EIGENVALUES OF THE REFERENCE OPERATOR AND
SEMICLASSICAL RESONANCES

VINCENT BRUNEAU AND VESSELIN PETKOV

ABsTRACT. We prove that the estimate of the number of the eigenvalues in intervals [A—J, A+4], 0 <
% < § < O, of the reference operator L*(h) related to a self-adjoint operator L(h) is equivalent
to the estimate of the integral over [A — §, A + d] of the sum of harmonic measures associated to
the resonances of L(h) lying in a complex neighborhood Q of A > 0 and the number of the positive
eigenvalues of L(h) in [A — d, A + §]. We apply this result to obtain a Breit-Wigner approximation
of the derivative of the spectral shift function near critical energy levels.

1. INTRODUCTION

This paper is devoted to the analysis of the connection between the distribution of the semi-
classical resonances z;(h) of a Schrodinger type operator L = L(h), 0 < h < hg, and the behavior
of the counting function

N(L#(h), [0, B]) = #{p € R: p € sp,,L¥(h), a < p < B}
of the so called reference operator L# (h) related to L(h) (see Section 2). Under the general ”black

box” assumptions (2.1)-(2.7) we may define the semi-classical resonances w € C_ by complex
scaling [26], [23]. Let Res L be the set of resonances of L. Then for every relatively compact open

domain Q CC {z € C: Rez > 0} the estimate

Ay /2
N@*), M) =0((75) ). ¥ znaz1
implies the bound
#{weRes LNQ} < CQR ™, 0<h < hy (1.1)

(see [26], [23] and, [27] for the classical case). Given an interval [Fy, F1], 0 < Ey < FEj, such that
every A € [Fy, E1] is a non-critical energy level for the principal symbol of L, a more precise result
holds and recently J. F. Bony [1] proved (see also [3] for similar results concerning critical energy
levels) that the condition

N(L#(h),[A — 6, A+ 68]) < Coh ™" (1.2)
for all A € [Ey, E1], 0 < & <6 < Cy, implies

#{weC: weResL, |lw— A <0} < con" (1.3)

for A\ € [Ey, Fy] and 0 < & < § < B (see also [19] for the case of compact perturbations).

Moreover, under the assumption (1.2) we can obtain a Weyl type asymptotics and a Breit-Wigner

approximation of the spectral shift function £(\, h) (see [8] for more details). Finally, there exists

a close relation between the behavior of (), k) and that of N(\) = N(L#,] — 00, A]). This relation

has been studied by S. Nakamura [16] in the case of short range perturbations of the Schrédinger
1
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operator L = —h?A + V(z) and by the authors [7], [8] in the setup of "black box” long range
scattering.

It is natural to expect that some information on the distribution of the resonances in a complex
neighborhood 2 of [Ey, F1] will imply (1.2) and via the results in [8] the asymptotics of (X, h). To
our best knowledge it seems that there are no such results in the literature. The purpose of this
paper is to show that (1.2) is equivalent to a similar condition involving the sum of the harmonic
measures

[ Im w|

we_ (w,J) _/]mdt, JCRza(C,

related to the resonances w, Imw < 0, lying in a complez neighborhood of [Ey, F1]. We refer to [15],
[13], [18], [19], [4] for the results concerning the Breit-Wigner approximations and the harmonic
measures we_ (w,.). More precisely, the condition (1.2) is equivalent to the same condition for the
function

Mq(\) = > we (w,] =00, A]) + #{p €] =00, \|NQ: p € spy, L}
wERes L, weN,
Im w#0

(Theorem 1) which may be considered as an analogue of the counting function of eigenvalues. No-
tice that the positive eigenvalues p € sp,,, L. coincide with the resonances w € R* and the function
Mgq(X) is completely determined by the resonances in . In particular, from Theorem 1 we obtain
a new proof of the implication (1.1) = (1.2) established by J. F. Bony [1] (Corollary 2).

We can define the spectral shift function &(X,h) for L(h) and L(h), where L(h) is an inter-
mediate operator defined in Proposition 1. On the other hand, for short range perturbations the
spectral shift function (X, h) = £(L, L) can be defined for the pair of operators L, Ly = —h2A. The
importance of Theorem 1 is that we have the equivalence of three conditions i) —iii) and exploiting
i) and 47i) we obtain after minor modifications of the arguments of Section 6 in [8] a Breit-Wigner
approximation of the derivative of the spectral shift function £(X, h) (Theorem 2).

In the case when we have no ”black box” and L(h) is a h-pseudodifferential self-adjoint op-
erator in L?(R") with principal symbol ly(z, &) we should stress that the assumptions (2.1)-(2.9)
do not concern the eventual critical points of ly(z, ) lying in {(z,&) € R" : |z| > Ry > 0}. Thus
we can cover the case of critical energy levels choosing an appropriate weight factor r(h) with
infye10,no (h) > 0. For non-degenerate critical points the results of J. F. Bony [3] imply the as-
sumption i) of Theorem 1 with suitable r(h) and combining this with Theorem 2 we obtain some
applications for non-degenerate critical points (see Section 4). There are only few results concerning
a Breit-Wigner approximation of %(A, h) near critical energy levels (see [13], [11], [12]). In this
direction Theorem 2 and Corollary 3 present some general results. In Section 5 we compare our
results in the one dimensional case with those obtained recently by Fujiié and Ramond [11], [12]. In
the paper we denote by C' positive constants, independent on h, which may change from line to line.

Acknowledgments. The authors would like to thank Jean-Francois Bony for many useful
discussions concerning the application of Propositions 1 and 4. We would like to thank also Mouez
Dimassi and the referee for their remarks concerning the paper.
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2. ASSUMPTIONS AND RESULTS

We start by the abstract “black box” scattering assumptions introduced in [26], [23] and [25].
The operator L(h) = L, 0 < h < hg, is defined in a domain D C H of a complex Hilbert space H
with an orthogonal decomposition

H=Hp, ® L*(R" \ B(0,Ry)), B(0,Ry) = {z € R" : |z| < Ry}, Ry >0, n>1.
Below h > 0 is a small parameter. We suppose that D satisfies
HR”\B(O,RO)D = HQ(RH \ B(0, Rp)), (2.1)

uniformly with respect to h in the sense of [23]. More precisely, equip H?(R™ \ B(0, Ry)) with the
norm || < hD >2 ul|;2, < hD >2= 1+ (hD)?, and equip D with the norm ||(L + i)u||3. Then we
require that g\ g(o,ry) : D — H?(R™\ B(0, Ry)) is uniformly bounded with respect to h and this
map has a uniformly bounded right inverse.

Assume that

Ug(0,re) (L + i)~ 'is compact (2.2)
and
(L)l 5,720y = Q(““R”\B(U,Ro))’ (2.3)
where () is a formally self-adjoint differential operator
Qu = Z ay(z;h)(hDy) u (2.4)

lv[<2

with a,(z;h) = a,(z) independent of h for |v| = 2 and a, € C;°(R") uniformly bounded with
respect to h.

We assume also the following properties:

There exists C' > () such that

lo(z,8) = Y ay(2)¢” > Cl¢)?, VE ERT, (2.5)
‘V‘:Q
> au(zh) — €7, |z] — oo (2.6)
v|<2

uniformly with respect to h.

There exist 0y €]0, 5[, € > 0 and Ry > Ry so that the coefficients a,(z; h) of Q) can be extended

holomorphically in z to
I'={rw: weC, dist (w,S" ") <e¢,reCreelhR +oof} (2.7)

and (2.5), (2.6) extend to T'. .
Let R > Ry, Tj, = (R/RZ)", R > 2R. Set

H# - HR() ® LQ(TR \ B(Oa RU))
and consider a differential operator

Q* = 3" af (w:h)(hD)"

lv[<2
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on Tj with aff (z;h) = ay(z:h) for |z| < R satisfying (2.3), (2.4), (2.5) with R" replaced by T';.
Consider a self-adjoint operator L# : H# — H# defined by
L*u = Lou + Q% (1 — )u, u € D¥,
with domain
D¥ ={ueH?: pueD, (1 p)ue H*},

where ¢ € C§°(B(0, R); [0,1]) is equal to 1 near B(0, Ry). Denote by N(L#, [\, \]) the number of
eigenvalues of L# in the interval [~ )\, A]. Then we assume that

M\ n#/2
N [AN) =0((73)  )nfznaz1 (2.8)
Finally, we suppose that with some constant C' > 0 independent on h we have
Sp L(h) C [*C,OO[, (29)

where sp (L) denotes the spectrum of L.

Following [23], [25], we define the resonances w € C_ by the complex scaling method as the
eigenvalues of the complex scaling operator Lg. Denote by Res L(h), the set of resonances. We will
say that A € R is a non-critical energy level for Q if for all (z,¢) € Xy = {(z,€) € R*™ : I(x,£) = A}
we have V, ¢l(2,&) # 0, I(z,€) being the principal symbol of Q. Since L(h) tends to —h*A, for
A > 0 fixed, the set of the critical points of the Hamiltonian [(z,£) in X is compact. Then taking
Ry sufficiently large, we can suppose that X is non critical for Q and we can construct Q# so that
A is non critical for Q#, too.

We fix B, > Ey > 0 and introduce an intermediate operator L(h) having no resonances in a
complex neighborhood of [Eg, E;] and each A € [Ey, Ey] is a non critical energy level for L (see
Proposition 1). Moreover, the estimate (3.1) makes possible to introduce the spectral shift function
¢(\, h) for the pair (L(h), L(h)) (see Section 3) and, as in [8], we define

¢(A,h) = lim Ué’(A—I— e, h).

e—0, e>

Our main result is the following.

Theorem 1. Assume that L satisfies the assumptions (2.1) — (2.9) and suppose that each A\ €
[Eo, E1] is a non-critical energy level for Q and Q¥. Then for any real valued function r(h),
h €]0, ho] such that infj,cig o7 (h) > 0, the following assertions are equivalent:

i) There exist positive constants By, Cy, €1, hy such that for any A € [Ey—e1, F1+€1], h €]0, h]
and h/By < 6 < By we have

#{peR:pe sp(L*E(R) N[A—6,X+0]} < Cor(h)h ™.

ii) For every complex relatively compact neighborhood 2 C {z € C: Rez > 0} of [Ey, E1],
independent on h, there exist positive constants Ba, Co, €3, hg, depending on €, such that for any
A€ [Ey — e, By + €], h €]0,ha] and h/By < 6 < By we have

Z we_ (w, (A =0, A+ 6]) + #{p € R: p € spy,(L(R)) N[A =5, X+ 6]} < C’gér(h)hfn#.

w€Res L(h)NQ,
Im w#0
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ii1) There exist positive constants Bs, Cs, €3, hg such that for any X\ € [Ey— €3, F1+e€3], h €]0, hs]
and Big < ¢ < B3 we have

16+ 6. 1) — (N — 8,h)| < Cyor(h)h ™" .

Remarks. 1. In the assertion i) it is sufficient to establish the bound for one complex neigh-
borhood €2 of [Ey, F1] with constants depending on €2. Then for every other complex neighborhood
Q2 D Q the sum of the harmonic measures related to the resonances lying in € \ Q is easily es-
timated by O(h*”#) by using the bound of the function counting the resonances. On the other

hand, it is clear that if every A € [Fy, E1] is a non-critical energy level for () the same is true for a
small neighborhood of [Ey, E1].

2. The assumption i) does not depend on the choice of the operator L. This follows from the
equivalence of i7) and 7i7), as well as from the observation that if we have two operators L~7;, 1=1,2,
with the properties of Proposition 1, then ¢(L, Ly) — &(L, Ly) = &(La, L1) and for €(Ly, L1) we
obtain easily iii) since the operators L;, i = 1,2, have non-trapping energy levels in [Eo, Fr]. In
the case of short range perturbations we can take L(h) = Ly = —h?A and the estimate (3.1) (see
Section 3) holds for the coefficients of L and Lg. Thus we can define the spectral shift function
related to L and L.

3. If L is h-pseudodifferential operator in L2(R™), then the assumptions (2.2)-(2.9) don’t ex-
clude the existence of critical points (z,£) of the principal symbol of L lying in B(0, Ry). Thus

Theorem 1 covers the case of critical energy levels and we will present some applications in Sections
4 and 5.

The assertion ii) is independent of the choice of a reference operator L#(h) so we obtain the
following.
Corollary 1. Let Lfé, L# be two reference operators for L satisfying the conditions (2.1) — (2.9)
and suppose that each \ € [Fy, E1] is a non-critical energy level for @, Qf& and Qfe Then L‘#
satisfies i) if and only if L;# satisfies i).

From the implication i) = i) we deduce an upper bound for the counting function of resonances
in small domains. In fact, as in the proof of Lemma 6.1 in [19], for 0 < y < 6 and |z — A| < § we

have
A+26 y 3y 1
— _du > / dr > /2.
-/A—za @ w2+ Ly T4 = /
Thus we deduce

> we_ (w, [A — 26, A +20]) + #{p € R:pu € sp,,(L(h)) N[A — 6, A + 0]}

w€Res L(h)NQ,
Im w#0

1
> 5#{2 € Res L(h), Imz #0, |z — X <0} + #{z € Res L(h) N [A — 6, A + 4]}
and we obtain the following.

Corollary 2. The assumption i) of Theorem 1 implies the existence of positive constants C, B,
b, ho such that for any XA € [Fy — b, Ey +b], h €]0,ho] and h/B < 6 < B we have

#{z € C:z € Res L(h), |z — \| < 6} < Cor(h)h ™"
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In the non-critical case we can take r(h) = 1 and this corollary gives a new proof of a recent
result of J. F. Bony [1] (see also [19] for the case of compact perturbations). In the critical case
the statement of Corollary 2 implies the results of J. F. Bony [3] for differential operators L and
dimension n > 2 (see Section 4). The results in [3] in the case n = 1 for h-pseudodifferential
operators L are more precise since the upper bounds r(h) is replaced by r(4).

We may obtain a Breit-Wigner approximation for the derivative of the spectral shift function
&(A\, h) defined before Theorem 1. In fact, by using the assertions i) and 4ii) of Theorem 1 and
repeating with minor modifications the arguments of Section 6 in [8], we obtain the following
generalization of Corollary 1 in [8].

Theorem 2. Assume that L satisfies the assumptions (2.1) — (2.9) and suppose that [Eqg, E1] is
a non-critical energy level for Q and Q¥. Let r(h), h €]0, hg], be a real valued function such that
infyc10.n0 7(h) > 0. Then if one of the assumptions i) — iii) of Theorem 1 holds, then for each
E €]Ey, Eq| there exist constants Cy > Cy > 0, hy > 0 so that for |\ — E| < Cih, h €]0, hy], we
have

o€ 1 Im w "
—(A\h) = —— > —s + > AN —w)+O(r(h)h " ). (2.10)
A T pgogn, AW T ( )

weERes L(h) w €spyy L(h)

3. PROOF OF THEOREM 1

The proof of Theorem 1 is based on a representation formula for the spectral shift function (see
Theorem 1 in [8]). Given a Hamiltonian [(z, ), denote by

eXp(tHl)(.’Iio,fo) = (-’I/'(t,.’ll(],g[]), g(tamﬂa&]))

the trajectory of the Hamilton flow exp(tH,;) passing through (z(,&) € X). Recall that A € J
is a non-trapping energy level for I(x,£) if for every R > 0 there exists T'(R) > 0 such that for
(20,&0) € Xy, 20| < R, the z-component of the trajectory of exp(tH;) passing through (z¢, &)
satisfies

w(t.20.€0)| > R, V|t] > T(R).
We introduce an intermediate operator exploiting the following result of J. F. Bony (see also
[24]).

Proposition 1 ([2]). Let L satisfy the assumptions of Section 2 and let 0 < Ey < FEy. Then there
exists a differential operator

L(h) = Y ay(x;h)(hDy)",
lv|<2

satisfying the assumptions (2.4) — (2.7) and the following properties:

(a) There exists @ > n such that we have

ay(z;h) — ay(m;h)\g o))", |v] <2 (3.1)

for x € T introduced in (2.7), uniformly with respect to h,
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(b) The operator L has no resonances in a complex neighborhood Qo of [Eq, E1] and g is in-
dependent on h,

(¢) There ezists an open interval Iy C|0,4o00[ containing [Ey, E1], such that each p € Iy is
non-trapping energy level for L.

The property (a) guarantees that for every f € C§°(R) the operator f(L) — f(L) is “trace class
near infinity”. More precisely, if we denote Ly = L and L; = L, given f € C§°(R), independent
on h, and x € C§°(R") equal to 1 on B(0, Ry) we can define trbb[f(Lj)]?:], as in [23], [25], by the
equality

tron (£ (L2) = F(L1)) = [x(cf (Ly)x + xF (L) (1= x) + (1= x)F (L))

+tr[(1 = x) f (L) (1 = x)]5=1

2_| = as — ay. The spectral shift function £(A, h) is a distribution in

where we use the notation [a;];

D'(R) such that

<EOR). FO) >p@,pe = tron (FL(R) — FLR)). ) € G (R).

Applying Theorem 1 of [8] in the domain €2, we deduce that there exists a function g4 (z,h),
holomorphic in g, such that for y € Iy = Wy N R, Wy CC Qg we have

Em) = tmg (uh)+ Y Y (- w) (32)

— w2
w€ERes LNQg, 7T|M w| weRes LNIg
Im w#0
where g (z, h) satisfies the estimate
g4 (2, h)| < C(Wo)h ™", 2 e W (3.3)

with C (W) > 0 independent on h €]0, hg].

Property (c) shows that L has no critical energy levels A € [Ep, E;]. In the following, we fix an
open interval Iy C R N Qq containing [Ey, E1] so that each X € Ij is a non-critical energy level
for the operators @, L and we introduce open intervals I, CC I; CC I containing [Ey, Fq]. We
suppose that |A — z| > ng > 0 for XA € I1, z ¢ Q.

Consider a function 6 € C§°(] — €4, e4]), 0(0) = 1, 8(—t) = 6(¢) such that the Fourier transform
of 0 satisfies é(A) > 0 on R. Assume that there exist ¢ > 0, dg > 0 so that é(A) > §y > 0 for
| A< € and introduce the function

(F0)(3) = (2nh) " /em/ha(t)dt — (2rh) (=),

The next lemma, established in [8], yields a connection between the derivatives of the functions
My q, and N#.

Proposition 2 ([8]). Let ¢ € C§°(I1;RT) and let
N () = tr(0(LF)1)_cr 0 (LF)),

1
Gylp) = — A Tmgs (s R)p(v) o
—O0, 1

.
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—Imw
D DI et (0 2 S DR ()} (34)
wERes LN, * ]—o00,4] W‘V - ’LU‘ weERes LN]—o0,u]
Im w#0
Then there exists w, € CJ(R) such that
d d (
dA dA

where (’)(h]’"#) is uniform with respect to u € R.

(Fy 10+ Myag) (1) = = (F, "0 NE)Y () = Glyp) + we ()b ™ + O(h "), (3.5)

For our argument we need a Tauberian theorem involving the factor r(h). A such theorem
can be obtained by modifying the proof of the Tauberian theorem in [17], [20]. For the sake of
completeness we present a version of the Tauberian theorem related to a real valued function r(h),
h €]0, ho] such that infy,cjg o r(h) > 0.

Theorem 3. Let (X, h), h €]0, hol, be a set of real valued increasing functions. Assume that there
exist a,b,c € R and d € N independent of h so that
o(Ah) =0 for A <a, (A, h) =c for A > b,
o(\, h) = O(h™%) uniformly with respect to A € R and h €]0, hg].

Then the following assertions are equivalents:

i) There exists positive constant Cy such that for any X\ € R, h €]0, hg] we have

d
‘a(]-",jlf) #a(, h)(N)] < Crr(h)h ™.
ii) There exists positive constant Cy such that for any X € R, h €]0, hy] and n > 0 we have
o(A+mn,h) — a(A—n,h) < Ca(n+h)r(h)h= 7.

Moreover, ii) implies
iii) There exists positive constant C3 such that for any A € R, h €]0, hy] we have

lo(\,h) — (F, 10 % o(.,h)(N)| < Car(h)h' %

Proof. We assume i) and we are going to prove ii). It is clear that we can assume that 7 is bounded.
Since o(, h) is constant outside [a, b], it is sufficient to prove i) for § bounded and A in a compact
set. As in the proof of the Tauberian theorem (see [20] or [17] for more details), the inequality

O(e) > dg for || < €y, implies
), d
o+ ehy ) — o — ehy )] < 2 (F 0w () (), [el < o Vi € R

Exploiting i) for n < egh, we have
o(p+mn,h) = o(u—n,h) < Cr(h)h' .

On the other hand, for n > €yh applying the above inequality for p = A +n — (25 + 1)egh at the
right hand side of
[n/eoh]
o(ptmh) —olp—nh) < > (o(h+n-2jeh, ) = o(A+n=2(j + 1)eoh, b)),
§=0
we obtain

n _
o(utnh) —olu—nh) <O+ Dr(h)h!
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and this implies 7).
Now let us assume i7) fulfilled. Then

d
d)\(]:h Oxa(.,h 27rh/0 da (u, h)

and this implies
(F 10 0 (h) (W) € s (0(A+hyh) — o (A~ hyh)
: mh
1 & A=A
y— / 0" do(u, h).
2mh kz::] Jkh<|p—X|<(k+1)h ( h Jdo{u; h)
Combining this with the estimate [0(v)| < C(1 + |v|)~2 and applying i), we deduce

d

05RO < Crh 4 55 S et~

which yields 7). Here we have used that
lo(A % (k + 1)k, h) — o(X £ kh,h)| < Cr(h)h' 2.
The proof of 4i) = iii) follows from the relation

% /R(U(A, h) — o (A + vh, b)) dv,

where we have used that 6(0) = 1. O

oA\ h) = (F, 0% o, h)(N) =

Remark. In the applications below we will use the estimate
o(A+1) — (A —n) < Conr(h)h ™
for

n < B. Since (), h) is increasing, this is equivalent to the assumption 7i) of Theorem 3

h
5 <
n = 0.

Proof of Theorem 1. We assume i) and we are going to prove ii). Let [Ey, E1] C I, CC I; CC I
be as above and let each p € Iy be a non critical energy level for @, Q#. Choosing ¢ € C°(I1; RY),
@ =1 on Iy as above, we will show that for B% < § < By we have

My aos(A+0) — My a,(A—0) = Olp(é)r(h)h’"‘#, A€ [Ey — €9, By + €9). (3.6)

According to Theorem 3, to obtain (3.6) it is sufficient to show that

LB 0% M) (1) = Ol ()b ") (3.7)

uniformly with respect to u € R. Exploiting the assumption 7), Theorem 3 and the Remark above,
we get the estimate

EF 0« N () = Or ()

uniformly with respect to 4 € R. This implies (3.7) using the representation of Proposition 2.
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Now let Q@ CC {z € C: Rez > 0} be a relatively compact open neighborhood of [Ey, E1] in
{z € C: Rez > 0} containing . Then taking into account (1.1), we obtain

pto — Tmaw s
2. / ——— g eW)dy < —h"", V6 > 0.
weRes LN(Q\Qq), [ 7T|V U)| 770

Im w#0

Consequently, the function

Moo= S [ s Y )

71' vV —
wERes LNQ, 00,4 | weRes LN]—oo,p]
Im w#0

satisfies the estimate

h
My, a(A+8) = My, 0(A =) < Cudr(h)h™"", X € [y — 260, B + 262], 5~ <6 < O
1

with a sufficiently small e; > 0. Moreover, the constant C, > 0 depends on 7y,  and C,, is inde-
pendent on h. Since ¢ is equal to 1 on a neighborhood of [Ey, F4], we deduce 7).

The proof of the implication ii) = i) is very similar. As in the analysis of the function My o, (1),
the estimate of Nf()\ +0) — Nf()\ — 0) is a consequence of the bound

d
d>\(

According to the representation given in Proposition 2, we have to prove that

Fi 0« NEY (1) = Ou(r(B)h ™), peRr

0% M) (1) = Opr(h)h ™), (3.8)

First, using the notations introduced above, notice that
My00(A +8) — Mygy(A — 8) < My o(A+6) — My a(A —6) + Cypoh™™" .

Secondly, it is clear that
My oA+6) = My oA=06) < > we (w,[A=38,X1+10])

w€ERes L(h)NQ,
Im w#0

+#{p € R i € spy,(L(R)) N A — 6, X+ 6]} < Cor(h)h "7,
where in the second inequality we have used 7). Combining these estimates, we get

My 0q(\+8) = M, 0,00 — 8) < Coor(h)h™ Ci < (3.9)
2

It is clear that for 0 < § < & the last estimate remains true if we replace Cy, by o 2(d + h). Thus
we can apply Theorem 3 for an 0o (A +6) = My, o, (X —d) and this implies (3 8). By using that ¢

is equal to 1 on a neighborhood of [Fy, E1], we complete the proof of 7). The equivalence ii) < iii)
is a consequence of (3.2) and (3.3). O
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4. APPLICATIONS OF THEOREMS 1 AND 2

First we will examine the connection between the condition (1.3) and Theorems 1 and 2. We
have the following.

Proposition 3. Assume that L satisfies the assumptions (2.1) — (2.9) and suppose that each \ €
[Ey, Fr] is a non-critical energy level for Q and Q% . Assume that for A\ € [Ey — €, By + €3], 3 > 0
and 0 < 5 <0 < B we have

#{weC: weResL, |w—\ <5} <Csh . (4.1)
Then we can apply Theorem 1 and Theorem 2 with r(h) = In(1/h).
Proof. Tt is sufficient to prove that the assertion ii) of Theorem 1 holds with r(h) = In(1/h). It is
easy to show that (4.1) implies

Yo we (w,[A=68A410)) < 0L, g—‘ <0< By. (4.2)

w€ (Res L) NQY, 2
0< | Im w|<Ad

In fact, taking into account the estimate

|
/ | Tmaw] dv <m, —oo<a<f<oo, (4.3)
v —w|?
we obtain
A+ T
/ Imwl o ogpon* (4.4)
A—s Tt — w|?

wéERes L Im w#0,
|w— M<2(5

On the other hand, for [t — A] < § < 1/2 we get

w€Res L, 0<| Imw|< A§, ‘t - w‘Q
|w—X|>268

Clog ¥ Clog § o] %
| Tm w| Co(2F 1 5)h ™ -
< y o Aoy <Ch™"
= —onl2 = k§)2 = ’
k=1 2ks<|w—A|<2k+1s, |t w‘ k=1 (2 5)

[ Tmw|<AS
and after an integration over the interval [A — 6, A + 0] we obtain immediately (4.2) since the case
d > 1/2 is trivial.
To obtain the assumption i), we will show that

1 h
g we (w, [A =0, +4d]) < O(0) max(log )h, "# — <6 < Bs. (4.5)
5’ " By
w€ (Res L) NQ,
Im w#0

To see this, first we apply (4.2) with A = 2. Next for |t — A\| < < 1/2 we have

> :
|t — w]|
€ (Res L) N2, | Im w|>2§
Clog% (’log% k4+1sc1 —n#
1 C2k+lsp—n 1 #
< < —————— < Cflog = |h™"".
< D 2wl gy < C(logy)

k=1 2k§<|w—A|<2k+1§ k=1
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So writing
| Imw| 1( 1 1 )
lt—w?2 2i\t-w t—w/’
we obtain (4.4) for § < 1/2. The analysis of the case 1/2 < § < By is trivial. O

Remark. There are examples, where the result of Proposition 3 is sharp. In fact consider the
case n = 1 and let L(h) = —h?A+V (x). If V(z) has an absolute non-degenerate maximum at only
one point «, then the analysis in [22] shows that (4.1) holds, while following the approximation of
the resonances given in [5], [21], [10] the assumption iii) of Theorem 1 is satisfied with r(h) = log ;.
We will discuss with more details this example in the next Section.

Next consider a classical h-pseudodifferential operator L(h) = L on L?(R") with symbol
Uz &h) ~ L@, OW, 1i(e,€) € Sy7 (< €>),

j=0
where we use the notations of [9] for the symbols of h-pseudodifferential operators. Assume that
there is no "black box” and that L(h) satisfies the conditions (2.2)-(2.9). Moreover, we suppose
that there exist constants C7 > 0, Cy > 0 so that

lo(x,€) > Cilé]* — Co, V(x,¢) € R, (4.6)

lo(z, &) being the principal symbol of L. As we have mentioned in Section 2, the symbol [y(x, {) may
have critical points. Given a critical point F, € [Fy, E1], we assume that the set C of the critical
points of lg(z, &) on the surface {(z,&) € R” : Iy(z,€) = E.} is a submanifold of 7% (R") such that
the Hessian of Iy(z, &) is non degenerate on the subspace normal to C. This implies that E. is an
isolated critical point of lo(z, &) and the conditions on C are the same as those in [6], [3]. Moreover,
the assumption (2.6) shows that C is a finite union of connected compact sets C = C; U...UCy. Let
(r;,5;) be the signature of the Hessian of lo(z, ) on the subspace normal to Cj. The codimension
of C; is equal to rj + s;. Notice that if L is a differential operator, the ellipticity condition (4.6)
implies (see [3]) that r; +s; > n + 1. In order to apply Theorem 1, we need the following result of
J. F. Bony.

Proposition 4 ([3]). Under the above assumptions on the set of the critical points C for E in a
small neighborhood of E., h €]0,hg] and h/B < § < B we have

#{p € R: p €sp,, L#(h), |u— E| <5} < Cér(6)h ™,

—1/2
where in the general case r(6) = (\E - E|+ 5) . Moreover, if for all 1 < j < N we have

rj+s; > 2, then r(6) = |log(d + |E — E.|)| and if for all 1 < j < N we have max{r;,s;} > 2, then
r(0) = 1.

The proof in [3] is based on the estimation of the trace norm

a2y

1) tr
for a cut-off function f € C§°(R;[0,1]), f =1 on [-1,1] following the tools developed in [6]. Under
the above assumptions the critical points are isolated and by using a finite covering of [Ey, F], we
obtain a global version of Proposition 4 with constants B > 0, C' > 0 and hg > 0 which are uniform
with respect to E € [Ey — €, E1 + €], € > 0.
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Corollary 3. Under the above assumptions on C, we can apply Theorems 1 and 2 for the h-
pseudodifferential operator L with r(h) given above.

5. BREIT-WIGNER APPROXIMATION NEAR CRITICAL ENERGY LEVELS

In this section we assume that the critical manifold C has the form described in Section 4. Thus
the assumption i) of Theorem 1 holds and we are going to discuss the form of the sum of harmonic
measures related to the resonances. Throughout this section we assume that

L(h) = —h?A + V(z),
where V(z) is real valued on R” and
V(@) < C(1+]a)) "7, o >0.
Moreover, we suppose that V(x) is holomorphic in the domain
{z €C": |Imz| <tanfy|Rez|} U{zr € C: |Imz| < i}
for 0 < 6y < /2 and Jy > 0.

Denote by &()\, h) the spectral shift function related to L(h) and Lg(h) = —h%A. Let I(z,¢) =
|€12 4+ V(z) be the symbol of L(h) = L and let the set C of the critical points of I(x, ) have the
form described in the previous section.

First we will treat the case n = 1. An application of Corollary 3 yields the following.

Proposition 5. Assume n = 1 and let the set of the critical points in | '([Ey, E1]) have the
form C = UY {(@;,0)} with V(e;) = E;, V() = 0, V() # 0, i = 1,..., N. Then for each
E;,i=1,2,..,N, h €]0, hy] and for |X — E;| < C1h, Cy > C1, we have

o€ 1 Imw 1 1
LG P—— Y o(htog ).
pAM=-r ) N wP ( Ogh)

|B;—w|<Cah,
w€ERes L(h)

Our next purpose is to obtain an estimate of the term involving the harmonic measures. Con-
sider the simplest case when the manifold C is given by a single point {(«,0)}, where

V(a) =maxV(z) = E., V'(a) =0, V'(a) =

——= <0 0.
r€ER 2p2 <Y p>

The resonances in a disk D(E,,r) for r > 0 sufficiently small have the form (see [5], [21], [10])
1.1
wg = E. —i(k + 5)—h +0O(h?), keN
P

and for |\ — E.| < C1h < ;—ph we obtain

C/h
1 Tm wy, 1 Tm wy, P 1 1
_— Z —— == E — 2:—§—+O(h )
m |Ee—wy| <5 |>\ wk‘ m ﬁhS\ch'zl;k\S% P\ wk| mh k=1 k

C/h g 1
— i/ L om Yy = Lh g~ + O ).
7h J1 T T h
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Thus applying Theorem 1 in [8] in the disk D(E,,r/2), we get for A € R, |\ — E.| < Cih

0 1

—S(A, B =L2h " log T ok (5.1)
v

and we obtain the result of Theorem 2.2 in [11] concerning the case of an unique non-degenerate
maximum point.

Next assume that C = {(a1,0)} U {(a2,0)}, a1 < ag, with

V() =max V(z) = E,, V'(a;) =0, V() =

A 22<0 pi >0,1=1,2.
T

Following the results of [10], the resonances in a disk D(E,,rh), r > 0, have the form

So — (k+1/2)7h + ihlog 2 h
~E, o keN
Wk + Klogh + ((log h)2) €
if E. — Rewy,, = O(h/logh) and
So — (k + 1/2)7h h
= E, K
=Rt T e T O(logh,> €N

in the exterior of this domain, where Sy € R and K = %(Pl + pg)
First we are going to estimate for |\ — E.| < Clé, C: £ g, the sum
h

1 Z Imz
T B Z<rh, |)‘ B Z‘Q
z€Res L(h)
< #{z€ResL(h): |E, — z| <rh, |[E.—Rez| < 7rih}O(h*] lo l)
¢ ' Klog% l &%
1
Ch C]ogh Z 1
10g111 k=1 (et ) A~ Rezf?

qu “Rez|<
Klogh Klgh

z€Res L(h), |Ec—z|<rh
1 1
<Ch 'l — 4+ Cyh llog = = C3h Mog —.
og - Z + Coh™ " log - = C3h ™" log —

Here we have used the fact that there are only finite number resonances z for which

kmh k+1)mh
|EC*Z| Srh, % S ‘E87R92| < Q
0 —

I3 Ogh

keN

By using the lower bound

h
—Imz > Cgl—l, Cy>0, |E.— 2z <rh, E.—Rez=0O(h/logh), z € Res L(h),

og n
a similar argument yields

1 I

Loy e g s> 0.
B e, 1A T 2 h’

z€Res L(h)
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On the other hand, an application of Theorem 1 in [8] yields the representation

o€ 1 Im z _1
—(A\,h) = —— E ——+O(h™ ). (5.2)
A T e 2y, A2

z€Res L(h)

In a recent work, Fujiié and Ramond [11] proved that for |X — E.| < C; -2 we have

log%
73 p1+ p2 Y i L -1
A = 1 h™"log—+ O(h
W_a)\( ,h) 9 ( + (1—72)(‘,0S2(0'7j/h)+’}/2) Ogh + O( )

where the function (A, k) is holomorphic in [E, — €, E. + €] 4+ i[-Ch, Ch], € > 0, while the function
0;(\, h) is real valued on the real axis and holomorphic in a disk D(F.,Ch). Moreover, for A €
(E.—0,E.+6) CR, 6§ >0, we have 0 < y(A,h) < 1.

Comparing the leading terms in these representations, for |A — E.| < Clé we get

Im z p1 + p2 Y I 1
- 1+ h~log — + O(h™).

Y nop s rererem)t E

z€Res L(h)

For v small we have spikes at each zero of cos(o;/h), while the spikes in (3.2) are related to the
real part of the resonances.

To treat the case A € R, Clﬁ < |A = E.| < rh, we apply Proposition 5. Notice that we
n

have at most O(log %) resonances in D(F,.,rh) and the upper bound of the imaginary part of the

resonances implies

Im 2 _ Im 2 1 l 2
- ;; e 3 I +O(h (1og h) ) (5.3)
zéR:s Z;hi A==12C2 log% ’

|Ec—z|<rh,z€Res L(h)

To estimate the sum at the right hand part of (5.3), we need a more precise information for the

resonances z € Res L(h) lying inside the domain [\ — z| < Cy 10:;1 .
n

Now consider the case n > 2. In this situation Corollary 3 yields for |\ — E| < Cih the
representation

o¢ 1 Imw
—(\h) = —— g —— 4+ 0OMh"). (5.4)
o\ T o i Teon, A — wl|?

w€ERes L(h)

Let us discuss the simplest case when the set K of trapping points of L(h) lying in I~ (E,) is given
by a single point {(a,0)} so that

V(a) = E., V,V(a) =0.

Assume that the Hessian of V' (z) at « is non-degenerate and let (n —d,d), d > 1, be the signature
of this Hessian. Then the linearization of the Hamiltonian field H; at («,0) has eigenvalues

A, n—-d+1<j53<n
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with A; > 0 (see [21], [22]). Following the results in [21], [14], the resonances of L(h) in a disk
D(E.,Ch) admit an asymptotic representation and the condition d > 1 implies easily that

—Imw > ¢ph, ¢cg >0, Yw € D(E.,Ch) N Res L(h).

On the other hand, the result of [21] says that the number of the resonances w lying in D(E,, Coh)
is at most Cy and for |A — E.| < C1h, C; < Cy we obtain the estimate

1 I
- ¥ L"2 = 0. (5.5)
T e iZen A — w|
w€Res L(h)

In contrast to the case n = 1 for n > 2 the sum of the Breit-Wigner factors is bounded by a term
having a lower order than the remainder O(h™") in (5.4). In this direction we notice the analysis of
the radial case in [12] concerning the partial scattering phases o;(A, h), [ € N, for a potential having
an absolute maximum (d = n). By using the asymptotics of %(A, h), 1 € N, it seems difficult to

obtain a representation for %(A, h) like (5.4) with remainder O(h™").
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