0(x; �) being the prinipal symbol of L: As we have mentioned in Setion 2, the symbol l0(x; �) mayhave ritial points. Given a ritial point E 2 [E0; E1℄, we assume that the set C of the ritialpoints of l0(x; �) on the surfae f(x; �) 2 Rn : l0(x; �) = Eg is a submanifold of T �(Rn) suh thatthe Hessian of l0(x; �) is non degenerate on the subspae normal to C: This implies that E is anisolated ritial point of l0(x; �) and the onditions on C are the same as those in [6℄, [3℄. Moreover,the assumption (2.6) shows that C is a �nite union of onneted ompat sets C = C1[ :::[CN . Let(rj ; sj) be the signature of the Hessian of l0(x; �) on the subspae normal to Cj : The odimensionof Cj is equal to rj + sj. Notie that if L is a di�erential operator, the elliptiity ondition (4.6)implies (see [3℄) that rj + sj � n+ 1: In order to apply Theorem 1, we need the following result ofJ. F. Bony.Proposition 4 ([3℄). Under the above assumptions on the set of the ritial points C for E in asmall neighborhood of E, h 2℄0; h0℄ and h=B � Æ � B we have#f� 2 R : � 2 sppp L#(h); j��Ej � Æg � CÆr(Æ)h�n;where in the general ase r(Æ) = �jE � Ej + Æ��1=2: Moreover, if for all 1 � j � N we haverj + sj � 2; then r(Æ) = j log(Æ + jE �Ej)j and if for all 1 � j � N we have maxfrj ; sjg � 2, thenr(Æ) = 1:The proof in [3℄ is based on the estimation of the trae normf�L# �EÆ �trfor a ut-o� funtion f 2 C10 (R; [0; 1℄); f = 1 on [�1; 1℄ following the tools developed in [6℄. Underthe above assumptions the ritial points are isolated and by using a �nite overing of [E0; E1℄, weobtain a global version of Proposition 4 with onstants B > 0; C > 0 and h0 > 0 whih are uniformwith respet to E 2 [E0 � �; E1 + �℄; � > 0:



REFERENCE OPERATOR AND SEMICLASSICAL RESONANCES 13Corollary 3. Under the above assumptions on C, we an apply Theorems 1 and 2 for the h-pseudodi�erential operator L with r(h) given above.5. Breit-Wigner approximation near ritial energy levelsIn this setion we assume that the ritial manifold C has the form desribed in Setion 4. Thusthe assumption i) of Theorem 1 holds and we are going to disuss the form of the sum of harmonimeasures related to the resonanes. Throughout this setion we assume thatL(h) = �h2�+ V (x);where V (x) is real valued on Rn andjV (x)j � C(1 + jxj)�n��; � > 0:Moreover, we suppose that V (x) is holomorphi in the domainfx 2 C n : j Imxj � tan �0jRe xjg [ fx 2 C : j Imxj � Æ0gfor 0 < �0 < �=2 and Æ0 > 0:Denote by �(�; h) the spetral shift funtion related to L(h) and L0(h) = �h2�: Let l(x; �) =j�j2 + V (x) be the symbol of L(h) = L and let the set C of the ritial points of l(x; �) have theform desribed in the previous setion.First we will treat the ase n = 1: An appliation of Corollary 3 yields the following.Proposition 5. Assume n = 1 and let the set of the ritial points in l�1([E0; E1℄) have theform C = [Ni=1f(�i; 0)g with V (�i) = Ei; V 0(�i) = 0; V 00(�i) 6= 0; i = 1; :::; N: Then for eahEi; i = 1; 2; :::; N , h 2℄0; h0℄ and for j��Eij � C1h; C2 > C1; we have���� (�; h) = � 1� XjEi�wj�C2h;w2Res L(h) Imwj�� wj2 +O�h�1 log 1h�:Our next purpose is to obtain an estimate of the term involving the harmoni measures. Con-sider the simplest ase when the manifold C is given by a single point f(�; 0)g; whereV (�) = maxx2R V (x) = E; V 0(�) = 0; V 00(�) = � 12�2 < 0; � > 0:The resonanes in a disk D(E; r) for r > 0 suÆiently small have the form (see [5℄, [21℄, [10℄)wk = E � i(k + 12)1�h+O(h2); k 2 Nand for j��Ej � C1h < 12�h we obtain� 1� XjE�wkj� r2 Imwkj��wkj2 = � 1� X12�h�jE�wkj� r2 Imwkj�� wkj2 = ��h C=hXk=1 1k +O(h�1)= ��h Z C=h1 dxx +O(h�1) = ��h�1 log 1h +O(h�1):



14 V. BRUNEAU, V. PETKOVThus applying Theorem 1 in [8℄ in the disk D(E; r=2), we get for � 2 R; j��Ej � C1h���� (�; h) = ��h�1 log 1h +O(h�1) (5.1)and we obtain the result of Theorem 2.2 in [11℄ onerning the ase of an unique non-degeneratemaximum point.Next assume that C = f(�1; 0)g [ f(�2; 0)g; �1 < �2; withV (�i) = maxx2R V (x) = E; V 0(�i) = 0; V 00(�i) = � 12�2i < 0; �i > 0; i = 1; 2:Following the results of [10℄, the resonanes in a disk D(E; rh); r > 0, have the formwk = E + S0 � (k + 1=2)�h + ih log 2K log h +O� h(log h)2�; k 2 Nif E �Rewk = O(h= log h) andzk = E + S0 � (k + 1=2)�hK log h +O� hlog h�; k 2 Nin the exterior of this domain, where S0 2 R and K = 12(�1 + �2):First we are going to estimate for j��Ej � C1 hlog 1h ; C1 � �2K , the sum� 1� XjE�zj�rh;z2Res L(h) Im zj�� zj2� #fz 2 ResL(h) : jE � zj � rh; jE �Re zj < �hK log 1h gO�h�1 log 1h�+ Chlog 1h C log 1hXk=1 Xk�hK log 1h �jE�Re zj< (k+1)�hK log 1hz2Res L(h); jE�zj�rh 1j��Re zj2� Ch�1 log 1h 1Xk=1 1k2 + C2h�1 log 1h = C3h�1 log 1h:Here we have used the fat that there are only �nite number resonanes z for whihjE � zj � rh; k�hK log 1h � jE �Re zj < (k + 1)�hK log 1h ; k 2 N:By using the lower bound� Im z � C0 hlog 1h ; C0 > 0; jE � zj � rh; E �Re z = O(h= log h); z 2 Res L(h);a similar argument yields � 1� XjE�zj�rh;z2Res L(h) Im zj�� zj2 � C4h�1 log 1h; C4 > 0:



REFERENCE OPERATOR AND SEMICLASSICAL RESONANCES 15On the other hand, an appliation of Theorem 1 in [8℄ yields the representation���� (�; h) = � 1� XjE�zj�r=2;z2Res L(h) Im zj�� zj2 +O(h�1): (5.2)In a reent work, Fujii�e and Ramond [11℄ proved that for j��Ej � C1 hlog 1h we have� ����(�; h) = �1 + �22 �1 + (1� 2) os2(�i=h) + 2�h�1 log 1h +O(h�1);where the funtion (�; h) is holomorphi in [E� �; E+ �℄+ i[�Ch;Ch℄; � > 0, while the funtion�i(�; h) is real valued on the real axis and holomorphi in a disk D(E; Ch). Moreover, for � 2(E � Æ; E + Æ) � R; Æ > 0; we have 0 < (�; h) < 1:Comparing the leading terms in these representations, for j��Ej � C1 hlog 1h we get� XjE�zj�r=2;z2Res L(h) Im zj�� zj2 = �1 + �22 �1 + (1� 2) os2(�i=h) + 2�h�1 log 1h +O(h�1):For  small we have spikes at eah zero of os(�i=h), while the spikes in (3.2) are related to thereal part of the resonanes.To treat the ase � 2 R; C1 hlog 1h � j� � Ej � rh, we apply Proposition 5. Notie that wehave at most O�log 1h� resonanes in D(E; rh) and the upper bound of the imaginary part of theresonanes implies� XjE�zj�rh;z2Res L(h) Im zj�� zj2 = � Xj��zj�C2 hlog 1h ;jE�zj�rh; z2Res L(h) Im zj�� zj2 +O�h�1�log 1h�2�: (5.3)To estimate the sum at the right hand part of (5.3), we need a more preise information for theresonanes z 2 Res L(h) lying inside the domain j�� zj � C2 hlog 1h .Now onsider the ase n � 2: In this situation Corollary 3 yields for j� � Ej � C1h therepresentation ����(�; h) = � 1� XjE�wj�C2h;w2Res L(h) Imwj�� wj2 +O(h�n): (5.4)Let us disuss the simplest ase when the set K of trapping points of L(h) lying in l�1(E) is givenby a single point f(�; 0)g so that V (�) = E; rxV (�) = 0:Assume that the Hessian of V (x) at � is non-degenerate and let (n� d; d); d � 1; be the signatureof this Hessian. Then the linearization of the Hamiltonian �eld Hl at (�; 0) has eigenvalues�i�j; 1 � j � n� d;��j; n� d+ 1 � j � n
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