
NON-COMMUTATIVE DYNAMICAL SYSTEMS

APPLICATIONS TO RIGIDITY OF CHARACTERS, IRS’S, URS’S

In this series of lectures, we aim to investigate various rigidity phenomena for lattices in higher rank
semi-simple Lie groups. This is based on joint works with Cyril Houdayer, Uri Bader and Jesse
Peterson [BH19, BBHP20].

The starting point of the discussion is Margulis normal subgroup theorem, that asserts, roughly
speaking, that if a Lie group is simple, and has real rank at least 2, then its lattices are also simple, if
we ignore finite index normal subgroups. Then it has been realized by Stuck and Zimmer [SZ92] that
his method of proof, which is of a measurable nature, could be applied to classify IRS’s. Analogous
results for irreducible lattices in more general product groups have been obtained by Bader-Shalom
[BS04].

More recently, Creutz-Peterson [CP13], and Peterson [Pe14] managed to push Margulis techniques
to classify all the characters of such lattices, encompassing all the above results. Parallel to this
recent work, a new conceptual approach to the so-called C*-simplicity problem has been discovered,
by Kalantar-Kennedy [KK14] and Breuillard-Kalantar-Kennedy-Ozawa [BKKO14]. This induced a
multitude of subsequent works, from which it became clear that C*-dynamics and ergodic theory
could be combined with Margulis techniques to go deeper in the study of characters and unitary
representations of lattices in Lie groups. This is the approach we used in [BH19] to give a more
natural proof of Peterson’s character rigidity theorem and obtain new, rather mysterious, results
about unitary representations of these lattices. A particularly inspiring paper for us was [HK17],
which discusses stationary C*-dynamics.

To invite to active reading (and to keep the text to a reasonable length), the whole text is full of gaps,
presented as exercises.

1. C*-dynamics and application to characters

1.1. Characters and their GNS representation. The main rigidity phenomenon that we will
prove is about positive definite functions, and more general characters.

Definition 1.1. A positive definite function on a (discrete) group Γ is a function φ : Γ → C such
that for every finite set F ⊂ Γ, the matrix (φ(g−1h))g,h∈F is positive semi-definite. We say that φ is
a character if moreover φ(1) = 1 and φ is conjugation invariant.

Example 1.2. Constant functions are characters, the Dirac function δe is a character, called the
regular character. More interestingly:

• If Λ < Γ is a subgroup, then the function 1Λ is positive definite. It is a character if and only
if Λ is normal in Γ;
• Given a non-singular action Γ y (X,µ), the function g 7→ µ(Fix(g)) is positive definite on Γ.

If µ is Γ-invariant, it is a character.

Exercise 1.3. If π : Γ→ U(H) is a unitary representation, and ξ is a vector in H, then the function
g 7→ 〈π(g)ξ, ξ〉 is positive definite.

The GNS construction tells us that every positive definite function arises this way. More precisely,
given a positive definite function φ, we may extend φ linearly on the group ring CΓ, and consider the
positive semi-definite hermitian form (x, y) ∈ (CΓ)2 7→ φ(y∗x) ∈ C. Denote by Hφ the Hilbert space
obtained by moding out by the kernel of this hermitian form and completing w.r.t. the corresponding
scalar product. Denote by ξφ ∈ Hφ the image in Hφ of the unit 1 ∈ CΓ. Note that ‖ξφ‖ = φ(1).

For every g ∈ Γ, we may then consider the left multiplication linear transformation x ∈ CΓ 7→ gx ∈
CΓ. This map clearly preserves the hermitian form and thus defines a unitary operator πφ(g) of Hφ.
One checks that the map πφ : Γ→ U(Hφ) is in fact a group homomorphism. Moreover, we have

〈πφ(g)ξφ, ξφ〉 = φ(g), for every g ∈ Γ.
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1.2. C*-dynamical systems. In the non-commutative world, the category of compact spaces is
replaced by that of C*-algebras.

Definition 1.4. A C*-algebra is a normed algebra (A, ‖ · ‖) over the field of complex numbers, with
an anti-linear involution ∗ : A→ A satisfying:

• A is complete as a normed space and ‖ab‖ ≤ ‖a‖‖b‖, for all a, b ∈ A (Banach algebra axioms)
• ∗ is isometric, and satisfies ‖a∗a‖ = ‖a‖2, for all a ∈ A (C*-axiom).

A morphism of C*-algebras, or C*-morphism, is an algebra homomorphism π : A→ B which preserves
the *-operation. Such an algebraic morphism is automatically contractive for the norms: ‖π(a)‖ ≤ ‖a‖
for all a ∈ A. We denote by Aut(A) the group of all automorphisms of A, endowed with the topology
of pointwise norm convergence.

Exercise 1.5. Admitting the above fact on C*-morphisms, check that the image of a C*-morphism
is again a C*-algebra, and that an injective C*-morphism is an isometry.

In fact, to truly correspond to compact spaces, our C*-algebras will always be assumed to be unital,
i.e. they have a unit 1.

Definition 1.6. A state on A is a linear functional φ : A → C such that φ(1) = 1 and φ(a∗a) ≥ 0,
for every a ∈ A. The set S(A) of all states on A is a compact space for the weak-* topology.

Example 1.7. Assume that X is a compact space. Then the algebra C(X) of continuous complex
valued functions over X, endowed with pointwise operations, the sup-norm and the pointwise complex
conjugation as a *-operation is a C*-algebra. Its product is commutative.

Conversely, any commutative C*-algebra A arises this way. The space X is canonically attached to
A, and can be recovered as the space of all C*-morphisms A → C. This is explicitly given by the
so-called Gelfand transform. In particular, the category of compact spaces is equivalent to that of
unital C*-algebras.

By Riesz representation theorem, states on C(X) correspond to Borel probability measures on X.

Example 1.8. Given a Hilbert space H, the algebra B(H) of all continuous linear operators on H,
with composition of operators as its product law, adjoint as its *-operation and operator norm, is
a C*-algebra. The unit is the identity operator. Note that any vector ξ ∈ H gives rise to a state
T ∈ B(H) 7→ 〈Tξ, ξ〉 ∈ C on B(H), and hence on any of its C*-subalgebras.

Example 1.9. Any *-invariant subalgebra of B(H) which is normed closed in of course a C*-algebra
as well. For example if π : G→ U(H) is a unitary representation of a locally compact group G, then
the norm closure of span(π(G)) is a C*-algebra, denoted by C∗π(G).

Definition 1.10. An action of a locally compact group G on a C*-algebra A is a continuous group
homomorphism σ : g ∈ G 7→ σg ∈ Aut(A). A state φ on A is called G-invariant if φ ◦σg = φ for every
g ∈ G. In the sequel we will use the notation gφ for φ ◦ σ−1

g .

Example 1.11. Consider a lcsc group G and a unitary representation π : G→ U(H) on the Hilbert
space H. Then G acts on B(H) by unitary conjugation. The existence of an invariant state is a
property of the representation, known as Bekka’s amenability.

Also interesting is the sub-C*-system G y C∗π(G). Check that any invariant state φ on C∗π(G) is a
trace, in the sense that φ(ab) = φ(ba) for every a, b ∈ C∗π(G).

When G is discrete and π = λ is the regular representation G → U(`2G), given by λg(δh) = δgh, for
every g, h ∈ G, there is always a trace on C∗λ(G) (for every discrete G), given by the vector state
a 7→ 〈Tδe, δe〉. Note that this state is not invariant on B(`2G) in general.

In this language, the famous unique trace property is naturally phrased as a unique ergodicity property.

Definition 1.12. Two states φ, ψ on a C*-algebra A are called singular if ‖φ− ψ‖ = 2. In this case,
we write φ ⊥ ψ.

Exercise 1.13. Check that φ ⊥ ψ if and only if there exists a sequence of elements an ∈ A, such that
0 ≤ an ≤ 1, and limn φ(an) = 0 and limn ψ(an) = 1.
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Lemma 1.14. Take a C*-algebra A with a unitary u ∈ U(A) and a state φ ∈ S(A). Denote by
φu ∈ S(A) the state such that φu(a) = φ(u∗au), for all a ∈ A. If φ ⊥ φu, then φ(u) = 0.

Proof. By assumption, we may find a sequence an ∈ A, such that 0 ≤ an ≤ 1, and

lim
n
φ(an) = 0 and lim

n
φ(u∗anu) = 1.

By Cauchy-Schwarz inequality, we find

lim
n
|φ(anu)| = lim

n
|φ(an)1/2a1/2

n u)| ≤ lim
n
φ(an)1/2φ(u∗anu)1/2 = 0.

A similar computation gives that limn |φ(anu) − φ(u)| = limn |φ(u(u∗anu − 1))| = 0. This gives
φ(u) = limn φb(anu) = 0, as claimed. �

1.3. Main theorem and consequences. Our main theorem is about actions of lattices in higher
rank Lie groups. We will use repeatedly specific notation relative to this setting:

• G will denote a connected semi-simple Lie group of (real) rank at least 2, with finite center;
• Γ will be an irreducible lattice in G;
• P will be a minimal parabolic subgroup in G; K a maximal compact subgroup.
• µ will be a probability measure on G which is absolutely continuous with respect to the

Haar measure, with a continuous, compactly supported Radon-Nykodym derivative. We also
assume that µ is left K-invariant.

In the case where G = SLd(R), we may choose P as the subgroup of upper triangular matrices and
K = SO(d). Some facts we will use about P :

• P is co-compact in G,
• K acts transitively on G/P ,
• G/P , endowed with its unique K-invariant probability measure νP realizes the Poisson bound-

ary of µ. See Section 2.3 for a recap on Poisson boundaries.

Note that the last item above implies that G/P is amenable as a G-space and hence also as a Γ-space.
In particular, for every separable convex compact space C on which G (or Γ) acts continuously by
affine transformations, there exists a measurable G-map (or Γ-map) G/P → C.
By a theorem of Furstenberg, there exists a probability measure µ0 ∈ Prob(Γ) such that (G/P, νP ) is
also the Poisson boundary of (Γ, µ0).

We keep this notation for the rest of this section.

Theorem 1.15 (Main dynamical theorem). Take a separable Γ-C*-algebra A and a measurable Γ-
equivariant map θ : G/P → S(A), which is extremal with these properties. Then either θ is essentially
constant or for every g ∈ Γ \ Z(Γ), for almost every b ∈ G/P , we have θgb ⊥ θb.

Let us assume for simplicity that G and Γ have trivial center, and derive some corollaries in this case.

Corollary 1.16 (Peterson). Let φ be a character of Γ. Then either φ is the regular character or the
GNS representation πφ is amenable in the sense of Bekka, i.e. there exists a Γ-invariant state on
B(Hφ).

Proof. Simply denote by (H,π, ξ) the GNS triple associated with φ. Assume that φ not amenable, so
that there is no Γ-invariant state on B(H).

Exercise. Check then that there exists a separable C*-subalgebra A ⊂ B(H) which contains π(Γ)
such that there is no Γ-invariant state on A.

By Theorem 1.15, for every extremal measurable Γ-map θ : G/P → S(A), for every non-trivial
g ∈ Γ, for almost every b ∈ G/P , we have θgb ⊥ θb. Indeed θ cannot be essentially constant because
this would imply that its essential range consists of a single Γ-invariant state on A. Note that
θgb = gθb = θb ◦ Ad(π(g)∗). So Lemma 1.14 implies that θb(π(g)) = 0. By Krein-Millman’s theorem,
every measurable Γ-map θ : G/P → S(A) lies in the closed convex hull of extremal ones. So the
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formula θb ◦ π = δe, for almost every b still holds when θ is not assumed to be extremal. Now we
consider the convex set

C := {ψ ∈ S(A) | ψ ◦ πφ = φ}.
It is a compact set for the weak-* topology, which is Γ-invariant. By amenability of G/P , we may
find a measurable Γ-map θ : G/P → C. By the observations above we find θ ◦ π = δe = φ for almost
every b ∈ B, which implies that φ is the regular character. �

Exercise 1.17. In the case where Γ has property (T), derive that every extremal point in the space
of characters of Γ is either the regular character, or is almost periodic, in the sense that its GNS
representation is finite dimensional.

Applying the above corollary to the subgroup characters and IRS characters described in Example
1.2 gives the following corollaries.

Corollary 1.18. Assume that Γ has property (T).

(1) Every non-trivial normal subgroup of Γ has finite index in Γ (Margulis);
(2) every ergodic pmp action of Γ on a probability space is either essentially transitive or essentially

free (Stuck-Zimmer).

Corollary 1.19. Every minimal action of Γ on a compact space is either topologically free or fixes a
probability measure. In particular, if Γ has property (T), then any of its URS’s is finite.

Proof. Consider a minimal Γ y X on the compact space X. Denote by A = C(X), and choose
an extremal Γ-equivariant measurable map θ : G/P → Prob(X). Note that the barycenter measure
ν := Bar(θ∗(νP )) ∈ Prob(X) is quasi-invariant. By minimality, we find that ν has full support.

If θ is essentially constant, then ν is equal to the essential value of θ and is Γ-invariant. Otherwise,
Theorem 1.15 implies that θb ⊥ gθb, for every non-trivial g ∈ Γ, for ν-almost every b ∈ B. In particular
θb(Fix(g)) = 0, where Fix(g) is the fixed point set of g in X. Integrating this over b ∈ B, we find that
ν(Fix(g)) = 0. Since the support of ν is the whole of X, this forces Fix(g) to have empty interior. �

Corollary 1.20. Take a unitary representation π of Γ. The following facts hold true:

(1) C∗π(Γ) admits a trace.
(2) Assume that Γ has property (T). Either π contains a finite dimensional invariant subspace,

or weakly contains the regular representation of Γ. The later means that the map π(g) 7→ λ(g)
extends to a C*-morphism C∗π(Γ)→ C∗λ(Γ).

Proof. (1) We view A := C∗π(Γ) as a Γ-C*-algebra for the conjugation action. Take an extremal
measurable Γ-map θ : G/P → S(A). By Theorem 1.15, either θ is essentially constant, and its image
is Γ-invariant, or θb ⊥ gθb, for every non-trivial g ∈ Γ, for almost every b ∈ G/P . By Lemma 1.14,
the later implies that θb(π(g)) = 0. In this case θb ◦π = δe for almost every b. Since A is generated by
π(Γ) and δe is conjugation invariant, we find that in this case, θb is Γ-invariant, almost surely. This
contradicts the assumption that θb ⊥ gθb.
(2) Denoting by τ a trace on C∗π(Γ), we find that φ = τ ◦ π is a character. We note that the GNS
representation of φ is of the form πτ ◦ π, where πτ : A → B(Hτ ) is the GNS representation of the
trace τ (we didn’t mention it, but the GNS construction also works in the framework of states on
C*-algebras).

Exercise. This implies that πτ is weakly contained in π.

We apply Corollary 1.16 to φ. If φ is the regular character, then πφ is the regular representation and
thus π weakly contains the regular representation. Otherwise, if πφ is an amenable representation,
and this can be checked to imply that π itself must be amenable. But an amenable representation of
a property (T) group must have a finite dimensional invariant subspace. �

Exercise 1.21. Figure out what the above corollaries become when we allow G to have finite center.

In fact, the same corollaries hold true for more general S-adic lattices, PSLd(Z[1/p]), d ≥ 3, although
we cannot prove Theorem 1.15 in this case.
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2. Non-commutative measurable dynamics

2.1. Von Neumann algebras and actions.

Definition 2.1. Given a Hilbert space H, we define the weak topology on B(H) as the initial topology
for the family of semi-norms T ∈ B(H) 7→ |〈Tξ, η〉|, as ξ, η vary in H. So a sequence Tn converges to
T ∈ B(H) if and only if limn〈(Tn − T )ξ, η〉 = 0, for all ξ, η ∈ H. This topology is coarser than the
norm topology.

A von Neumann algebra is a C*-subalgebra of some B(H) in which it is weakly closed. This notion
doesn’t seem intrinsic as it seems to involve the embedding in some B(H). Nevertheless, we have a
well defined category by defining a vN-morphism from M to N as a C*-morphism M → N which is
weakly continuous. It turns out that the image of such a morphism is automatically weakly closed in
N , hence a von Neumann subalgebra.

A state on a von Neumann algebra is called normal if it is weakly continuous.

Although we will stay on the surface in our arguments about von Neumann algebras, we quote the
famous bi-commutant theorem of von Neumann. By definition the commutant of a set of operators
S ⊂ B(H) is defined as

S ′ := {T ∈ B(H) | ST = TS, for all S ∈ S}.
Note that a commutant is always weakly closed, and von Neumann’s theorem gives the converse.

Theorem 2.2. A unital *-sublagebra A ⊂ B(H) is weakly closed if and only if it is equal to its bi-
commutant: A = (A′)′. In particular the weak closure of a *-subalgebra of B(H) is its bi-commutant.

Example 2.3. If (X,µ) is a measure space, then L∞(X,µ) can be viewed as a subalgebra of
B(L2(X,µ)), and it can be checked to be a von Neumann subalgebra. Indeed, one can prove that it
is equal to its own commutant. In fact, any commutative von Neumann algebra is isomorphic with
some L∞(X,µ), and again, there is an equivalence of categories between commutative von Neumann
algebras and measure spaces.

We define a projection in a von Neumann algebra M as an element p ∈M such that p = p∗ = p2 (i.e.
p ∈ B(H) is just an orthogonal projection onto a closed subspace of H). If x is a self adjoint operator
in M , then all its spectral projections are in M . In particular, the set of projections in M spans a
norm dense subset of M . If p is a projection in M , then pMp is a *-algebra, acting naturally on pH.
In fact it is a von Neumann algebra in B(pH), called a corner of M

Definition 2.4. If φ is a normal state on a von Neumann algebra M , then there exists a (unique)
smallest projection p ∈M such that φ(p) = 1. It is called the support projection of φ. We say that φ
is faithful if p = 1.

We endow the group Aut(M) of all vN-automorphisms of a von Neumann algebra M with the topology
on pointwise norm convergence on the space of normal states of M . More precisely, a net αn ∈ Aut(M)
converges to α if limn ‖φ◦αn−φ◦α‖ = 0 for every normal state φ on M . If M is acting on a separable
Hilbert space, Aut(M) is a Polish group for this topology.

Definition 2.5. A vN-action of a lcsc groupG on a von Neumann algebraM is a continuous morphism
G→ Aut(M). We say that the action is ergodic if the only G-invariant elements in M are the scalar
multiples of the identity operator 1.

Note that a vN-continuous action GyM is not C*-continuous in general. Nevertheless, a convolution
argument implies that M always admits a strongly dense C*-subalgebra A which is globally invariant
and on which the action is norm continuous. The C*-action G y A is an instance of what we call a
compact model defined below.

2.2. Non-singular actions.

Definition 2.6. Given a separable C*-algebra A, we define its universal representation (πu, Hu) of A
as the direct sum of all the (equivalence classes of) representations of A on separable Hilbert spaces.
We call πu(A)′′ the enveloping von Neumann algebra of A, and denote it by A∗∗.
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By construction, every C*-morphism from A into a von Neumann algebra M extends (uniquely) to a
vN-morphism A∗∗ → M . Thanks to the GNS construction, it follows that every state on A extends
(uniquely) to a normal state on A∗∗, and more generally every continuous linear functional on A
extends to a weakly continuous linear functional on A∗∗. In fact this extension property allows to
canonically identify A∗∗ with the bidual of A, as operator spaces. This justifies our notation.

From the universal property of A∗∗, any C*-action G y A of a lcsc group G gives rise to an action
on A∗∗. However, this action is not continuous in general.

Definition 2.7. The support of a state φ on a C*-algebra A is by definition the support projection of
the normal extension of φ to A∗∗, in the sense of Definition 2.4. Two states φ, ψ are called equivalent,
denoted by φ ∼ ψ if they have the same support.

Exercise 2.8. Check that two states are singular if and only if their support projections are orthog-
onal.

Remark 2.9 (Caution). It can be checked that the notion of singular (resp. equivalent) states
coincides with the notions of singular (resp. equivalent) measures in the commutative case. For this
reason, the support of a state in the above sense must differ from the notion of support of a measure.
It is true that the support of a measure µ ∈ Prob(X) gives a projection p in C(X)∗∗ (because any
Borel function on X can be viewed as an element in C(X)∗∗), which satisfies

∫
X p dµ = 1, but it is

not equal to the support projection of µ in the above sense. The reason is that the bidual of C(X) is
more complicated than just the C*-algebra of bounded Borel functions on X.

Remark 2.10. Sometimes, the notions of equivalent and singular states on C*-algebra are formulated
in terms of the central support z of φ in A∗∗. This makes sense because zA∗∗ identifies with the GNS
von Neumann algebra associated with φ. But unfortunately the normal extension of φ on its GNS
von Neumann algebra is not always faithful, and we prefer to work in the faithful setting.

Definition 2.11. Take a C*-action Gy A and a state φ ∈ S(A). We say that φ is non-singular, or
quasi-invariant if φ ∼ gφ for every g ∈ G. Equivalently, this means that the support projection p of
φ in A∗∗ is G-invariant.

Classical automatic continuity statements imply that if G a lcsc group acting continuously on a
separable C*-algebra A, with a non-singular state φ, then the corresponding action G y pA∗∗p is a
(continuous) vN-action.

From now on we will only deal with separable C*-algebras and von Neumann algebras acting on
separable Hilbert spaces.

Definition 2.12. Given a C*-action G y A, with a non-singular state φ ∈ S(A), we call the vN-
action G y M := pA∗∗p the vN-envelope1 of (A, φ). In this case, we say that G y A is a compact
model of the action GyM .

2.3. Stationary dynamics.

Definition 2.13. Let G be an lcsc group and µ ∈ Prob(G). Consider a action G y A on a C*-
algebra A. Define the convolution operator Tµ : S(A) → S(A), by Tµ(φ) :=

∫
G gφdµ(g). This is a

continuous affine transformation of S(A), hence by Kakutani’s theorem, it admits fixed points, called
µ-stationary states. The subset of all µ-stationary states on A is a closed convex subset of S(A).

We will always assume that the support of µ generates a dense sub-semigroup of G. We say that µ is
generating.

Note that for every µ-stationary state φ on the C*-algebra A, we may define the Poisson transform
Pφ : A → L∞(G), by the formula Pφ(a)(g) = (gφ)(a). The fact that φ is µ-stationary implies that
Pφ(a) ranges into the space of right-µ-Harmonic functions on G, denoted by Hµ(G).

Recall that given a probability measure µ ∈ Prob(G), there is a measure space (B, ν), on which G
acts and that encodes the behavior at infinity of the µ-random walk on G. The G-space (B, ν) is
called the Poisson boundary of G and can be defined as the unique G-space (B, ν) such that

1In view of Remark 2.10, it would be more appropriate to call it the faithful vN-enveloppe. But we will keep the
lighter notation in this text.
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• ν is µ-stationary and
• The Poisson transform: Pν : L∞(B, ν)→ Hµ(G) is an onto isometry.

Given a G-C*-algebra A with a µ-stationary state φ, we obtain a positive linear map P−1
ν Pφ : A →

L∞(B, ν), which is G-equivariant.

Exercise 2.14. Any positive map E : A → L∞(B, ν) corresponds to a unique measurable map
θ : B → S(A), such that E(a)(b) = θb(a), and vice versa (this relies on the separability of A). In
particular E is G-equivariant if and only if θ is G-equivariant.

Thanks to the above exercise, any µ-stationary state φ on A comes with a uniquely defined (modulo
null sets) G-equivariant measurable map θ : B → S(A), where Gy (B, ν) is the Poisson boundary of
(G,µ). Conversely, any such boundary map gives a µ-stationary state φ = Bar(θ∗ν), the barycenter
of the push-forward of ν. These two constructions are inverse of each other.

Definition 2.15. In the above context, the states θ(b), b ∈ B, are called the conditional states
attached to the µ-stationary state φ, and are denoted by φb.

Proposition 2.16. Take a C*-action G y A and a generating measure µ ∈ Prob(G). Any µ-
stationary state φ on A is non-singular, and the following are equivalent:

(i) φ is extremal as a µ-stationary state on A;
(ii) The corresponding measurable G-map θ : B → S(A) is extremal;

(iii) The vN-envelope GyM is ergodic.

Proof. We only prove the non-singularity statement in the case where G is discrete (countable). The
proof of the equivalence (i) − (iii) is somewhat similar to the well-known commutative proof but it
requires some knowledge on operator algebras. It is essentially given in [BBHP20, Proposition 2.8].

Denote by p ∈ A∗∗ the support projection of the µ-stationary state φ. Then we have

1 = φ(p) =

∫
G

(gφ)(p) dµ(g).

Since (gφ)(p) ∈ [0, 1] for every g ∈ G, the above equality implies that for every g in the support of µ,
σ−1
g (p) = p. Since the support of µ generates G, this shows that p is indeed G-invariant. �

2.4. A measurable version of Theorem 1.15. The above tools allow to switch between the von
Neumann language and the C*-language. Using these tools one can prove that Theorem 1.15 is
equivalent to the following theorem on von Neumann dynamical systems.

Theorem 2.17. Use the notation Γ < G, µ ∈ Prob(G), µ0 ∈ Prob(Γ) given in Section 1.3. For every
ergodic vN-action Γ y M on a separable von Neumann algebra with a faithful µ0-stationary normal
state φ on M , one of the following happens:

• Either φ is Γ-invariant;
• Or for some compact model A of M , for every g ∈ Γ \ Z(Γ), the conditional states of φ|A at
b and at gb are singular, for almost every b ∈ B.

In the above theorem one can show that the singularity condition appearing in the second bullet point
is in fact independent of the choice of the compact model. This is based on [BBHP20, Proposition
4.10].

Although this version is less naturally phrases as the C*-version Theorem 1.15, the von Neumann
algebraic setting has the advantage to allow induction from Γ-actions to G-action, which is by nature,
a measurable technique.
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3. Proof of the singularity theorem: reduction to G-actions

In the rest of these notes, we discuss the proof of Theorem 2.17. There are essentially two cases:
the case where G is simple, and the case where Γ is an irreducible lattice in a product of at least
two groups. The simple case is dealt with in [BH19], and relies on a non-commutative version of a
Theorem of Nevo and Zimmer. The product case is treated in [BBHP20], it relies on irreducibility
methods originating in work of Bader-Shalom [BS04]. In both cases we use induction to get to a
vN-action of G.

3.1. Induction and stationary actions. Due to the measurable nature of von Neumann algebras
and the measurable relationship between a lcsc group G and a lattice Γ in it, it is possible to induce
a vN-action of Γ to a vN-action of G. The construction goes as follows.

Take a lattice Γ < G, and a Γ-action on a von Neumann algebra M . We denote by σ this action. We
consider the algebra M of L∞-functions f : G→M , up to null sets, which are Γ-equivariant for the
right Γ-action on G, in the sense that

f(gγ−1) = σγ(f(g)), for almost every g ∈ G, and every γ ∈ Γ.

For people more familiar with von Neumann algebras, this can be realized as the fixed point algebra
in L∞(G)⊗M under the diagonal action ρ⊗ σ, where ρ : Γ y L∞(G) is the right translation action.
In this presentation, it is seen to be a von Neumann algebra acting on L2(G)⊗H, where M ⊂ B(H).

Definition 3.1. The induced action of Γ yM to G, is the action of G onM given by left translation:
σ̃g(f) : h 7→ f(g−1h), for every g ∈ G, f ∈M.

Exercise 3.2. Check that if f is equivariant as above, so is λg(f). Check that this map is implemented
by conjugation within B(L2(G)⊗H) by the unitaries λg⊗ id, where λ is the left regular representation
of G on its L2-space. Thus σ̃ defines a vN-action GyM.

Exercise 3.3. Check that the induced G-action is ergodic if and only if the initial Γ-action is ergodic.

In this process of induction, we would like to keep track of the advantageous µ0-stationary state φ on
M . This is possible in our setting precisely because we choose µ0 ∈ Prob(Γ) such that there exists
µ ∈ Prob(G) such that the Poisson boundary of (Γ, µ) coincides with that of (G,µ′), as Γ-spaces.

Lemma 3.4. Assume that µ0 ∈ Prob(Γ) and µ ∈ Prob(G) have the same Poisson boundary as Γ-
spaces. Then for any vN-action Γ y M , with a normal µ0-stationary state φ on M , the induced

action GyM admits a normal µ-stationary state φ̃.

Proof. Denote by (B, ν) the common Poisson boundary of (Γ, µ0) and (G,µ). As we have explained
in Section 2.3, the µ0-stationary state φ on M gives rise to a Γ-equivariant, positive unital map
E := P−1

ν Pφ : M → Hµ(Γ)→ L∞(B, ν).

Now given f ∈ M, viewed as a Γ-equivariant function f : G→ M , the function E ◦ f : G→ L∞(B)
is still Γ-equivariant. Moreover, since L∞(B) is not only a Γ-algebra, but a G-algebra, we may twist
this function E ◦ f to get a Γ-invariant function g ∈ G 7→ σg(E(f(g))) ∈ L∞(B, ν). Viewing this
function as an L∞-function on G/Γ, we may consider its average with respect to the unique Γ-invariant
probability measure λΓ on G/Γ:

θ(f) :=

∫
G/Γ

σg(E(f(g))) dλΓ(gΓ) ∈ L∞(B, ν).

Exercise. Using G-invariance of the measure λΓ, check that the map θ : M → L∞(B, ν) obtained
this way is G-equivariant.

Since E is G-equivariant and ν is a µ-stationary measure, we find that φν ◦ θ is µ-stationary, where

φν is the state on L∞(B, ν) given by ν-integration. This is the desired state φ̃. �

In the above construction, one can prove that φ̃ is G-invariant if and only if φ is Γ-invariant, that φ̃
is faithful on M if and only if φ is faithful.
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3.2. Simple case: Non-commutative Nevo-Zimmer theorem. In the late 90’s, early 2000’s,
Nevo and Zimmer wrote a series of papers regarding stationary actions of higher rank (semi-)simple
Lie groups, see [NZ97, NZ00]. One of their culminating results is the following one.

Theorem 3.5 (Nevo-Zimmer). Use the notation of Section 1.3, and assume that every simple factor
of G has rank at least 2. Let (X, ν) be an ergodic G-space where ν is µ-stationary.

Then either the measure ν is G-invariant, or there exists a G-equivariant measurable map (X, ν) →
(G/Q, νQ), where Q is a proper parabolic subgroup of G containing P , and νQ ∈ Prob(G/Q) is the
unique K-invariant measure.

In [BH19], we extend this result to the non-commutative setting.

Theorem 3.6. Use the notation of Section 1.3, and assume that every simple factor of G has rank

at least 2. Let M be an ergodic G-von Neumann algebra with a faithful normal µ-stationary state φ̃.

Then either φ̃ is G-invariant, or there exists a G-equivariant C*-homomorphism C(G/Q) → M,
where Q is a proper parabolic subgroup of G containing P .

At first glance, there are two approaches to prove the above theorem, from that of Nevo and Zimmer:
we could either try to reproduce their proof in this extended setting, or we could try to do comple-
mentary work to get to a situation where we can just apply their result. In fact, the proof uses both
strategies: assuming that φ′ is not G-invariant, we find a suitable G-invariant abelian vN-subalgebra
A ⊂M on which φ′ is still not G-invariant, and we apply the classical result of Nevo and Zimmer in
this commutative situation. But finding such an A in general is a very hard task, which is achieved
in this case by mimicking parts of Nevo and Zimmer’s argument.

Using stationary induction, we are actually able to push this general result to Γ-actions.

Corollary 3.7. Use the notation of Section 1.3, and assume that every simple factor of G has rank
at least 2. Let M be a Γ-von Neumann algebra with a faithful normal µ0-stationary state φ.

Then either φ is Γ-invariant, or there exists a Γ-equivariant C*-homomorphism C(G/Q)→M , where
Q is a proper parabolic subgroup of G containing P .

The advantage of this result is that the dynamics of Γ on homogeneous spaces G/Q is well understood.
In particular, in the above setting, the conditional states of φ on the image of C(G/Q) are the con-
ditional states of the unique µ-stationary measure νQ, and hence are point measures. More precisely,
recalling that the Poisson algebra of (Γ, µ) is (G/P, νP ), one verifies that the conditional measure at
b = gP , is the Dirac measure at the image point gQ. Since Γ/Z(Γ) acts essentially freely on G/Q, we
conclude in this case that for every g ∈ Γ \ Z(Γ), for almost every hP ∈ G/P , the conditional states
φghP and φhP are singular. This is how one derives Theorem 2.17 in the simple case.

The rest of these notes is devoted to explain how one proves Theorem 2.17 in the case where G has
at least two simple factors, and possibly rank one factors.

3.3. Product case: the continuity algebra. In the general semi-simple case, the possible presence
of rank one factors rules out the possibility to use a strategy as in the simple case above: we cannot
hope to prove a result for G actions that would imply alone something interesting for any lattice.
The irreducibility assumption has to play a role. In fact, this assumption will be used to find a closer
relationship between the induced G-algebra and the initial Γ-algebra.

For simplicity we assume from now on that G has only two simple factors, G = G1 ×G2 and that Γ
is an irreducible lattice in G. This means that the projection of Γ in both G1 and G2 are dense.

We take a Furstenberg measure µ0 ∈ Prob(Γ) and a measure µ ∈ Prob(G) as in Section 1.3. We
moreover assume as we may that µ is a product µ = µ1 ⊗ µ2, where µi ∈ Prob(Gi) is absolutely con-
tinuous with respect to the Haar measure, with a continuous, compactly supported Radon-Nykodym
derivative.

In this setting, we can prove the following result, which is the technical heart of [BBHP20]. This can
be viewed as an extension of Creutz-Peterson work on the G-algebra to the stationary setting.
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Theorem 3.8. Let M be a Γ-von Neumann algebra with a faithful normal µ-stationary state. Denote
by M the induced G-algebra, with its µ′-stationary state. For i ∈ {1, 2}, we have a Γ-equivariant von
Neumann embedding θi from the fixed point algebra MGi into M , such that φ ◦ θ = φ′.

This theorem will be combined with the following lemma.

Lemma 3.9. Let N be a G von Neumann algebra with a faithful normal µ′-stationary state ψ.
Recall that we chose µ′ = µ1 × µ2. Then ψ is µ1 and µ2-stationary. Moreover given distinct indices
{i, j} = {1, 2}, if ψ is not Gj-invariant, then its restriction to the fixed point algebra NGi is not
Gj-invariant.

Proof. The first fact follows from its commutative analogue. More precisely, it is known that the
µ′-stationary measure on the Poisson boundary B is also µ1 and µ2-stationary. Now, recall that a
µ′-stationary state ψ comes with a positive unital G-equivariant map E : M → L∞(B, ν), and that
ψ = ν ◦ E. This formula clearly implies that ψ is indeed µ1 and µ2 stationary.

To prove the moreover part, we only need to construct a Gj-equivariant map F : N → NGi which
is ψ-preserving, i.e. such that ψ = φ ◦ F . We define F as follows. Define the convolution map
Ti : N → N by the formula Ti(x) =

∫
Gi
σ−1
g (x) dµi(g), x ∈ N . This map is naturally Gj-equivariant

and ψ-preserving, because ψ is µi-stationary.

We choose a free ultrafilter ω on N, and using the fact that the weak topology on the unit ball of N
is compact, we may define F as the weak limit:

F (x) = lim
n→ω

1

n

n∑
k=1

T ki (x), for all x ∈ N.

Then F defined this way is indeed ψ-preserving and Gj-equivariant. We only need to prove that it
ranges into NGi . But one easily checks that the range of F is precisely the fixed point set of Ti. Let
us then check that this fixed point set is exactly NGi .

Of course a Gi-invariant element in N is Ti-invariant. Conversely, take x ∈ N such that Ti(x) = x.
Using the formula ‖y‖2ψ = ψ(y∗y), for all y ∈ N , we compute∫

Gi

‖σ−1
g (x)− x‖2ψ dµi(g) = (µi ∗ ψ)(x∗x)− ψ(Ti(x

∗)x)− ψ(xTi(x)) + ψ(x∗x).

Since ψ is µi-stationary and Ti(x) = x (and thus also Ti(x
∗) = x∗), all of the four terms above are

equal, and the resulting quantity is 0. Since ψ is faithful, this shows that σg(x) = x for µi-almost
every g ∈ Gi, and classical considerations from the fact that µi is admissible on Gi imply that x is in
fact Gi-invariant. This concludes our proof. �

Corollary 3.10. Let M be a Γ-von Neumann algebra with a µ0-stationary normal faithful state φ. If
φ is not Γ-invariant, then there exists an index i ∈ {1, 2} and a subalgebra Mi of M with the following
properties:

• the Γ-action on Mi extends to a G-action which factors through a continuous Gi-action, via
the projection map pi : G→ Gi;
• The restriction of φ to Mi is not Γ-invariant, and hence it is not Gi-invariant.

Proof. Since φ is not Γ-invariant, the induced µ0-stationary state φ̃ is not G-invariant on M. Hence

it is not Gj-invariant for some index j = 1, 2. By Lemma 3.9, we find that φ̃ is not Gj-invariant on
the fixed point algebra MGi . Now we can just apply Theorem 3.8 to get the conclusion. �
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4. Mautner property and singularity for G-actions

In this last lecture, we use the notation of Section 1.3, but there is no lattice, and the Lie group G is
simple.

Theorem 4.1. Consider an ergodic G-action on a separable von Neumann algebra M with a normal
faithful µ-stationary state φ.

Then either φ is G-invariant, or for every compact model A ⊂ M , the conditional states φb ∈ S(A),
b ∈ G/P , satisfy: for every g ∈ G \ Z(G), for almost every b ∈ B, φgb ⊥ φb.

Exercise 4.2. Combine Theorem 4.1 with Corollary 3.10 to prove Theorem 2.17.

In fact the above statement is best proved in the C*-algebraic framework. As we explained, we can
use compact models and vN-envelopes to switch between the two settings.

Theorem 4.3. Keep the above setting. Consider a G-action on a C*-algebra A with an extremal
µ-stationary state φ.

Then either φ is G-invariant, or the conditional states φb ∈ S(A), b ∈ G/P , satisfy: for every
g ∈ G \ Z(G), for almost every b ∈ B, φgb ⊥ φb.

4.1. Mautner phenomenon. Denote by T ⊂ P a maximal split torus. In the case of G = SLd(R),
we may choose for T the subgroup of diagonal matrices.

Lemma 4.4. For any continuous action of P by isometries on a metric space (E, d), any T -invariant
vector is P -invariant. In particular for every g ∈ G, any vector invariant under gPg−1 ∩ P is P -
invariant.

Proof. Since this statement is familiar to experts on Lie groups, we will write the proof for non-
experts, in the case where G = SLd(R). Fix a vector v ∈ E which is fixed under T . We want to show
that v is fixed by any group element of the form gi,j(λ) = id +λEi,j , where i < j and λ ∈ R. Fix such
i, j, λ, and consider the diagonal matrices tn ∈ T , such that

(tn)k,k =


n if k = i

1/n if k = j

1 otherwise

Then we have that t−1
n gi,j(λ)tn = gi,j(λ/n

2), which converges to id as n→∞. Since v is T invariant,
we find

d(v, gi,j(λ)v) = lim
n
d(tnv, gi,j(λ)tnv) = lim

n
d(v, t−1

n gi,j(λ)tnv) = 0.

Thus, v is fixed by gi,j(λ) for every i, j, λ, as desired.

Let us now discuss the second part of the statement. It is based on the fact that any two conjugates
P and gPg−1 contain a common conjugate of T . This fact is related to the Bruhat decomposition,
and in our SLd example, it can be viewed in terms of flags. We define a flag on Rd as an increasing
(strictly) sequence of nonzero subspaces E1 ⊂ E2 ⊂ · · · ⊂ En of Rd. A full flag is by definition a
maximal flag, i.e. n = d, and dim(Ei) = i for every i. Since G acts linearly on Rd, it acts on the set
of all full flags of Rd, this action is transitive, and P is the stabilizer group of exactly one full flag.

Exercise. Assume that (E1, . . . , Ed) and (E′1, . . . , E
′
d) are two full flags of Rd.

a) Prove that there exists a basis e1, . . . , ed of Rd and a permutation α ∈ Sd such that Ei =
span(e1, . . . , ei) and E′i = span(eα(1), . . . , eα(i)), for every 1 ≤ i ≤ d.

b) Deduce that the torus T0 consisting of matrices that are diagonal in the basis (e1, . . . , ed) fixes
both flags.

c) Conclude that for every g ∈ G, there exists h ∈ P such that hTh−1 ⊂ P ∩ gPg−1, and complete
the proof of the lemma. �
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4.2. P -invariant states.

Lemma 4.5. Keep the notation G, P as above. Let A be a G-C*-algebra with an extremal P -invariant
state ψ. Then for every g ∈ G, we have either gψ = ψ or gψ ⊥ ψ.

Proof. We want to use Mautner phenomenon, and the fact that the action of P on the dual A∗ is
by isometries. However, this action is not norm continuous in general, precisely because the action
P y A∗∗ is not a continuous vN-action. But we mentioned that if p denotes the support projection
of ψ, then the action P y pA∗∗p is continuous. In fact this is also true if instead of p we consider
the central support z of ψ, which is by definition the support of the restriction of ψ to Z(A∗∗). Note
that p ≤ z. It will be more convenient for us to work with z ∈ Z(A∗∗). Denote by zA∗ the set of
continuous linear functionals α on A whose normal extension to A∗∗ satisfies

α(x) = α(zx), for every x ∈ A.
Then it can be checked that the action P y zA∗ is norm continuous (and isometric).

Fix now g ∈ G, and consider the element ψg ∈ A∗ such that ψg(x) = ψ(σg(z)x), for every x ∈ A.
Since by definition ψ ∈ zA∗, we have ψg(x) = ψ(zσg(z)x) = ψ(σg(z)zx) = ψg(zx), and thus ψg ∈ zA∗.
Since σg(z) is gPg−1-invariant and ψ is P -invariant, ψg is fixed by P ∩ gPg−1. By Lemma 4.4, ψg
must actually be P -invariant. Moreover, since z ∈ Z(A∗∗), we have

ψg(x
∗x) = ψ(x∗σg(z)x) ≤ ψ(x∗x), for all x ∈ A.

So ψg is a positive linear functional which is P -invariant and dominated by ψ. Since ψ is extremal,
this implies that ψg is proportional to ψ. Two cases may occur: ψg = 0 or ψg 6= 0.

Exercise. Check that the central support of ψg is zσg(z).

If ψg = 0, then zσg(z) = 0 and in particular p and σg(p) are orthogonal, which means ψ ⊥ gψ.
Otherwise, ψ and ψg have the same central support: z = zσg(z). This implies that z ≤ σg(z).
Note that ψ ⊥ gψ if and only if ψ ⊥ g−1ψ, and ψ = gψ if and only if ψ = g−1ψ. So assuming that
ψ is not singular to gψ, the above argument applied to g and g−1 gives that in fact z = σg(z). In
this case, ψ may be viewed as a linear functional in σg(z)A

∗∗, on which gPg−1 acts continuously,
and in this case ψ is P ∩ gPg−1-invariant. Applying Lemma 4.4, we find that actually ψ must be
gPg−1-invariant.

But we can do better: once we know that σg(z) = z, we find that σkg (z) = z for every k ∈ Z. Then

the same argument as above applied to gk implies that ψ is in fact invariant under gkPg−k. We
conclude that ψ is fixed by the group Q defined as the closure of

∨
k∈Z g

kPg−k. Now we use a little
bit of structure of the parabolics: it is known that every closed group containing P is equal to its
normalizer. Since Q is normalized by g, we find that g ∈ Q, and thus gψ = ψ, as desired. �

4.3. Conclusion.

Lemma 4.6. Let G be a connected simple Lie group, and H < G a proper closed subgroup. Endow
G/H with its unique invariant measure class. Then for every g ∈ G\Z(G), for almost every x ∈ G/H,
gx 6= x.

Proof. Take g ∈ G \ Z(G). We need to show that the fixed point set Fix(g) has measure 0 in G/H.
Note that Fix(g) is a submanifold of G/H, and it is a proper subset. Indeed otherwise g would
be contained in every conjugate of H, but the intersection

⋂
y∈G yHy

−1 is a proper normal closed

subgroup of G, hence contained in Z(G) by simplicity. This would force g ∈ Z(G), which we excluded.

So Fix(g) is a proper subvariety of G/H. Since G/H is connected, each connected component of
Fix(g) must have smaller dimension than G/H. So Fix(g) is a null set in G/H. �

We can now prove Theorem 4.3, from which all of our main results follow.

Proof of Theorem 4.3. As we observed, the data of the µ-stationary state φ is the same as the data of
the measurable G-map G/P → S(A). Such a G-map θ can be modified on a null set if necessary, to
assume that it is truly G-equivariant: θgb = gθb for every g ∈ G, b ∈ B. In turn, the data of this map
is equivalent to the data of ψ := θP ∈ S(A), which is a P -invariant state. Note that these changes
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of points of view are affine and continuous. Since φ is extremal, we thus find that the corresponding
P -invariant state ψ is extremal. Denote by Q, the stabilizer of ψ in G. From lemma 4.5 we have that
gψ ⊥ hψ whenever gQ and hQ are distinct in G/Q.

If φ is not G-invariant, then Q is a proper closed subgroup of G. By Lemma 4.6, for every g ∈ G\Z(G),
for almost every b = hP ∈ G/P , we then have ghQ 6= hQ. Further, θb = hψ is singular with respect
to θgb = ghψ. This is the desired dichotomy. �
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