Control with state constraints

Jérôme Lohéac, joint work with E. Trélat and E. Zuazua

Centre de Recherche en Automatique de Nancy

ANR TRECOS

General Problem

Let us consider the finite dimensional control problem:

$$\dot{y} = Ay + Bu, \tag{*}$$

with $y(t) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$.

It is well-known that if this system is controllable (i.e. $\operatorname{rk}(B, AB, \ldots, A^{n-1}B) = n$), then for every $y^0, y^1 \in \mathbb{R}^n$ and every T > 0, there exists a control u steering the solution of (\star) from y^0 to y^1 in time T.

General Problem

Let us consider the finite dimensional control problem:

$$\dot{y} = Ay + Bu, \tag{*}$$

with $y(t) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$.

It is well-known that if this system is controllable (i.e. $\operatorname{rk}(B, AB, \ldots, A^{n-1}B) = n$), then for every $y^0, y^1 \in \mathbb{R}^n$ and every T > 0, there exists a control u steering the solution of (\star) from y^0 to y^1 in time T.

Let us now add the constraint $y(t) \in C$ with C a subset of \mathbb{R}^n of nonempty interior.

Question

- Given $y^0 \in C$, what is the set of reachable points $y^1 \in C$?
- ② If y^1 can be reached from y^0 , can it be done in arbitrarily small time?

◆ロト ◆樹 ▶ ◆ 恵 ▶ ◆ 恵 ・ 夕 ♀ ○

- 1 The finite dimensional control problem
- 2 Minimal controllability time with nonnegative control
- 3 Heat equation with nonnegative control
- 4 Conclusion

3 / 34

- 1 The finite dimensional control problem
 - Basic considerations
 - A time optimal control problem with control constraints
 - Unilateral state constraint
- Minimal controllability time with nonnegative control
- 3 Heat equation with nonnegative control
- 4 Conclusion

First definitions

Remark

If rk B = n, then for every $y^0, y^1 \in C$ and every T > 0, the solution of (\star) can be steered from y^0 to y^1 in time T, and $y(t) \in C$ for every $t \in [0, T]$.

In the sequel, we will assume m=1 (and $B=b\in\mathbb{R}^n$).

First definitions

Remark

If $\mathsf{rk}\,B = n$, then for every $y^0, y^1 \in C$ and every T > 0, the solution of (\star) can be steered from y^0 to y^1 in time T, and $y(t) \in C$ for every $t \in [0, T]$.

In the sequel, we will assume m = 1 (and $B = b \in \mathbb{R}^n$).

Definition

A point $\bar{y} \in \mathbb{R}^n$ is a steady state if there exists $\bar{u} \in \mathbb{R}^m$ such that $A\bar{y} + b\bar{u} = 0$.

Proposition (Controllability between steady points)

Assume that y^0 and y^1 are two steady states and assume for every $\tau \in [0,1]$, $(1-\tau)y^0 + \tau y^1$ is in the interior of C. Then there exists a time T>0 large enough such that y^0 can be steered to y^1 in time T.

Proof: Small time local controllability, and compactness.

J. Lohéac (CRAN) Control with state constraints 12/03/2021 5

Minimal controllability time

Let us then define:

$$T_{C}(y^{0}, y^{1}) = \inf \left\{ T > 0, \ \exists u \in L^{\infty}(0, T), \ \left| \begin{array}{l} y(T; u; y^{0}) = y^{1}, \\ y(t; u; y^{0}) \in C \end{array} \right. (t \in [0, T]) \end{array} \right\},$$

with $y(t; u; y^0)$ the solution of $: \dot{y} = Ay + bu, \quad y(0) = y^0.$

Proposition

- There do not exist controls $u \in L^{\infty}(0, T_C(y^0, y^1))$ steering y^0 to y^1 in time $T_C(y^0, y^1)$;
- $T_C(y^0, y^1) = T_{\overline{C}}(y^0, y^1) \longrightarrow \text{ we assume } C \text{ closed;}$
- **3** For M > 0, set :

$$T_{C}^{M}(y^{0}, y^{1}) = \inf \left\{ T > 0, \ \exists u \in L^{\infty}(0, T), \ \begin{vmatrix} |u(t)| \leqslant M & (t \in [0, T]), \\ y(T; u; y^{0}) = y^{1}, \\ y(t; u; y^{0}) \in C & (t \in [0, T]) \end{vmatrix} \right\}.$$

Then.

$$\lim_{M \to \infty} T_C^M(y^0, y^1) = T_C(y^0, y^1).$$

Brunovsky form

We can rewrite the system under Brunovsky form, i.e., there exists $Q \in M_n(\mathbb{R})$ and $K \in \mathbb{R}^n$ such that z = Qy and $v = K^\top y + u$ satisfies:

$$\dot{z} = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} z + \begin{pmatrix} 1 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix} v = \mathbf{A}_n z + \mathbf{b}_n v. \tag{*'}$$

The constraint $x \in C$ becomes $z \in QC$ and steady states of (\star') are:

$$\gamma \mathbf{e}_{\mathsf{n}} = egin{pmatrix} 0 & \cdots & 0 & \gamma \end{pmatrix}^{\top}, & (\gamma \in \mathbb{R}). \end{pmatrix}$$

Set γ^0 and γ^1 such that $\gamma^i e_n = Q y^i$.

We have:

$$T_C(y^0, y^1; A, b) = T_{QC}(\gamma^0 \mathbf{e}_n, \gamma^1 \mathbf{e}_n; \mathbf{A}_n, \mathbf{b}_n).$$

(ロ) (部) (注) (注) 注 の(())

Goh transformation

Proposition

Define,

$$\tilde{T} = \inf \left\{ T \geqslant 0, \ \exists z_1 \in L^{\infty}(0,T), \ \left| \begin{array}{c} (z_1,z_2,\ldots,z_n)^{\top} \in QC, \\ (z_2,\ldots,z_n)^{\top}(T) = \gamma^1 e_{n-1} \end{array} \right\}.$$

Then,

$$\tilde{T} \leqslant \textit{T}_{\textit{QC}}(\gamma^0 \mathbf{e}_n, \gamma^1 \mathbf{e}_n; \boldsymbol{\mathsf{A}}_n, \boldsymbol{\mathsf{b}}_n) = \textit{T}_{\textit{C}}(x^0, x^1; \textit{A}, \textit{b}).$$

In addition, if C is convex, then

$$\tilde{T} = T_{QC}(\gamma^0 \mathbf{e}_n, \gamma^1 \mathbf{e}_n; \mathbf{A}_n, \mathbf{b}_n) = T_C(x^0, x^1; A, b).$$

Observe that $\tilde{z} = (z_2, \dots, z_n)^{\top} \in \mathbb{R}^{n-1}$ solves:

$$\dot{\tilde{z}} = \mathbf{A}_{n-1}\tilde{z} + \mathbf{b}_{n-1}z_1, \quad \tilde{z}(0) = \gamma^0 \mathbf{e}_{n-1},$$

i.e., z^1 is seen as a control.

Consequences in dimension two

In dimension two, we end up with the reduced system:

$$\dot{z}_2=z_1, \qquad z_2(0)=\gamma^0,$$

with the mixed state and control constraint: $(z_1(t), z_2(t))^{\top} \in QC$. For every $z_2 \in \mathbb{R}$, let us define:

$$\varphi_{+}(z_2) = \begin{cases} 0 & \text{if } (0, z_2)^{\top} \notin QC, \\ \sup \left\{ z_1 \in \mathbb{R}_+, \ [0, z_1] \times \{z_2\} \subset QC \right\} & \text{otherwise} \end{cases} \quad \text{and} \quad$$

$$\varphi_{-}(z_2) = \begin{cases} 0 & \text{if } (0, z_2)^{\top} \notin QC, \\ \sup \left\{ z_1 \in \mathbb{R}_+, \ [-z_1, 0] \times \{z_2\} \subset QC \right\} & \text{otherwise}. \end{cases}$$

Proposition

Assume QC is simply connected. Then, we have:

$$\mathcal{T}_{\mathit{QC}}(\gamma^0 \mathrm{e}_2, \gamma^1 \mathrm{e}_2; \boldsymbol{\mathsf{A}}_2, \boldsymbol{\mathsf{b}}_2) = \begin{cases} \int_{\gamma^1}^{\gamma^0} \frac{\mathrm{d}\zeta_2}{\varphi_-(\zeta_2)} & \text{if } \gamma^1 \leqslant \gamma^0, \\ \int_{\gamma^0}^{\gamma^1} \frac{\mathrm{d}\zeta_2}{\varphi_+(\zeta_2)} & \text{if } \gamma^1 \geqslant \gamma^0. \end{cases}$$

9 / 34

Example in dimension two

Plots of the state trajectories steering $-3e_2$ to $3e_2$ with particular QC and with additional constraints $|v(t)| \le M$ (for $M \in \left\{\frac{1}{8}, \frac{1}{2}, \frac{9}{8}, \frac{3}{2}, \frac{5}{2}, 7, 20, 100\right\}$).

◆ロ → ◆母 → ◆ 豆 → ◆ 豆 ・ かなぐ

10 / 34

J. Lohéac (CRAN) Control with state constraints 12/03/2021

$\mathbb{R}^2 \setminus C$ has to be a connected domain

Plots of the time optimal state trajectories steering $-e_2$ to e_2 with different non simply connected state and with control constraint $|v(t)| \le M$, for $M \in \{\frac{1}{2}, 1, 10, 20, 100\}$.

4□ → 4□ → 4 亘 → 4 亘 → 9 Q ○

11 / 34

Case of a linear state constraint

Consider the state constraint

$$C = \{ y \in \mathbb{R}^n \mid \ell_1 y_1 + \cdots + \ell_n y_n \geqslant 0 \}.$$

Assume also that the system (\star) is already in Brunovsky form, with $B = \mathbf{b}_n = \mathbf{e}_1 \in \mathbb{R}^n$. Let us define $i_0 = \min \{i \in \{1, ..., n\} \mid \ell_i \neq 0\}$, and assume that $\ell_{i_0} = 1$. Using Goh transformation, we obtain $\tilde{T} = T_c(\gamma^0 e_n, \gamma^1 e_n; \mathbf{A}_n, \mathbf{b}_n)$, with

$$\tilde{T} = \inf \left\{ T > 0 \mid \exists y_{i_0} \in L^{\infty}(0,T), \left| \begin{array}{l} y_{i_0}(t) + \ell_{i_0+1}y_{i_0+1}(t) + \dots + \ell_n y_n(t) \geqslant 0, \\ y_i(0) = y_i(T) = 0 \quad (i \in \{i_0+1,\dots,n\}), \\ y_n(0) = \gamma^0, \quad y_n(T) = \gamma^1, \\ \dot{y}_i = y_{i-1} \quad (i \in \{i_0+1,\dots,n\}). \end{array} \right\}.$$

Let us then define the control $u = y_{i_0} + \ell_{i_0+1}y_{i_0+1} + \cdots + \ell_ny_n \geqslant 0$, i.e.,

$$y_{i_0} = u - \ell_{i_0+1} y_{i_0+1} - \dots - \ell_n y_n$$
, with $u \geqslant 0$.

We are then reduced to:

inf
$$T$$

$$\begin{array}{c|c}
T \geqslant 0, \\
u \in L^{\infty}(0, T), & u \geqslant 0, \\
y(0) = y^{0}, & y(T) = y^{1}, \\
\dot{y} = Ay + bu.
\end{array}$$

- 1 The finite dimensional control problem
- 2 Minimal controllability time with nonnegative control
- 3 Heat equation with nonnegative control
- 4 Conclusion

Positive minimal time

Consider the system (\star) and assume that the pair (A,b) is controllable. We define

$$Acc_{+}(T) = \left\{ \int_{0}^{T} e^{(T-t)A} bu(t) dt, \ u \in L^{\infty}(0,T), \ u \geqslant 0 \right\} \qquad (T > 0).$$

Lemma

 $Acc_{+}(T)$ is a convex cone with vertex 0, and $Acc_{+}(T) \subseteq \mathbb{R}^{n}$.

Positive minimal time

Consider the system (\star) and assume that the pair (A,b) is controllable. We define

$$Acc_{+}(T) = \left\{ \int_{0}^{T} e^{(T-t)A} bu(t) dt, \ u \in L^{\infty}(0,T), \ \underline{u} \geqslant 0 \right\} \qquad (T > 0).$$

Lemma

 $Acc_{+}(T)$ is a convex cone with vertex 0, and $Acc_{+}(T) \subsetneq \mathbb{R}^{n}$.

Proof:

- $Acc_{+}(T)$ is a convex cone with vertex 0 for every T > 0.
- $Acc_{+}(T)$ contains a nonempty open set.
- $(-Acc_+(T)) \cap Acc_+(T) = \{0\}$ for T > 0 small enough. By contradiction, $\forall T > 0$, $\exists y^1 \neq 0$ s.t. $y^1 \in (-Acc_+(T)) \cap Acc_+(T)$.

$$\Rightarrow \exists u^+ \geqslant 0 \text{ and } u^- \geqslant 0 \text{ s.t. } y^1 = \int_0^T e^{(T-t)A} b u^+(t) dt = -\int_0^T e^{(T-t)A} b u^-(t) dt.$$

$$\Rightarrow u = u^{+} + u^{-} \geqslant 0, \ u \neq 0 \text{ and } 0 = \int_{0}^{T} e^{(T-t)A} bu(t) dt.$$

$$\Rightarrow 0 < |b|^2 \int_0^T u(t) \, dt = b^\top \int_0^T \left(e^{(T-t)A} - I_n \right) b u(t) \, dt \\ \leqslant \sup_{t \in [0,T]} \left(b^\top \left(e^{(T-t)A} - I_n \right) b \right) \int_0^T u(t) \, dt.$$

But, $\lim_{T\to 0} \sup_{t\in[0,T]} b^{\top} \left(e^{(T-t)A} - I_n\right) b = 0$, leading to a contradiction.

Positive minimal time

Consider the system (\star) and assume that the pair (A,b) is controllable. We define

$$Acc_{+}(T) = \left\{ \int_{0}^{T} e^{(T-t)A} bu(t) dt, \ u \in L^{\infty}(0,T), \ \underline{u} \geqslant 0 \right\} \qquad (T > 0).$$

Lemma

 $Acc_{+}(T)$ is a convex cone with vertex 0, and $Acc_{+}(T) \subsetneq \mathbb{R}^{n}$.

Define.

$$T(y^0, y^1) = \inf \{T > 0 \mid \exists u \in L^{\infty}(0, T) \text{ s.t. } u \geqslant 0 \text{ and } T > 0 \}$$

$$y^{1}-e^{TA}y^{0}=\int_{0}^{T}e^{(T-t)A}bu(t)\,\mathrm{d}t\right\}.$$

Consequence

For every $y^0 \in \mathbb{R}^n$, there exist $y^1 \in \mathbb{R}^n$ such that $\underline{T}(y^0, y^1) > 0$.

Some accessibility conditions

Lets us define the set of positive steady states,

$$\mathcal{S}_+^* = \{ \bar{y} \in \mathbb{R}^n \mid \exists \bar{u} \in \mathbb{R}_+^* \text{ s.t. } A\bar{y} + b\bar{u} = 0 \}.$$

Proposition

We have $\underline{T}(y^0, y^1) < \infty$ if one of the following condition is satisfied.

•
$$y^0, y^1 \in \mathcal{S}_+^*$$
;

•
$$\Re \sigma(A) \subset \mathbb{R}_-^*$$
 and $y^1 \in \mathcal{S}_+^*$.

Existence of a minimal time control

Proposition

If $\sigma(A) \cap \mathbb{R} \neq \emptyset$, and $\underline{T}(y^0, y^1) < \infty$, then there exist a nonnegative control $\underline{u} \in \mathcal{M}([0, \underline{T}(y^0, y^1)])$ steering y^0 to y^1 in time $\underline{T}(y^0, y^1)$.

Existence of a minimal time control

Proposition

If $\sigma(A) \cap \mathbb{R} \neq \emptyset$, and $\underline{T}(y^0, y^1) < \infty$, then there exist a nonnegative control $\underline{u} \in \mathcal{M}([0, \underline{T}(y^0, y^1)])$ steering y^0 to y^1 in time $\underline{T}(y^0, y^1)$.

Proof: Let $\underline{T} = \underline{T}(y^0, y^1)$.

• $\exists (T_n)_{n\in\mathbb{N}}$, s.t. $\lim_{n\to\infty} T_n = \underline{T}$, $T_0 \geqslant T_1 \geqslant \cdots \geqslant T_n \geqslant \cdots \geqslant \underline{T}$ and $\forall n \in \mathbb{N}$, $\exists u_n \in L^{\infty}(0, T_n)$ s.t. $u_n \geqslant 0$ and

$$y^{1} - e^{T_{n}A}y^{0} = \int_{0}^{T_{n}} e^{(T_{n}-t)A}bu_{n}(t) dt.$$

- Let $\varphi \in \mathbb{R}^n$, $|\varphi| = 1$ and $\varphi^\top A = \lambda \varphi^\top$, for $\lambda \in \mathbb{R}$. We have
 - $\varphi^{\top}b\neq 0$;
 - $\varphi^{\top} \left(y^1 e^{\lambda T_n} y^0 \right) = \varphi^{\top} \int_0^{T_n} e^{\lambda (T_n t)} b u_n(t) \, \mathrm{d}t$. Hence, $|\varphi^{\top} y^1| + e^{|\lambda| T_0} |\varphi^{\top} y^1| + e^{|\lambda| T_0}$

$$e^{-|\lambda|T_0} \|u_n\|_{L^1(0,T_n)} \leqslant \frac{|\varphi^\top y^1| + e^{|\lambda|T_0}|\varphi^\top y^0|}{|\varphi^\top b|}.$$

• $(u_n)_{n\in\mathbb{N}}$ is uniformly bounded in L^1 , hence, vaguely convergent to some $\underline{u}\in\mathcal{M}([0,\underline{T}])$, and we have $y^1-\mathrm{e}^{-\underline{T}A}y^0=\int_0^{\underline{T}}\mathrm{e}^{(\underline{T}-t)A}b\,\mathrm{d}\underline{u}(t).$

Existence of a minimal time control

Proposition

If $\sigma(A) \cap \mathbb{R} \neq \emptyset$, and $\underline{T}(y^0, y^1) < \infty$, then there exist a nonnegative control $\underline{u} \in \mathcal{M}([0, \underline{T}(y^0, y^1)])$ steering y^0 to y^1 in time $\underline{T}(y^0, y^1)$.

We then define.

$$\underline{T}(y^0, y^1) = \inf \{ T \geqslant 0 \mid \exists \underline{u} \in \mathcal{M}([0, T]) \text{ s.t. } \underline{u} \geqslant 0 \text{ and }$$

$$y^1 - e^{TA}y^0 = \int_0^T e^{(T-t)A}b \,\mathrm{d}\underline{u}(t)$$
.

Obviously, we have,

$$0 \leqslant \underline{\mathcal{T}}(y^0, y^1) \leqslant \underline{\mathcal{T}}(y^0, y^1).$$

Proposition

If $y^1 \in S_+^*$, then $T(y^0, y^1) = T(y^0, y^1)$.

Minimal time control with Radon measures I

Theorem

Assume that $\underline{\mathcal{T}}(y^0, y^1) < \infty$, and let $\underline{\mathcal{T}} = \underline{\mathcal{T}}(y^0, y^1)$.

• If there exist $\underline{u} \in \mathcal{M}([0,\underline{T}])$ steering y^0 to y^1 in time \underline{T} , then there exist $N \in \mathbb{N}$, $m_1, \ldots, m_N \geqslant 0$ and $\tau_1, \ldots, \tau_N \in [0,\underline{T}]$ such that $\underline{u} = \sum_{i=1}^N m_i \delta_{\tau_i}$, i.e.,

$$y^{1} - e^{\underline{T}A}y^{0} = \sum_{i=1}^{N} m_{i}e^{(\underline{T} - \tau_{i})A}b.$$
 (*)

- If $\sigma(A) \cap \mathbb{R} \neq \emptyset$, then there exists $\underline{u} \in \mathcal{M}([0,\underline{\mathcal{T}}])$, $u \geqslant 0$, steering y^0 to y^1 in time $\underline{\mathcal{T}}$.
- If $\sigma(A) \subset \mathbb{R}$, then there exists $\underline{u} \in \mathcal{M}([0,\underline{\mathcal{T}}])$, $u \geqslant 0$, steering y^0 to y^1 in time $\underline{\mathcal{T}}$, and (\star) holds with $N \leqslant \lfloor (n+1)/2 \rfloor$. Furthermore, this control \underline{u} is unique.

Minimal time control with Radon measures II

Proof (guide lines):

- Use a time rescaling 123.
- Apply Pontryagin maximum principle.

For $\sigma(A) \subset \mathbb{R}$,

- Count the maximal number of Dirac masses (see Lee Markus⁴).
- Uniqueness follows from the fact that $\{e^{t_1A}B, \dots, e^{t_nA}B\}$ is a free family in \mathbb{R}^n as soon as the t_i 's are two by two distinct.

¹R. W. Rishel. "An extended Pontryagin principle for control systems whose control laws contain measures". *J. SIAM Control Ser. A* 3 (1965)

²A. Bressan and F. Rampazzo. "On differential systems with vector-valued impulsive controls". *Boll. Un. Mat. Ital. B* (7) 2.3 (1988)

³G. Dal Maso and F. Rampazzo. "On systems of ordinary differential equations with measures as controls". *Differential*

Time rescaling I

Define $v(t) = \underline{u}([0, t])$, $\varsigma(0) = 0$ and $\varsigma(t) = t + v(t)$.

We set T the set of jumps times. For every $t \in [0, T]$,

- if $s = \varsigma(t)$, with $t \in [0, T] \setminus \mathcal{T}$, we set $\tau(s) = t$ and $\gamma(s) = \upsilon(t)$;
- if $s \in [\varsigma(t^-), \varsigma(t^+)]$, with $t \in \mathcal{T}$, we set $\tau(s) = t$ and $\gamma(s) = \upsilon(t^-) + \frac{\upsilon(t^+) \upsilon(t^-)}{\varsigma(t^+) \varsigma(t^-)} (s \varsigma(t^-)) = s t^-.$

This leads to the reparametrized system

$$\dot{z}(s) = \tau'(s)Az(s) + B\gamma'(s).$$

Noticing that $\gamma'(s)=1-\tau'(s),\ \tau'(s)\in[0,1]$ and setting $w(s)=\tau'(s),$ we obtain

$$\dot{z}(s) = w(s)Az(s) + B(1 - w(s))$$
 $(s \in [0, \varsigma(T)]),$

with

$$T = \int_0^{\varsigma(T)} w(s) ds \quad \text{and} \quad y(t) = z(\varsigma(t))$$

and $w(s) \in [0, 1]$ is the *new* control.

Time rescaling II

$$\dot{y} = Ay + Bu$$

$$\dot{z} = wAz + B(1 - w)$$

Time rescaling III

The minimal time control problem becomes

min
$$\int_{0}^{S} w(s) ds$$

$$S \ge 0,$$

$$w(s) \in [0, 1] \quad (s \in [0, S]),$$

$$z(S) = y^{1}, \text{ with } z \text{ the solution of }$$

$$\dot{z} = wAz + B(1 - w),$$
with initial condition $z(0) = y^{0}$.

We can now apply the classical Pontryagin maximum principle to obtain the result.

- 1 The finite dimensional control problem
- 2 Minimal controllability time with nonnegative control
- 3 Heat equation with nonnegative control
- 4 Conclusion

Heat equation I

Consider the 1D heat equation

$$\dot{y}(t,x) = \partial_x^2 y(t,x) & (t > 0, x \in (0,1)), \\
y(t,0) = 0 & (t > 0), \\
y(t,1) = u(t) & (t > 0), \\
y(0,x) = y^0(x) & (x \in (0,1)).$$

For this system, we have $\mathcal{S}_+^* = \{x \in [0,1] \mapsto \bar{u}x, \ \bar{u} \in \mathbb{R}_+^*\}.$

Remark

If $y^0 \ge 0$ (and $u \ge 0$), the comparison principle ensures that $y(t, x) \ge 0$.

Heat equation II

Question

Given $y^0 \in L^2(0,1)$ and $y^1 \in \mathcal{S}_+^*$.

- Is there a nonnegative control steering y^0 to y^1 in some time T > 0?
- 2 Do we have a positive minimal controllability time?
- Is there some control in the minimal time?

As for the finite dimensional case, we can prove:

Proposition

 $\underline{T}(y^0,y^1)<\infty$ and there exist a control $\underline{u}\in\mathcal{M}([0,\underline{T}(y^0,y^1)]),\ \underline{u}\geqslant 0$, steering y^0 to y^1 in time $\underline{T}(y^0,y^1)$.

Question

Is the control u a sum of Dirac masses?

Finite dimension approximation I

Let us define $(-\lambda_n)_{n\in\mathbb{N}^*}$ the eigenvalues of $-\partial_x^2$ and $(\varphi_n)_{n\in\mathbb{N}^*}$ the associated normalized eigenvectors. Recall that $\{\varphi_n\}_{n\in\mathbb{N}^*}$ is an orthonormal basis of $L^2(0,1)$.

We then have $y(t,x) = \sum_{n=1}^{\infty} y_n(t)\varphi_n(x)$, where y_n is solution of

$$\dot{y}_n = -\lambda_n y_n + \gamma_n u, \qquad y_n(0) = \int_0^1 y^0(x) \varphi_n(x) dx = y_n^0$$

with $\gamma_n = -\partial_x \varphi_n(1) \neq 0$.

The goal is to find T and $u \ge 0$ such that,

$$y_n(T) = \int_0^1 y^1(x)\varphi_n(x) dx = y_n^1 \qquad (n \in \mathbb{N}^*).$$

Finite dimension approximation II

For every $N \in \mathbb{N}^*$, we define,

$$\underline{\mathcal{T}}_N(y^0,y^1) = \inf \left\{ \mathcal{T} \geqslant 0 \mid \exists \underline{u} \in \mathcal{M}([0,T]) \text{ s.t. } Y_N^1 - e^{TA_N} Y_n^0 = \int_0^T e^{(T-t)A_N} b_N \, \mathrm{d}\underline{u}(t) \right\},$$

with $Y_N^i = (y_1^i, \dots, y_N^i)^{\top} \in \mathbb{R}^N$, $A_N = \operatorname{diag}(-\lambda_1, \dots, -\lambda_N) \in \mathbb{R}^{N \times N}$ and $B_N = (\gamma_1, \dots, \gamma_N)^{\top}$.

We have

$$\underline{T}_N(y^0,y^1) \leqslant \underline{T}(y^0,y^1).$$

Furthermore, there exist, $N_0 \in \mathbb{N}$ $(N_0 \leqslant \lfloor (N+1)/2 \rfloor)$, $0 \leqslant \tau_1^N < \cdots < \tau_{N_0}^N \leqslant \underline{T}_N$ and $m_1^N, \ldots, n_{N_0}^N > 0$ such that

$$y_n^1 - e^{-\lambda_n \underline{T}_N} y_n^0 = \sum_{i=1}^{N_0} e^{-\lambda_n (\underline{T}_N - \tau_i^N)} \gamma_n m_i^N \qquad (n \in \{1, \dots, N\}).$$

There also exist $C = C(y^0, y^1) > 0$ such that $\sum_{i=1}^{N_0} m_i^N \leqslant C$. We also set $\tau_i^N = T_N$ and $m_i^N = 0$ for $i > N_0$.

J. Lohéac (CRAN) Control with state constraints

Convergence results

Theorem

We have $\lim_{N\to\infty} \underline{\mathcal{I}}_N = \underline{\mathcal{I}}$ and up to the extraction of a subsequence $\lim_{N\to\infty} \tau_i^N = \tau_i^\infty \in [0,\underline{\mathcal{I}}]$ and $\lim_{N\to\infty} m_i^N = m_i^\infty > 0$, and the sequence $(\tau_i^\infty,m_i^\infty)$ satisfies

$$y_n^1 - e^{-\lambda_n \underline{T}} y_n^0 = \sum_{i=1}^{\infty} e^{-\lambda_n (\underline{T} - \tau_i^{\infty})} \gamma_n m_i^{\infty} \qquad (n \in \mathbb{N}^*).$$

That is to say that the control $\underline{\underline{u}}^{\infty} = \sum_{i=1}^{\infty} \underline{m}_{i}^{\infty} \delta_{\tau_{i}^{\infty}}$ steers y^{0} to y^{1} in time \underline{T} , and $\underline{\underline{u}}^{\infty}$ is the only nonnegative control in the set of purely impulsive measures doing this job.

We can also reorganize these sequences such that $(\tau_i^{\infty})_{i\in I}$ is increasing and $m_i^{\infty}>0$ for some subset I of \mathbb{N}^* . And we necessarily have that

- I is of infinite cardinal;

Convergence results

Theorem

We have $\lim_{N\to\infty} \underline{\mathcal{I}}_N = \underline{\mathcal{I}}$ and up to the extraction of a subsequence $\lim_{N\to\infty} \tau_i^N = \tau_i^\infty \in [0,\underline{\mathcal{I}}]$ and $\lim_{N\to\infty} m_i^N = m_i^\infty > 0$, and the sequence $(\tau_i^\infty,m_i^\infty)$ satisfies

$$y_n^1 - e^{-\lambda_n \underline{T}} y_n^0 = \sum_{i=1}^{\infty} e^{-\lambda_n (\underline{T} - \tau_i^{\infty})} \gamma_n m_i^{\infty} \qquad (n \in \mathbb{N}^*).$$

That is to say that the control $\underline{\underline{u}}^{\infty} = \sum_{i=1}^{\infty} \underline{m}_{i}^{\infty} \delta_{\tau_{i}^{\infty}}$ steers y^{0} to y^{1} in time \underline{T} , and $\underline{\underline{u}}^{\infty}$ is the only nonnegative control in the set of purely impulsive measures doing this job.

We can also reorganize these sequences such that $(\tau_i^{\infty})_{i\in I}$ is increasing and $m_i^{\infty}>0$ for some subset I of \mathbb{N}^* . And we necessarily have that

- I is of infinite cardinal;

Proof (guide lines):

- Use a diagonal extraction to obtain the existence of a limit $(\tau_i^{\infty}, m_i^{\infty})_{i \in \mathbb{N}^*}$;
- Use some estimates on the masses m_i^N to get the vague convergence of $\left(\sum_{i=1}^\infty m_i^N \delta_{\tau_i^N}\right)_{i,i}$ to $\sum_{i=1}^\infty m_i^\infty \delta_{\tau_i^\infty}$.

Numerical experiment

Convergence result

We consider
$$y^0(x) = \cos(\pi x)$$
 and $y^1(x) = x$.

Numerical experiment

Results with N = 20 (control).

For N = 20, we obtain $\underline{T}_N \simeq 0.075091$.

Numerical experiment

Results with N = 20 (state).

- 1 The finite dimensional control problem
- 2 Minimal controllability time with nonnegative control
- 3 Heat equation with nonnegative control
- 4 Conclusion

31 / 34

Other results I

The presented results are taken from

- J. Lohéac, E. Trélat, and E. Zuazua. "Minimal controllability time for finite-dimensional control systems under state constraints". Automatica J. IFAC 96 (2018)
- J. Lohéac, E. Trélat, and E. Zuazua. "Nonnegative control of finite-dimensional linear systems". Ann. Inst. H. Poincaré Anal. Non Linéaire 38.2 (2021)
- J. Lohéac, E. Trélat, and E. Zuazua. "Minimal controllability time for the heat equation under unilateral state or control constraints". Math. Models Methods Appl. Sci. 27.9 (2017)
- J. Lohéac. "Nonnegative boundary control of 1D linear heat equations". Vietnam Journal of Mathematics (2021)

Other results are

- For nonlinear finite dimensional systems
 - V. Bezborodov, L. Di Persio, and R. Muradore. "Minimal controllability time for systems with nonlinear drift under a compact convex state constraint". Automatica J. IFAC 125 (2021)

Control with state constraints

32 / 34

Other results II

- For nonlinear parabolic PDEs
 - D. Pighin and E. Zuazua. "Controllability under positivity constraints of semilinear heat equations". Math. Control Relat. Fields 8.3-4 (2018)
 - M. R. Nuez-Chvez. Controllability Under Positive Constraints for Quasilinear Parabolic PDEs. 2019. arXiv: 1912.01486 [math.AP]
- For parabolic systems
 - P. Lissy and C. Moreau. "State-constrained controllability of linear reaction-diffusion systems". Nov. 2020
- For fractional heat
 - H. Antil et al. Controllability properties from the exterior under positivity constraints for a 1-D fractional heat equation. 2019. arXiv: 1910.14529 [math.0C]
 - U. Biccari, M. Warma, and E. Zuazua. "Controllability of the one-dimensional fractional heat equation under positivity constraints". Commun. Pure Appl. Anal. 19.4 (2020)
- For wave equation
 - D. Pighin and E. Zuazua. "Controllability under positivity constraints of multi-d wave equations". Trends in control theory and partial differential equations. Vol. 32.
 Springer INdAM Ser. 2019

Open problems

General:

- Convergence rates $(T_C^M \to T_C \text{ and } \underline{T}_N \to \underline{T})$;
- Estimation of the minimal controllability time.

For the heat equation:

- Approximate controllability;
- Heat equation in higher dimension;
- Uniqueness of the minimal time control;
- More adapted numerical methods.

Open problems

General:

- Convergence rates $(T_C^M \to T_C \text{ and } \underline{T}_N \to \underline{T})$;
- Estimation of the minimal controllability time.

For the heat equation:

- Approximate controllability;
- Heat equation in higher dimension;
- Uniqueness of the minimal time control:
- More adapted numerical methods.

Merci pour votre attention!

