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General Problem

Let us consider the finite dimensional control problem:
y = Ay + Bu, (*)

with y(t) € R" and u(t) € R™.

It is well-known that if this system is controllable (i.e. rk (B, AB, ..., A" 'B) = n),
then for every y°, y' € R" and every T > 0, there exists a control u steering the solution
of () from y° to y* in time T.
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General Problem

Let us consider the finite dimensional control problem:
y = Ay + Bu, (*)

with y(t) € R" and u(t) € R™.

It is well-known that if this system is controllable (i.e. rk (B, AB, ..., A" 'B) = n),
then for every y°, y' € R" and every T > 0, there exists a control u steering the solution
of () from y° to y* in time T.

Let us now add the constraint y(t) € C with C a subset of R” of nonempty interior.

@ Given y° € C, what is the set of reachable points y' € C?

@ If y* can be reached from y°, can it be done in arbitrarily small time?
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© The finite dimensional control problem

© Minimal controllability time with nonnegative control
© Heat equation with nonnegative control

@ Conclusion
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Control in inite dimension

o The finite dimensional control problem
@ Basic considerations
@ A time optimal control problem with control constraints
@ Unilateral state constraint
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Control in inite dimension Basic considerations

First definitions

If rk B = n, then for every y°, y' € C and every T > 0, the solution of (%) can be steered
from y° to y* in time T, and y(t) € C for every t € [0, T].

In the sequel, we will assume m =1 (and B = b € R").
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Control in inite dimension Basic considerations

First definitions

If rk B = n, then for every y°, y' € C and every T > 0, the solution of (%) can be steered
from y° to y* in time T, and y(t) € C for every t € [0, T].

In the sequel, we will assume m =1 (and B = b € R").

Definition

A point y € R" is a steady state if there exists & € R" such that Ay + bid = 0.

Proposition (Controllability between Proof: Small time local controllability,
steady points) and compactness

0 1 \X\\ &
Assume that y° and y~ are two steady states smv states

and assume for every T € [0,1], g

(1 —7)y° + 7y* is in the interior of C. ' ol ‘,' L “/\_
Then there exists a time T > 0 large enough U g
such that y° can be steered to y* in time T.

\\m\\\\\\\

&
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Control in inite dimension Basic considerations

Minimal controllability time

Let us then define:

Tc(yo,yl) = inf{T >0, Jue L=(0,T),

Y(Tiuy®) =yt
y(t;u;y°)eC (telo,T]) f°
with y(t; u; y°) the solution of : y = Ay + bu, y(0) = y°.

Proposition

@ There do not exist controls u € L>°(0, Tc(y°, y*')) steering y° to y* in time
Te(y’,y');
Q Tc(y°,y') = T=(y°,y') — we assume C closed;
@ For M >0, set :
lu(t) <M (t €0, T]),
Ty =inf{ T>0, Jue L™, T), | y(T:iuy°) =y,
y(t;u;y°) € C (t€[0,T])

Then,

lim T ") = T’ ).
M— oo

v
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Control in inite dimension Time optimal control problem

Brunovsky form

We can rewrite the system under Brunovsky form, i.e., there exists Q € M,(R) and
K € R" such that z = Qy and v = K y + u satisfies:

0 -+ - - 0 1
1 0
z= |y z+ v=A,z+b,v. €2
0 0 1 O 0

The constraint x € C becomes z € QC and steady states of (x') are:

yen=(0 -+ 0 ’y)T, (y €R).

Set 4% and ~! such that v'e, = Qy'.
We have:

TC(yO’yl; A? b) - TQC(’Yoena 'Ylen; An, bn)
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Control in inite dimension Time optimal control problem

Goh transformation

Proposition
Define,
.
7= inf{T >0, 3z € L=(0, T), §222 'z'n’)i"()T)i%fé B }
Then,

T< TQC(’yoen,'yle,,; A, b, = Tc(xo,xl; A, b).

In addition, if C is convex, then

T=Toc(’en, 7 en; An, by) = Tc(x°, x'; A, b).

Observe that = (z,...,2,)" € R"™! solves:
Z=A, 1Z+b, 1z1, Z(0) =~ e, 1,

i.e., z' is seen as a control.
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Control in inite dimension Time optimal control problem

Consequences in dimension two

In dimension two, we end up with the reduced system:
22 = 1, 22(0) = ’yo,

with the mixed state and control constraint: (z1(t), z(t))' € QC.
For every z € R, let us define:

d
sup{z1 € Ry, [0,z1] x {z} C QC} otherwise an

(2) = 0 if (0,22)" ¢ QC,
o= sup{z1 € R4, [~21,0] x {z} C QC} otherwise.

Proposition

Assume QC is simply connected. Then, we have:

50 dé
ify <P,
Ll v—(&)

1
T dg 1o 0
ify ="
[,0 <P+(C2) 7 7
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Control in inite dimension Time optimal control problem

Example in dimension two

O O~INNOONOO|

z1

Plots of the state trajectories steering —3e; to 3e; with particular QC and with

additional constraints |v(t)| < M (for M € {%, %, %, g, 2,7, 20, 100}).
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Control in inite dimension Time optimal control problem

R2\ C has to be a connected domain

k2l
o
T
E)
o

1r 1

2 2

5 2 1 0 1 2 5 4 45 2 a1 o 1z 3
M=1/2—— M=1— M=10 M =20 M =100 —

Plots of the time optimal state trajectories steering —e> to e> with different non simply
connected state and with control constraint |v(t)| < M, for M € {3,1,10,20,100}.
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Control in inite dimension Unilateral state constraint

Case of a linear state constraint

Consider the state constraint
C={yeR" | tiys+ -+ Lny, > 0}.

Assume also that the system () is already in Brunovsky form, with B = b, =e; € R".
Let us define io = min{i € {1,...,n} | £ # O} and assume that ¢, = 1.
Using Goh transformation, we obtaln T= TC('y €n, "y e,,,An,b ), with

Yio (£) + Lig+1Yig+1(t) + - 4+ Lnya(t) 2 0,
= oo yi(0) =yi(T)=0 (iefo+1,...,n}),
T=infdT>0| Jy, €L™(0,T),

| 3 O30 =50 yu(T) =7,
Yi =VYi-1 (iE{io-i—].,...J‘l}).
Let us then define the control u = yj; + iy+1Yip+1 + -+ ayn = 0, i.e.,

Yio = U—Yig+1¥ig+1 — -+ — lnyn, with u > 0.

We are then reduced to: inf T
T 2 07
uel>0,T), u=0,
y(0) =y, y(T) =y,
y = Ay + bu.
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Nonnegative control constraint

© Minimal controllability time with nonnegative control
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Nonnegative control constraint

Positive minimal time

Consider the system (x) and assume that the pair (A, b) is controllable. We define

;
Accy(T) = {/ eT=pu(t)dt, ue L=(0, T), u>o} (T >0).
0

Acci(T) is a convex cone with vertex 0, and Acc(T) C R".
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Nonnegative control constraint

Positive minimal time

Consider the system (x) and assume that the pair (A, b) is controllable. We define

;
Accy(T) = {/ e T=puy(t)dt, ue L0, T), u>0} (T >0).
0

Acc(T) is a convex cone with vertex 0, and Accy (T) C R”.

Proof:
@ Accy(T) is a convex cone with vertex 0 for every T > 0.
@ Accy(T) contains a nonempty open set.
o (—Acci(T)) N Accy(T) = {0} for T > 0 small enough.
By contradiction, VT > 0, Jy' #0 s.t. y* € (—Acc(T)) N Accy(T).
= Jut >0and u” >0 sty =[] T4yt (t)dt = — [] e(T=D4bu—(t)dt
= u=u"+u" >0, u;éOandO*f (TtAbu(t)dt
= 0<|bP [ u(t)dt = bT [T (eT=0A — 1) bu(t)dt
< SUPte[o, ] (b7 (7794 — 1) )fo u(t) dt.

(T—-t)A

But, limr_0sup,co, 7 bT (e — In) b =0, leading to a contradiction.
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Nonnegative control constraint

Positive minimal time

Consider the system (x) and assume that the pair (A, b) is controllable. We define

;
Accy(T) = {/ eT=pu(t)dt, ue L=(0, T), u>o} (T >0).
0

Acci(T) is a convex cone with vertex 0, and Acc(T) C R".

Define,

Ty )=inf{T >0 | Jue L>(0,T) st. u>0 and

.
yh—e™y = / e T 9%pu(t) dt} .
0

Consequence

For every y° € R”, there exist y* € R” such that T(y°,y") > 0.
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Nonnegative control constraint

Some accessibility conditions

Lets us define the set of positive steady states,

Si={yeR" | JaeR] st. Ay + bia=0}.

Proposition

We have T(y°, y) < oo if one of the following condition is satisfied.
o Yyl e sy o Ro(A) CR™ and y' € S7.
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Nonnegative control constraint

Existence of a minimal time control

Proposition

If o(A)NR # 0, and T(y°,y') < oo, then there exist a nonnegative control
u € M([0, T(y°, y")]) steering y° to y' in time T(y°, y').
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Nonnegative control constraint

Existence of a minimal time control

Proposition

If o(A)NR # 0, and T(y°,y') < oo, then there exist a nonnegative control
u € M([0, T(y°, y")]) steering y° to y' in time T(y°, y').

Proof: Let T = T(y° y').

© I To)nen, st liMpsoo To=T, To2Ti2---2Tp>---2TandVneN,
Ju, € L*°(0, Ty) s.t. up >0 and

Th
yl TnAyO _ / e(T,,ft)A bu,,(t) dt.
0

o let peR", |p|=1and p"A=Xp', for A € R. We have

° goTbyéO; .
ol (}/1 - eAT"yO) = @T/ eA(T"_t)bun(t) dt. Hence,
0
Al To T 1,0
~IATo 1y, |80 H+e le ' y°
lunlliro, 7,y < s

o (un)nen is uniformly bounded in L1, hence, vaguely convergent to some

T
u € M([0, T]), and we have y* — e TA)0 = / T4 du(t).
0
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Nonnegative control constraint

Existence of a minimal time control

Proposition

If o(A)NR # 0, and T(y°,y') < oo, then there exist a nonnegative control
u € M([0, T(y°, y")]) steering y° to y' in time T(y°, y').

We then define,
TGO ,y)=inf{T >0 | 3ue M(0,T]) st. u>0 and

T
yl _ eTAyO _ / e(T_t)Abdg(t)} .
0

Obviously, we have,
0<TH . y) <TOOyY).

Proposition

Ifyl € ST, then I(yo,yl) = I(yo,yl).
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Nonnegative control constraint

Minimal time control with Radon measures |

Assume that T(y°, y*) < oo, and let T = T(y°, y").
o If there exist u € M([0,T]) steering y° to y* in time T, then there exist N € N,
my,...,my >0 and 7i,...,7n € [0,T] such that u = E,N:l mid-,, i.e.,
N
y1 — eIAyO = Z m;eT—T)Ap. (*)
i=1

o Ifa(A)NR # (), then there exists u € M([0,T]), u > 0, steering y° to y* in time T.

o If o(A) C R, then there exists u € M([0,T]), u > 0, steering y° to y" in time T,
and (x) holds with N < |(n+ 1)/2]|. Furthermore, this control u is unique.
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Nonnegative control constraint

Minimal time control with Radon measures ||

Proof (guide lines):
@ Use a time rescaling!?®.
@ Apply Pontryagin maximum principle.
For o(A) C R,
@ Count the maximal number of Dirac masses (see Lee Markus*).

o Uniqueness follows from the fact that {e"”B,...,e""B} is a free family in R" as
soon as the t;'s are two by two distinct.

LR. W. Rishel. “An extended Pontryagin principle for control systems whose control laws contain measures”. J. SIAM
Control Ser. A 3 (1965)

2A. Bressan and F. Rampazzo. “On differential systems with vector-valued impulsive controls”. Boll. Un. Mat. ltal. B (7)
2.3 (1988)

3G. Dal Maso and F. Rampazzo. “On systems of ordinary differential equations with measures as controls”. Differential
Integral Equations 4.4 (1991)

4E. B. Lee and L. Markus. Foundations of optimal control theory. 1967
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Nonnegative control constraint

Time rescaling |

Define v(t) = u([0, t]), s(0) = 0 and ¢(t) = t + v(t).
We set T the set of jumps times. For every t € [0, T],

o if s =¢(t), with t € [0, T]\ T, we set 7(s) = t and ~(s) = v(t);

o if s € [c(t7),s(th)], with t € T, we set 7(s) = t and
v(th)—v(t7)

A(s) = v(t™) + ey (s —s(t7) =s— 1.
This leads to the reparametrized system
2(s) = 7(s)Az(s) + BY'(s).
Noticing that 7/(s) = 1 — 7'(s), 7/(s) € [0,1] and setting w(s) = 7/(s), we obtain
z(s) = w(s)Az(s) + B(1 —w(s)) (s €[0,5(T)]),
with

s(T)
T:/O w(s)ds and y(t) = z(s(t))

and w(s) € [0, 1] is the new control.
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Time rescaling Il

Nonnegative control constraint

y=Ay+ Bu
t— u(t)
0\ T T T i t
1 T2 T3 T

1
0+ T } } T T = s
0 <(0%) (1) <(72) () <) <(T7) <«(T)
s — w(s)
z=wAz+ B(1—w)
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Nonnegative control constraint

Time rescaling Il

The minimal time control problem becomes

min /Osw(s) ds

5>0,

w(s) €[0,1]  (s<[0,5]),

z(S) = y*, with z the solution of
z=wAz + B(1 — w),
with initial condition z(0) = y°.

We can now apply the classical Pontryagin maximum principle to obtain the result.
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Heat equation

© Heat equation with nonnegative control
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Heat equation

Heat equation |

Consider the 1D heat equation

y(t,x) =82 y( x) (t>0,x€(0,1))
y(t,0) = (t >0),
y(t1)= ( ) (t > 0),

¥(0,x) = y°(x) (x € (0,1))

For this system, we have ST = {x € [0,1] — &x, & € R} }.

If y° > 0 (and u > 0), the comparison principle ensures that y(t,x) > 0.
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Heat equation

Heat equation Il

Given y° € [%(0,1) and y' € S7.
@ Is there a nonnegative control steering y° to y* in some time T > 0?
@ Do we have a positive minimal controllability time?

@ Is there some control in the minimal time?

As for the finite dimensional case, we can prove:

Proposition

T(y° y") < oo and there exist a control u € M([0, T(y°, y")]), u >0, steering y° to y*
in time T(y°, y").

Is the control u a sum of Dirac masses?
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Heat equation

Finite dimension approximation |

Let us define (—An)nen= the eigenvalues of —82 and (¢n)nen+ the associated normalized
eigenvectors. Recall that {¢,},en~ is an orthonormal basis of L2(0,1).

We then have y(t,x) = Zy,,(t)gon(x), where y, is solution of

n=1
! 0 0
Vo= Auyo bt ya(0) = / YO (x)pa(x) dx =
0

with v, = —0xpn(1) # 0.
The goal is to find T and u > 0 such that,

yo(T) = / Y (en)dx =y (neN),
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Heat equation

Finite dimension approximation Il

For every N € N*, we define,

;
Tu(Plyh :inf{r>o | Jue M([0,T]) st. Yy—e™ Y :/ e<T*f>A~bng(t)}7
0

with Vi = (v, ,yk) ' €RY, Ay = diag (~A1,--- , —Aw) € RY*N and
By = (71, )"
We have

Tu(%yh) < TOCvY.
Furthermore, there exist, No € N (Np < [(N +1)/2]), 0 < << T/’\\/g < Ty and
m{",...,n,’t,’o > 0 such that

yh —e MIny? Ze oIy Vyuml (ned{1,...,N}).

There also exist C = C(yo,yl) > 0 such that 3™ mV < C.
We also set 7V = T, and mN =0 for i > No.
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Heat equation

Convergence results

Theorem

We have limy_,oo T, = T and up to the extraction of a subsequence
My oo 7Y = 77° € [0, T] and limy—co mY = mf® > 0, and the sequence (77°, m$®)
satisfies

vy —e MLy0 Ze An(@T=7)y me® (n e N").

That is to say that the control u™ = % =, m;0r00 steers y° to y! in time T, and u®™ is
the only nonnegative control in the set of purely impulsive measures doing this job.

We can also reorganize these sequences such that (77°);¢/ is increasing and m{® > 0 for
some subset / of N*. And we necessarily have that

© |/ is of infinite cardinal;

e Ilml—)oo 7-,'00 = I
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Heat equation

Convergence results

Theorem

We have limy_,oo T, = T and up to the extraction of a subsequence
My oo 7Y = 77° € [0, T] and limy—co mY = mf® > 0, and the sequence (77°, m$®)
satisfies

vy —e MLy0 Ze =)y, mee (n e N").

That is to say that the control u™ = % =, m;0r00 steers y° to y! in time T, and u®™ is
the only nonnegative control in the set of purely impulsive measures doing this job.

We can also reorganize these sequences such that (77°);¢/ is increasing and m{® > 0 for
some subset / of N*. And we necessarily have that

© |/ is of infinite cardinal;
Q limiem™”=T.
Proof (guide lines):
o Use a diagonal extraction to obtain the existence of a limit (7°°, m®)ien~;

@ Use some estimates on the masses m,- to get the vague convergence of
oo N e} oo
(Zi:l m; 57/")1\’ to D%y mi®dree.
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Heat equation

Numerical experiment

Convergence result

We consider y°(x) = cos(mx) and y'(x) = x.

Impulses times and control time Impulses masses

0 22—

123 456 7 8 9 1011 12 13 14 15 16 17 18 19 20 123 456 7 8 9 1011 12 13 14 15 16 17 18 19 20
N N

Legends: 7. and m for n= ...

3
4

6 8

10
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Heat equation

Numerical experiment
Results with N = 20

For N = 20, we obtain T, ~ 0.075091.

Control impulses and adjoint trace Control impulses and adjoint trace (zoom on final times)
T —— T r T T T T — T r T T T
o1 | By u— o008 | E u—
012 | 0.007
o1 L 0.006 |-
0005 |-
0.08
0004 |
006 -
0003 |
004 - 0.002 |
002 0.001 I T
0 T P A 0 1
0 001 002 003 004 005 006 007 0058 006 0062 0064 0066 0068 007 0072 0.074
t ¢
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Heat equation

Numerical experiment
Results with N = 20

State beween il time = 0 and time £ = 0005955 Stte betwen tms € = 0005855 and ¢ = 0.043572 State beween tmes € = 0045572 and = 0.080208
* it st (prjected)
3 it s (o)
25
2
15
1N
05 -
o
05
"
o o2 o oz os o6 o8 1 o oz os o o8 1
Stte btwen times ¢ = 0060209 and ¢ - 0.06165 Stte beween tmes ¢~ 0066185 and ¢ = 0.065755 Ste btwen times ¢ = 0065755 and final ime ¢ = 0075051
> > > g e (rjected)
s s s arges stve (e
25 2 25
2 2 2
1 1 1s
0s M 05 \ 05 ="
o . e
os 05 os
4 o o
o o2 ot o6 o8 T o 02 oe o6 o8 : o oz ot o o 1
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Conclusion

@ Conclusion
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Conclusion

Other results |

The presented results are taken from

o J. Lohéac, E. Trélat, and E. Zuazua. “Minimal controllability time for
finite-dimensional control systems under state constraints”. Automatica J. IFAC 96
(2018)

o J. Lohéac, E. Trélat, and E. Zuazua. “Nonnegative control of finite-dimensional
linear systems". Ann. Inst. H. Poincaré Anal. Non Linéaire 38.2 (2021)

o J. Lohéac, E. Trélat, and E. Zuazua. “Minimal controllability time for the heat
equation under unilateral state or control constraints”. Math. Models Methods
Appl. Sci. 27.9 (2017)

o J. Lohéac. “Nonnegative boundary control of 1D linear heat equations”. Vietnam
Journal of Mathematics (2021)

Other results are
@ For nonlinear finite dimensional systems

o V. Bezborodov, L. Di Persio, and R. Muradore. “Minimal controllability time for
systems with nonlinear drift under a compact convex state constraint”. Automatica J.
IFAC 125 (2021)
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Conclusion

Other results Il

For nonlinear parabolic PDEs
o D. Pighin and E. Zuazua. “Controllability under positivity constraints of semilinear
heat equations”. Math. Control Relat. Fields 8.3-4 (2018)
o M. R. Nuez-Chvez. Controllability Under Positive Constraints for Quasilinear Parabolic
PDEs. 2019. arXiv: 1912.01486 [math.AP]
@ For parabolic systems
o P. Lissy and C. Moreau. “State-constrained controllability of linear reaction-diffusion
systems”. Nov. 2020
o For fractional heat
e H. Antil et al. Controllability properties from the exterior under positivity constraints
for a 1-D fractional heat equation. 2019. arXiv: 1910.14529 [math.0C]
o U. Biccari, M. Warma, and E. Zuazua. “Controllability of the one-dimensional
fractional heat equation under positivity constraints”. Commun. Pure Appl. Anal.
19.4 (2020)
o For wave equation

o D. Pighin and E. Zuazua. "Controllability under positivity constraints of multi-d wave
equations”. Trends in control theory and partial differential equations. Vol. 32.
Springer INHAM Ser. 2019
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Conclusion

Open problems

General:
o Convergence rates (TY — Tc and T, — T);

o Estimation of the minimal controllability time.

For the heat equation:

@ Approximate controllability;

@ Heat equation in higher dimension;

Uniqueness of the minimal time control;

More adapted numerical methods.

J. Lohéac (CRAN) Control with state constraints 12/03/2021 34 /34



Conclusion

Open problems

General:
o Convergence rates (TY — Tc and T, — T);

o Estimation of the minimal controllability time.

For the heat equation:

@ Approximate controllability;

@ Heat equation in higher dimension;

Uniqueness of the minimal time control;

More adapted numerical methods.

Merci pour votre attention!
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