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Abstract

This paper considers a family of Vehicle Routing Problem (VRP) variants

that generalize the classical Capacitated VRP by taking into account the

possibility that vehicles di↵er by capacity, costs, depot allocation, or even by

the subset of customers that they can visit. This work proposes a branch-

cut-and-price algorithm that adapts advanced features found in the best

performing exact algorithms for homogeneous fleet VRPs. The original con-

tributions include: (i) the use of Extended Capacity Cuts, defined over

a pseudo-polynomially large extended formulation, together with Rank-1

Cuts, defined over the Set Partitioning Formulation; (ii) the concept of

vehicle-type dependent memory for Rank-1 Cuts; and (iii) a new family

of lifted Extended Capacity Cuts that takes advantage of the vehicle-type

dependent route enumeration. The algorithm was extensively tested in in-

stances of the literature and was shown to be significantly better than pre-

vious exact algorithms, finding optimal solutions for many instances with

up to 200 customers and also for some larger instances. A new set of set of

benchmark instances is also proposed.
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1. Introduction

This paper deals with the Heterogeneous Fleet Vehicle Routing Problem

(HFVRP), which can be defined as follows. Let G = (V,A) be a complete

directed graph where V = {0, 1, . . . , n} is a set composed of n + 1 vertices

and A = {(i, j) : i, j 2 V, i 6= j} is the set of arcs. The vertex 0 denotes

the depot, where the vehicle fleet is located; while the set V 0 = V \ {0} is

composed of the remaining vertices, they represent the n customers. Each

customer i 2 V 0 has a positive integer demand q
i

. The fleet is composed of

m di↵erent types of vehicles, with M = {1, . . . ,m}. For each u 2 M , there

are K
u

available vehicles, each with an integer capacity Q
u

. Assume w.l.o.g.

that Q1  Q2  . . .  Q
m

. Every vehicle type is also associated with a

fixed cost denoted by f
u

. Finally, for each arc (i, j) 2 A and u 2 M there

are associated costs cu
ij

. In many cases, cu
ij

is defined as r
u

d
ij

, where d
ij

is the distance between the vertices (i, j) and r
u

is a type-dependent travel

cost per distance unit. The objective is to determine the set of routes that

minimize the sum of fixed and travel costs in such a way that: (i) every

route starts and ends at the depot and is associated to a vehicle type such

that the sum of the demands of the clients in the route does not exceed

the vehicle’s capacity; (ii) each customer is visited by exactly one route;

(iii) the number of routes associated to a vehicle type does not exceed its

availability. This problem is NP-hard since the classical CVRP corresponds

to the special case with m = 1. Some authors reserve the name HFVRP

for the cases where there are potentially constraining limits for the number

of vehicles available (see Baldacci et al. (2008a)). For those authors, when

K
u

=1 for all u 2M , the problem is known as Fleet Size and Mix (FSM).

In this paper we use the name HFVRP in the broad sense, including FSM

as a special case.

A closely related variant is the Multi-Depot VRP (MDVRP), where vehi-

cles have identical capacity and cost, but di↵er by being attached to di↵erent

depots. It can be easily modeled as a HFVRP by associating each depot to

a vehicle type and setting costs cu0j for leaving and cu
i0 for entering the de-

pot that depend on u 2M . The Site Dependent VRP (SDVRP), a variant
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where vehicles di↵er only by the subset of the customers that they can visit,

is also easily modeled as a HFVRP by setting infinity costs for cu
ij

if vehicle

type u can not visit either i or j. Therefore, those problems can be solved

as special cases of the HFVRP.

The HFVRP is a very important problem, since fleets are likely to be

heterogeneous in most practical situations. According to Ho↵ et al. (2010),

even when an acquired fleet is homogeneous, it usually become heteroge-

neous over the time, as newer vehicles are incorporated. Moreover, from

both tactical and operational point of view, it is usually advantageous to

have a mixed vehicle fleet. This increases the flexibility in terms of distri-

bution planning and can bring significant economies. For example, it can

avoid the waste of having to send a truck to perform a set of deliveries that

could also be performed by a much cheaper van.

Many heuristics have been proposed for HFVRP (see Penna et al. (2017)

for recent references). On the other hand, the literature on exact methods

is not large. The first lower bounds for the HFVRP were introduced by

Golden et al. (1984). Other bounding schemes were proposed later. Wester-

lund et al. (2003) give an extended formulation and some valid cuts. Yaman

(2006) performed a deep theoretical analysis of several di↵erent formula-

tions and proposed new valid cuts. Choi and Tcha (2007) produced better

lower bounds using column generation. Baldacci et al. (2008a) proposed

some valid inequalities as well as a two-commodity Mixed Integer Program-

ming (MIP) formulation. All those bounds and formulations were not good

enough for producing e�cient exact algorithms, at that moment instances

with only 20 customers proposed in Golden et al. (1984) (and those modified

by Taillard (1999)) were listed as open.

The first reasonably e�cient exact algorithm for HFVRP was proposed

in Pessoa et al. (2007) and Pessoa et al. (2009) and could solve almost all

Golden-Taillard instances with up to 75 customers. That algorithm was a

Branch-Cut-and-Price (BCP) that combined the techniques used in a previ-

ous CVRP algorithm (Fukasawa et al. (2006)) with new cuts over a pseudo-

polynomially large extended formulation. Finally, the algorithm in Baldacci

and Mingozzi (2009) adapts ideas from the CVRP algorithm in Baldacci
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et al. (2008b), including cuts over the set partitioning formulation and route

enumeration instead of branching. It could solve most Golden-Taillard in-

stances with up to 100 customers. Those are still the best published results

for an exact HFVRP algorithm. Good results on MDVRP and SDVRP

instances were also obtained by that algorithm.

Recently, there were very significant improvements in the exact algo-

rithms for solving homogeneous fleet VRPs. For the classical CVRP, a

new BCP by Pecin et al. (2017b) combining and enhancing previous tech-

niques from several authors with a powerful new idea, the concept of limited-

memory cuts over the set partitioning formulation, could more than double

the size where instances are expected to be solved. In fact, as can be checked

in the updated results kept in CVRPLIB (Uchoa et al. (2017)), classical in-

stances with up to 420 customers are already solved. Before that work,

the largest solved CVRP instance had 150 customers. A related BCP algo-

rithm, using the improved concept of limited-memory over arcs (Pecin et al.

(2017a)), could also obtain very good results on the solution of the VRP

with Time Windows (VRPTW).

The goal of this work is to adapt the techniques used in those recent

works in order to propose a new state-of-the-art algorithm for the HFVRP.

This is not a simple task. Problems with heterogeneous fleet are inherently

more di�cult, so those techniques need to be sharpened to take full advan-

tage of the new context. This is the first BCP algorithm that combines cuts

over the set partitioning formulation with cuts over the pseudo-polynomial

extended formulation. We could verify experimentally that the separation

of Extended Capacity Cuts (ECCs) was decisive for solving some hard in-

stances.

The remainder of this paper is organized as follows. Section 2 presents

our pseudo-polynomial original formulation and the corresponding set parti-

tioning formulation that can be obtained from it by a Dantzig-Wolfe decom-

position. Section 3 describes the Extended Capacity Cuts and the limited-

memory Rank 1 Cuts, introducing the concept of vehicle-type dependent

memory. Section 4 presents the overall BCP algorithm, describing the pro-

posed hybridization of route enumeration with strong branching. Section
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5 presents the computational results obtained, making comparisons with

those reported in the literature. Additional experiments on newly created

instances are also reported. Section 6 presents the concluding remarks of this

work. The appendix presents instance-by-instance detailed computational

results.

2. Formulation

We introduce a HFVRP formulation that has a pseudo-polynomially

large number of variables and constraints. For each vehicle type u 2 M ,

define an acyclic graph N
u

= (V
u

= T
u

[ O
u

,A
u

= A1
u

[ A2
u

[ A3
u

) with

node-sets T
u

= {(i, l, u) : i 2 V 0, l = q
i

, . . . , Q
u

} and O
u

= {(0, l, u) : l =

0, . . . , Q
u

}. The arc-set A1
u

is composed of all possible arcs that go from a

node (i, l, u) in T
u

to a node (j, l+ q
j

, u) also in T
u

, they are represented as

tuples of format (i, j, l, u). More formally, A1
u

= {(i, j, l, u) = ((i, l, u), (j, l+

q
j

, u)) : (i, l, u) 2 T
u

; j 2 V 0, l + q
j

 Q
u

}. The arcs in arc-set A2
u

go from

node (0, 0, u) to a node in {(i, q
i

, u)) : i 2 V 0} and are represented as tuples

of format (0, i, 0, u). Finally, the arcs in A3
u

go from a node (i, l, u) 2 T
u

to node (0, l, u), they are represented as (i, 0, l, u). For any set S ✓ V
u

,

��(S) ✓ A
u

represents the set of arcs entering S; �+(S) ⇢ A
u

represents

the leaving arcs. For each u 2M and each i 2 V 0, define the subset of nodes

associated to i as T i

u

= {(i0, l, u) 2 T
u

: i0 = i}. For each u 2 M and for

each a = (i, j, l, u) 2 A
u

define a binary variable x
a

(also notated as x
ijlu

)

to indicate whether arc (i, j) 2 A belongs to a route of vehicle type u such

that the total demand of i and of the vertices preceding it in the route is

exactly l. Under the interpretation that the demands are being collected

from the customers, x
ijlu

= 1 would mean that a vehicle of type u that

departed from the depot empty goes from i to j carrying a load of l units.

Define ĉu
ij

= cu
ij

+ f
u

, if (i, j, l, u) belongs to A2
u

, ĉu
ij

= cu
ij

otherwise. The

formulation F1 follows:

(F1) min
P

u2M

P
a=(i,j,l,u)2A

u

ĉu
ij

x
a

(1)

subject to
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P
u2M

P

a2��(T i

u

)

x
a

= 1, 8i 2 V 0, (2)

P

a2A2
u

x
a

 K
u

, 8u 2M, (3)

P

a2��({v})
x
a

�
P

a2�+({v})
x
a

= 0, 8u 2M, 8v 2 T
u

, (4)

x � 0, (5)

x integer. (6)

Equations (2) state that each customer should be visited exactly once.

Equations (3) limit the maximum number of routes for each vehicle type.

Under the demand collection interpretation, flow-conservation Equations (4)

mean that if a vehicle leaves a customer i with load l, the same vehicle must

have arrived in i with load l� q
i

. Formulation F1 has O(mn2Q
m

) variables

and O(mnQ
m

) constraints, so it can not be directly used unless Q
m

is very

small.

For each u 2M , let ⌦
u

be the set of all paths in N
u

from vertex (0, 0, u)

to another vertex in O
u

. Those paths are called q-routes (Christofides et al.

(1981)). When projected into the original graph G, the q-routes correspond

to walks starting and ending at the depot with total demand at most Q
u

.

A customer may be visited more than once in a q-route, but its demand

is counted again in each additional visit. For each u 2 M , let bp
a

be a

binary coe�cient indicating whether arc a 2 A
u

appears or not in route

p 2 ⌦
u

. For each u 2M and each p 2 ⌦
u

define a non-negative variable �
p

.

The following extended formulation (containing both x and � variables) is

equivalent to F1:

(F1’) min
P

u2M

P
a=(i,j,l,u)2A

u

ĉu
ij

x
a

(7)

subject to
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P
u2M

P

a2��(T i

u

)

x
a

= 1, 8i 2 V 0, (8)

P

a2A2
u

x
a

 K
u

, 8u 2M, (9)

P
p2⌦

u

bp
a

�
p

� x
a

= 0, 8u 2M, 8a 2 A
u

, (10)

x,� � 0, (11)

x integer. (12)

Relaxing the integrality and eliminating the x variables using Equations

(10), we obtain the following linear relaxation of a Set Partitioning Formula-

tion, having an exponential number of variables but only n+m contraints:

(SPF) min
P

u2M

P
p2⌦

u

(
P

a=(i,j,l,u)2A
u

bp
a

ĉu
ij

)�
p

=
P
p2⌦

ĉ
p

�
p

(13)

subject to

P
u2M

P
p2⌦

u

(
P

a2��(T i

u

)

bp
a

)�
p

=
P
p2⌦

hp
i

�
p

= 1 8i 2 V 0, (14)

P
p2⌦

u

(
P

a2A2
u

bp
a

)�
p

=
P

p2⌦
u

�
p

 K
u

, 8u 2M, (15)

� � 0. (16)

The cost ĉ
p

of a variable �
p

in (13) is given by the sum of the cost of the arcs

in p, the coe�cients hp
i

in (14) count how many times arcs of p enter in each

vertex i and ⌦ = [
u2M⌦

u

. SPF could be obtained directly by a Dantzig-

Wolfe decomposition of F1, by noting that the q-routes correspond to the

extreme rays of the unbounded polyhedron defined by (4) and (5). Anyway,

SPF can be solved by column generation. The pricing subproblems, one

for each u 2M , require finding the most negative q-route in each N
u

, with

respect to arc reduced costs defined as c̄
ijlu

= c
ijlu

�⇡
j

�⌫
u

, where ⇡
j

is the

dual variable of the constraint from (14) corresponding to j (⇡0 is defined as

0) and ⌫
u

is the dual variable of the constraint from (15) corresponding to u.

This can be done by dynamic programming, in O(|A
u

|) = O(n2.Q
u

) time.
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Any additional cut over the x variables can be translated into an equivalent

cut over the � variables using Equations (10) and introduced in the SPF.

Those cuts do not change the complexity of the pricing subproblems, the

e↵ect of their dual variables is only changing the calculation of the arc

reduced costs. Therefore, according the classification proposed in Poggi de

Aragão and Uchoa (2003) those cuts are robust.

A stronger relaxation would be obtained if the ⌦ sets are redefined in

order to only contain elementary paths, those where a customer can not

be visited more than once. However, that makes the pricing subproblems

strongly NP-hard and indeed hard to be solved in practice. The known

relaxation with best trade-o↵ between pricing time and lower bound quality

is based in ng-routes, as proposed in Baldacci et al. (2011). Let N
i

✓ V 0

be the neighborhood of i, typically defined in order to contain the closest

customers to i. An ng-route can only revisit a customer i if it passes first

by another customer j such that i /2 N
j

. When compared to q-routes, ng-

routes increase the number of states in the dynamic programming used in the

pricing by a factor that is bounded by 2Nmax

�1, where N
max

is the size of the

larger neighborhood. In many instances, reasonably small neighborhoods

(say, N
max

= 8) already provide bounds that are not much worse than those

that would be obtained by pricing elementary routes.

3. Cuts

The lower bounds obtained by SPF, even if ⌦ only contains near-elementary

paths, are not good enough for building an e�cient branch-and-price algo-

rithm. The formulation should be strengthened by cuts. In this work we

use two types of cuts.

3.1. Extended Capacity Cuts

For each arc (i, j) 2 A, define an aggregated binary arc variable x
ij

=
P

u2M
P

Q

u

l=1 xijlu. Let S ✓ V 0 be a subset of the customers, define q(S) =
P

i2S q
i

as its total demand. The value r(S) = dq(S)/Q
m

e is a valid lower

bound on the number of vehicles that must visit S. Therefore, the following
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Rounded Capacity Cut (RCC) (Laporte and Norbert (1983)) is valid:

X

(i,j)2�+(S)

x
ij

� r(S), (17)

RCCs are known to be very e↵ective on homogeneous fleet CVRP. However,

they are not much e↵ective on typical HFVRP instances. This happens

because r(S), calculated considering the largest vehicle capacity Q
m

, can be

a poor bound on the actual number of vehicles visiting S.

For each arc (i, j) 2 A and l = 1, . . . , Q
m

, define an aggregated binary

arc-load variable x
ijl

=
P

u2M :Q
u

l

x
ijlu

. For each set S ✓ V 0, the sum of

the load of the vehicles leaving S minus the sum of the load of the vehicles

entering S is equal to the total demand collected from S:

X

(i,j)2�+(S)

Q

mX

l=1

l x
ijl

�
X

(i,j)2��(S)

Q

m

�1X

l=1

l x
ij

= l(S). (18)

Those equalities are always satisfied by the linear relaxation of SPF (a solu-

tion over its � variables is translated into an equivalent solution over the x

variables using (10)). However, Equalities (18) can be used as a rich source

of cuts, the so-called Extended Capacity Cuts (ECCs). As done in Pessoa

et al. (2009), in this work we only separate ECCs obtainable by integer

rounding, those of format:

X

(i,j)2�+(S)

Q

mX

l=1

dslex
ijl

�
X

(i,j)2��(S)

Q

m

�1X

l=1

bslcx
ijl

� dsq(S)e, (19)

where s, 0 < s < 1, is a rational multiplier. As discussed in (Uchoa et al.,

2008), at most 0.3Q2
m

distinct multipliers need to be tried. By the way, an

RCC is the particular ECC obtained with multiplier s = 1/Q
m

. General

ECCs can be e↵ective in typical HFVRP instances, even when RCCs are

not.

The separation of ECCs used in this work is built upon the heuristic

procedure available in CVRPSEP (Lysgaard (2003)) for separating RCCs.
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For each candidate set S identified by that procedure, but such that the RCC

is not violated, we test whether the ECCs obtained with other multipliers

are violated.

3.2. Rank-1 Cuts with Subproblem (Vehicle-type) Dependent Memory

Jepsen et al. (2008) introduced the Subset Row Cuts (SRCs), a family

of cuts defined over the SPF. Those cuts were generalized in Petersen et al.

(2008) as follows: Given S ✓ V 0 and a positive multiplier s
i

for each i 2 S,

the following Rank-1 Cut (R1C):

P
p2⌦

�P
i2S

s
i

hp
i

⌫
�
p


�P
i2S

s
i

⌫
(20)

can be obtained by a Chvátal-Gomory rounding of the corresponding rows

in (14). The original SRCs correspond to the R1Cs obtained with identical

multipliers of format s
i

= 1/Z, where Z is a positive integer, for all i 2
S. Recently, Pecin et al. (2017c) performed an investigation of the Set

Partitioning polyhedron to determine the best possible sets of multipliers

for R1Cs with up to 5 rows.

R1Cs are strong cuts and can reduce substantially the integrality gaps

of the SPF. However, since they are defined directly over the SPF variables,

those cuts are non-robust: each added cut changes the pricing subproblem

and makes it harder. Essentially, the dynamic programming labeling algo-

rithms used to solve the subproblem should have an additional dimension for

each active cut. As a consequence, cut separation should be stopped before

the pricing becomes far too expensive and the full potential gap reductions

cannot be achieved.

In order to mitigate the negative impact of those cuts in the pricing

subproblem, Pecin et al. (2017b) proposed the concept of cuts with limited-

memory, based on the following observation:

• A cut can be weakened without changing its e↵ect (on the bounds),

as long as the variables with weakened coe�cients take zero value.

More specifically, a R1C over a customer subset S ✓ V 0 and with multiplier

vector s, is associated to a memory node setM(S, s), S ✓M(S, s) ✓ V 0. The
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idea (somehow inspired by the ng-route relaxation) is that, when a route p 2
⌦ leaves the memory set M(S, s), it may “forget” previous visits to nodes in

S, yielding a coe�cient for �
p

in the cut that may be smaller than the original

b
P

i2S s
i

hp
i

c coe�cient. The memory set is defined, after the separation

of a violated R1C, as a minimal set that preserves the coe�cients of the

variables �
p

with positive value in the current linear relaxation solution.

Of course, variables priced later may not have the best possible coe�cients

in previous cuts, but this can be corrected in the next separation rounds.

Eventually, limited-memory R1Cs achieves the same bounds that would be

obtained by the original R1Cs. Yet, those limited-memory R1Cs, while still

non-robust, are much better handled by the labeling algorithm used for

solving the pricing subproblem: an additional dimension is needed only for

the labels corresponding to a partial path ending in M(S, s). This may be

very advantageous computationally if |M(S, s)| << n, as usually happens.

The limited-memory concept was the main innovation that enabled major

improvements upon previous algorithms, and ultimately the exact solution

of classical CVRP instances with up to 360 customers in Pecin et al. (2017b)

and 420 customers in Pecin et al. (2017c).

In order to further reduce the impact of R1Cs, Pecin et al. (2017a)

introduced the generalized concept of memory arc sets. In that case, a

R1C is associated with a memory set AM(S, s) ✓ A; a route that uses

an arc not contained in AM(S, s) may “forget” previous visits to nodes in

S. Memory arc sets allow a sharper definition of which � variables need

to keep their original coe�cients in a R1C, leading to even less impact in

the pricing. The drawback of arc memory (with respect to node memory)

is poorer convergence, in the sense that more separation rounds may be

required until the correct memory sets are found. Extensive experiments on

VRPTW made clear that node memory is better for the easier instances, but

arc memory can be much better for the hardest ones, those where avoiding

an exponential explosion in the pricing time is critical.

In this paper we take advantage of the HFVRP context for an additional

generalization and sharpening of the R1C memory definition. Consider a

R1C over a customer subset S ✓ V 0 and with an |S|-dimensional vector of
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Algorithm 1 Computing coe�cient ↵(S, s,AM(S, s, u), p)

1: ↵ 0, state 0
2: for every arc (i, j) in route p (in order) do
3: if (i, j) /2 AM(S, s, u) then
4: state 0
5: if j 2 S then
6: state state+ s

j

7: if state � 1 then
8: ↵ ↵+ 1, state state� 1

9: return ↵

multipliers s. The corresponding Rank-1 Cut with Subproblem Dependent

Memory, with associated memory sets AM(S, s, u), for each u 2 M , is

defined as:

P
u2M

P
p2⌦

u

↵(S, s,AM(S, s, u), p)�
p


�P
i2S

s
i

⌫
, (21)

where coe�cient ↵(S, s,AM(S, s, u), p) of variable �
p

, p 2 ⌦
u

, is computed

as described in Algorithm 1. This algorithm can be explained as follows.

Whenever a route p visits a node j 2 S, the multiplier s
j

is added to

the state variable. When state � 1, state is decremented and ↵ is incre-

mented. If AM(S, s, u) = A, the procedure would always return b
P

i2S s
i

hp
i

c
and the limited-memory cut would be equivalent to the original cut. On

the other hand, if AM(S, s, u) ⇢ A, it may happen that p uses an arc

(i, j) 62 AM(S, s, u) when state > 0, causing state to be reset to zero and

“forgetting” some previous visits to nodes in S. In this case, the returned

coe�cient may be less than the original coe�cient.

The potential advantage of using m di↵erent memories for each R1C is

reducing pricing time. Suppose that the minimal sets found after the sepa-

ration of a certain R1C are AM(S, s, u), u 2M . The impact of that R1C in

the solution of the pricing subproblem corresponding to vehicle type u de-

pends only of AM(S, s, u), the smaller that set is, the better. Suppose that

a single-memory-per-cut scheme is used instead. The minimal set AM(S, s)

found after the separation would be equal to [
u2MAM(S, s, u). In that
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case, all the subproblems would be impacted by the same, probably larger,

set AM(S, s). The drawback of subproblem dependent memory is poorer

convergence, more separation rounds to achieve the same final bound.

Limited-memory R1C separation was implemented as follows. All sub-

sets of customers with |S| = 3 are candidate sets. There would be too many

such candidates for |S| 2 {4, 5}. In those cases, the procedure considers

only compact sets S, in the sense that the distance between any pair of

customers in S does not exceed a predefined maximum distance. Moreover,

a local search procedure is used for selecting candidate sets among the com-

pact sets. For each candidate set S and multiplier vector s (among those

listed in Pecin et al. (2017c)), we check if the R1C corresponding to S and

s, without memory limit, is violated. If so, arc memories AM(S, s, u) of

minimal size (actually near-minimal, since the arcs inside S are always in-

cluded in the memories) such that the cut violation remains the same are

determined. If there already exists a cut defined for the same subset S and

vector s but with arc-memories AM 0(S, s, u), this cut is simply enhanced by

enlarging its memory to AM 0(S, s, u) [AM(S, s, u), for u 2M . Otherwise,

a new cut is added for S and s, with memories AM(S, s, u).

4. Branch-Cut-and-Price Algorithm

The full Branch-Cut-and-Price (BCP) algorithm implemented solves each

node by a combination of column and cut generation. The column gener-

ation for each subproblem u 2 M is performed by a bidirectional labeling

algorithm similar to the one described in Pecin et al. (2017b), a truncated

version of that algorithm is used as a heuristic in the first iterations, when

finding routes with negative reduced cost is still easy. Labeling algorithms

(like those described in that paper) are also used for fixing arcs in A
u

and

for trying to enumerate elementary routes in ⌦
u

with small reduced costs.

Column generation convergence is improved with the dual stabilization tech-

niques described in Pessoa et al. (2013). The search for the optimal integer

solution hybridizes traditional branching with route enumeration, as will be

described next.
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4.1. Subproblem Enumeration and Lifting of Cuts

The column and cut generation algorithm in Baldacci and Mingozzi

(2009) does not perform branching. Instead, after solving the root node, it

tries to enumerate the sets of elementary routes R
u

✓ ⌦
u

, for each u 2 M ,

with reduced cost smaller than the duality gap, the di↵erence between the

lower bound and the value of the best known feasible solution. It can be

shown that routes not in R = [
u2MR

u

can not appear in any improving

solution. So, if R is not too large, those routes are used to produce a set par-

titioning problem that is solved by a generic MIP solver. Otherwise, when

the limit on |R| is exceeded, enumeration is aborted and the algorithm halts.

Contardo and Martinelli (2014) proposed another strategy in order to

better profit from the route enumeration. The enumeration of the root node

can be performed earlier, as soon as the resulting R has up to a few million

routes, which are stored in a pool. It is not practical to produce a set parti-

tioning problem with so many routes, since its solution would be far beyond

the capability of current MIP solvers. So, the column and cut generation

proceeds. However, instead of using a labeling algorithm, the pricing starts

to be performed by inspection in the pool, which can be faster. Moreover,

additional non-robust cuts have little impact in the inspection pricing time.

Therefore, those cuts may be separated in a very aggressive way. This usu-

ally increases substantially the lower bound, allowing reductions in the pool

size by fixing variables (that now are routes) by reduced costs. For example,

they reported that the enumeration of a hard CVRP instance with a gap of

5 units produced a pool with 4M routes. The aggressive separation of SRCs

then reduced the gap to 1.5 and the final pool only had 13K routes. The

resulting set partitioning was easily solved, finishing the instance.

In this work we used a similar enumeration-to-pools scheme, but take

advantage of the particular HFVRP characteristics. The size of each set

R
u

depends substantially on the current gap, but also depends a lot on the

value of Q
u

. This means that subproblems with smaller values of Q
u

can be

successfully enumerated much earlier, when gaps are only reasonable. On the

other hand, subproblems with larger values of Q
u

can only be enumerated

later, when the gaps are very small. Therefore, at a given point of the
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solution of a BPC node, a subproblem u 2M can be in one of the following

possible modes:

1. Enumerated - The set R
u

could already be computed and is stored in a

pool. The pricing corresponding to u is performed by inspection. Ev-

ery time the gap decreases, reduced cost fixing is used for eliminating

routes from R
u

.

2. Non-enumerated - The set R
u

is too large and could not be computed.

The pricing corresponding to u is performed by the labeling algorithm.

The arc fixing algorithm is called every time the gap decreases by 15%,

with respect to the gap in the last arc fixing call. Fixing eliminates

arcs from A
u

in order to speedup subsequent calls to the pricing.

A node is only finished by the MIP solver when all subproblems are enu-

merated and |R
u

| < 5000, for all u 2 M . However, even when part of the

subproblems are enumerated it is possible to strengthen the cuts:

• Limited-memory Rank-1 Cuts - When subproblem u goes to the enu-

merated mode, the memories AM(S, s, u) for all sets S and multiplier

vectors s, can be augmented to A.

• Extended Capacity Cuts - Let EM ✓M be the subset of subproblems

in enumerated mode. An Extended Capacity Cut with format (19),

with set S and multiplier s, can be lifted to:

X

u2EM

X

p2R
u

ds q(S, p)e�
p

+

X

u2M\EM

(
X

(i,j)2�+(S)

Q

uX

l=1

dslex
ijlu

�
X

(i,j)2��(S)

Q

u

�1X

l=1

bslcx
ijlu

) � ds q(S)e,

(22)

where q(S, p) is the total demand actually delivered by route p to

customers in set S. Those lifted Extended Capacity Cuts are a rich

family of strong cuts. For example, the particular case where EM =
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M and s = Q
m

yields cuts equivalent to the Strong Capacity Cuts

proposed in Baldacci et al. (2008b).

4.2. Strong Branching

Three di↵erent kinds of branching can be performed, all of them can be

expressed as constraints over aggregations of original variables x, so they do

not a↵ect the pricing:

1. Branching on the total number of routes used by a vehicle type u 2M ,
P

a2A2
u

x
a

;

2. Branching on the assignment of a customer i 2 V 0 to a vehicle type

u 2M ,
P

a2��(Ri

u

) xa;

3. Branching on the “edges” of the original graph,
P

u2M
P

Q

u

l=1(xijlu +

x
jilu

).

There is no predefined priority, we let the strong branching mechanism

choose among branching candidates from those three kinds.

The hierarchical strong branching procedure, inspired by those found in

Røpke (2012) and Pecin et al. (2017b), has the following phases:

• The Phase Zero performs the first selection of min{100, TS(v)} branch-
ing candidates, where TS(v) is an estimative of the size of the subtree

rooted in v based on the node gap and the average bound improve-

ments obtained in previous branchings, TS(v) =1 for the root node.

Up to half of the candidates are taken from the history of previous calls

to the strong branching procedure, favoring candidates that already

obtained good scores.

• The Phase One performs a quick evaluation of each candidate by solv-

ing the current restricted Master LP twice, adding the constraint cor-

responding to each child node. Column and cut generation are not

performed. The candidates are scored by the product rule Achterberg

(2007) and the min{3, dTS(v)/10e} best candidates go to Phase Two.
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• Phase Two performs more precise evaluations of each candidate, doing

heuristic column generation (but no cut generation) on both child

nodes. The scores are also based on the product rule.

The evaluations of Phase 1 and 2 are not only used to select the best can-

didate for the current branching, they are stored in tables (the branching

history) for subsequent use in the Phase Zero. The whole procedure is guided

by the principle that the strong branching e↵ort in a node should depend on

the expected subtree size. The rationale is the following. If TS(v) is large,

even a small improvement in that branching will compensate the cost of a

more precise evaluation of several candidates. On the other hand, if TS(v)

is small, the branching should be fast, relying on the historical data and on

the rough evaluations of Phase One. The estimation of TS(v) is done by

the model proposed in Kullmann (2009).

As mentioned before, our BCP uses a hybrid strategy. After each call

to the arc fixing by reduced cost, it tries to enumerate each subproblem not

yet in the enumerated mode. However, the strong branching can still be

performed after all subproblems are successfully enumerated. This happens

when some set of routes R
u

, u 2 M , is too large (we use 5000 routes as

the limit) to allow a quick solution by the MIP solver. Of course, in both

children of an enumerated node the pricing will continue to be done by

inspection in the pools.

In spite of the sophisticated limited-memory mechanisms used, R1Cs

are still non-robust and may make the pricing by labeling too expensive.

Therefore, cut separation is stopped in any node if the running time of a

single call to the labeling exceeds 6 seconds (unless all subproblems are in

the enumerated mode). Cut separation may also be stopped in any node

by tailing-o↵, if the last 3 separation rounds did not reduce the gap by

at least 2%. In some rare cases, the separation of an additional round of

R1Cs makes a single call to the labeling algorithm to exceed 12 seconds.

In that situation, fearing that a combinatorial explosion may be happening,

the labeling algorithm is aborted and the node rolls-back to the state before

the last round of cuts and branching is performed.
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5. Computational results

The algorithm described in this paper was coded in C++ and compiled

with GCC 5.3.0. BaPCod package by Vanderbeck et al. (2017) was used

to handle the Branch-Cut-and-Price framework. IBM CPLEX Optimizer

version 12.6.0 was used as the LP solver in column generation and as the IP

solver to solve the set partitioning problem with enumerated columns. The

labeling algorithms are similar to those described in Pecin et al. (2017b).

The experiments were run on a 2 Deca-core Ivy-Bridge Intel Xeon E5-2670

v2 server running at 2.50 GHz. The 128 GB of available RAM was shared

between 8 copies of the algorithm running in parallel on the server. Each

instance is solved by one copy of the algorithm using a single thread.

We considered the following existing instances from the literature.

HFVRP instances All Golden-Taillard instances with 50–100 customers

considered by Baldacci and Mingozzi (2009) were used. Those in-

stances have from 3 to 6 vehicle types and are are divided into classes,

we kept the nomenclature used in that paper:

• HVRP. Referred as FIX-VAR class in Choi and Tcha (2007) and

Pessoa et al. (2009). For each u 2M , there are positive fixed costs

f
u

, type-dependent travel costs r
u

and potentially constraining

limits K
u

.

• FSMF. Referred as FIX class in those previous works. Obtained

from HVRP by setting K
u

=1 and r
u

= 1.0, for each u 2M .

• FSMD. Referred as VAR class in those previous works. Obtained

from HVRP by setting K
u

=1 and f
u

= 0, for each u 2M .

• FSMFD. Obtained from HVRP by setting K
u

= 1, for each

u 2M .

• HD. Obtained from HVRP by setting f
u

= 0 for each u 2M .

There are 8 Golden-Taillard instances per class, numbered from 13

to 20, making in total 40 instances. In addition, we used larger in-

stances with 100–199 customers proposed by Brandão (2011) named
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N1–N4. Each name involves two instances, one belonging to the class

FSMD presented above, and another one to the class HD. Thus, in

total there are 8 instances. Note that the instances by Brandão (2011)

named N5 were not considered because of large vehicle capacities. The

best known solutions for all the instances above are taken from Sub-

ramanian et al. (2012) and from Subramanian (2016).

SDVRP instances We consider 23 standard instances by Nag et al. (1988)

and by Chao et al. (1999) with 27–324 customers, named p01–p23.

The best known solutions are taken from Cordeau and Maischberger

(2012).

MDVRP instances We consider 11 standard instances by Cordeau et al.

(1997) with 50–360 customers, named p01–p07, p12, p15, p18, and

p21. In addition we use 8 instances with 151–200 customers proposed

by Baldacci and Mingozzi (2009). The best known solutions are taken

from Cordeau and Maischberger (2012) and from Baldacci and Min-

gozzi (2009).

5.1. Overall results on existing instances

In total 90 existing instances are considered. Among all these instances,

only two were not solved to optimality by our algorithm within the time

limit of 36 hours. These are the largest SDVRP instances p17 and p18

with 270 and 324 customers. So, the largest solved HFVRP instances have

199 customers, the largest solved SDVRP instance has 216 customers, and

the largest solved MDVRP instance has 360 customers (although only 2

instances with more than 200 customers were considered). The detailed

results for all those instances are presented in Appendix A.

Using our algorithm, we managed to improve the best known solutions

for 10 instances. In Table 1, for each such instance, we give the best known

in the literature solution value, the reference to the paper and the new

solution value. Here [SPUS12] stands for Subramanian et al. (2012), [S16]

stands for Subramanian (2016), [BM09] stands for Baldacci and Mingozzi

(2009), and [CM12] stands for Cordeau and Maischberger (2012).
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Problem Instance Previous BKS Reference Improved value
HVRP BrandaoN1fsmd 2212.77 [SPUS12] 2211.63
HVRP BrandaoN1hd 2234.13 [S16] 2233.90
HVRP BrandaoN2fsmd 2823.75 [SPUS12] 2810.20
HVRP BrandaoN2hd 2859.82 [S16] 2851.94
HVRP c100 20fsmf 4032.81 [SPUS12] 4029.61
HVRP c100 20hvrp 4761.26 [SPUS12] 4760.68
MDVRP n200-k16-3-80 1757.86 [BM09] 1756.48
SDVRP p16 3393.55 [CM12] 3393.31
SDVRP p18 4751.27 [CM12] 4747.751

SDVRP p21 1263.71 [CM12] 1260.01
1 optimality is not proved, other values are optimal

Table 1: Instances with improved best known solution values

5.2. Comparison of algorithm variants

Here we compare the reference variant of our algorithm with its variants

in which we remove or change one of its ingredients. Namely we test

• the variant without Extended Capacity Cuts,

• the variant in which Rank-1 Cuts limited arc memory is changed to

node memory,

• the variant in which Rank-1 Cuts limited arc memory is subproblem

independent.

For proper comparison all algorithm variants were run with the initial

upper bound equal to the optimum solution value (or with the best known

upper bound if optimal solution is not known). Aggregated results are pre-

sented in Table 2: root gap, root time (in seconds), number of active ECCs

and R1Cs in the end of the root node, number of nodes in the search tree,

number of solved instances and total running time (in seconds) over the

instances solved by the variant. The columns corresponding to times are

geometric means, the other numbers are averages.

As can be seen in the table, the impact of subproblem dependent R1C

memory is noticeable but quite limited. On the contrary, ECCs and limited
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Rank-1 cuts Root Root ECC R1C Nodes Total
Cuts memory gap time num. num. num. Solved time
R1C only arc, sp.dep 0.323% 93 0 124 67.8 87/90 181
R1C+ECC node, sp.dep 0.133% 106 12 98 38.7 86/90 178
R1C+ECC arc 0.108% 115 11 110 31.0 88/90 174
R1C+ECC arc, sp.dep 0.105% 113 11 112 29.6 88/90 170

Table 2: Comparison of di↵erent algorithm variants on the whole set of instances

arc memory for R1C cuts are critical for solving two di�cult instances.

These ingredients are very useful to decrease the root gap and the number

of nodes in the branch-and-price tree. ECCs decrease root gaps directly,

by cutting fractional solutions that possibly would not be cut by any R1C.

On the other hand, node and arc memory R1Cs are in principle equivalent.

However, arc memory R1Cs decrease the root gaps actually obtained, by

allowing more cuts to be added before separation is stopped because the

maximum pricing time is exceeded. Although the geometric mean of total

running time does not di↵er much among the variants, the solution time

di↵erence for some individual instances may change a lot. To illustrate

this, in Figure 1, we show the performance profile for three variants of the

algorithm.

It can be seen from the picture that Extended Capacity Cuts slow a

bit the solution of many instances but may speed up a lot solution of some

(di�cult) instances. To illustrate this further, in Table 3, we compare the

variants with and without ECC on a selection of instances.

5.3. Comparison with the literature

Here we compare our algorithm with the best algorithms available for

the literature. In Tables 4–7, we indicate the algorithm, the number of

solved instances, and the geometric mean of the total running time over all

instances solved to optimality by all algorithms being compared. Note that

here we launched our algorithm with the same initial upper bound as for

the algorithms of Baldacci and Mingozzi (2009) and Contardo and Martinelli

(2014).

Our algorithm is able to solve a significantly larger number of instances.
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Figure 1: Performance profile comparing di↵erent variants of the algorithm

For HVRP and SDVRP instances, we double the size of instances which can

be solved to optimality. Total solution time comparison is also favourable

to our algorithm. Although, in these tables we do not take into account the

di↵erence in the speed of the computers used. For information, according to

PassMark R� benchmark, a single thread of our processor obtains the score

of 1576, the processor Intel Xeon E5462 at 2.8 GHz used by Contardo and

Martinelli (2014) obtains the score of 1187, the processor AMD Athlon 64 X2

Dual Core 4200+ used by Baldacci and Mingozzi (2009) obtains the score

of 667, and the processor Core 2 Duo at 2.13 GHz used by Pessoa et al.

(2009) obtains the score of 832. Even taking into account those di↵erences

and considering only the instances solved by all algorithms, our algorithm

is still the fastest.

5.4. New HFVRP Instances

We also performed tests on newly created HFVRP instances. Our ob-

jectives are twofold. First, we would like to o↵er to the community a well-
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Opt. Root Root ECC R1C Nodes Total
Instance

solution
Cuts

bound time num. num. num. time
R1C only 8767.26 28s � 158 11 2m45s

c50 14fsmf 9119.03
R1C+ECC 9119.03 40s 16 0 1 40s
R1C only 3137.82 16s � 43 23 6m05s

c50 16fsmfd 3168.92
R1C+ECC 3168.92 14s 7 0 1 14s
R1C only 2563.94 30s � 68 53 12m02s

c50 15fsmf 2586.37
R1C+ECC 2586.37 39s 16 0 1 39s
R1C only 8454.19 1m45s � 240 17 11m22s

c100 19fsmf 8661.81
R1C+ECC 8661.81 3m53s 9 187 1 3m53s
R1C only 10069.3 5m00s � 176 21 49m15s

c100 19hvrp 10420.3
R1C+ECC 10316.7 13m57s 3 153 3 21m34s
R1C only 1004.64 10m21s � 54 41 2h02m

SDVRP p22 1008.71
R1C+ECC 1007.88 17m19s 28 131 3 21m
R1C only 2316.50 8m56s � 83 365 >36h2

BrandaoN3hd 2378.99
R1C+ECC 2353.96 19m31s 37 182 91 10h48m

2 cannot be solved without using ECC

Table 3: Impact of ECC on the solution time of selected instances

Total Total
Algorithm Solved

time (17) time (35)
Pessoa et al. (2009) 17/24 7m00s -
Baldacci and Mingozzi (2009) 35/40 3m32s 5m17s
Our Branch-Cut-and-Price 40/40 38s 53s

Table 4: Comparison with the best published exact algorithm on the HFVRP Golden-
Taillard instances. Total time is the geometric mean for the 17 instances solved by all
algorithms and for 35 instances solved by the last two.

designed benchmark with 100 instances (the XH set) for both exact and

heuristic methods. The set includes some large instances, with up to 1000

customers, that probably will remain very challenging for many years to

come. Second, we want to better assess the strengths and limitations of

our BCP algorithm, understanding how the characteristics of an instance

impact in its performance.

5.4.1. Instance Generation Mechanism

Each new HFVRP instance is always created from an original CVRP

instance, keeping the number of clients n, demand vector q, and customer
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Algorithm Solved Total time
Baldacci and Mingozzi (2009) 9/13 2m01s
Our Branch-Cut-and-Price 21/23 18s

Table 5: Comparison with the best published exact algorithm on the SDVRP instances.
Total time is the geometric for the 9 instances solved by both algorithms.

Total Total
Algorithm Solved

time (7) time (10)
Baldacci and Mingozzi (2009) 7/9 2m49s -
Contardo and Martinelli (2014) 10/10 2m26s 6m55s
Our Branch-Cut-and-Price 11/11 46s 1m27s

Table 6: Comparison with the best published exact algorithms on the MDVRP instances
of Cordeau et al. (1997). Total time is the geometric mean for the 7 instances solved by
all algorithms and the 10 instances solved by the last two ones.

Algorithm Solved Total time
Baldacci and Mingozzi (2009) 7/8 14m20s
Our Branch-Cut-and-Price 8/8 4m05s

Table 7: Comparison the best published exact algorithm on the MDVRP instances of Bal-
dacci and Mingozzi (2009). Total time is the geometric mean for the 7 instances solved
by both algorithms.
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and depot coordinates. The Euclidian distance matrix d is obtained from the

coordinates; as usual in the HFVRP literature, distances are not rounded.

The following pieces of data should be added: the number of vehicle types

m and, for each u 2 M = {1, . . . ,m}, the values of Q
u

, f
u

, r
u

, and K
u

.

All those new values are integer, except by the type-dependent travel cost

factors r
u

, that are given with 2 decimal places.

The concept of instance attributes used in Uchoa et al. (2017) for gen-

erating a diversified set of CVRP instances was adapted for HFVRP. We

define the following HFVRP instance attributes and their possible values:

• Problem Type (PT ): HVRP, FSMF, FSMD, FSMFD, or HD.

• Number of vehicle types (m): 3, 5, or 9.

• Capacity Variability (QV ): 2, 4 or 6. Attribute QV defines the ratio

between the largest and the smallest capacity (Q
m

/Q1).

• Economy of Scale (ES) on travel costs: Linear (no economy of scale,

travel cost factor r
u

proportional to Q
u

), Moderate (r
u

increases less

than proportionally to Q
u

) , or Heavy (r
u

increases much less than

Q
u

). This attribute does not apply for instances of FSMF type.

• Fleet Distribution (FD): Uniform (almost the same values of K
u

, for

each u 2M), Inversely Proportional (K
u

inversely proportional to Q
u

,

so, many small vehicles and few large vehicles), In-between (values of

K
u

between Uniform and Inversely Proportional). This attribute only

applies for instances of HVRP and HD types.

• Fixed Cost Magnitude (FCM): Small (a small part of the total cost

is due to f
u

values), Medium, Large. The attribute does not apply on

FSMD and HD types.

Given an original CVRP instance, an upper bound on the optimal solu-

tion value of that instance (Z
CV RP

) and the values for the 6 above defined

attributes, the new data for the HFVRP instance is obtained by the follow-

ing steps:
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1. The capacity vector Q is (uniquely) defined in such a way that: (i)

Q1, . . . , Qm

define a geometric progression, (ii) Q
m

/Q1 = QV , and (iii)

the average capacity
P

m

u=1Qu

/m is equal to the capacity of the origi-

nal CVRP instance (Q
CV RP

). Actually, the capacities are rounded to

the nearest integer. For example, if m = 5, QV = 4 and Q
CV RP

=

1000, then Q = (445, 629, 889, 1258, 1779).

2. If PT=FSMF, all travel cost factors are unitary by definition. Oth-

erwise, the r vector depends on Q and ES. Recalling that m is odd,

define t = (m+ 1)/2 as the median vehicle type. Define h
u

= Q
u

/Q
t

.

If ES=Linear, then r
u

is set to h
u

(rounded to 2 decimal places) for

all u 2 M . If ES=Moderate, then r
u

= 1.4621h
u

((exp(�h
u

) + 1)/2)

for all u 2M . If ES=Heavy, then r
u

= 1.9015h
u

((3 exp(�h
u

) + 1)/4)

for all u 2 M . The constants in those formulas make r
t

= 1.00 in

any case. For example, for the previous vector Q, ES=Linear gives

r = (0.50, 0.71, 1.00, 1.41, 2.00), ES=Moderate yields r = (0.59, 0.77,

1.00, 1.29, 1.66), ES=Heavy yields r = (0.67, 0.83, 1.00, 1.16, 1.34).

3. If PT=HVRP or PT=HD , the K vector depends on Q, on q(V 0) =
P

i2V 0 q
i

and on FD. In any case, K is chosen in such a way that the

total fleet capacity
P

u2M Q
u

K
u

is close to 1.1 q(V 0). In the previous

example, if FD=Uniform then K = (6, 6, 6, 6, 5), if FD=Inversely

Proportional then K = (13, 9, 7, 5, 3), if FD=In-between then K =

(9, 7, 6, 5, 5).

4. If PT=FSMD or PT=HD, all fixed costs are zero by definition. Oth-

erwise, the f vector depends on Q
CV RP

, q(V 0), Z
CV RP

and FCM .

Regardless of the attribute FCM , the values of f
u

are always propor-

tional to h
u

(2� exp(�h
u

))/2. This means that there are diseconomies

of scale in the fixed costs. Similar diseconomies can observed in most

existing instances in the literature. In fact, we observed in preliminary

experiments that if fixed costs only grow linearly with the capacity,

then FSMF instances have optimal solutions that almost only use the

vehicle with the largest capacity. If FCM=Small, then fixed costs
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are set in such a way that f
t

= (0.342Z
CV RP

)/(q(V 0)/Q
CV RP

). If

FCM=Medium, all fixed costs are two times larger; if FCM=Large

they are three times larger than that with FCM=Small. The con-

stant 0.342 in those formulas was obtained by linear regression over

the results of preliminary experiments, in order to make typical in-

stances generated with PT=HVRP, m = 5, QV=4, ES=Moderate,

FD=In-between and FCM=Medium to have optimal solutions where

(roughly) half of the total cost consists of fixed costs. In the previous

example, if FCM=Medium, Z
CV RP

= 50000 and q(V 0) = 27018, then

f = (541, 827, 1266, 1928, 2894).

5.4.2. The New XH Set

The X set is composed by 100 CVRP instances, ranging from 100 to 1000

customers, proposed in Uchoa et al. (2017) and available in CVRPLIB web

page (http://vrp.atd-lab.inf.puc-rio.br/). For each CVRP instance in the X

set, a new HFVRP instance was created using the previously presented gen-

eration mechanism. The values for the 6 attributes were randomly selected,

Z
CV RP

was set to the best know solution value. The resulting XH set of

HFVRP instances is available as an electronic companion to this paper and

also in CVRPLIB.

For each new instance we tried to perform 20 runs of the HILS algorithm

proposed in Penna et al. (2017). However, as we set a time limit of 24 hours

per instance, on most instances the number of runs was smaller than 20.

Using the HILS best solution as initial upper bounds, we run the BCP

algorithm on the 68 instances of the XH set with less than 500 customers

(the remaining 32 instances are clearly out of the reach of current exact

HFVRP algorithms). It was possible to solve 23 instances within the time

limit of 60 hours. The largest solved instance (X376-HD) has 375 customers

and 3 vehicle types. On the other hand, an instance with 125 customers and

9 vehicle types (X126-HVRP) could not be solved. The detailed results can

be seen in Tables B.17 and B.18.
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5.4.3. Assessing the impact of each attribute on instance di�culty

The experiments reported in Tables B.17 and B.18 are statistically insuf-

ficient to assess the impact of each of the attributes on the performance of

the proposed BCP. In order to do that, we created 300 additional medium-

sized HFVRP instances, following a one-factor-at-a-time (OFAT) experi-

ment design approach (Frey and Wang, 2006). We thus defined the stan-

dard attribute configuration as (PT=HVRP, m = 5, QV=4, ES=Moderate,

FD=In-between, FCM=Medium). By changing one attribute value at a

time (and keeping the other attributes with their standard values), we ob-

tain 14 other configurations. For example, the e↵ect of m is assessed by

comparing the results of the standard configuration with the results of con-

figurations (PT=HVRP, m = 3, QV=4, ES=Moderate, FD=In-between,

FCM=Medium) and (PT=HVRP, m = 9, QV=4, ES=Moderate, FD=In-

between, FCM=Medium). The complete experiment is described next:

• We first created a set of 20 original CVRP instances, all of them with

120 customers, with the same generator used in Uchoa et al. (2017).

The CVRP attributes were randomly chosen, so the original instances

are well diversified.

• Each CVRP instance is used for generating 15 HFVRP instances, one

for each attribute configuration.

• We computed the median BCP times for solving the 20 instances cre-

ated for each configuration. In order to eliminate the e↵ect of the

quality of the initial upper provided by HILS, a preliminary BCP run

determines the optimal solutions values. Those values are used as ini-

tial upper bounds in the runs that are actually used for computing the

medians reported in Table 8.

The results for attribute PT indicate that instances with limits on the num-

ber of vehicles of each type (HVRP and HD instances) are significantly

harder than the same instances without those limits (FSM instances). This

is a bit unexpected, since FSM instances require optimizing both fleet com-

position and their routes. On the other hand, the results for attribute m
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are quite expected; the larger the number of vehicle types, the harder the

instance. The e↵ect of the economy of scale on travel costs is also strong:

instances generated with ES=Moderate are already harder than those with

ES=Linear, ES=Heavy makes them even harder. A small Capacity Vari-

ability (QV = 2) makes instances easier. However, no di↵erences were

observed between QV = 4 and QV = 6. Instances with FD=In-between

were found to be a little harder than FD=Uniform or FD=Inversely Pro-

portional. Finally, the Fixed Cost Magnitude does not seem to have a big

e↵ect, FCM=Large makes instances just a bit harder.

Table 8: BCP median times for each configuration

secs hours ratio secs hours ratio
PT m

HVRP 9903 2.75 1 3 2116 0.59 0.21
FSMF 5445 1.51 0.55 5 9903 2.75 1
FSMD 1611 0.45 0.16 9 25162 6.99 2.54
FSMFD 1827 0.51 0.18
HD 7440 2.07 0.75 QV

2 5013 1.39 0.51
ES 4 9903 2.75 1
Linear 2890 0.80 0.29 6 9940 2.76 1.00
Moderate 9903 2.75 1
Heavy 20396 5.67 2.06 FCM

Small 9855 2.74 1.00
FD Medium 9903 2.75 1
Uniform 6953 1.93 0.70 Large 11383 3.16 1.15
InBet. 9903 2.75 1
Inv.Prop. 5893 1.64 0.60

6. Conclusions

This work presented a Branch-Cut-and-Price algorithm for the Hetero-

geneous Fleet VRP, including the related Multi-Depot VRP and Site De-

pendent VRP. The algorithm includes elements found in previous HFVRP

algorithms (like route enumeration and Extended Capacity Cuts) and also

elements (like limited memory R1Cs) only found in the most recent algo-

rithms for the two most classical homogeneous VRP variants, Capacitated

VRP and VRP with Time Windows. However, many of those elements

were adapted in order to take advantage of the existence of several distinct
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subproblems, corresponding to each vehicle type. The computational re-

sults obtained were good. It seems that typical instances with up to 200

customers can now be expected to be solved to optimality (often in long

runs). In contrast, the best previous algorithms had di�culties on solv-

ing instances with 100 customers. The new algorithm can also find several

optimal solutions that can not be found by existing heuristic methods.
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Appendix A. Detailed results

In the Appendix, we present the detailed results for the reference variant of our algorithm for all tested

instances. As the initial upper bound, we used the best solution available (including solutions obtained by us)

with a small ✏ added for a double check. For some instances, the algorithm was launched the second time with

another upper bound either 1) for a fair comparison with Baldacci and Mingozzi (2009), or 2) when the best

known solution in the literature is greater than the solution obtained by us.

In the following tables, we show the instance name, n — the number of customers, m — the number of di↵erent

vehicle types (or the number of depots), the initial upper bound, the dual bound obtained in the root, the root

node time, the number of ECC and R1C at the end of the root node, the nodes number, the total time, and

the best solution value obtained by the algorithm. In the tables, ⇤ near the best solution value indicates that its

optimality was proven for the first time. If the best solution value is underlined, it improves on the best known

solution value. All obtained solutions were proven to be optimal except when it is specially indicated.

Initial Root Nodes Total Final
Instance n m

UB bound time #ECC #R1C number time UB

c50 13hvrp 50 6 3185.2 3185.09 18s 0 0 1 18s 3185.09

c50 14hvrp 50 3 10107.7 10107.50 34s 26 0 1 34s 10107.50

c50 15hvrp 50 3 3065.4 3065.29 23s 8 38 1 23s 3065.29

c50 16hvrp 50 3 3265.6 3265.41 19s 27 0 1 19s 3265.41

c75 17hvrp 75 4 2077.1 2076.96 3m13s 13 109 1 3m13s 2076.96

c75 18hvrp 75 6 3743.7 3743.58 2m08s 28 0 1 2m08s 3743.58

c100 19hvrp 100 3 10420.5 10316.70 13m57s 3 153 3 21m34s 10420.30
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c100 19hvrp 100 3 10423.4 10316.10 11m24s 4 118 3 19m18s 10420.30⇤

c100 20hvrp 100 3 4760.8 4745.35 8m26s 4 366 35 1h23m 4760.68

c100 20hvrp 100 3 4806.7 4740.46 5m02s 2 294 63 3h27m 4760.68⇤

Table A.9: Detailed results for the class HVRP of heterogeneous fleet instances

Initial Root Nodes Total Final
Instance n m

UB bound time #ECC #R1C number time UB

c50 13fsmf 50 6 2406.5 2406.36 18s 0 0 1 18s 2406.36

c50 14fsmf 50 3 9119.2 9119.03 40s 16 0 1 40s 9119.03

c50 15fsmf 50 3 2586.5 2586.37 38s 25 0 1 38s 2586.37

c50 16fsmf 50 3 2720.6 2720.43 19s 22 0 1 19s 2720.43

c75 17fsmf 75 4 1734.7 1734.53 3m42s 3 191 1 3m42s 1734.53

c75 17fsmf 75 4 1744.9 1732.44 7m41s 4 209 5 24m14s 1734.53

c75 18fsmf 75 6 2369.8 2369.65 2m21s 8 96 1 2m21s 2369.65

c75 18fsmf 75 6 2371.5 2369.65 2m56s 5 145 1 2m56s 2369.65

c100 19fsmf 100 3 8662.0 8661.81 3m53s 9 187 1 3m53s 8661.81

c100 20fsmf 100 3 4029.8 4018.26 4m13s 9 197 111 56m29s 4029.61

c100 20fsmf 100 3 4039.5 4016.90 3m32s 4 150 2279 28h41m 4029.61⇤

Table A.10: Detailed results for the class FSMF of heterogeneous fleet instances
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Initial Root Nodes Total Final
Instance n m

UB bound time #ECC #R1C number time UB

c50 13fsmfd 50 6 2964.8 2964.65 16s 0 0 1 16s 2964.65

c50 14fsmfd 50 3 9127.0 9126.90 39s 6 0 1 39s 9126.90

c50 15fsmfd 50 3 2635.1 2634.96 25s 9 0 1 25s 2634.96

c50 16fsmfd 50 3 3169.1 3168.92 13s 7 0 1 13s 3168.92

c75 17fsmfd 75 4 2004.6 2004.48 1m40s 20 87 1 1m40s 2004.48

c75 17fsmfd 75 4 2023.7 2001.55 2m57s 0 139 5 6m27s 2004.48

c75 18fsmfd 75 6 3148.1 3147.99 53s 0 0 1 53s 3147.99

c100 19fsmfd 100 3 8662.0 8661.81 3m36s 8 183 1 3m36s 8661.81

c100 19fsmfd 100 3 8664.3 8659.93 4m33s 10 200 7 7m09s 8661.81

c100 20fsmfd 100 3 4153.2 4137.08 2m55s 10 89 3 3m26s 4153.02

c100 20fsmfd 100 3 4154.5 4137.45 3m46s 8 89 3 4m43s 4153.02⇤

Table A.11: Detailed results for the class FSMFD of heterogeneous fleet instances

Initial Root Nodes Total Final
Instance n m

UB bound time #ECC #R1C number time UB

c50 13hd 50 6 1518.0 1517.84 18s 0 0 1 18s 1517.84

c50 14hd 50 3 607.7 607.53 39s 29 0 1 39s 607.53

c50 15hd 50 3 1015.4 1015.29 25s 18 0 1 25s 1015.29
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c50 16hd 50 3 1145.1 1144.94 14s 15 0 1 14s 1144.94

c75 17hd 75 4 1062.1 1061.96 3m28s 12 92 1 3m28s 1061.96

c75 18hd 75 6 1823.7 1823.58 1m31s 14 0 1 1m31s 1823.58

c100 19hd 100 3 1120.5 1120.34 5m58s 14 99 1 5m58s 1120.34⇤,3

c100 20hd 100 3 1534.3 1534.17 1m30s 28 39 1 1m30s 1534.17
3 We could not obtain solution 1117.51 claimed by Taillard (1999)

Table A.12: Detailed results for the class HD of heterogeneous fleet instances

Initial Root Nodes Total Final
Instance n m

UB bound time #ECC #R1C number time UB

c50 13fsmd 50 6 1492.0 1491.86 16s 0 0 1 16s 1491.86

c50 14fsmd 50 3 603.4 603.21 51s 36 0 1 51s 603.21

c50 15fsmd 50 3 1000.0 999.82 14s 0 0 1 14s 999.82

c50 16fsmd 50 3 1131.1 1131.00 12s 8 0 1 12s 1131.00

c75 17fsmd 75 4 1038.7 1038.60 1m51s 13 26 1 1m51s 1038.60

c75 18fsmd 75 6 1800.9 1800.80 1m12s 27 0 1 1m12s 1800.80

c75 18fsmd 75 6 1801.4 1800.80 1m16s 26 0 1 1m16s 1800.80

c100 19fsmd 100 3 1105.6 1105.44 2m43s 20 58 1 2m43s 1105.44

c100 20fsmd 100 3 1530.6 1530.43 1m38s 13 64 1 1m38s 1530.43

Table A.13: Detailed results for the class FSMD of heterogeneous fleet instances
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Initial Root Nodes Total Final
Instance n m

UB bound time #ECC #R1C number time UB

BrandaoN1fsmd 150 6 2211.8 2211.63 14m06s 1 275 1 14m06s 2211.63

BrandaoN1fsmd 150 6 2212.8 2211.63 17m37s 1 312 1 17m37s 2211.63⇤

BrandaoN1hd 150 6 2234.0 2228.53 19m18s 4 276 7 27m23s 2233.90

BrandaoN1hd 150 6 2234.2 2228.30 20m18s 2 237 9 33m32s 2233.90⇤

BrandaoN2fsmd 199 5 2810.3 2802.28 1h12m 1 553 89 7h18m 2810.20

BrandaoN2fsmd 199 5 2823.8 2796.84 56m47s 4 441 247 26h29m 2810.20⇤

BrandaoN2hd 199 5 2852.1 2842.60 56m20s 0 443 9 2h08m 2851.94

BrandaoN2hd 199 5 2859.9 2839.09 44m16s 6 283 65 7h47m 2851.94⇤

BrandaoN3fsmd 120 4 2234.7 2234.57 1m53s 0 0 1 1m53s 2234.57⇤

BrandaoN3hd 120 4 2379.1 2353.96 19m31s 37 182 91 10h48m 2378.99⇤

BrandaoN4fsmd 100 4 1822.9 1822.78 1m37s 31 0 1 1m37s 1822.78⇤

BrandaoN4hd 100 4 1839.4 1839.22 1m43s 51 0 1 1m43s 1839.22⇤

Table A.14: Detailed results for heterogeneous fleet instances by Brandão (2011)

Initial Root Nodes Total Final
Instance n m

UB bound time #ECC #R1C number time UB

sdvrp p01 55 3 640.5 640.32 12s 0 0 1 12s 640.32

sdvrp p02 55 2 598.2 598.10 13s 0 0 1 13s 598.10
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sdvrp p03 80 3 954.5 954.32 1m14s 7 101 1 1m14s 954.32

sdvrp p03 80 3 957.1 948.78 1m20s 2 108 3 1m53s 954.32

sdvrp p04 76 2 854.6 854.43 51s 8 86 1 51s 854.43

sdvrp p05 103 3 1003.7 1003.57 2m02s 8 95 1 2m02s 1003.57

sdvrp p06 104 2 1028.7 1025.08 7m24s 0 288 3 8m54s 1028.52⇤

sdvrp p07 27 3 391.4 391.30 0s 0 0 1 0s 391.30

sdvrp p08 54 3 664.6 664.46 2s 0 0 1 2s 664.46

sdvrp p09 81 3 948.4 948.23 20s 0 0 1 20s 948.23

sdvrp p10 108 3 1218.9 1218.75 1m38s 0 74 1 1m38s 1218.75⇤

sdvrp p11 135 3 1448.3 1448.17 5m38s 0 354 1 5m38s 1448.17⇤

sdvrp p12 162 3 1665.7 1650.98 9m29s 1 722 247 24h42m 1665.55⇤

sdvrp p13 54 3 1194.3 1194.18 46s 27 0 1 46s 1194.18

sdvrp p14 108 3 1960.1 1959.96 2m19s 13 90 1 2m19s 1959.96

sdvrp p14 108 3 1960.7 1959.96 3m04s 13 95 1 3m04s 1959.96⇤

sdvrp p15 162 3 2685.2 2680.24 5m46s 8 230 3 6m34s 2685.09⇤

sdvrp p16 216 3 3393.5 3368.41 6m16s 3 165 197 5h13m 3393.31

sdvrp p16 216 3 3393.7 3366.81 5m21s 2 242 183 5h37m 3393.31⇤

sdvrp p17 270 3 4066.3 4038.14 9m52s 3 306 1065 >36h 4066.15a

sdvrp p18 324 3 4751.4 4708.99 13m19s 1 468 677 >36h 4748.41a,6

sdvrp p19 104 3 843.3 840.19 22m28s 0 356 3 34m55s 843.15⇤

sdvrp p20 156 3 1030.9 1023.32 38m43s 1 506 21 4h21m 1030.78⇤

sdvrp p21 209 3 1260.2 1255.66 53m18s 0 562 17 3h42m 1260.01
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sdvrp p21 209 3 1263.8 1254.25 47m42s 0 497 185 26h43m 1260.01⇤

sdvrp p22 122 3 1008.9 1007.88 17m19s 28 131 3 21m15s 1008.71⇤

sdvrp p23 102 3 803.4 803.29 1m27s 30 0 1 1m27s 803.29⇤

a optimality not proved
6 better solution with value 4747.75 was obtained by another variant of the algorithm

Table A.15: Detailed results for site-dependent instances

Initial Root Nodes Total Final
Instance n m

UB bound time #ECC #R1C number time UB

p01 50 4 577.0 576.87 11s 0 0 1 11s 576.87

p02 50 4 473.7 473.53 31s 0 0 1 31s 473.53

p03 75 2 641.3 641.19 48s 0 0 1 48s 641.194

p04 100 2 1001.2 1001.04 1m40s 8 121 1 1m40s 1001.04

p05 100 2 750.2 750.03 7m47s 4 194 1 7m47s 750.03

p05 100 2 751.3 749.02 10m37s 4 310 3 18m34s 750.03

p06 100 3 876.6 876.50 49s 6 29 1 49s 876.50

p07 100 4 882.1 881.97 1m29s 11 48 1 1m29s 881.97

p12 80 2 1319.1 1318.95 59s 7 10 1 59s 1318.95

p15 160 4 2505.6 2505.42 3m13s 24 10 1 3m13s 2505.42

p18 240 6 3703.0 3702.85 10m15s 16 25 1 10m15s 3702.85

p21 360 9 5475.0 5474.84 37m01s 9 121 1 37m01s 5474.84⇤
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mdvrp-n151-k12-3-100 150 3 1197.7 1197.51 6m50s 10 205 1 6m50s 1197.51

mdvrp-n151-k12-3-80 150 3 1375.5 1375.37 2m13s 17 100 1 2m13s 1375.375

mdvrp-n151-k12-4-100 150 4 1058.5 1058.38 2m51s 34 46 1 2m51s 1058.38

mdvrp-n151-k12-4-80 150 4 1200.7 1200.54 1m30s 29 0 1 1m30s 1200.54

mdvrp-n200-k16-3-100 199 3 1511.5 1508.19 8m59s 12 328 3 11m22s 1511.35

mdvrp-n200-k16-3-80 199 3 1756.6 1752.27 5m35s 8 261 9 10m34s 1756.48

mdvrp-n200-k16-3-80 199 3 1757.9 1752.23 5m23s 3 240 15 16m23s 1756.48⇤

mdvrp-n200-k16-4-100 199 4 1347.3 1347.19 7m03s 4 193 1 7m03s 1347.19

mdvrp-n200-k16-4-80 199 4 1535.2 1534.56 3m31s 28 58 1 3m31s 1534.56
4 We and Contardo and Martinelli (2014) could not obtain solution 640.65 claimed by Baldacci and Mingozzi (2009)
5 We could not obtain solution 1374.03 claimed by Baldacci and Mingozzi (2009)

Table A.16: Detailed results for multi-depot instances
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Appendix B. Results on the new XH set

Tables B.17 and B.18 present results on the 68 XH instances with up

to 500 customers. The instance name indicate the number of points (n

customers plus the depot) and the attribute Problem Type (PT ). Next,

there is more information about the instance creation: the original CVRP

instance, the Z
CV RP

value, and attributes m, QV , ES, FD, and FCM .

Then, there is the upper bound obtained with the HILS heuristic Penna

et al. (2017), the value that was used as initial upper bound in the BCP

run. Subsequent columns are bound the root node: the lower bound, time

and number of active ECCs and R1Cs in the end of the node. Next, there

is the number of nodes explored and the total time (with a limit of 60

hours). Finally, the final upper bound after the BCP run, underlined values

indicate improvement upon HILS. There run of instance X459-HD went out-

of-memory still in the root node. In the end of Table B.18 there are some

lines with statistics for some columns: minimum, maximum, average and

median. The values under column root bound are actually percent gaps

between the root lower bound and final upper bound.
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Table B.17: New set of benchmark instances: characteristics and BCP results (Part I)

CVRP Instance HFVRP attributes HILS Root Nodes Total Final

# Name Name UB m QV ES FD FCM UB bound time #ECC #R1C number time UB

1 X101-FSMFD X-n101-k25 27591 5 2 H – S 35170.2 35110.1 3m45s 16 119 3 4m08s 35170.2

2 X106-FSMD X-n106-k14 26362 3 6 L – – 31566.3 31566.3 14m16s 11 72 1 14m16s 31566.3

3 X110-HD X-n110-k13 14971 9 4 M IP – 15859.3 15729.8 8m51s 8 101 23 21m20s 15859.3

4 X115-HVRP X-n115-k10 12747 3 6 H Inb S 19412.6 19381.2 7m27s 4 228 3 9m11s 19412.6

5 X120-FSMF X-n120-k6 13332 5 4 – – L 26778.8 26729.9 15m51s 4 264 27 2h16m 26778.8

6 X125-HVRP X-n125-k30 55539 9 2 M U M 95401.0 94639.1 14m02s 18 53 1353 >60h 95288.4

7 X129-FSMFD X-n129-k18 28940 9 4 M – L 59184.5 59150.2 2m59s 28 107 3 3m12s 59184.5

8 X134-FSMD X-n134-k13 10916 3 2 H – – 10271.9 10039.7 23m44s 24 44 521 >60h 10271.9

9 X139-HD X-n139-k10 13590 5 6 L IP – 16810.9 16255.3 14m53s 4 159 1151 >60h 16810.9

10 X143-FSMF X-n143-k7 15700 3 6 – – L 11706.7 10572.8 2h52m 0 0 26 >60h 11706.7

11 X148-HVRP X-n148-k46 43448 5 4 L IP M 80285.3 80285.3 28m49s 26 18 1 28m49s 80285.3

12 X153-FSMFD X-n153-k22 21220 3 2 M – S 27151.8 27002.3 13m13s 19 161 2305 >60h 27151.8

13 X157-HD X-n157-k13 16876 9 4 M IP – 17246.5 17138.5 5m55s 10 190 51 3h55m 17246.5

14 X162-FSMD X-n162-k11 14138 9 6 L – – 11853.4 11853.4 1h59m 23 158 1 1h59m 11853.4

15 X167-FSMF X-n167-k10 20557 5 2 – – M 32035.2 31284.9 34m05s 10 80 379 >60h 31811.6

16 X172-HVRP X-n172-k51 45607 5 4 H IP L 97395.9 97224.6 16m28s 30 209 135 10h51m 97395.9

17 X176-FSMFD X-n176-k26 47812 3 6 L – M 101177.1 100665.4 12m15s 16 198 79 3h16m 101095.0

18 X181-HD X-n181-k23 25569 9 2 M Inb – 26017.3 25930.1 3m29s 17 106 39 31m02s 26017.3

19 X186-FSMD X-n186-k15 24145 5 2 M – – 23959.9 23769.0 1h13m 36 42 13 18h08m 23955.7

20 X190-FSMF X-n190-k8 16980 3 4 – – S 18899.1 18877.0 1h05m 12 150 149 18h40m 18896.9

21 X195-FSMF X-n195-k51 44225 9 6 – – M 68102.1 66187.0 35m00s 15 56 287 >60h 68102.1

22 X200-HD X-n200-k36 58578 9 2 M IP – 60110.1 59496.2 1h06m 21 99 97 >60h 60110.1

23 X204-FSMD X-n204-k19 19565 5 6 H – – 19612.7 19214.9 42m30s 0 0 195 >60h 19612.7

24 X209-FSMFD X-n209-k16 30656 3 4 L – S 41409.7 41298.0 10m43s 42 476 2751 >60h 41409.7

25 X214-HVRP X-n214-k11 10856 9 6 L Inb S 16120.1 15761.9 2h08m 0 6 45 >60h 16120.1

26 X219-HD X-n219-k73 117595 5 2 M U – 120737.0 120737.0 12m36s 0 0 1 7s 120737.0

27 X223-HVRP X-n223-k34 40437 3 4 H IP M 72251.1 72058.8 10m22s 41 329 763 >60h 72251.1

28 X228-FSMFD X-n228-k23 25742 9 4 L – M 42312.9 42196.3 32m52s 24 272 385 >60h 42312.9

29 X233-FSMD X-n233-k16 19230 3 6 H – – 19898.9 19476.0 36m59s 0 0 297 >60h 19898.9

30 X237-FSMF X-n237-k14 27042 5 2 – – S 32210.2 31013.8 25m10s 12 210 185 >60h 32210.2

31 X242-FSMFD X-n242-k48 82751 9 6 M – L 187390.6 187333.0 6m04s 14 169 5 7m59s 187368.9

32 X247-HVRP X-n247-k50 37274 5 2 H IP S 49971.1 49761.3 37m27s 4 185 759 >60h 49904.9

33 X251-FSMD X-n251-k28 38684 3 4 L – – 39993.8 39917.7 5m27s 43 305 541 7h26m 39993.1

34 X256-FSMF X-n256-k16 18839 9 6 – – M 31414.9 30302.9 7h33m 0 0 9 >60h 31414.9

35 X261-HD X-n261-k13 26558 5 4 M U – 28867.3 28053.2 2h51m 0 0 36 >60h 28867.3

36 X266-HD X-n266-k58 75478 3 2 H IP – 70368.6 70242.2 10m49s 15 305 501 6h10m 70363.6
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Table B.18: New set of benchmark instances: characteristics and BCP results (Part II)

CVRP Instance HFVRP attributes HILS Root Nodes Total Final

# Name Name UB m QV ES FD FCM UB bound time #ECC #R1C number time UB

37 X270-FSMD X-n270-k35 35291 5 6 M – – 38652.9 38216.2 35m59s 0 35 223 >60h 38652.9

38 X275-HVRP X-n275-k28 21245 9 4 L U S 30687.3 30504.3 10m18s 9 168 51 2h58m 30673.4

39 X280-FSMF X-n280-k17 33503 3 2 – – L 65796.4 64177.8 30m42s 0 0 177 >60h 65796.4

40 X284-FSMFD X-n284-k15 20226 9 6 L – M 31901.8 31826.1 48m13s 37 512 641 >60h 31901.8

41 X289-HVRP X-n289-k60 95151 5 2 M IP S 127795.8 127357.0 1h43m 6 206 355 >60h 127795.8

42 X294-HD X-n294-k50 47161 3 4 H U – 44089.0 43887.1 1h14m 0 624 856 >60h 44089.0

43 X298-FSMD X-n298-k31 34231 5 6 L – – 35025.4 34944.4 13m53s 62 243 1613 20h21m 35022.1

44 X303-FSMFD X-n303-k21 21744 3 2 M – M 35993.5 35277.2 1h50m 0 0 93 >60h 35993.5

45 X308-FSMF X-n308-k13 25859 9 4 – – L 51965.1 50136.9 3h43m 0 0 13 >60h 51965.1

46 X313-FSMD X-n313-k71 94044 9 2 L – – 93377.8 93158.7 2h23m 40 180 435 >60h 93361.6

47 X317-HVRP X-n317-k53 78355 5 4 M IP L 165763.4 165568.0 6m22s 29 118 11 22m55s 165763.0

48 X322-HD X-n322-k28 29834 3 6 H Inb – 33507.8 32974.7 59m09s 0 0 245 >60h 33507.8

49 X327-FSMFD X-n327-k20 27532 5 4 M – S 38672.8 38021.6 44m35s 63 63 75 >60h 38672.8

50 X331-FSMF X-n331-k15 31102 9 6 – – L 63082.7 61165.8 5h09m 21 56 37 >60h 63082.7

51 X336-FSMF X-n336-k84 139135 3 2 – – M 212635.9 209457.0 15m17s 0 0 277 >60h 212635.9

52 X344-FSMD X-n344-k43 42056 5 4 L – – 42370.5 42343.1 13m54s 34 224 7 18m45s 42369.7

53 X351-HVRP X-n351-k40 25928 9 2 H IP L 54124.9 53310.3 2h50m 0 0 43 >60h 54124.9

54 X359-HD X-n359-k29 51505 3 6 M U – 60737.7 59115.7 11m55s 13 0 155 >60h 60737.7

55 X367-FSMFD X-n367-k17 22814 9 6 H – L 51605.0 50338.2 2h41m 0 20 49 >60h 51605.0

56 X376-HD X-n376-k94 147713 3 4 L Inb – 161394.2 161394.2 1m30s 43 48 1 1m30s 161394.2

57 X384-FSMF X-n384-k52 65943 5 2 – – M 105143.6 100030.0 1h54m 0 75 108 >60h 105143.6

58 X393-HVRP X-n393-k38 38260 9 6 M IP M 72748.1 71790.4 33m03s 0 0 49 >60h 72748.1

59 X401-FSMFD X-n401-k29 66187 3 2 L – S 89755.7 87914.5 3h43m 0 0 111 >60h 89755.7

60 X411-FSMD X-n411-k19 19718 5 4 H – – 18430.9 17379.9 2h15m 0 0 43 >60h 18430.9

61 X420-FSMD X-n420-k130 107798 5 6 M – – 112984.8 112331.0 22m17s 33 519 289 >60h 112984.8

62 X429-HVRP X-n429-k61 65483 3 2 L U S 91732.2 90553.3 50m29s 0 0 109 >60h 91732.2

63 X439-FSMF X-n439-k37 36391 9 4 – – L 71877.0 70010.0 2h18m 31 196 72 >60h 71877.0

64 X449-FSMFD X-n449-k29 55269 5 4 L – L 113204.3 110256.1 9h53m 0 0 24 >60h 113204.3

65 X459-HD X-n459-k26 24145 9 6 M IP – 25359.1 o.m.

66 X469-HD X-n469-k138 221909 3 2 H Inb – 217177.8 215938.0 11m12s 0 0 193 >60h 217177.8

67 X480-FSMD X-n480-k70 89458 3 4 L – – 100583.5 100399.0 24m55s 56 311 2067 >60h 100583.5

68 X491-FSMF X-n491-k59 66510 5 2 – – L 131315.5 125200.7 5h35m 0 0 37 >60h 131315.5

Min 0.00% 1m30s 0 0 1 7s

Max 9.70% 9h53m 63 624 2751 >60h

Avg. 1.43% 1h15m 15 126 322 >40h

Median 0.68% 32m52s 11 80 97 >60h
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