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Abstract

In this article we build a mathematical model for forest growth and we compare this model

with a computer forest simulator named SORTIE. The main ingredient taken into account in

both models is the competition for light between trees. The parameters of the mathematical

model are estimated by using SORTIE model, when the parameter values of SORTIE model

correspond to the ones previously evaluated for the Great Mountain Forest in USA. We see

that the best fit of the parameters of the mathematical model is obtained when the competition

for light influences only the growth rate of trees. We construct a size structured population

dynamics model with one and two species and with spatial structure.

Keywords: Computer forest simulator, SORTIE model, size structured model, spatial structured

model, state dependent delay differential equations.

Manuscript type: Article.

∗This author is supported by Chinese Scholarship Council (CSC).

1



Introduction

In the natural ecosystem, forests play an important role. This has motivated a lot of peo-

ple to propose computer simulators as well as mathematical models to describe the dynami-

cal properties of forests. Many computer simulators (also sometimes called Individual Based

Models (IBMs)) have been proposed and we refer to JABOWA [3, 4], FORET [35], SORTIE [28],

FORMIND [14] and others. These models consist of stochastic processes describing individual

behaviors, such as birth, death, movement, reproduction and so on. Moreover, these models also

permit us to describe the behavior of the entire plant community. The main advantage is that it

provides simulated data which can be used to analyze such a complex system. Of course this is a

rough description of the real plant community. However, they do supply powerful experimental

tools and describe the forest dynamics reasonably well [20]. We refer to [21, 30] for a general

review about forest IBMs.

SORTIE is a forest simulator based on the forest data observed in and around Great Mountain

Forest (GMF), a privately owned 2500ha forest located in northwestern Connecticut (41◦57’N,

73◦15’W), USA in the year 1990-1992. In SORTIE, four submodels (resource, growth, mortality,

and recruitment) are included to determine the behaviour of each individual. As is explained

in [27], from the point of view of the resource competition, SORTIE includes only the light

competition, since from extra experiments very little evidence of water or nitrogen limitation

has been observed for this particular forest. Nevertheless water or nitrogen limitation might be

vital in other forests. The lighting mechanism in SORTIE is rather complex and we refer to the

subsection Resource submodel page 3 in [27] for more about this. Tree growth is described by

change of tree size, which is denoted here as the diameter at a certain height. Two concepts

”diam10 (Diameter at 10cm Height)” and ”DBH (Diameter at Breast Height)” are often used to

describe the tree growth and represent the tree size in the analysis of forest dynamics [27, 28,

32]. Thereinto, the diam10 can be used almost throughout the whole life of an individual, from

seedling to adult, while DBH can only be used for adults in most cases, as it is measured at
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a higher height. The definition of the breast height (of an adult human being) is different in

different regions, for example, 1.4m in the US and 1.3m in Europe and Canada. But it makes

little difference to the measuring result in many cases. We refer to [13, 27, 28, 29, 32, 40] for more

details of SORTIE.

In this article we will extend the model proposed by Hal Smith in [37, 38] to describe the

dynamic of a population that is structured in size with intra-specific competition for light. For

a single species, we will compare such a mathematical model with SORTIE model for two types

of tree (American beech (FAGR) and eastern hemlock (TSCA)). The reason why we choose par-

ticularly these two types of tree is that after a tentative run of SORTIE, we find that FAGR and

TSCA dominates the forest in an obvious way (see Figure 1). Moreover, based on the parameters

estimated separately for each kind of tree, we will investigate the inter-specific competition for

light by assuming that the growth rate of juveniles is influenced by the number of adults due to

the competition for light between them. We will also extend our modelling effort by considering

the case of two populations distributed in space and competing for light.

Figure 1: The output of one run of SORTIE for all the nine species on a period of 2000 years (1 time

step=5 years).

Several mathematical models describing the forest growth were proposed in the literature.

Zavala et al. [44] studied a stage-structured population model incorporating the light competi-
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tion respectively in growth, mortality and recruitment, and gave the conditions for the existence

of a steady state distribution. Angulo et al. [2] continued with a similar model, but they con-

sidered the light competition only in recruitment, and after that they extended the model to

a two-species stand, and gave the positive stationary distribution for both single-species and

two-species model and the conditions for the coexistence. Cammarano [5] studied a system of

Lotka-Volterra type, incorporating also the light competition and discussed the equilibria and

the coexistence conditions. In this article, based on SORTIE simulated data, we will exclude the

competition occurring in the mortality and recruitment. In other words, we will see that the best

fit for SORTIE model is obtained by using a model where the competition for light influences

only the growth rate of trees. We also refer to [7, 12, 15, 17, 25, 39, 43] and the references therein

for other models and relevant researches.

The article is organized as follows. In section 2 we will give a mathematical model for sin-

gle species, and we will conduct numerical simulations to compare with SORTIE. In section 3

a mathematical model for two species is obtained likewise, and we also conduct the compari-

son with SORTIE. Then in section 4 we extend it to a 2-dimension spatial model, and conduct

numerical simulations to see the spread of trees in space.

Single species model

Mathematical modelling

In this section we consider the following model describing the growth of trees of single species

∂tu(t, s) + f (A(t))∂su(t, s)︸ ︷︷ ︸
growth of trees

= − µ(s)︸︷︷︸
mortality

u(t, s), for t > 0, s > s−,

f (A(t))u(t, s−) = βb(A(t))︸ ︷︷ ︸
flux of newborns

, for t > 0,

u(0, .) = u0(.) ∈ L1(s−,+∞).

(0.1)
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Here u(t, s) denotes the population density of trees with size s at time t, so
∫ s2

s1

u(t, s)ds is the

number of trees with size s ∈ [s1, s2] at time t, and A(t) is the number of adult population at time

t. As it will be explained in Appendix A, the size s is described by a function of diam10

s(t) := ln
r(t)
r−

, and r(t) =
diam10(t)

2

where r− is the minimal radius of the juvenile. The function µ(s) > 0 is the natural mortality. In

the following derivation we will assume for simplicity that

µ(s) =

 µA > 0, if s > s∗,

µJ > 0, if s ∈ [s−, s∗),

where s− > 0 is the minimal size of a juvenile and s∗ satisfying s∗ > s− is the maximal size

of a juvenile (or the minimal size of an adult). The parameter β is the birth rate in absence of

birth limitation, and the term βb(A(t)) describes the flux of newborns into the population, where

b(x) = xe−ξx is the Ricker’s type birth limitation [33, 34]. The growth function f (x) takes the

form

f (x) =
α

1 + δx
, α, δ > 0, (0.2)

which is decreasing, thus taking care of the fact that the more large trees there are, the slower the

growth rate of small trees is. So this shows the type of competition for light between adults and

juveniles. The function u0(.) represents the initial distribution of the species. Normally we want

the number of the total population to be finite at each time, hence we have

∫ +∞

s−
u(t, s)ds < +∞, ∀t > 0.

So the natural state space for this model is L1(s−,+∞).

We will derive the following equations for adults and juveniles under some assumptions
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dA(t)
dt

= f (A(t))j(t, s∗)− µA A(t), for t > 0,

∂t j(t, s) + f (A(t))∂s j(t, s) = −µJ j(t, s), for s ∈ [s−, s∗), t > 0,

f (A(t))j(t, s−) = βb(A(t)), for t > 0,

A(0) = A0 > 0,

j(0, s) = j0(s) > 0, for s ∈ [s−, s∗),

(0.3)

where j(t, s) represents the population density of juveniles with size s ∈ [s−, s∗) at time t. Hence

the total number of juveniles at time t is

J(t) =
∫ s∗

s−
j(t, s)ds =

∫ s∗

s−
u(t, s)ds.

And we can assume as follows the adult population number

A(t) =
∫ +∞

s∗
u(t, s)ds. (0.4)

By integrating along the characteristic line of the second equation (of juvenile) in (0.3), the first

equation (of adult) in (0.3) can be rewritten as the following state dependent Functional Differ-

ential Equation (FDE)
dA(t)

dt
= e−µJ τ(t) f (A(t))

f (A(t− τ(t)))
βb(A(t− τ(t)))− µA A(t),∫ t

t−τ(t)
f (A(σ))dσ = s∗ − s−

(0.5)

when t > t∗, where t∗ is defined as

∫ t∗

0
f (A(σ))dσ = s∗ − s−.

Differentiation of the second equation with respect to t gives the following system
A′(t) = e−µJ τ(t) f (A(t))

f (A(t− τ(t)))
βb(A(t− τ(t)))− µA A(t),

τ′(t) = 1− f (A(t))
f (A(t− τ(t)))

.
(0.6)

The initial conditions are

A(t) = A0(t) > 0, ∀t ∈ (−∞, 0]; τ(0) = τ0 > 0, (0.7)
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where A0(t) is continuous and exponentially bounded, namely for some ϑ > 0

sup
t60

eϑt A0(t) < +∞.

From the second equation of (0.5), as f is decreasing, the delay τ(t) can become large enough,

namely we may have infinite delay. For all the derivation here, see Appendix A. The semiflow

properties of such a state-dependent delay differential equation will be studied in [24].

Numerical simulations of two special cases

We conduct numerical simulations for two special cases of the system (0.5).

Special case 1 ( f (x) is constant): Assume that f (x) is a constant function (so the delay τ(t)

is also constant by the second equation of (0.5)) and b(x) = xe−x. Then since the PDE model

(0.1) can be transformed (by making a simple change of variable in time) into an age structured

model, it is known (see Magal and Ruan [23]) that the system has a Hopf bifurcation around the

positive equilibrium when β increases (see in Figure 2).

Figure 2: We plot the adult population number A(t) in figure (a) and (c), and the corresponding delay

τ(t) in figure (b) and (d). We fix the parameter values µJ = 0.2, µA = 0.1, α = 0.5, δ = 0, ξ = 1,

s∗ = ln 50, s− = 0, and the initial distribution A0(t) = 1.5, ∀t ∈ [−100, 0]. In (a) and (b) we set

β = 9. The solution oscillates and then converges to the positive equilibrium. In (c) and (d) we set β = 25.

Changing β from 9 to 25, we observe a Hopf bifurcation.
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Special case 2 (b(x) = x): Assume b(x) = x, namely the Ricker’s type birth function doesn’t

appear in system (0.5). It is known that when τ is constant in the first equation (which becomes

linear) of system (0.5), this system is either exponentially increasing or exponentially decreasing

when the time goes to infinity. However, it has been proved by Smith [37] that Hopf bifurcation

can occur when we take state-dependent delay. This is illustrated in Figure 3.

Figure 3: We plot the adult population number A(t) in figure (a) and (c), and the corresponding delay

τ(t) in figure (b) and (d). We fix the parameter values µJ = µA = 0.1, δ = 0.1, ξ = 0 (remember this

means that b(x) = x), and the initial delay τ0 = 4. The initial distribution is A0(t) = 1.5, ∀t ∈ [0, 200].

In (a) and (b) we set β = 2.2, then we have the damped oscillating solution which converges to the positive

equilibrium; In (c) and (d) we set β = 4. Changing β from 2.2 to 4, we observe a Hopf bifurcation.

Comparison with SORTIE

We run the simulator SORTIE with the parameter values given in [13, 28, 32, 40] and get the

simulation for the density of adult trees (adults are defined here as trees having a DBH > 10cm).

And as we can see from this simulation, American beech(FAGR) and eastern hemlock(TSCA)

become the dominant species after a period time. So in this article we will focus on these two

species in two cases: one single species and two-species.

The basic idea of the numerical simulation of (0.5) and comparison is as follows. Before

starting, we need to get the forest data from SORTIE. Since every run of SORTIE is initiated with
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a random seed, we conduct 50 runs and take the average values as our actual data. Moreover, the

data that SORTIE gives are actually the density of the adult population per hectare. As the area

of the sample square is 90000m2 (a square of 300m×300m) = 9 hectares, we multiply the data by

9 to obtain the total adult population number. We plot the 50 runs and the average in Figure 4 to

see the stochastic variation.

Figure 4: Population numbers of 50 random runs from SORTIE for the adults of two species American

beech and eastern hemlock(green curve) and the average number(red curve) respectively, in a period of 400

timesteps. (a). One single species American beech; (b). One single species eastern hemlock; (c). Two-species

case: American beech; (d). Two-species case: eastern hemlock.

Now we will compare our model (0.5) with the mean value over these 50 runs of SORTIE, and

find the best fit. First we need to decide the initial time (for example, t = 100 as the initial time),

and we will use the data from SORTIE over the time interval [0, 100] as the initial condition. Next

we discretize the parameters µJ , µA, β, ξ, δ, τ0, and for each set of parameters, we calculate the

solution of (0.5) by using the common approximation of the derivative (the numerical scheme

will be conducted via the equivalent system (0.6)), and we compare the numerical solutions with

9



the data from SORTIE by using the least square method, to find the set of parameter values with

which the numerical result of the model (0.5) and the data have the least difference. Then we use

the following formula (see Appendix A)

∫ 0

−τ0

α

1 + δA(σ)
dσ = s∗ − s−,

to compute α, where we use the Simpson’s rule to calculate the integral. Now we can keep this

set of parameter values, and we have the best fit to SORTIE.

For the first dominant species American beech, we choose the SORTIE data in the time interval

[0,200] as the initial distribution. We have the best fit in Table 1 and Figure 5.

Figure 5: In this figure we show the comparison between SORTIE data and numerical simulation for

American beech. The adult population number A(t) is plotted in (a) and the delay τ(t) is shown in (b).

Similarly, for the second dominant species eastern hemlock we choose the SORTIE data in the

time interval [0,180] as the initial distribution. We get the best fit in Table 2 and Figure 6.
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Figure 6: In this figure we show the comparison between SORTIE data and numerical simulation for

eastern hemlock. The adult population number A(t) is plotted in (a) and the delay τ(t) is shown in (b).

Notice that this species will have an oscillation before it converges to the stable positive equilibrium.

Notice that for both species in the single species case, we have ξ1 = ξ2 = 0 as the best fit,

which means that there is no Ricker’s type birth limitation here.

Two-species model

Mathematical modelling

System (0.1) can be extended to the case of two species. Taking the previous best fit ξ1 = ξ2 =

0 into account, we obtain the following system



∂tu1(t, s) + f1(Z1(t))∂su1(t, s) = −µ1(s)u1(t, s), for t > 0, s > s−,

∂tu2(t, s) + f2(Z2(t))∂su2(t, s) = −µ2(s)u2(t, s), for t > 0, s > s−,

f1(Z1(t))u1(t, s−) = β1A1(t), for t > 0,

f2(Z2(t))u2(t, s−) = β2A2(t), for t > 0,

u1(0, ·) = u10(·) ∈ L1(s−,+∞),

u2(0, ·) = u20(·) ∈ L1(s−,+∞),

(0.8)
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where

Zi(t) = ζi1A1(t) + ζi2A2(t), fi(x) =
αi

1 + δix
, µi(s) =

 µAi > 0, if s > s∗,

µJi > 0, if s ∈ [s−, s∗),

and ζij > 0 are non-negative constants, αi, δi > 0, i, j = 1, 2. A specific explanation of the meaning

of ζij can be found in Table 3. Notice that we use the same minimal juvenile size s− and minimal

adult size s∗ for both species (see [27]). After a similar derivation, we have the following state-

dependent delay differential equations
A′i(t) = e−µJi τi(t) fi(Zi(t))

fi(Zi(t− τi(t)))
βi Ai(t− τi(t))− µAi Ai(t),∫ t

t−τi(t)
fi(Zi(t))dσ = s∗ − s−,

(0.9)

i = 1, 2. We give the following expression for the sake of numerical simulation
A′i(t) = e−µJi τi(t) fi(Zi(t))

fi(Zi(t− τi(t)))
βi Ai(t− τi(t))− µAi Ai(t),

τ′i (t) = 1− fi(Zi(t))
fi(Zi(t− τi(t)))

.
(0.10)

Comparison with SORTIE

We use the same method of comparison as before and we use the parameters in Table 1 and

Table 2 to simulate the two-species model. We discretize the new parameters ζij appeared in the

competition term, and also by the least square method, we get the best fit for them: ζ11 = 1,

ζ12 = 0.6, ζ21 = 1.6, ζ22 = 1, and the delay τ01 is increased to 201, τ02 increased to 208. We list

these values in Table 3. The comparison figure is in Figure 7.
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Figure 7: In this figure we plot the comparison between SORTIE data and numerical simulation for two-

species model (0.9). The figures (a) and (c) show the adult population number for species 1 American beech

and species 2 eastern hemlock respectively. The figures (b) and (d) show the corresponding time delay.

By analyzing the existence positive (coexisting) equilibrium (see Appendix B), we can also

obtain the coexistence of both American beech and eastern hemlock in Figure 8.
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Figure 8: In this figure we demonstrate that we can pass from competitive exclusion (a)(b)(which cor-

responds to Figure 7) to coexistence (c)(d) by changing one parameter ζ21. The other parameters are the

same as in Figure 7. When ζ21 = 1.6, American beech (a) reaches to a positive steady state while eastern

hemlock (b) disappears gradually. After we decrease the value of ζ21 to 1, both American beech (c) and

eastern hemlock (d) go to a positive steady state, which means coexistence.

Two-species spatial model

Now we take the spatial position of the individuals into account to see the spread of the adult

population. We assume that the diffusion of individuals is due to the spreading of seeds around

the trunk. This corresponds to assume that the distribution of seeds, when they fall down around

the trunk, follows a Gaussian distribution. The same idea has already been proposed by Ducrot

[10]. The spatial model with two species reads as follows
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∂tui(t, s, x, y) + fi(Zi(t, x, y))∂sui(t, s, x, y) = −µi(s)ui(t, s, x, y),

for t > 0, s > s−, x ∈ [0, xmax], y ∈ [0, ymax],

fi(Zi(t, x, y))ui(t, s−, x, y) = (I − ε i∆)−1(βi Ai(t, ., .))(x, y),

for t > 0, x ∈ [0, xmax], y ∈ [0, ymax],

ui(t, x, 0) = ui(t, x, ymax), for x ∈ [0, xmax],

ui(t, 0, y) = ui(t, xmax, y), for y ∈ [0, ymax],

ui(0, s, x, y) = ui0(s, x, y) ∈ L1((s−,+∞)× [0, xmax]× [0, ymax]),

(0.11)

where

Zi(t, x, y) = ζi1A1(t, x, y) + ζi2A2(t, x, y), fi(x) =
αi

1 + δix
,

ζij > 0, αi, δi > 0, i = 1, 2, and ∆ is the Laplacian operator with periodic boundary condition.

Similarly, we assume the adult population number

Ai(t, x, y) =
∫ +∞

s∗
ui(t, s, x, y)ds, i = 1, 2,

and by following a similar procedure as before, we get the state-dependent delay differential

equation for the adult

∂Ai(t, x, y)
∂t

=e−µJi τi(t,x,y) fi(Zi(t, x, y))
fi(Zi(t− τi(t, x, y), x, y))

(I − ε i∆)−1[βi Ai(t−

τi(t, x, y), ., .)](x, y)− µAi Ai(t, x, y), for t > t∗,∫ t

t−τi(t,x,y)
fi(Zi(σ, x, y))dσ = s∗ − s−, for t > t∗.

(0.12)

We conduct numerical simulations for system (0.12), using the parameters in Table 1-3, and

setting the diffusion coefficient ε1 = 0.01, ε2 = 0.005, in order to observe the growth and spread

of adult population of the two species. The simulation is conducted in a 300 ∗ 300 square of the

x− y plane, as in the reference [27]. We choose the square [0, 300]× [0, 300] for simplicity. We use

a random initial distribution Ai(0, x, y) defined as follows for both species: first we discretize the

interval [0, 300], then we choose 25 random points in the square by taking randomly 5 points on

x-axis and y-axis respectively and we assign a non-zero random number to each of the 25 points
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as the population number of adults Ai(0, x, y). For the rest discretized points in the square, we

assign 0 to them.

Next we plot the solutions of system (0.12) at several specified time in Figure 9. The x- and

y-axis describe the spatial coordinates, and the z-axis is the adult population number. In this

figure we will observe the growth of the two species and the spread in space, and we can also

see vividly that the model generates obvious species isolates after some time.

Figure 9: In this figure we show the numerical simulations for the spatial model (0.12), describing the

spread of adult population of the two species. The red part represents species 1 American beech, and the

green part represents species 2 eastern hemlock.

We also conduct the simulation for longer time, and we get the following results in Figure 10.
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Figure 10: This figure shows the change of the distribution of adult population of two species in the long

run. Notice that eastern hemlock(green) is disappearing and American beech(red) becomes dominant.

Summarizing all the figures above, we may conclude that eastern hemlock(green) grows and

spreads faster than American beech(red) at first, but after long enough time, American beech

begins to show its competency and gradually becomes the dominant species. This result also

coincides with our previous result without considering the space in Figure 7.

Moreover, we plot the total population in the sample square for each species with respect to

time in Figure 11. And we can see that the total adult population for eastern hemlock increases

faster than American beech at first, and then it decreases.
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Figure 11: In this figure we show the total population in the 300m × 300m square for each species in

20000 years. A1 represents species 1 American beech, and A2 represents species 2 eastern hemlock.

As in Figure 8, we can also observe the coexistence of both species in the spatial model. In

Figure 12 we plot the long term distributions after the same change of parameters as in Figure 8.

Figure 12: The longterm simulation for the spatial model with a change of the parameter ζ21 from 1.6 to

1. All the other parameters are the same as in Figure 10. We observe the coexistence of both species.
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Discussion

Studies of forest dynamics have a long history[3, 8, 26, 31, 36]. There have been a large

amount of researches on either the descriptive model (consisting of several submodels to describe

separately every process of the whole life of individuals) for forests reached by observed data,

or the pure mathematical model with numerical computations, separated from data. Here we

first construct a mathematical model and compare this model to the computer forest simulator

SORTIE. Size-structured model with another type of growth function have been previously used

by Strigul et al. [39] for a single species.

We start by fitting the parameters of the model by considering the case of a single species.

Then for two species, we only fit the parameters corresponding to the competition for light

between the two species of trees. Specifically speaking, we use a classical size-structured model,

from which we derive a state-dependent delay differential equation, and we use this differential

equation to fit the forest data from SORTIE. This differential equation is mathematically more

tractable than the submodels in SORTIE.

In order to compare our mathematical model with SORTIE, we conduct numerical simulations

and we get the best fit to the SORTIE forest data and the corresponding parameter values. One

result we get is that the type of birth function of these two species is not of Ricker’s type, as

we have ξ = 0 in both best fits. We then extend our mathematical model to a two-species case

with interspecific competition, and similarly we conduct the numerical comparison with SORTIE

forest data, where we also get a very good fit.

Based on this, we go further and propose a model incorporating the spatial position param-

eter, to describe the density of population, or further, the number of population at every specific

spatial position. We can see vividly the spread and succession in our numerical simulation. By

using a spatial model, given the initial distribution we will be able to predict specifically the

population at certain spatial position and time, which is more practical in reality. We refer to

[9, 29] for more results about SORTIE model and spatially distributed forest.
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We should mention that our model improves the computer simulator SORTIE from the fol-

lowing perspectives. First, in SORTIE model, every behaviour of each individual is described

separately by a submodel which calculates specific relevant variables (for example, in the re-

source submodel, they calculate the light transmissivity through the crown and determine how

much light is intercepted in each angle, which will be used in the growth submodel), and then all

the behaviours are combined together to get the dynamics of the entire community. In our math-

ematical model, we simplify the above complicated processes of tree physiology by using only

several functions instead to describe the mean behaviour of individuals, which is still effective.

Thus there are fewer parameters to input in our mathematical model (8 parameters (or 4 more

parameters in two-species model), while more than 20 parameters in SORTIE). This obviously

makes it easier to operate the simulation. Second, the time it takes to run a simulation is much

shorter due to the different computing mechanism. Thus, it’s possible for us to explore the forest

dynamics in a very long time scale. Third, the analysis of the mathematical model also permit

us to study the coexistence of species in ecological time scale, which allows the maintenance of

species diversity in nature. In our simulation, we reach a result that the population number of

eastern hemlock decreases to 0 after a long enough time, which conforms to the competitive ex-

clusion principle. However, by analyzing the existence of the interior coexistent equilibrium, we

are able to establish a range of parameters in which the exclusion principle is no longer true. The

coexistence result has also been confirmed by numerical simulations (with and without space).

We refer to [1, 2, 5, 16, 17, 44] for more results going into that direction. But there are few results

analyzing mathematically the coexistence for the solution of the structured model with partial

differential equations (0.8). Also it is well known that light is a key influence in many forest sys-

tems [42], and our model can be used to reproduce the complicated mechanisms included into

SORTIE model. But in reality, there are so many influencing factors, such as carbon, nitrogen,

water, etc. [6, 18, 19, 22, 41], not only restricted to light. More work about these other influencing

factors is left for future investigation.
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Appendices

Appendix A Derivation of the state dependent FDE

The single species model (0.1) we consider here is very similar with the one considered by

H. Smith in [37]. Nevertheless, our mortality rate µ(s) is dependent on the size s, so we will

re-derive the state dependent FDE for completeness. Differentiating (0.4) with respect to t, we

have

dA(t)
dt

=
∫ +∞

s∗
∂tu(t, s)ds = − f (A(t))

∫ +∞

s∗
∂su(t, s)ds−

∫ +∞

s∗
µ(s)u(t, s)ds

= f (A(t))u(t, s∗)−
∫ +∞

s∗
µ(s)u(t, s)ds. (A.1)

Next we deal with the term u(t, s∗). The characteristic curves for the first equation in (0.1) are

(shown in Figure 13)
ds(t)

dt
= f (A(t)). (A.2)

Figure 13: In this figure we present the characteristic curves (A.2).
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Then we will have the following representation of s

C +
∫ t

0
f (A(σ))dσ = s(t). (A.3)

Suppose t∗ is the time when juveniles present at time 0 become adults, namely

∫ t∗

0
f (A(σ))dσ = s∗ − s−. (A.4)

We can see that the curve

S =

{
(t, s) : 0 6 t 6 t∗, s = s− +

∫ t

0
f (A(σ))dσ

}
divides the strip [0,+∞)× [s−, s∗] into two parts R1 and R2. Assuming that s− s− 6

∫ t
0 f (A(σ))dσ,

then we can find T(t, s) > 0 such that

∫ t

t−T(t,s)
f (A(σ))dσ = s− s− (A.5)

in the region R2, so it denotes the time it takes for a juvenile to grow to size s at time t from the

minimal size s−. Replacing s in u(t, s) with (A.3), we can compute formally as follows, assuming

that u is a C1-function

d
dt

u
(

t, C +
∫ t

0
f (A(σ))dσ

)
= ∂tu

(
t, C +

∫ t

0
f (A(σ))dσ

)
+ f (A(t))∂su

(
t, C +

∫ t

0
f (A(σ))dσ

)
= −µ

(
C +

∫ t

0
f (A(σ))dσ

)
u
(

t, C +
∫ t

0
f (A(σ))dσ

)
.

This is a separable ODE with respect to t. Integration of this equation, and by using the initial

distribution and the boundary condition, we obtain the following expression of u(t, s)

u(t, s) =



u0

(
s−

∫ t

0
f (A(σ))dσ

)
e−
∫ t

0 µ(s−
∫ t

0 f (A(σ))dσ+
∫ l

0 f (A(σ))dσ)dl ,

if s > s− +
∫ t

0 f (A(σ))dσ,
βb(A(t− T(t, s)))
f (A(t− T(t, s)))

e−
∫ t

t−T(t,s) µ(s−+
∫ l

t−T(t,s) f (A(σ))dσ)dl ,

if s 6 s− +
∫ t

0 f (A(σ))dσ.

(A.6)
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Whenever s∗ − s− 6
∫ t

0 f (A(σ))dσ, we can specifically define τ(t) := T(t, s∗) as the solution of∫ t

t−τ(t)
f (A(σ))dσ = s∗ − s−. (A.7)

Actually the term τ(t) = T(t, s∗) represents the time spent by a newborn becoming an adult.

We now assume the mortality function as follows

µ(s) =

 µA > 0, if s > s∗,

µJ > 0, if s ∈ [s−, s∗).

Then when s = s∗, we have for t ∈ [0, t∗],

u(t, s∗) = u0

(
s∗ −

∫ t

0
f (A(σ))dσ

)
e−µJ t,

and for t > t∗,

u(t, s∗) =
βb(A(t− τ(t)))
f (A(t− τ(t)))

e−µJ τ(t).

Replacing u(t, s∗) back in (A.1), we get the model (0.5).

By differentiating the second equation of (0.5) in time, we obtain

d
dt

∫ t

t−τ(t)
f (A(σ))dσ = 0⇔ f (A(t))− f (A(t− τ(t)))

(
1− τ′(t)

)
= 0.

Therefore the state-dependent delay differential equation (0.6) is derived.

Remark A.1 Note that the function t→ t− τ(t) is strictly increasing because

d
dt

(t− τ(t)) =
f (A(t))

f (A(t− τ(t)))
> 0.

Remark A.2 Notice that system (0.5) is valid when t > t∗. However, as this system is autonomous,

we can make a translation so that the initial time of the system will become t = 0. But the numerical

simulations are still conducted with the initial time t = t∗ for the sake of simplicity.

We conduct a comparison between the growth function (0.2) and the intrinsic function of the

growth submodel in the simulator SORTIE. From the model (0.3), we only care about the growth

of juveniles, so first we assume the radius function of a juvenile

r(t) =
diam10(t)

2
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where diam10 represents the diameter at 10cm height. We use the following change of variable

to define the size s which we are using in the model (0.1)

s(t) := ln
r(t)
r−

, (A.8)

where r− is the minimal radius of the juvenile. We will have

s′(t) =
r′(t)
r(t)

= f (A(t)).

Then the approximation of the derivative of r(t), which describes the growth of the radius, is

r(t + ∆t)− r(t)
∆t

= r(t) · α

1 + δA(t)
= r(t) · αA(t)−1

δ + A(t)−1 . (A.9)

Take ∆t = 1 (one year), then (A.9) shows the increase of the radius in one year.

On the other hand, we have the following formula for growth in SORTIE from [13, 27, 28]

Annual Radius Increase = Radius · G1 ·GLI
G1

G2
+ GLI

, (A.10)

where G1 is the asymptotic growth rate at high light and G2 is the slope at 0 or low light. The

term GLI (global light index) describes the percentage of light transmitted through tree gaps and

perceived by trees, thus is a measure for light. Comparing the two formulas (A.9) and (A.10), we

find that they have the same form, and the parameters A(t)−1, α, δ correspond to GLI, G1, G1/G2

respectively. So the choice of the growth function (0.2) is reasonable. Plus, this also explains

what is size s in our model (0.1). By this definition of s(t), we have the minimal size of juveniles

s− = 0 (as r(t) = r−), and the minimal size of adults s∗ = ln(r∗/r−), where r∗ is the minimal

radius of adults.

Appendix B Positive equilibrium for two-species model

We compute the positive equilibrium for the system (0.9), which is, we compute the solution

for the following equations
0 = e−µJ1 τ1 β1A1 − µA1 A1,∫ t

t−τ1

α1

1 + δ1(ζ11A1 + ζ12A2)
dσ = s∗ − s−,

(B.1)
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and 
0 = e−µJ2 τ2 β2A2 − µA2 A2,∫ t

t−τ2

α2

1 + δ2(ζ21A1 + ζ22A2)
dσ = s∗ − s−,

(B.2)

Obviously, A1 = 0, A2 = 0 is a trivial equilibrium for the species, in which case we have

τ1 =
s∗ − s−

α1
, τ2 =

s∗ − s−
α2

.

Moreover, we have two ”boundary” equilibrium (Ā1, 0) and (0, Ã2), where

Ā1 =
1

δ1ζ11

(
α1

µJ1(s∗ − s−)
ln

β1

µA1

− 1
)

,

τ̄1 =
1

µJ1

ln
β1

µA1

, τ̄2 =
(s∗ − s−)(1 + δ2ζ21Ā1)

α2
,

and

Ã2 =
1

δ2ζ22

(
α2

µJ2(s∗ − s−)
ln

β2

µA2

− 1
)

,

τ̃1 =
(s∗ − s−)(1 + δ1ζ12Ã2)

α1
, τ̃2 =

1
µJ2

ln
β2

µA2

.

Now we turn to the positive equilibrium. As A1, A2 6= 0, we solve the first equation in (B.1) and

(B.2) and get

τ1 =
1

µJ1

ln
β1

µA1

, τ2 =
1

µJ2

ln
β2

µA2

(B.3)

By the second equation of (B.1) and (B.2), we have
ζ11A1 + ζ12A2 =

1
δ1

(
α1τ1

s∗ − s−
− 1
)

,

ζ21A1 + ζ22A2 =
1
δ2

(
α2τ2

s∗ − s−
− 1
) (B.4)

We replace τ1 and τ2 in (B.4) by (B.3), and we get the following linear equations ζ11A1 + ζ12A2 = Φ1,

ζ21A1 + ζ22A2 = Φ2,
(B.5)

where

Φ1 :=
1
δ1

[
α1

µJ1(s∗ − s−)
ln

β1

µA1

− 1
]

, Φ2 :=
1
δ2

[
α2

µJ2(s∗ − s−)
ln

β2

µA2

− 1
]

.
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First, as we want a positive solution, we need the following conditions

Φ1 > 0, Φ2 > 0. (B.6)

We solve the equation (B.5) directly without considering its solvability

A1 =
ζ22Φ1 − ζ12Φ2

ζ11ζ22 − ζ12ζ21
, A2 =

ζ11Φ2 − ζ21Φ1

ζ11ζ22 − ζ12ζ21
. (B.7)

In order to have a positive solution, we need the following conditions
ζ11ζ22 − ζ12ζ21 > 0,

ζ22Φ1 − ζ12Φ2 > 0,

ζ11Φ2 − ζ21Φ1 > 0,

or


ζ11ζ22 − ζ12ζ21 < 0,

ζ22Φ1 − ζ12Φ2 < 0,

ζ11Φ2 − ζ21Φ1 < 0,

(B.8)

or in another simplified form

ζ12

ζ22
<

Φ1

Φ2
<

ζ11

ζ21
, or

ζ11

ζ21
<

Φ1

Φ2
<

ζ12

ζ22
, (B.9)

So we have

Lemma B.1 Under the condition (B.6) and (B.9), the equations (B.1) and (B.2) have a positive equilibrium

as in (B.7).

We check the conditions (B.6) and (B.9) for our previous results in Table 1-3, and we have

Φ1 = 100.6839 > 0, Ψ2 = 133.4324 > 0,

ζ12

ζ22
= 0.6,

Φ1

Φ2
= 0.7546,

ζ11

ζ21
= 0.625,

which does not satisfy the condition (B.9), so there is no positive equilibrium in our previous

simulation, and eastern hemlock is disappearing. In order to have a positive equilibrium, we

reduce the influence of American beech towards eastern hemlock, namely we lower ζ21 from 1.6

to 1. Then we have
ζ11

ζ21
= 1,

which satisfies the condition (B.9). And we have the coexistence of both species as is shown in

Figure 8 and Figure 12.
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Appendix C Resolvent of the Laplacian operator ∆

Assume that ψ(x, y) : [0, xmax]× [0, ymax] → R is a function. The resolvent of the Laplacian

operator ∆ with periodic boundary condition is given for (x, y) ∈ [0, xmax]× [0, ymax] by

(λI − ε∆)−1(ψ)(x, y) =
∫ +∞

0
e−λtT∆(εt)(ψ̂)(x, y)dt, (C.1)

where ψ̂ extends ψ periodically on R×R, that is to say

ψ̂(x, y) = ψ(x, y), ∀(x, y) ∈ [0, xmax]× [0, ymax]

and  ψ̂(x + xmax, y) = ψ̂(x, y), ∀x, y ∈ R,

ψ̂(x, y + ymax) = ψ̂(x, y), ∀x, y ∈ R.

Moreover T∆(t) is the semigroup generated by the Laplacian operator ∆. A result in Engel and

Nagel [11, p. 69] shows that

T∆(t)(ψ̂)(x, y) =
1

4πt

∫∫
R2

e−
(x−x̂)2+(y−ŷ)2

4t ψ̂(x̂, ŷ)dx̂dŷ. (C.2)

The numerical approximation of (I − ε i∆)−1 is given by the matrix (I + ε iA)−1 where

A =



B C 0 ... C

C B
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . C

C ... 0 C B


,

where

B =



2
dx2 +

2
dy2 − 1

dx2 0 ... ... − 1
dx2

− 1
dx2

2
dx2 +

2
dy2 − 1

dx2
. . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . − 1
dx2

− 1
dx2 ... ... 0 − 1

dx2
2

dx2 +
2

dy2
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and

C =



− 1
dy2 0 ... 0

0
. . . . . .

...
...

. . . . . . 0

0 ... 0 − 1
dy2


.
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[42] F. Valladares and Ü. Niinemets. Shade tolerance, a key plant feature of complex nature and

consequences. Annual Review of Ecology, Evolution, and Systematics, 39:237–257, 2008.

[43] M. Yokozawa and T. Hara. Foliage profile, size structure and stem diameter-plant height

crowded plant populations. Annals of Botany, 76:271–285, 1995.
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Tables

Parameter Interpretation value Reference

µJ1 natural mortality rate for juveniles 0.03 estimated

µA1 natural mortality rate for adults 0.001 estimated

β1 birth rate in absence of birth limitation 2 estimated

s− minimal size for juvenile 0 [28]

s∗ minimal size for adult ln 50 [32]

ξ1 parameter in the Ricker type function 0 estimated

τ01 time delay of the juveniles present 121 estimated

at time 0 to become adults

α1 growth rate of juveniles without adults 0.1709 computed

δ1 parameter describing the descending speed

of the growth ratewhen adult population increases 0.1 estimated

Table 1: Parameter values of the best fit for species 1: American beech.
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Parameter Interpretation value Reference

µJ2 natural mortality rate for juveniles 0.031 estimated

µA2 natural mortality rate for adults 0.0037 estimated

β2 birth rate in absence of birth limitation 4 estimated

s− minimal size for juvenile 0 [28]

s∗ minimal size for adult ln 50 [32]

ξ2 parameter in the Ricker type function 0 estimated

τ02 time delay of the juveniles present 127 estimated

at time 0 to become adults

α2 growth rate of juveniles without adults 0.249 computed

δ2 parameter describing the descending speed

of the growth rate when adult population increases 0.1 estimated

Table 2: Parameter values of the best fit for species 2: eastern hemlock.
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Parameter Interpretation value Reference

ζ11 parameter in the competition term describing

the intraspecific competition among American beech 1 estimated

ζ12 parameter in the competition term describing the

interspecific influence of eastern hemlock on American beech 0.6 estimated

ζ21 parameter in the competition term describing the

interspecific influence of American beech on eastern hemlock 1.6 estimated

ζ22 parameter in the competition term describing

the intraspecific competition among eastern hemlock 1 estimated

τ01 time delay of the American beech juveniles 201 estimated

present at time 0 to become adults

τ02 time delay of the eastern hemlock juveniles 208 estimated

present at time 0 to become adults

Table 3: Other parameter values for two-species model.
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