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Abstract

We establish criteria for the stability of the essential spectrum for un-
bounded operators acting in Banach modules. The Banach module structure
allows one to give a meaning to notions like vanishing at infinity or quasilocal
operators which covers many situations of practical interest. Our abstract re-
sults can be applied to large classes of differential operators of any order with
complex measurable coefficients, singular Dirac operators, Laplace-Beltrami
operators on Riemannian manifolds with measurable metrics, operators act-
ing on sections of vector fiber bundles over non-smooth manifolds or locally
compact abelian groups.

1 Introduction

The main purpose of this paper is to establish criteria which ensure that the dif-
ference of the resolvents of two operators is compact. In order to simplify later
statements, we use the following definition (our notations are quite standard; we
recall however the most important ones at the end of this section).

Definition 1.1 LetA and B be two closed operators acting in a Banach space H .
We say that B is a compact perturbation of A if there is z ∈ ρ(A)∩ρ(B) such that
(A− z)−1 − (B − z)−1 is a compact operator.

Under the conditions of this definition the difference (A − z)−1 − (B − z)−1

is a compact operator for all z ∈ ρ(A) ∩ ρ(B). In particular, if B is a compact
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perturbation of A, then A and B have the same essential spectrum, and this for
any reasonable definition of the essential spectrum, see [GW]. To be precise, in
this paper we define the essential spectrum of A as the set of points λ ∈ C such
that A− λ is not Fredholm.

We shall describe now a standard and simple, although quite powerful, method
of proving that B is a compact perturbation of A. Note that we are interested in
situations where A and B are differential (or pseudo-differential) operators with
complex measurable coefficients which differ little on a neighborhood of infinity.
An important point in such situations is that one has not much information about
the domains of the operators. However, one often knows explicitly a generalized
version of the “quadratic form domain” of the operator. Since we want to consider
operators of any order (in particular Dirac operators) we shall work in the following
framework, which goes beyond the theory of accretive forms.

Let G ,H ,K be reflexive Banach spaces such that G ⊂ H ⊂ K continu-
ously and densely. We are interested in operators in H constructed according to
the following procedure: let A0, B0 be continuous bijective maps G → K and let
A,B be their restrictions to A−1

0 H and B−1
0 H . These are closed densely defined

operators in H and we take z = 0 ∈ ρ(A) ∩ ρ(B). Then in B(K ,G ) we have

A−1
0 −B−1

0 = A−1
0 (B0 −A0)B

−1
0 . (1.1)

In particular, we get in B(H )

A−1 −B−1 = A−1
0 (B0 −A0)B

−1. (1.2)

We get the simplest compactness criterion: if A0 −B0 : G → K is compact, then
B is a compact perturbation of A. But in this case we have more: the operator
A−1

0 − B−1
0 : K → G is also compact, and this can not happen if A0, B0 are

differential operators with distinct principal part (cf. below). This also excludes
singular lower order perturbations, e.g. Coulomb potentials in the Dirac case.

The advantage of the preceding criterion is that no knowledge of the domains
D(A),D(B) is needed. To avoid the mentioned disadvantages, one may assume
that one of the operators is more regular than the second one, so that the functions in
its domain are, at least locally, slightly better than those from G . Note that D(B)
when equipped with the graph topology is such that D(B) ⊂ G continuously
and densely and we get a second compactness criterion by asking that A0 − B0 :
D(B) → K be compact. This time again we get more than needed, because not
only B is a compact perturbation of A, but also A−1

0 −B−1
0 : H → G is compact.

However, perturbations of the principal part of a differential operator are allowed
and also much more singular perturbations of the lower order terms, cf. [N1] for
the Dirac case.
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In this paper we are interested in situations where we have really no information
concerning the domains of A and B (besides the fact that they are subspaces of G ).
The case when A,B are second order elliptic operators with measurable complex
coefficients acting in H = L2(Rn) has been studied by Ouhabaz and Stollmann in
[OS] and, as far as we know, this is the only paper where the “unperturbed” operator
is not smooth. Their approach consists in proving that the difference A−k − B−k

is compact for some k ≥ 2 (which implies the compactness of A−1 − B−1). In
order to prove this, they take advantage of the fact that D(Ak) is a subset of the
Sobolev space W 1,p for some p > 2, which means that we have a certain gain of
local regularity. Of course, Lp techniques from the theory of partial differential
equations are required for their methods to work.

We shall explain now in the most elementary situation the main ideas of our
approach to these questions. Let H = L2(R) and P = −i ddx . We consider
operators of the form A0 = PaP +V and B0 = PbP +W where a, b are bounded
operators on H such that Re a and Re b are bounded below by strictly positive
numbers. V and W are assumed to be continuous operators H 1 → H −1, where
H s are Sobolev spaces associated to H . Then A0, B0 ∈ B(H 1,H −1) and we
put some conditions on V,W which ensure thatA0, B0 are invertible (e.g. we could
include the constant z in them). Thus we are in the preceding abstract framework
with G = H 1 and K = H −1 ≡ G ∗. Then from (1.2) we get

A−1 −B−1 = A−1
0 P (b− a)PB−1 +A−1

0 (W − V )B−1. (1.3)

Let R be the first term on the right hand side and let us see how we could prove
that it is a compact operator on H . Note that the second term should be easier to
treat since we expect V and W to be operators of order less than 2.

We have RH ⊂ H 1, so we can write R = ψ(P )R1 for some ψ ∈ B0(R)
(bounded Borel function which tends to zero at infinity) and R1 ∈ B(H ). This
is just half of the conditions needed for compactness, in fact R will be compact if
and only if one can also find ϕ ∈ B0(R) and R2 ∈ B(H ) such that R = ϕ(Q)R2

(the notations are standard, see the paragraph after Proposition 2.23 if needed). Of
course, the only factor which can help to get such a decay is b−a. So let us suppose
that we can write b−a = ξ(Q)U for some ξ ∈ B0(R) and a bounded operator U on
H . We denote S = A−1

0 P and note that this is a bounded operator on H , because
P : H → H −1 andA−1

0 : H −1 → H 1 are bounded. ThenR = Sξ(Q)UPB−1

and UPB−1 ∈ B(H ), hence R will be compact if the operator S ∈ B(H ) has
the following property: for each ξ ∈ B0(R) there are ϕ ∈ B0(R) and T ∈ B(H )
such that Sξ(Q) = ϕ(Q)T .

An operator S with the property specified above will be called quasilocal. For
reasons that will become clear later on, we should be more precise and say “right
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quasilocal with respect to the module structure defined by B0(R)”. Anyway, we
see that the compactness of R follows from the quasilocality of S and our main
point is that it is easy to check this property under very general assumptions on A,
cf. Corollary 2.14, and Proposition 2.22 for abstract criteria and Lemmas 3.7, 5.2
and 6.11 for more concrete examples. The perturbative technique used in the proof
of Lemma 6.11 seems to us most interesting since it shows that for the quasilocality
question it suffices in fact to consider operators with smooth coefficients.

The applications that we have in mind are of a much more general nature than
the example considered above. In fact, an abstract formulation of the ideas de-
scribed above, see Proposition 2.6, allows one to treat pseudo-differential opera-
tors on finite dimensional vector spaces over a local (e.g. p-adic) field (see [Sa, Ta]
for the corresponding calculus), in particular differential operators of arbitrary or-
der on R

n, and also abstractly defined classes of operators acting on sections of
vector bundles over locally compact spaces, in particular an abstract version of the
Laplace operator on manifolds with locally L∞ Riemannian metrics. Sections 4-6
are devoted to such applications. We stress once again that, in the applications to
differential operators, we are interested only in situations where the coefficients are
not smooth and the lower order terms are quite singular.

Plan of the paper: In Section 2 we introduce an algebraic formalism which al-
lows us to treat in a unified and simple way operators which have an algebraically
complex structure, e.g. operators acting on sections of vector fiber bundles over
a locally compact space. The class of “vanishing at infinity” operators is defined
through an a priori given algebra of operators on a Banach space H , that we call
multiplier algebra of H , and this allows us to define the notion of quasilocality in
a natural and general context, that of Banach modules. Several examples of mul-
tiplier algebras are given Subsections 2.4, 2.5 and 6.1. We stress that Section 2 is
only an accumulation of definitions and straightforward consequences.

We mention that this algebraic framework allows one to study differential op-
erators in Lp spaces. However, this question will not be considered in the present
version of our work.

Section 3 contains several abstract compactness criteria which formalize in the
context of Banach modules the ideas involved in the example discussed above.

In Section 4 we give our first concrete examples of the abstract theory. In
Subsection 4.1 we discuss operators in divergence form on R

n, hence of order 2m
with m ≥ 1 integer, with coefficients of a rather general form (they do not have to
be functions, for example). In the next subsection we consider pseudo-differential
operators on abelian groups and Dirac operators on R

n.
Perturbations of the Laplace operator on a Riemannian manifold with locally

L∞ metric are considered in Section 5. We introduce and study an abstract model
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of this situation which fits very naturally in our algebraic framework. We also have
results on Laplace operators acting on differential forms of any order, but we shall
include them only in the final version of the paper.

In Section 6 we discuss the question of “weakly vanishing at infinity” func-
tions, a notion which is easily expressed in terms of filters finner than the Fr échet
filter. The quasilocality result presented in Theorem 6.8 is, technically speaking,
the deepest assertion of this paper: the proof requires nontrivial tools from the
modern theory of Banach spaces, cf. the second part of the Appendix. Theorem
6.12 is a last application of our formalism: we prove a compactness result for op-
erators of order 2m in divergence form assuming that the difference between their
coefficients vanishes at infinity in a weak sense. Such results were known before
only in the case m = 1, see [OS].

In the first part of the Appendix we collect some general facts concerning op-
erators acting in scales of spaces which are often used without comment in the rest
of the paper. In the second part we prove a version of the Maurey’s factorization
theorem that we need in Section 6.

Notations: If G and H are Banach spaces then B(G ,H ) is the space of bounded
linear operators G → H , the subspace of compact operators is denoted K(G ,H ),
and we set B(H ) = B(H ,H ) and K(H ) = K(H ,H ). The domain and the
resolvent set of an operator S will be denoted by D(S) and ρ(S) respectively. The
norm of a Banach space G is denoted by ‖ · ‖G and we omit the index if the space
plays a central rôle. The adjoint space (space of antilinear continuous forms) of a
Banach space G is denoted G ∗ and if u ∈ G and v ∈ G ∗ then we set v(u) = 〈u, v〉.
The embedding G ⊂ G ∗∗ is realized by defining 〈v, u〉 = 〈u, v〉.

If G ,H ,K are Banach spaces such that G ⊂ H continuously and densely
and H ⊂ K continuously then we always identify B(H ) with a subset of
B(G ,K ) with the help of the natural continuous embedding B(H ) ↪→ B(G ,K )

A Friedrichs couple (G ,H ) is a pair of Hilbert spaces G ,H together with
a continuous dense embedding G ⊂ H . The Gelfand triplet associated to it is
obtained by identifying H = H ∗ with the help of the Riesz isomorphism and
then taking the adjoint of the inclusion map G → H . Thus we get G ⊂ H ⊂ G ∗

with continuous and dense embeddings. Now if u ∈ G and v ∈ H ⊂ G ∗ then
〈u, v〉 is the scalar product in H of u and v and also the action of the functional v
on u. As noted above, we have B(H ) ⊂ B(G ,G ∗).

If X is a locally compact topological space then B(X) is the C ∗-algebra of
bounded Borel complex functions on X , with norm supx∈X |ϕ(x)|, and B0(X) is
the subalgebra consisting of functions which tend to zero at infinity. Then C(X),
Cb(X), C0(X) and Cc(X) are the spaces of complex functions on X which are
continuous, continuous and bounded, continuous and convergent to zero at infinity,
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and continuous with compact support respectively. The characteristic function of a
subset S ⊂ X is denoted χS .

Acknowledgments: We would like to thank Françoise Piquard: several discus-
sions with her on factorization theorems for Banach space operators have been
very helpful in the context of Section 6.

2 Banach modules and quasilocal operators

2.1 Banach modules

We use the terminology of [FD] but with some abbreviations, e.g. a morphism is a
linear multiplicative map between two algebras, and a ∗-morphism is a morphism
between two ∗-algebras which commutes with the involutions. We recall that an
approximate unit in a Banach algebra M is a net {Jα} in M such that ‖Jα‖ ≤ C
for some constant C and all α and limα ‖JαM −M‖ = limα ‖MJα −M‖ = 0
for all M ∈ M. It is well known that any C∗-algebra has an approximate unit.
If H is a Banach space, we shall say that a Banach subalgebra M of B(H ) is
non-degenerate if the linear subspace of H generated by the elements Mu, with
M ∈ M and u ∈ H , is dense in H .

Definition 2.1 A Banach module is a couple (H ,M) consisting of a Banach
space H and a non-degenerate Banach subalgebra M of B(H ) which has an
approximate unit. If H is a Hilbert space and M is a C ∗-algebra of operators on
H , we say that H is a Hilbert module.

We shall adopt the usual abus de language and say that H is a Banach module.
The distinguished subalgebra M will be called multiplier algebra of H and, when
required by the clarity of the presentation, we shall denote it M(H ). We are
especially interested in the case when M does not have a unit: the operators from
M are the prototype of “vanishing at infinity operators”, or the identity cannot
vanish at infinity. Note that it is implicit in Definition 2.1 that if H is a Hilbert
module then its adjoint space H ∗ is identified with H with the help of the Riesz
isomorphism.

If {Jα} is an approximate unit of M, then the density in H of the linear
subspace generated by the elements Mu is equivalent to

lim
α

‖Jαu− u‖ = 0 for all u ∈ H . (2.4)

But much more is true:

u ∈ H ⇒ u = Mv for some M ∈ M and v ∈ H . (2.5)
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This follows from the Cohen-Hewitt theorem, see Theorem A.3. By using (2.4)
we could avoid any reference to this result in our later arguments; this would make
them more elementary but less simple.

If H is a Banach module and the Banach space H is reflexive we say that
H is a reflexive Banach module. In this case the adjoint Banach space H ∗ is
equipped with a canonical Banach module structure, its multiplier algebra being
M(H ∗) := {A∗ | A ∈ M(H )}. This is a closed subalgebra of B(H ∗) which
clearly has an approximate unit and the linear subspace generated by the elements
of the form A∗v, with A ∈ M(H ) and v ∈ H ∗, is weak∗-dense, hence dense, in
H ∗. Indeed, if u ∈ H and 〈u,A∗v〉 = 0 for all such A, v then Au = 0 for all
A ∈ M(H ) hence u = 0 because of (2.4).

Definition 2.2 A couple (G ,H ) consisting of two Hilbert modules such that G ⊂
H continuously and densely will be called a Friedrichs module. If M(H ) ⊂
K(G ,H ), we say that (G ,H ) is a compact Friedrichs module.

There is no a priori relation between the multiplier algebras of H and G and
the choice M(G ) = B(G ) is allowed. We observe that in general it is not possible
to take M(G ) equal to the set of operators M ∈ M(H ) which leave G invariant:
it may happen that this algebra has not an approximate unit.

In the situation of this definition we always identify H with its adjoint space,
which gives us a Gelfand triplet G ⊂ H ⊂ G ∗. Note that, G being reflexive, G ∗

is also a Hilbert module.
If (G ,H ) is a compact Friedrichs module then each operator M from M(H )

extends to a compact operator M : H → G ∗ (this is the adjoint of the compact
operator M ∗ : G → H ). Thus we shall have M(H ) ⊂ K(G ,H ) ∩K(H ,G ∗).

2.2 Operators vanishing at infinity

Let H and K be Banach spaces. If K is a Banach module then we shall denote
by B l

0(H ,K ) the norm closed linear subspace generated by the operators MT ,
with T ∈ B(H ,K ) andM ∈ M(K ). We say that an operator in B l

0(H ,K ) left
vanishes at infinity (with respect to M(K ), if this is not obvious from the context).
If Jα is an approximate unit for M(K ), then for an operator S ∈ B(H ,K ) we
have:

S ∈ B l
0(H ,K ) ⇔ lim

α
‖JαS − S‖ = 0 (2.6)

⇔ S = MT for some M ∈ M(K ) and T ∈ B(H ,K ).

The second equivalence follows from the Cohen-Hewitt theorem.
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If H is a Banach module then one can similarly define Br0 (H ,K ) as the
norm closed linear subspace generated by the operators TM with T ∈ B(H ,K )
andM ∈ M(H ). We say that the elements of B r

0 (H ,K ) right vanish at infinity.
As above, if Jα is an approximate unit for M(H ) we have

S ∈ B r
0 (H ,K ) ⇔ lim

α
‖SJα − S‖ = 0 (2.7)

⇔ S = TM for some M ∈ M(H ) and T ∈ B(H ,K ).

If both H and K are Banach modules we set

B0(H ,K ) = B l
0(H ,K ) ∩ B r

0 (H ,K ). (2.8)

The elements of B0(H ,K ) are called vanishing at infinity.
If (G ,H ) is a Friedrichs module then the space B l

0(G ,G
∗) for example is well

defined, but it could be too large for some purposes (it is equal to B(G ,G∗) if the
multiplier algebra of G is B(G )). For this reason we introduce the next spaces.
Recall that we have a natural continuous embedding B(H ) ⊂ B(G ,G ∗). Let

B l
00(G ,G

∗) = norm closure of B l
0(H ) in B(G ,G ∗). (2.9)

The spaces B r
00(G ,G

∗) and B00(G ,G
∗) are similarly defined. We have

K(G ,G ∗) ⊂ B00(G ,G
∗) (2.10)

because K(H ) is a dense subset of K(G ,G ∗) and K(H ) ⊂ B0(H ), see below.

Some simple properties of these spaces are described below.

Proposition 2.3 If K is a reflexive Banach module and S ∈ B l
0(H ,K ) then S∗

belongs to B r
0 (K ∗,H ∗).

Proof: We have S = MT with M ∈ M(K ) and T ∈ B(H ,K ) by (2.6), which
implies S∗ = T ∗M∗ and we have M ∗ ∈ M(K ∗) by definition.

Corollary 2.4 If H is a Hilbert module then B0(H ) is a C∗-algebra and S be-
longs to B0(H ) if and only if S = MTN with M,N ∈ M(H ) and T ∈ B(H ).

Proof: B0(H ) is aC∗-algebra, so S = S1S2 for some operators S1, S2 ∈ B0(H ).
Thus S1 = MT1 and S2 = T2N for some M,N ∈ M(H ) and T1, T2 ∈ B(H ),
hence S = MT1T2N .

Proposition 2.5 If K is a Banach module then K(H ,K ) ⊂ B l
0(H ,K ). If H

is a reflexive Banach module, then K(H ,K ) ⊂ B r
0 (H ,K ).
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Proof: If {Jα} is an approximate unit for M(K ) then s-limα Jαu = u uniformly
in u if u belongs to a compact subset of K . Hence if S ∈ K(H ,K ) then
limα ‖JαS − S‖ = 0 and thus S ∈ B l

0(H ,K ) by (2.6). To prove the second
part of the proposition, observe that if S ∈ K(H ,K ) then S∗ ∈ K(K ∗,H ∗),
hence S∗ ∈ B l

0(K
∗,H ∗) by what we just proved, so S∗∗ ∈ B r

0 (H ,K ∗∗) by
Proposition 2.3. So limα ‖S∗∗Jα − S∗∗‖ = 0 if {Jα} is an approximate unit for
M(H ). But clearlyS = S∗∗, hence S ∈ B r

0 (H ,K ).

Proposition 2.6 Let H be a Banach module and G a Banach space continuously
embedded in H and such that M(H ) ⊂ K(G ,H ). If R ∈ B l

0(H ) and RH ⊂
G , then R ∈ K(H ).

Proof: According to (2.6) we have R = limα JαR, the limit being taken in norm.
But R ∈ B(H ,G ) by the closed graph theorem and Jα ∈ K(G ,H ) by hypothe-
sis, so that JαR ∈ K(H ).

Corollary 2.7 If (G ,H ) is a compact Friedrichs module andR ∈ B l
0(H ) is such

that RH ⊂ G , then R ∈ K(H ).

2.3 Quasilocal operators

Definition 2.8 Let H , K be Banach modules and let S ∈ B(H ,K ). We say
that S is left quasilocal if for each M ∈ M(K ) we have MS ∈ B r

0 (H ,K ). We
say that S is right quasilocal if for eachM ∈ M(H ) we have SM ∈ B l

0(H ,K ).
If S is left and right quasilocal, we say that S is quasilocal.

We denote B l
q(H ,K ), B r

q (H ,K ) and Bq(H ,K ) these classes of operators.
These are clearly closed subspaces of B(H ,G ). The next result is obvious; a
similar assertion holds for right quasilocality.

Proposition 2.9 Let {Jα} be an approximate unit for M(K ) and let S be an
operator in B(H ,K ). Then S is left quasilocal if and only if one of the following
conditions is satisfied:
(1) JαS ∈ B r

0 (H ,K ) for all α.
(2) for each M ∈ M(K ) there are T ∈ B(H ,K ) and N ∈ M(H ) such that
MS = TN .

The next proposition, which says that the set of quasilocal operators is stable
under the usual algebraic operations, is an immediate consequence of Proposition
2.9. There is, of course, a similar statement with “left” and “right” interchanged.
We denote by G ,H and K Banach modules.

9



Proposition 2.10 (1) S ∈ B l
q(H ,K ) and T ∈ B l

q(G ,H ) ⇒ ST ∈ B l
q(G ,K ).

(2) If H ,K are reflexive and S ∈ B l
q(H ,K ), then S∗ ∈ B r

q (K ∗,H ∗).
(3) If H is a Hilbert module then Bq(H ) is a unital C∗-subalgebra of B(H ).

Obviously B l
0(H ,K ) ⊂ B r

q (H ,K ) and B r
0 (H ,K ) ⊂ B l

q(H ,K ). But
our main results depend on finding other, more interesting examples of quasilocal
operators.

Remark: A more natural and suggestive name for “quasilocal operators” would
be decay preserving operators. We did not use it because the french version of this
terminology is rather heavy to use.

2.4 X-modules over locally compact spaces

In the next two subsections we give examples of Banach modules important for this
paper. We always denote by X a locally compact non-compact topological space;
later we equip it with some more structure.

Definition 2.11 A Banach X-module is a Banach space H equipped with a con-
tinuous morphism Q : C0(X) → B(H ) such that the linear subspace generated
by the vectors of the form Q(ϕ)u, with ϕ ∈ C0(X) and u ∈ H , is dense in
H . If H is a Hilbert space and Q is a ∗-morphism, we say that H is a Hilbert
X-module.

A Friedrichs module (G ,H ) such that H is a HilbertX-module will be called
Friedrichs X-module. Note that here there are no assumptions concerning the
module structure of G .

We shall use the notation ϕ(Q) ≡ Q(ϕ). The Banach module structure on H

is defined by the closure M in B(H ) of the set of operators of the form ϕ(Q) with
ϕ ∈ C0(X). In the case of a Hilbert X-module the closure is not needed and we
get a Hilbert module structure (recall that a ∗-morphism between two C ∗-algebras
is continuous and its range is a C∗-algebra).

We note that the morphism Q has an extension, also denoted Q, to a unital
continuous morphism of Cb(X) into B(X) which is uniquely determined by the
following strong continuity property: if {ϕn} is a bounded sequence in Cb(X)
such that ϕn → ϕ locally uniformly, then ϕn(Q) → ϕ(Q) strongly on H . Indeed,
using once again the Cohen-Hewitt theorem we see that for each u ∈ H there are
ψ ∈ C0(X) and v ∈ H such that u = ψ(Q)v hence we can define ϕ(Q)u =
(ϕψ)(Q)v for each ϕ ∈ Cb(X); then if eα is an approximate unit for C0(X) with
‖eα‖ ≤ 1 we get ϕ(Q)u = lim(ϕeα)(Q)u hence ‖ϕ(Q)‖ ≤ ‖Q‖ sup |ϕ|.

In the case of a Hilbert X-module we can say more.
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Lemma 2.12 If H is a Hilbert X-module, then the ∗-morphism Q canonically
extends to a ∗-morphism ϕ 7→ ϕ(Q) of B(X) into B(H ) having the property : if
{ϕn} is a bounded sequence in B(X) and limn→∞ ϕn(x) = ϕ(x) for all x ∈ X ,
then ϕn(Q) converges strongly to ϕ(Q) on H .

Proof: Q extends, by standard integration theory, to a ∗-morphism of B(X) into
B(H ) which is uniquely determined by the following property: if U ⊂ X is open
then χU (Q) = supϕ ϕ(Q), where ϕ runs over the set of continuous functions with
compact support such that 0 ≤ ϕ ≤ χU . We note that if X is second countable
then this property is equivalent to the convergence condition from the statement of
the lemma.

Remark: A separable Hilbert X-module is essentially a direct integral of Hilbert
spaces over X , see [Di, Ch. II], but we shall not need this fact. On the other hand,
Banach X-modules appear naturally in differential geometry as spaces of sections
of vector fiber bundles over a manifold X , and this is the point of interest for us.

The support supp u ⊂ X of an element u of a Banach X-module H is defined
as the smallest closed set such that its complement U has the property ϕ(Q)u = 0
if ϕ ∈ Cc(U). Clearly, the set Hc of elements u ∈ H such that supp u is compact
is a dense subspace of H .

If H and K are Banach X-modules, then a map S ∈ B(H ,K ) is called
local if supp Su ⊂ supp u for each u ∈ H ; clearly locality implies right quasilo-
cality. Now we look for more interesting criteria of quasilocality.

Let S ∈ B(H ,K ) and ϕ,ψ ∈ C(X), not necessarily bounded. We say that
ϕ(Q)Sψ(Q) is a bounded operator if there is a constant C such that

‖ξ(Q)ϕ(Q)Sψ(Q)η(Q)‖ ≤ C sup |ξ| sup |η|

for all ξ, η ∈ Cc(X). The lower bound of the admissible constants C in this
estimate is denoted ‖ϕ(Q)Sψ(Q)‖. If K is a reflexive Banach X-module, then
the product ϕ(Q)Sψ(Q) is well defined as sesquilinear form on the dense subspace
K ∗

c ×Hc of K ∗ ×H and the preceding boundedness notion is equivalent to the
continuity of this form for the topology induced by K ∗×H . We similarly define
the boundedness of the commutator [S, ϕ(Q)].

Proposition 2.13 Assume that S ∈ B(H ,K ) and let Θ : X → [1,∞[ be a
continuous function such that limx→∞ Θ(x) = ∞. If Θ−1(Q)SΘ(Q) is a bounded
operator then S is left quasilocal. If Θ(Q)SΘ−1(Q) is a bounded operator then S
is right quasilocal.

Proof: Let K ⊂ X be compact, let U ⊂ X be a neighbourhood of infinity in X ,
and let ϕ,ψ ∈ Cb(X) such that supp ϕ ⊂ K, supp ψ ⊂ U and |ϕ| ≤ 1, |ψ| ≤ 1.
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Then Θϕ is a bounded function and ψΘ−1 is bounded and can be made as small as
we wish by choosing U conveniently. Thus given ε > 0 we have

‖ϕ(Q)Sψ(Q)‖ ≤ ‖ϕΘ‖ · ‖Θ−1(Q)SΘ(Q)‖ · ‖Θ−1ψ‖ ≤ ε

if U is a suficiently small neighbourhood of infinity.

The boundedness of Θ−1(Q)SΘ(Q) is usually checked by estimating the com-
mutator [S,Θ(Q)]; we give an example for the case of metric spaces. Note that
on metric spaces one has a natural class of regular functions, namely the Lip-
schitz functions, for example the functions which give the distance to subsets:
ρK(x) = infy∈K ρ(x, y) for K ⊂ X .

We say that a locally compact metric space (X, ρ) is proper if the metric ρ
has the property limy→∞ ρ(x, y) = ∞ for some (hence for all) points x ∈ X .
Equivalently, if X is not compact but the closed balls are compact.

Corollary 2.14 Let (X, ρ) be a proper locally compact metric space. If S belongs
to B(H ,K ) and if [S, θ(Q)] is bounded for each positive Lipschitz function θ,
then S is quasilocal .

Proof: Indeed, by taking θ = 1 + ρK and by using the notations of the proof of
Proposition 2.13, we easily get the following estimate: there is C <∞ depending
only on K such that

‖ϕ(Q)Sψ(Q)‖ ≤ C(1 + ρ(K,U))−1,

where ρ(K,U) is the distance from K to U . Since S∗ has the same properties as
S, this proves the quasilocality of S. Note that the boundedness of [S, ρx(Q)] for
some x ∈ X suffices in this argument.

2.5 X-modules over locally compact groups

If X is a locally compact abelian group one can associate to it more interesting
classes of Banach modules. We always assume X non-compact and we denote
additively the group operation. For example, X could be R

n,Zn, or a finite di-
mensional vector space over a local field, e.g. over the field of p-adic numbers.
Let X∗ be the abelian locally compact group dual to X . One can construct in-
teresting Banach subalgebras of C0(X) by using the Fourier transformation and
submultiplicative functions on X∗, but the approach we adopt is more intrinsic.

Definition 2.15 IfX is a locally compact abelian group, then a Banach X-module
is a Banach space H equipped with a strongly continuous representation {Vk} of
the dual group X∗ on H .

12



Note that we shall use the same notation Vk for the representations of X∗ in differ-
ent spaces H whenever this does not lead to ambiguities.

Such a Banach X-module has a canonical structure of Banach module that we
now define. We choose Haar measures dx and dk on X and X∗ normalized by
the following condition: if the Fourier transform of a function ϕ on X is given
by (Fϕ)(k) ≡ ϕ̂(k) =

∫
X k(x)ϕ(x)dx then ϕ(x) =

∫
X∗ k(x)ϕ̂(k)dk. Recall

that X∗∗ = X . Let C(a)(X) := FL1
c(X

∗) be the set of Fourier transforms of
integrable functions with compact support onX ∗. It is easy to see that C (a)(X) is a
∗-algebra for the usual algebraic operations; more precisely, it is a dense subalgebra
of C0(X) stable under conjugation. For ϕ ∈ C (a)(X) we set

ϕ(Q) =

∫

X∗

Vkϕ̂(k)dk. (2.11)

This definition is determined by the formal requirement k(Q) = Vk. Then

M := norm closure of {ϕ(Q) | ϕ ∈ C (a)(X)} in B(H ) (2.12)

is a Banach subalgebra of B(H ).

Lemma 2.16 The algebra M has an approximate unit consisting of elements of
the form eα(Q) with eα ∈ C(a)(X).

Proof: Indeed, let us fix a compact neighborhood K of the identity in X∗. The
set of compact neighborhoods of the identity α such that α ⊂ K is ordered by
α1 ≥ α2 ⇔ α1 ⊂ α2. For each such α define eα by êα = χα/|α|, where |α| is the
Haar measure of α. Then ‖eα(Q)‖ ≤ supk∈K ‖Vk‖ <∞, from which it is easy to
infer that limα ‖eα(Q)ϕ(Q) − ϕ(Q)‖ = 0 for all ϕ ∈ C (a)(X).

It is easily seen now that the couple (H ,M) satisfies the conditions of Defi-
nition 2.1, which gives us the canonical Banach module structure on H .

Remark 2.17 Assume that A is a Banach algebra with approximate unit and that
a morphism Φ : A → M(H ) with dense image is given. Then the Cohen-Hewitt
theorem shows that each u ∈ H can be written as u = Av where A ∈ Φ(A) and
v ∈ H . We give now examples of such algebras in the preceding context. If ω
is a sub-multiplicative function on X∗, i.e. a Borel map X∗ → [1,∞[ satisfying
ω(k′k′′) ≤ ω(k′)ω(k′′) (this implies local boundedness), let C (ω)(X) be the set of
functions ϕ whose Fourier transform ϕ̂ satisfies

‖ϕ‖C(ω) :=

∫

X∗

|ϕ̂(k)|ω(k)dk <∞. (2.13)

13



Then C(ω)(X) is a subalgebra of C0(X) and is a Banach algebra for the norm
(2.13). Moreover, C (a)(X) ⊂ C(ω)(X) densely and the net {eα} defined in the
proof of Lemma 2.16 is an approximate unit of C (ω)(X). If ‖Vk‖B(H ) ≤ cω(k)

for some number c > 0 then ϕ(Q) is well defined for each ϕ ∈ C(ω)(X) by
the relation (2.11) and Φ(ϕ) = ϕ(Q) is a continuous morphism C (ω)(X) →
M(H ) with dense range. We could take ω(k) = sup(1, ‖Vk‖B(H )) but if a
second Banach X-module K is given then it is more convenient to take ω(k) =
sup{1, ‖Vk‖B(H ), ‖Vk‖B(K )}.

The adjoint of a reflexive Banach X-module has a natural structure of Banach
X-module. Indeed, it is known and easy to prove that a weakly continuous repre-
sentation is strongly continuous. Thus we can equip the adjoint space H ∗ with the
Banach X-module structure defined by the representation k 7→ (V̄k)

∗, where k̄ is
the complex conjugate of k (i.e. its inverse in X ∗).

The group X is, in particular, a locally compact topological space, hence the
notion of Banach X-module in the sense of Definition 2.11 makes sense. But this
is in fact a particular case of that of Banach X-module in the sense of Definition
2.15. Indeed, according to the comments after Definition 2.11, we get a strongly
continuous representation of X∗ on H by setting Vk = k(Q). In the case of
Hilbert X-modules we have a more precise fact.

Lemma 2.18 If H is a Hilbert space then giving a Hilbert X-module structure
on H is equivalent with giving a Banach X-module structure on H such that
the representation {Vk}k∈X∗ is unitary. The relation between the two structures is
determined by the condition Vk = k(Q).

Proof: If H is a Hilbert X-module then we can define Vk = k(Q) ∈ B(H )
and check that {Vk}k∈X∗ is a strongly continuous unitary representation of X ∗

on H with the help of Lemma 2.12. Reciprocally, it is well known that such a
representation allows one to equip H with a Hilbert X-module structure. The
main point is that the estimate ‖ϕ(Q)‖ ≤ sup |ϕ| holds, see [Lo].

If X is a locally compact abelian group, then Banach X-modules which are
not Hilbert X-modules often appear in the following context.

Definition 2.19 If X is a locally compact abelian group then a stable Friedrichs
X-module is a Friedrichs X-module (G ,H ) satisfying VkG ⊂ G for all k ∈ X∗

and such that if u ∈ G and if K ⊂ X∗ is compact then supk∈K ‖Vku‖G <∞.

Here Vk = k(Q). It is clear that VkG ⊂ G implies Vk ∈ B(G ) and that the local
boundedness condition implies that the map k 7→ Vk ∈ B(G ) is a weakly, hence
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strongly, continuous representation of X∗ on G (not unitary in general). The local
boundedness condition is automatically satisfied if X∗ is second countable.

Thus, if (G ,H ) is a stable Friedrichs X-module, then G is equipped with a
canonical Banach X-module structure. Then, by taking adjoints, we get a natural
Banach X-module structure on G ∗ too. Our definitions are such that after the
identifications G ⊂ H ⊂ G∗ the restriction to H of the operator Vk acting in G ∗

is just the initial Vk. Indeed, we have V ∗
k = V −1

k = Vk̄ in H . Thus there is no
ambiguity in using the same notation Vk for the representation of X∗ in the three
spaces G ,H and G ∗.

Remark 2.20 We stress that if (G ,H ) is a stable Friedrichs X-module then G

is always equipped with the Banach module structure associated to its X-module
structure defined above (we recall that in the case of a general Friedrichs X-module
there was no restriction on the module structure of G ). As a consequence, we
have B l

0(K ,G ) ⊂ B l
0(K ,H ) for an arbitrary Banach space K , hence also

B r
q (K ,G ) ⊂ B r

q (K ,H ) if K is a Banach module. Indeed, if S ∈ B l
0(K ,G )

then S = ϕ(Q)T for some ϕ ∈ C (ω)(X) with ω(k) = sup(1, ‖Vk‖B(G )), see
Remark 2.17, and some T ∈ B(K ,G ). But clearly such a ϕ(Q) belongs to the
multiplier algebra of H and T ∈ B(K ,H ).

We show now that, in the case of Banach X-modules over locally compact
groups, quasilocality is related to regularity in the sense of the next definition.

Definition 2.21 Let H and K be Banach X-modules. We say that a continuous
operator S : H → K is of class Cu(Q), and we write S ∈ Cu(Q;H ,K ), if
the map k 7→ V −1

k SVk ∈ B(H ,K ) is norm continuous.

Note that norm continuity at the origin implies norm continuity everywhere. The
class of regular operators is stable under algebraic operations:

Proposition 2.22 Let G ,H ,K be Banach X-modules.
(i) If S ∈ Cu(Q;H ,K ) and T ∈ Cu(Q;G ,H ) then ST ∈ Cu(Q;G ,K ).
(ii) If S ∈ Cu(Q;H ,K ) is bijective, then S−1 ∈ Cu(Q;K ,H ).
(iii) If S ∈ Cu(Q;H ,K ) and H ,G are reflexive, then S∗ ∈ Cu(Q;K ∗,H ∗).

Proof: We prove only (ii). If we set Sk = V −1
k SVk then V −1

k S−1Vk = S−1
k , hence

‖V −1
k S−1Vk − S−1‖ = ‖S−1

k − S−1‖ = ‖S−1
k (S − Sk)S

−1‖ ≤ C‖S − Sk‖

which tends to zero as k → 0.

Proposition 2.23 If T ∈ Cu(Q;H ,K ) then T is quasilocal.
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Proof: We show that ϕ(Q)T ∈ B r
0 (H ,K ) if ϕ ∈ C(a)(X). A similar argument

gives Tϕ(Q) ∈ B l
0(H ,K ). Set Tk = VkTV

−1
k , then

ϕ(Q)T =

∫

X∗

ϕ̂(k)VkTdk =

∫

X∗

Tkϕ̂(k)Vkdk.

Since k 7→ Tk is norm continuous on the compact support of ϕ̂, for each ε > 0
we can construct, with the help of a partition of unity, functions θi ∈ Cc(X

∗) and
operators Si ∈ B(H ,K ), such that ‖Tk −

∑n
i=1 θi(k)Si‖ < ε if ϕ̂(k) 6= 0. Thus

‖ϕ(Q)T −
n∑

i=1

∫

X∗

θi(k)Siϕ̂(k)Vkdk‖ ≤ ε

n∑

i=1

∫

X∗

|ϕ̂(k)|‖Vk‖B(H )dk.

Now, since B0(H ,K ) is a norm closed subspaces, it suffices to show that the
operator

∫
X∗ θi(k)Siϕ̂(k)Vkdk belongs to B r

0 (H ,K ) for each i. But if ψi is the
inverse Fourier transform of θiϕ̂ then this is Siψi(Q) and ψi ∈ C(a)(X).

We recall that if X is an abelian locally compact group then there is enough
structure in order to develop a rich pseudo-differential calculus in L2(X), but we
give only elementary examples. If ϕ and ψ are bounded Borel functions on X
and X∗ respectively then, following standard quantum mechanical conventions,
we denote by ϕ(Q) the operator of multiplication by ϕ in L2(X) and we set
ψ(P ) = F−1MψF , where Mψ is the operator of multiplication by ψ in L2(X∗).
Then one gets more general pseudo-differential operators of order zero by consid-
ering C∗-algebras generated by products ϕ(Q)ψ(P ). We recall that theC ∗-algebra
generated by such products with ϕ and ψ bounded Borel and convergent to zero at
infinity is the algebra of compact operators on L2(X).

Let Cu
b (X) and Cu

b (X∗) be the algebras of bounded uniformly continuous
functions on X and X∗ respectively. Below the space L2(X) is equipped with
its natural Hilbert X-module structure.

Proposition 2.24 The C∗-algebra generated by the operators ϕ(Q) and ψ(P )
with ϕ ∈ Cu

b (X) and ψ ∈ Cu
b(X∗) consists of quasilocal operators on L2(X).

Proof: Since the set of quasilocal operators in B(L2(X)) is a C∗-algebra, it suf-
fices to show that each ϕ(Q) and ψ(P ) is quasilocal. For ϕ(Q) the assertion is
trivial while for ψ(P ) we apply Proposition 2.23.

3 Abstract compactness results

In this section (G ,H ) will always be a compact Friedrichs module, see Definition
2.2. As usual, we associate to it a Gelfand triplet G ⊂ H ⊂ G ∗ and we set
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‖ · ‖ = ‖ · ‖H . We are interested in criteria which ensure that an operator B is a
compact perturbation of an operator A, both operators being unbounded operators
in H obtained as restrictions of some bounded operators G → G ∗. More precisely,
the following is a general assumption (suggested by the statement of Theorem 2.1
in [OS]) which will always be fulfilled:

(AB)





A,B are closed densely defined operators in H with ρ(A) ∩ ρ(B) 6= ∅
and having the following properties: D(A) ⊂ G densely, D(A∗) ⊂ G ,

D(B) ⊂ G and A,B extend to continuous operators Ã, B̃ ∈ B(G ,G ∗).

The rôle of the assumption (AB) is to allow us to give a rigorous meaning to
the formal relation, where z ∈ ρ(A) ∩ ρ(B),

(A− z)−1 − (B − z)−1 = (A− z)−1(B −A)(B − z)−1. (3.14)

Recall that z ∈ ρ(A) if and only if z̄ ∈ ρ(A∗) and then (A∗ − z̄)−1 = (A− z)−1∗.
Thus we have (A− z)−1∗H ⊂ G by the assumption (AB) and this allows one to
deduce that (A− z)−1 extends to a unique continuous operator G ∗ → H , that we
shall denote for the moment by Rz. From Rz(A− z)u = u for u ∈ D(A) we get,
by density of D(A) in G and continuity, Rz(Ã− z)u = u for u ∈ G , in particular

(B − z)−1 = Rz(Ã− z)(B − z)−1.

On the other hand, the identity

(A− z)−1 = (A− z)−1(B − z)(B − z)−1 = Rz(B̃ − z)(B − z)−1

is trivial. Subtracting the last two relations we get

(A− z)−1 − (B − z)−1 = Rz(B̃ − Ã)(B − z)−1

Since Rz is uniquely determined as extension of (A − z)−1 to a continuous map
G ∗ → H , we shall keep the notation (A − z)−1 for it. With this convention, the
rigorous version of (3.14) that we shall use is:

(A− z)−1 − (B − z)−1 = (A− z)−1(B̃ − Ã)(B − z)−1. (3.15)

Theorem 3.1 Let A,B satisfy assumption (AB) and let us assume that there are a
Banach module K and operators S ∈ B(K ,G ∗) and T ∈ B l

0(G ,K ) such that
B̃− Ã = ST and (A−z)−1S ∈ B r

q (K ,H ) for some z ∈ ρ(A)∩ρ(B). Then the
operator B is a compact perturbation of the operator A and σess(B) = σess(A).
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Proof: It suffices to show that R ≡ (A−z)−1−(B−z)−1 ∈ B l
0(H ), because the

domains of A and B are included in G , hence RH ⊂ G , which finishes the proof
because of Corollary 2.7. Now due to (3.15) and to the factorization assumption,
we can write R as a product R = [(A− z)−1S][T (B− z)−1] where the first factor
is in B r

q (K ,H ) and the second in B l
0(H ,K ), so the product is in B l

0(H ).

Remarks 3.2 (1) We could have stated the assumptions of Theorem 3.1 in an ap-
parently more general form, namely B − A =

∑n
k=1 SkTk with operators Sk ∈

B(Kk,G
∗) and Tk ∈ B(G ,Kk). But we are reduced to the stated version of the as-

sumption by considering the Hilbert module K = ⊕Kk and S = ⊕Sk, T = ⊕Tk.
(2) If V ∈ K(G ,G ∗) and if K is an infinite dimensional module, then there are
operators S ∈ B(K ,G ∗) and T ∈ K(G ,K ) such that V = ST (the proof is an
easy exercise). This and the preceding remark show that compact contributions to
B̃ − Ã are trivially covered by the factorization assumption.

Example 3.3 One can construct interesting classes of operators with the properties
required in (AB) as follows. Let Ga, Gb be Hilbert spaces such that G ⊂ Ga ⊂ H

and G ⊂ Gb ⊂ H continuously and densely. Thus we have two scales

G ⊂ Ga ⊂ H ⊂ G
∗
a ⊂ G

∗,

G ⊂ Gb ⊂ H ⊂ G
∗
b ⊂ G

∗.

Then let A0 ∈ B(Ga,G
∗
a ) and B0 ∈ B(Gb,G

∗
b ) such that A0 − z : Ga → G ∗

a and
B0 − z : Gb → G ∗

b are bijective for some number z. According to Lemma A.1 we

can associate to A0, B0 closed densely defined operators A = Â0, B = B̂0 in H ,
such that the domains D(A) and D(A∗) are dense subspaces of Ga and the domains
D(B) and D(B∗) are dense subspaces of Gb. If we also have D(A) ⊂ G densely,
D(A∗) ⊂ G and D(B) ⊂ G , then all the conditions of the assumption (AB) are
fulfilled withÃ = A0|G and B̃ = B0|G .

The case when one of the operators, for example A, is self-adjoint is worth to
be considered separately. As explained in the Appendix, the conditions on A in
assumption (AB) are satisfied if D(A) ⊂ G ⊂ D(|A|1/2) densely. Moreover, if A
is semibounded, then this condition is also necessary. In particular, we have:

Corollary 3.4 Let A,B be self-adjoint operators on H such that

D(A) ⊂ G ⊂ D(|A|1/2) and D(B) ⊂ G ⊂ D(|B|1/2) densely.

Let Ã, B̃ be the unique extensions of A,B to operators in B(G ,G ∗). Assume that
there is a Hilbert module K and that B̃ − Ã = S∗T for some S ∈ B(G ,K ) and
T ∈ B l

0(G ,K ) such that S(A − z)−1 ∈ B l
q(H ,K ) for some z ∈ ρ(A) ∩ ρ(B).

Then B is a compact perturbation of A and σess(B) = σess(A).
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The results which follow are either corollaries of Theorem 3.1 or are versions
of the theorem based on essentially the same proof. We shall use the results and
the terminology of the Appendix. We begin with the simplest corollary which
nevertheless covers interesting examples. Note that X is always assumed non-
compact.

Theorem 3.5 Assume that (G ,H ) is a compact stable Friedrichs X-module over
a locally compact abelian group X and that condition (AB) is satisfied. Assume,
furthermore, that Ã − z : G → G ∗ is bijective for some z ∈ ρ(A) ∩ ρ(B) and
that Ã ∈ Cu(Q;G ,G ∗). If B̃− Ã ∈ B l

0(G ,G
∗), then the operator B is a compact

perturbation of the operator A.

Proof: We apply Theorem 3.1 with K = G ∗, S the identity operator and T =
B̃ − Ã. Then (Ã − z)−1 is of class Cu(Q;G ∗,G ) by (ii) of Proposition 2.22,
hence (Ã − z)−1 ∈ Bq(G ∗,G ) by Proposition 2.23. But this is stronger than
(Ã− z)−1 ∈ B r

q (G ∗,H ), as follows from the Remark 2.20.

The next results are convenient for applications to differential operators in di-
vergence form. In these statements we implicitly use Lemma A.1: we note that the
operators D∗aD and D∗bD considered below belong to B(G ,G ∗) and we denote
by ∆a and ∆b the operators on H associated to them. The notation B l

00(E ,E
∗) is

introduced in (2.9).

Theorem 3.6 Let (G ,H ) be a compact Friedrichs module, let (E ,K ) be an ar-
bitrary Friedrichs module, and assume that we are given operators D ∈ B(G ,E )
and a, b ∈ B(E ,E ∗) and a complex number z such that:
(1) The operators D∗aD − z and D∗bD − z are bijective maps G → G ∗,
(2) a− b ∈ B l

00(E ,E
∗),

(3) D(∆∗
a − z̄)−1 ∈ B l

q(H ,K ).
Then ∆b is a compact perturbation of ∆a.

Proof: We give a proof independent of Theorem 3.1, although we could apply this
theorem. From Lemma A.1 it follows that the operators ∆a− z and ∆b− z extend
to bijections G → G ∗ and the identity

R := (∆a − z)−1 − (∆b − z)−1 = (∆a − z)−1D∗(b− a)D(∆b − z)−1

holds in B(G ∗,G ), hence in B(H ). Since the domains of ∆a and ∆b are included
in G , we have RH ⊂ G . Thus, according to Corollary 2.7, it suffices to show
that R ∈ B l

0(H ). Since the space B l
0(H ) is norm closed and since by hypothesis

we can approach b− a in norm in B(E ,E ∗) by operators in B l
0(K ), it suffices to

show that
(D(∆∗

a − z̄)−1)∗cD(∆b − z)−1 ∈ B l
0(H )
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if c ∈ B l
0(K ). But this is clear because cD(∆b − z)−1 ∈ B l

0(H ,K ) and
(D(∆∗

a − z̄)−1)∗ ∈ B r
q (K ,H ) by Proposition 2.10.

By (2.10) we have K(E ,E ∗) ⊂ B l
00(E ,E

∗), but the case a− b ∈ K(E ,E ∗) is
trivial from the point of view of this paper. Although the space B l

00(E ,E
∗) is much

larger than K(E ,E ∗), we can allow still more general perturbations and obtain
more explicit results if we impose more structure on the modules, cf. Remark 4.2.
We now describe such an improvement for the case of X-modules, where X is a
locally compact abelian group. We shall need the following fact.

Lemma 3.7 Let X be an abelian locally compact group and let (G ,H ) and
(E ,K ) be stable Friedrichs X-modules. Let D ∈ B(G ,E ) and a ∈ B(E ,E ∗)
be operators of class Cu(Q) such that D∗aD − z : G → G ∗ is bijective for some
complex number z and denote ∆a the operator on H associated to D∗aD. Then
the operator D(∆a − z)−1 ∈ B(H ,E ) is quasilocal.

Proof: The lemma is an easy consequence of Propositions 2.22 and 2.23. Indeed,
due to Proposition 2.23, it suffices to show that the operator D(∆a − z)−1 is of
class Cu(Q;H ,E ). We shall prove more, namely that D(D∗aD−z)−1 is of class
Cu(Q;G ∗,E ). Since D is of class Cu(Q;G ,E ), and due to (i) of Proposition 2.22,
it suffices to show that (D∗aD − z)−1 is of class Cu(Q;G ∗,G ). But D∗aD − z
is of class Cu(Q;G ,G ∗) by (i) and (iii) of Proposition 2.22 and is a bijective map
G → G ∗, so the result follows from (ii) of Proposition 2.22.

Theorem 3.8 Let X be an abelian locally compact group and let (G ,H ) be a
compact stable Friedrichs X-module and (E ,K ) a stable Friedrichs X-modules.
Assume that D ∈ B(G ,E ) and a, b ∈ B(E ,E ∗) are operators of class Cu(Q) such
that the operators D∗aD− z and D∗bD− z are bijective maps G → G ∗ for some
complex number z. If a− b ∈ B l

0(E ,E
∗) then ∆b is a compact perturbation of ∆a.

Proof: The proof is a repetition of that of Theorem 3.6. The only difference is that
we write directly

R = (D(∆∗
a − z̄)−1)∗(b− a)D(∆b − z)−1

and observe that (b− a)D(∆b − z)−1 ∈ B l
0(H ,E ∗) and that (D(∆∗

a − z̄)−1)∗ as
an operator E ∗ → H is quasilocal by (2) of Proposition 2.10 and by the fact that
the operator D(∆∗

a − z̄)−1 : H → E is quasilocal, cf Lemma 3.7.

20



4 Pseudo-differential operators

4.1 Operators in divergence form on Euclidean spaces

Our first example is in the context of Theorem 3.8. HereX = R
n equipped with the

Lebesgue measure and H = L2(X) with the obvious Hilbert X-module structure.
If s ∈ R we denote by H s the usual Sobolev space.

For each s > 0 the couple (H s,H ) is a clearly a compact Friedrichs module.
Indeed, for each ϕ ∈ C0(X) the operator ϕ(Q) : H s → H is compact. But
we have more: (H s,H ) is also a stable Friedrichs X-module with respect to the
additive group structure on X . In fact, if we identify as usual X ∗ with X with the
help of the exponential function, the representation of X in H which defines the
Hilbert X-module structure of H is (Vku)(x) = exp(i〈x, k〉)u(x), where 〈x, k〉
is the scalar product. Then we easily get VkH s ⊂ H s and ‖Vk‖ ≤ C(1 + |k|)s.

Let us describe the objects which appear in Theorem 3.8 in the present context.
We fix an integer m ≥ 1 and take G = Hm. Let K =

⊕
|α|≤mHα, where

Hα ≡ H , with the natural direct sum Hilbert X-module structure. Here α are
multi-indices α ∈ N

n and |α| = α1 + · · · + αn. Then we define

E =
⊕

|α|≤m

H
m−|α| = {(uα)|α|≤m ∈ K | uα ∈ H

m−|α|}

equipped with the Hilbert direct sum structure. It is obvious that (E ,K ) is a stable
Friedrichs X-module (but not compact).

We set Pk = −i∂k, where ∂k is the derivative with respect to the k-th variable,
and Pα = Pα1

1 . . . Pαn
n if α ∈ N

n. Then for u ∈ G let Du = (P αu)|α|≤m ∈ K .
Since

‖Du‖2 =
∑

|α|≤m

‖Pαu‖2 = ‖u‖2
H m

we see that D : G → K is a linear isometry. Moreover, we have defined E such as
to have DG ⊂ E , hence D ∈ B(G ,E ). We shall prove now thatD ∈ Cu(Q;G ,E )
(in fact, much more). We have, with natural notations,

V −1
k DVk = (V −1

k PαVk)|α|≤m = ((P + k)α)|α|≤m

and this a polynomial in k with coefficients in B(G ,E ), hence the assertion.
We shall identify H ∗ = H and K ∗ = K , which implies G ∗ = H −m and

E
∗ = ⊕|α|≤mH

|α|−m.

The operator D∗ ∈ B(E ∗,G ∗) acts as follows:

D∗(uα)|α|≤m =
∑

|α|≤m

Pαuα ∈ H
−m,
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because uα ∈ H |α|−m.
By taking into account the given expressions for E and E ∗ we see that we can

identify an operator a ∈ B(E ,E ∗) with a matrix of operators a = (aαβ)|α|,|β|≤m,
where aαβ ∈ B(H m−|β|,H |α|−m) and

a(uβ)|β|≤m =
( ∑

|β|≤m

aαβuβ
)
|α|≤m

.

Then we clearly have

D∗aD =
∑

|α|,|β|≤m

PαaαβP
β. (4.16)

which is a general version of a differential operator in divergence form. We must,
however, emphasize, that our aαβ are not necessarily functions, they could be
pseudo-differential or more general operators.

In view of the statement of the next theorem, we note that, since the Sobolev
spaces are Banach X-modules, the class of regularity Cu(Q;H s,H t) is well
defined for all real s, t. A bounded operator S : H s → H t belongs to this
class if and only if the map k 7→ V−kSVk ∈ B(H s,H t) is norm continuous. In
particular, this condition is trivially satisfied if S is the operator of multiplication
by a function, because then Vk commutes with S. Since the coefficients aαβ of the
differential expression (4.16) are usually assumed to be functions, this is barely a
restriction in the setting of the next theorem. The condition S ∈ B l

0(H
s,H t) is

also well defined and it is easily seen that it is equivalent to

lim
r→∞

‖θ(Q/r)S‖H s→H t → 0 (4.17)

where θ is a C∞ function on X equal to zero on a neighborhood of the origin
and equal to one on a neighborhood of infinity. Now we can state the following
immediate consequence of Theorem 3.8.

Proposition 4.1 Let aαβ and bαβ be operators of class Cu(H m−|β|,H |α|−m)
and such that the operators D∗aD− z and D∗bD− z are bijective maps H m →
H −m for some complex z. Let ∆a and ∆b be the operators in H associated to
D∗aD and D∗bD respectively. Assume that

lim
r→∞

‖θ(Q/r)(aαβ − bαβ)‖H m−|α|→H |α|−m = 0 (4.18)

for each α, β, where θ is a function as above. Then ∆b is a compact perturbation
of ∆a and the operators ∆a and ∆b have the same essential spectrum.
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Example: In the simplest case the coefficients aαβ and bαβ of the principal parts
(i.e. |α| = |β| = m) are functions. Then the conditions become: aαβ and bαβ
belong to L∞(X) and |aαβ(x) − bαβ(x)| → 0 as |x| → ∞. Of course, the
assumptions on the lowest order coefficients are much more general.

Example: We show here that “highly oscillating potentials” do not modify the
essential spectrum. If m = 1 then the terms of order one of D∗aD are of the
form S =

∑n
k=1(Pkv

′
k + v′′kPk), where v′k ∈ B(H 1,H ) and v′′k ∈ B(H ,H −1).

Choose vk ∈ B(H 1,H ) symmetric in H and let v′k = ivk, v
′′
k = −ivk. Then

S = [iP, v] ≡ divv, with natural notations, can also be thought as a term of order
zero. Now assume that vk are bounded Borel functions and consider a similar term
T = [iP, w] for D∗bD. Then the condition |vk(x) − wk(x)| → 0 as |x| → ∞
suffices to ensure the stability of the essential spectrum. However, the difference
S−T could be a function which does not tend to zero at infinity in a simple sense,
being only “highly oscillating”. An explicit example in the case n = 1 is the
following: a perturbation of the form exp(x)(1 + |x|)−1 cos(exp(x)) is allowed
because it is the derivative of (1 + |x|)−1 sin(exp(x)) plus a function which tends
to zero at infinity.

In order to apply Proposition 4.1 we need that D∗aD − z : H m → H −m be
bijective for some z ∈ C, and similarly for b. A standard way of checking this is
to require the following coercivity condition:

(C)
{

there are µ, ν > 0 such that for all u ∈ H m :∑
|α|,|β|≤m Re 〈Pαu, aαβP βu〉 ≥ µ‖u‖2

H m − ν‖u‖2
H

Example: One often imposes a stronger ellipticity condition that we describe be-
low. Observe that the coefficients of the highest order part of D∗aD defined by
A0 =

∑
|α|=|β|=m P

αaαβP
β are operators aαβ ∈ B(H ). Then ellipticity means:

(Ell)
{

there is µ > 0 such that if uα ∈ H for |α| = m then∑
|α|=|β|=m Re 〈uα, aαβuβ〉 ≥ µ

∑
|α|=m ‖uα‖2

H
.

But we emphasize that, our conditions on the lower order terms being very general
(e.g. the aαβ could be differential operators, so the terms of formally lower order
could be of order 2m in fact), we have to supplement the ellipticity condition (Ell)
with a condition saying that the rest of the terms A1 =

∑
|α|+|β|<2m P

αaαβP
β

is small with respect to A0. For example, we may require the existence of some
δ < µ and γ > 0 such that

|
∑

|α|+|β|<2m

Re 〈Pαu, aαβP βu〉| ≤ δ‖u‖2
H m + γ‖u‖2

H . (4.19)
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This is satisfied if A1H
m ⊂ H −m+θ for some θ > 0, because for each ε > 0

there is c(ε) <∞ such that ‖u‖H m−θ ≤ ε‖u‖H m + c(ε)‖u‖H .

Remark 4.2 To understand the relation between B l
00(E ,E

∗) and B l
0(E ,E

∗) it suf-
fices to consider that between Bl00(H s,H −t) and B l

0(H
s,H −t) for s, t ≥ 0,

where B l
00(H

s,H −t) is the closure of B l
0(H ) in B(H s,H −t). If s = t = 0

then these spaces are the same, hence we get the same conditions on the coeffi-
cients aαβ − bαβ of the principal part (|α| = |β| = m) of the operator a− b if we
use Theorem 3.6 or 3.8. But if s + t > 0 then B l

00(H
s,H −t) does not contain

operators of order s+ t, while B l
0(H

s,H −t) contains such operators.

4.2 A class of pseudo-differential operators on abelian groups

In this subsection X will be a locally compact non-compact non-discrete abelian
group. We also fix a finite dimensional complex Hilbert space E and take H =
L2(X;E) equipped with its natural Hilbert X-module structure. Note that, accord-
ing to our conventions, the unitary representation of X ∗ is given by the multiplica-
tion operators Vk = k(Q).

Let w : X∗ → [1,∞[ be a continuous function satisfying w(k) → ∞ as
k → ∞ and such that w(k′k) ≤ ω(k′)w(k) holds for some function ω and all
k′, k. We shall assume that ω is the smallest function satisfying the preceding
estimate. It is clear then that ω is sub-multiplicative in the sense defined in Remark
2.17 (see [Ho, Section 10.1] for this construction).

Then w(P ) is a self-adjoint operator on H with w(P ) ≥ 1. We denote H w =
D(w(P )) and equip it with the Banach X-module structure given by the norm
‖u‖w = ‖w(P )u‖ and the representation Vk|H w. Obviously, this space is a
generalization of the usual notion of Sobolev spaces.

Lemma 4.3 (H w,H ) is a compact stable Friedrichs X-module.

Proof: If ϕ ∈ C0(X) then ϕ(Q)w(P )−1 is a compact operator because w−1

belongs to C0(X), hence ϕ(Q) ∈ K(H w,H ). Then observe that V −1
k w(P )Vk =

w(kP ) and w(kP ) ≤ ω(k)w(P ). Thus Vk leaves stable H w and we have the
estimate ‖Vk‖B(H w) ≤ ω(k).

We shall consider now an operator A on H such that there are w as above
and an operator Ã ∈ B(H w,H w∗) such that Ã − z : H w → H w∗ is bijective
for some complex z and such that A is the operator induced by Ã in H (see the
Appendix). For example, the constant coefficients case with E = C corresponds
to the choice A = h(P ) with h : X∗ → C a Borel function such that c′w2 ≤
1 + |h| ≤ c′′w2 and such that the range of h is not dense in C.
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Theorem 3.5 is quite well adapted to show the stability of the essential spectrum
of such operators under perturbations which are small at infinity. We stress that the
differential operators covered by these results can be of any order and that in the
usual case when the coefficients are complex measurable functions a condition of
the type Ã ∈ Cu(Q;H w,H w∗) is very general, if not automatically satisfied (see
the remark at the end of this subsection). Hence the only condition really relevant
in this context is B̃ − Ã ∈ B l

0(H
w,H w∗) and the main point is that it allows

perturbations of the higher order coefficients even in the non-smooth case.
It is clear that these results can be used to establish the stability of the essential

spectrum of pseudo-differential operators on finite dimensional vector spaces over
local fields, cf. [Sa, Ta], under perturbations of the same order.

We shall give only one explicit example of some physical interest, that of Dirac
operators. Let X = R

n and let α0 ≡ β, α1, . . . , αn be symmetric operators on E
such that αjαk +αkαj = δjk. Then the free Dirac operator is D =

∑n
k=1 αkPk +

mβ for some real number m. The natural compact stable Friedrichs X-module
now is (H 1/2,H ) where H s are usual Sobolev spaces of E-valued functions.

Proposition 4.4 Let V,W be measurable functions on X with values symmetric
operators on E and such that the operators of multiplication by V and W define
continuous maps H 1/2 → H −1/2 and V −W ∈ B0(H

1/2,H −1/2). Assume
that D + V + i and D + W + i are bijective maps H 1/2 → H −1/2. Then
D + V and D +W induce self-adjoint operators A and B in H , B is a compact
perturbation of A, and σess(B) = σess(A).

This follows immediately from Theorem 3.5. We stress that the main new
feature of this result is that the “unperturbed” operator A is locally as singular
as the “perturbed” one B. The assumptions imposed on V,W are quite general,
compare with [Ar, AY, Kl, N1, N2].

Remark: We shall discuss here the relation between the abstract class of operators
A considered in this subsection and the notion of hypoellipticity due to Hörmander.
For this we shall consider the case of differential operators on R

n (which is identi-
fied with its dual group in the standard way). Assume first that h is a polynomial on
R
n and that A = h(P ). Then the function defined by w(k)4 =

∑
α |h(α)(k)|2 sat-

isfies w(k′+k) ≤ (1+c|k′|)m/2w(k), where c is a number and m is the order of h,
see [Ho, Example 10.1.3]. Now the “form domain” of the operator h(P ) in L2(Rn)
is the space G = D(|h(P )|1/2) and this domain is stable under Vk = exp i〈k,Q〉
if and only the function w satisfies w2 ≤ c(1 + |h|), see Lemma 7.6.7 in [ABG].
On the other hand, Definition 11.1.2 and Theorem 11.1.3 from [Ho] show that A
is hypoelliptic if and only if h(α)(k)/h(k) → 0 when k → ∞, for all α 6= 0. So
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in this case we have c′w2 ≤ 1 + |h| ≤ c′′w2 and the operator A = h(P ) satis-
fies the conditions of this subsection if h(Rn) is not dense in C. If n = 2 then
h(k) = k4

1 + k2
2 is a simple example of polynomial which has all these properties

but is not elliptic. See [GM, Subsections 2.7-2.10] for the case of matrix valued
functions h.

5 Abstract Riemannian manifolds

Let H ,K be two Hilbert spaces identified with their adjoints and d a closed
densely defined operator mapping H into K . Let G = D(d) equipped with the
graph norm, so G ⊂ H continuously and densely and d ∈ B(G ,K ).

Then the quadratic form ‖du‖2
K

on H with domain G is positive densely
defined and closed. Let ∆ be the positive self-adjoint operator on H associated to
it. In fact ∆ = d∗d, where the adjoint d∗ of d is a closed densely defined operator
mapping K into H .

Now let λ ∈ B(H ) and Λ ∈ B(K ) be self-adjoint and such that λ ≥ c and
Λ ≥ c for some real c > 0. Then we can define new Hilbert spacesH̃ and K̃ as
follows:

(∗)

{
H̃ = H as vector space and 〈u | v〉fH

= 〈u | λv〉H ,

K̃ = K as vector space and 〈u | v〉fK
= 〈u | Λv〉K .

Since H = H̃ and K = K̃ as topological vector spaces; the operator
d : G ⊂ H̃ → K̃ is still a closed densely defined operator, hence the quadratic
form ‖du‖2

fK
on H̃ with domain G is positive, densely defined and closed. We

shall denote by ∆̃ the positive self-adjoint operator on H̃ associated to it.
We can express ∆̃ in more explicit terms as follows. Denote d̃ the operator

d when viewed as operator acting from H̃ to K̃ . Then ∆̃ = d̃∗d̃, where d̃∗ :
D(d̃∗) ⊂ K̃ → H̃ is the adjoint of d̃ = d with respect to the new Hilbert space
structures (the spaces H̃ , K̃ being also identified with their adjoints). It is easy to
check that d̃∗ = λ−1d∗Λ. Thus ∆̃ = λ−1d∗Λd.

Now let (X, ρ) be a proper locally compact metric space (see Subsection 2.4)
and let us assume that H and K are Hilbert X-modules.

Definition 5.1 A closed densely defined map d : H → K is a first order operator
if there is C ∈ R such that for each bounded Lipschitz function ϕ : X → R the
form [d, ϕ(Q)] is a bounded operator and ‖[d, ϕ(Q)]‖B(H ,K ) ≤ C Lip ϕ.
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Here
Lip ϕ = inf

x6=y
|ϕ(x) − ϕ(y)|ρ(x, y)−1.

In more explicit terms, we require

|〈d∗u, ϕ(Q)v〉H − 〈u, ϕ(Q)dv〉K | ≤ C Lip ϕ ‖u‖K ‖v‖H

for all u ∈ D(d∗) and v ∈ D(d). Thus 〈d∗u, ϕ(Q)v〉−〈u, ϕ(Q)dv〉 is a sesquilin-
ear form on the dense subspace D(d∗) × D(d) of K × H which is continuous
for the topology induced by H ×K . Hence there is a unique continuous operator
[d, ϕ(Q)] : H → K such that

〈d∗u, ϕ(Q)v〉H − 〈u, ϕ(Q)dv〉K = 〈u, [d, ϕ(Q)]v〉K

for all u ∈ D(d∗), v ∈ D(d) and ‖[d, ϕ(Q)]‖B(H ,K ) ≤ C Lip ϕ.

Lemma 5.2 The operator d(∆ + 1)−1 is quasilocal.

Proof: We shall prove that S := d(∆+ 1)−1 is a quasilocal operator with the help
of Corollary 2.14, more precisely we show that [S, ϕ(Q)] is a bounded operator if
ϕ is a positive Lipschitz function. Let ε > 0 and ϕε = ϕ(1 + εϕ)−1. Then ϕε is a
bounded function with |ϕε| ≤ ε−1 and

|ϕε(x) − ϕε(y)| =
|ϕ(x) − ϕ(y)|

(1 + εϕ(x))(1 + εϕ(y))
≤ |ϕ(x) − ϕ(y)|

hence Lip ϕε ≤ Lip ϕ. Let v ∈ D(d) we have for all u ∈ D(d∗):

|〈d∗u, ϕε(Q)v〉H | = |〈u, ϕε(Q)dv〉K + 〈u, [d, ϕε(Q)]v〉K |
≤ ‖u‖K (ε−1‖dv‖K + C Lip ϕε ‖u‖H ).

Hence ϕε(Q)v ∈ D(d∗∗) = D(d) because d is closed. Thus ϕε(Q)D(d) ⊂ D(d)
and by the closed graph theorem we get ϕε(Q) ∈ B(G ), where G is the domain
of d equipped with the graph topology. This also implies that ϕε(Q) extends to an
operator in B(G ∗) (note that ϕε(Q) is symmetric in H ).

Now, if we think of d as a continuous operator G → K , then it has an adjoint
d∗ : K → G ∗ which is the unique continuous extension of the operator d∗ :
D(d∗) ⊂ K → H ⊂ G ∗. Thus the canonical extension of ∆ to an element of
B(G ,G ∗) is the product of d : G → K with d∗ : K → G ∗ (note D(d) is the
form domain of ∆). Then it is trivial to justify that we have in B(G ,G ∗):

[∆, ϕε(Q)] = [d∗, ϕε(Q)]d + d∗[d, ϕε(Q)].
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Here [d∗, ϕε(Q)] = [ϕε(Q),d]∗ ∈ B(K ,H ). Since ∆ + 1 : G → G ∗ is a linear
homeomorphism, we then have in B(G ∗,G ):

[ϕε(Q), (∆ + 1)−1] = (∆ + 1)−1[∆, ϕε(Q)](∆ + 1)−1

= (∆ + 1)−1[ϕε(Q),d]∗d(∆ + 1)−1

+ (∆ + 1)−1d∗[d, ϕε(Q)](∆ + 1)−1.

Finally, taking once again into account the fact that ϕε(Q) leaves G invariant, we
have:

[ϕε(Q),d(∆ + 1)−1] = [ϕε(Q),d](∆ + 1)−1

+d(∆ + 1)−1[ϕε(Q),d]∗d(∆ + 1)−1

+d(∆ + 1)−1d∗[d, ϕε(Q)](∆ + 1)−1.

Hence:

‖[ϕε(Q),d(∆ + 1)−1]‖B(H ,K ) ≤ ‖[ϕε(Q),d]‖B(H ,K )‖(∆ + 1)−1‖B(H )

+ ‖d(∆ + 1)−1‖B(H ,K )‖[ϕε(Q),d]∗‖B(K ,H )‖d(∆ + 1)−1‖B(H ,K )

+ ‖d(∆ + 1)−1d∗‖B(K ,K )‖[d, ϕε(Q)]‖B(H ,K )‖(∆ + 1)−1‖B(H ).

The most singular factor here is

‖d(∆ + 1)−1d∗‖B(K ,K ) ≤ ‖d‖B(G ,K )‖(∆ + 1)−1‖B(G ∗,G )‖d∗‖B(K ,G ∗)

and this is finite. Thus we get for a finite constant C1:

‖[ϕε(Q),d(∆ + 1)−1]‖B(H ,K ) ≤ C1‖[d, ϕε(Q)]‖B(H ,K )

≤ C1 C Lip ϕε ≤ C1C Lip ϕ

Now let u ∈ Kc and v ∈ Hc. We get:

|〈ϕ(Q)u,d(∆ + 1)−1v〉 − 〈u,d(∆ + 1)−1ϕ(Q)v〉| =

= lim
ε→0

|〈ϕε(Q)u,d(∆ + 1)−1v〉 − 〈u,d(∆ + 1)−1ϕε(Q)v〉|
≤ C1 C Lip ϕ

Thus [ϕ(Q),d(∆ + 1)−1] is a bounded operator.

Theorem 5.3 Let (X, ρ) be a proper locally compact metric space. Assume that
(G ,H ) is a compact Friedrichs X-module and that K is a Hilbert X-module.
Let d, λ,Λ be operators satisfying the following conditions:
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(i) d is a closed first order operator from H to K with D(d) = G ;
(ii) λ is a bounded self-adjoint operator on H with inf λ > 0 and such that
λ− 1 ∈ K(G ,H ) (e.g. λ− 1 ∈ B0(H ));
(iii) Λ is a bounded self-adjoint operator on K with inf Λ > 0 and such that
Λ − 1 ∈ B0(K ).
Then the self-adjoint operators ∆ and ∆̃ have the same essential spectrum.

Proof: In this proof, we shall consider ∆̃ as an operator acting on H . Since H̃ =
H as topological vector spaces and the notion of spectrum is purely topological,
∆̃ is a closed densely defined operator on H and it has the same spectrum as the
self-adjoint ∆̃ on H̃ . Moreover, if we define the essential spectrum σess(A) as the
set of z ∈ C such that either ker(A − z) is infinite dimensional or the range of
A − z is not closed, we see that the essential spectrum is a topological notion, so
σess(∆̃) is the same, whether we think of ∆̃ as operator on H or on H̃ . Finally,
with this definition of σess we have σess(A) = σess(B) if (A− z)−1 − (B − z)−1

is compact operator for some z ∈ ρ(A) ∩ ρ(B).
Thus it suffices to prove that (∆ + 1)−1 − (∆̃ + 1)−1 ∈ K(H ). Now we

observe that
∆̃ + 1 = λ−1d∗Λd+ 1 = λ−1(d∗∆d + λ)

and ∆Λ = d∗Λd is the positive self-adjoint operator on H associated to the closed
quadratic form ‖du‖2

fK
on H with domain G . Thus (∆̃ + 1)−1 = (∆Λ + λ)−1λ

and

(∆̃ + 1)−1 − (∆Λ + λ)−1 = (∆Λ + λ)−1(λ− 1) = [(λ− 1)(∆Λ + λ)−1]∗

The range of (∆Λ + λ)−1 is included in the form domain of ∆Λ + λ, which is
G . The map (∆Λ + λ)−1 : H → G is continuous, by closed graph theorem,
and λ − 1 : G → H is compact. Hence (∆̃ + 1)−1 − (∆Λ + λ)−1 is compact.
Similarly:

(∆ + 1)−1 − (∆Λ + λ)−1 = (d∗d + 1)−1 − (d∗∆d + 1)−1 ∈ K(H )

For this we use Theorem 3.6 with: E = K , D = d, a = 1, b = Λ and z =
−1. Since d∗d and d∗Λd are positive self-adjoint operators on H with the same
form domain G , the first condition of Theorem 3.6 is satisfied. Then the second
condition holds because Λ − 1 ∈ B0(K ). Thus it remains to observe that the
operator d(∆ + 1)−1 is quasilocal by Lemma 5.2.

Remark: The map ϕ 7→ ϕ(Q) provides H̃ with a Banach X-module structure.
H̃ is a HilbertX-module for this structure if and only if λ isC0(X)-linear. Indeed,
the adjoint of ϕ(Q) in H̃ is λ−1ϕ(Q)λ and λ−1ϕ(Q)λ = ϕ(Q) is equivalent to
[λ, ϕ(Q)] = 0.
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We shall consider now an application of Theorem 5.3 to concrete Riemannian
manifolds. It will be clear from what follows that we could treat Lipschitz mani-
folds with measurable metrics (see [DP, Hi, Te, We] for example), but the case of
C1 manifolds with locally bounded metrics suffices as an example.

Let X be a non-compact differentiable manifold of class C 1 and T ∗X be its
cotangent manifold, a topological vector fiber bundle over X whose fiber over x
will be denoted T ∗

xX . If u : X → R is differentiable then du(x) ∈ T ∗
xX is its

differential at the point x and its differential du is a section of T ∗X . Thus for the
moment d is a linear map defined on the space of real C1(X) functions to the space
of sections of T ∗X .

We now assume that X is equipped with a measurable locally bounded Rie-
mannian structure. To be precise, each T ∗

xX is equipped with a scalar product
〈·|·〉x and the associated norm ‖ · ‖x satisfying the following condition:

(R)





if v is a continuous section of T ∗X over a compact set K such that
v(x) 6= 0 for x ∈ K, then x 7→ ‖v(x)‖x is a bounded Borel map on
K and ‖v(x)‖x ≥ c for some number c > 0 and all x ∈ K.

This structure allows one to construct a metric compatible with the topology on X
(if the scalar products do not depend continuously on x, this is not a completely
trivial matter, see the references above). Since X was assumed to be non-compact,
the metric space X is proper in the sense defined in Subsection 2.4 if and only if it
is a complete metric space.

It will also be convenient to complexify these structures (i.e. replace T ∗
xX by

T ∗
xX ⊗ C and extend the scalar product to the complexification as usual) but to

keep the same notations (we could, of corse, work with real Hilbert spaces, but this
would not be coherent with the conventions of the rest of the paper).

Now let µ be a positive measure on X such that:

(M )
{
µ is absolutely continuous and its density is locally bounded
and locally bounded from below by strictly positive constants.

We shall take H = L2(X,µ) and K equal to the completion of the space of
continuous sections of T ∗X with compact support under the natural norm

‖v‖2
K =

∫

X
‖v(x)‖2

xdµ(x).

In fact, K is the space of (suitably defined) square integrable sections of T∗X .
The operator of exterior differentiation d induces a linear map C 1

c (X) → K

which is easily seen to be closable as operator from H to K (this is a purely
local problem and the hypotheses we put on the metric and the measure allow us
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to reduce ourselves to the Euclidean case). We shall keep the notation d for its
closure and we note that its domain G is the natural first order Sobolev space H 1

defined in this context as the closure of C1
c (X) under the norm

‖u‖2
H 1 =

∫

X

(
|u(x)|2 + ‖du(x)‖2

x

)
dµ(x).

Note that the self-adjoint operator ∆ = d∗d is a slightly generalized form of the
Laplace operator associated to the Riemannian structure of X because µ is not
necessarily the Riemannian volume element (but we could choose it so).

We shall now consider perturbations of this structure. We assume that the
perturbation preserves the local structure, although Theorem 5.3 allows us to go
much further.

Proposition 5.4 Let X be a non-compact manifold of class C 1 equipped with a
Riemannian structure and a measure satisfying the conditions (R) and (M) and such
that X is complete for the associated metric. Let λ be a bounded Borel function
on X such that λ(x) ≥ c for some number c > 0 and limx→∞ λ(x) = 1. Assume
that a new Riemann structure verifying (R) is given on X such that the associated
norms ‖ · ‖′x verify α(x)‖ · ‖x ≤ ‖ · ‖′x ≤ β(x)‖ · ‖x for some functions α, β such
that limx→∞ α(x) = limx→∞ β(x) = 1. Let ∆ be as above and ∆′ be the analog
operator associated to the second Riemann structure and to the measure µ′ = λµ.
Then σess(∆) = σess(∆

′).

Proof: We check that the assumptions of Theorem 5.3 are satisfied. We noted
above that X is a proper metric space for the metric associated to the initial Rie-
mann structure. The spaces H ,K have obvious X-module structures and for
each ϕ ∈ Cc(X) the operator ϕ(Q) : H 1 → H is compact. Indeed, by using
partitions of unity, we may assume that the support of ϕ is contained in the domain
of a local chart and then we are reduced to a known fact in the Euclidean case. Thus
(G ,H ) is a compact Friedrichs X-module. To see that d is a first order operator
we observe that if ϕ is Lipschitz then [d, ϕ] is the operator of multiplication by the
differential dϕ of ϕ and the estimate ess-sup ‖dϕ(x)‖x ≤ Lip ϕ is easy to obtain.
The conditions on λ in Theorem 5.3 are trivially verified. So it remains to consider
the operator Λ. For each x ∈ X there is a unique operator Λ0(x) on T ∗

xX such that
〈u|v〉′x = 〈u|Λ0(x)v〉x for all u, v ∈ T ∗

xX and we have α(x)2 ≤ Λ0(x) ≤ β(x)2

by hypothesis. Here the inequalities must be interpreted with respect to the initial
scalar product on T ∗

xX . Thus the operator Λ on K is just the operator of multi-
plication by the function x 7→ λ(x)Λ(x) and the condition (iii) of Theorem 5.3 is
clearly satisfied.
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We note that if µ is the measure canonically associated to the initial Riemann
structure then we can choose λ such that µ′ be the measure associated to the second
Riemann structure. In particular, if we have two locally L∞ Riemannian metrics
on a non-compact C1 manifold, if the structures are asymptotically equivalent in
the sense made precise in Proposition 5.4, and if the manifold is complete for one
of the metrics (hence for the other too), then the Laplacians associated to the two
metrics have the same essential spectrum. We stress that this is known, and easy to
prove if one uses some local regularity estimates for elliptic equations, if one of the
metrics is locally Lipschitz or Hölder continuous (in the second case, the required
regularity estimate is not so easy, however). On the other hand, it is clear that our
arguments, although quite elementary, cover situations when X is not of class C 1

and the metrics are only Lp. In fact, the arguments work without any modification
if X is a Lipschitz manifold and a countable atlas has been chosen, because then
the tangent space are well defined almost everywhere and the absolute continuity
notions that we have used make sense.

6 Weakly vanishing perturbations

6.1 General remarks

The algebraic framework introduced in Section 2 and the abstract Theorems 3.1
and 3.6 should allow one to go beyond the primitive idea of “vanishing at infinity
perturbation” that we considered so far. Indeed, we recall that, according to our
general definitions, the multiplier algebra of a Banach module should be the pro-
totype of the notion of vanishing at infinity operator. The purpose of this section is
to give examples of such extensions.

Let X be a locally compact non-compact topological space and let H be a
Hilbert X-module. Then the C∗-algebra of the operators ϕ(Q) with ϕ ∈ C0(X) is
the initial multiplier algebra of H but, due to Lemma 2.12, we can also consider on
H the Hilbert module structure defined by the algebra consisting of the operators
ϕ(Q) with ϕ an arbitrary bounded Borel function on X . These operators cannot be
considered as vanishing at infinity, but we could consider some other subalgebras
of B(X). It is easy to see that each function ϕ ∈ B0(X) can be written as a
product ϕ = θψ with θ ∈ C0(X) and ψ ∈ B0(X) (this is obvious if one accepts
the Cohen-Hewitt Theorem A.3). Thus we get no improvement by going from
C0(X) to B0(X). Hence we have to point out a class of functions which vanish at
infinity in a weaker sense.

A natural idea is to extend the usual notion of neighborhood of infinity. It is
usual to define the filter of neighborhoods of infinity as the family of subsets of
X with relatively compact complement; we shall call this the Fréchet filter. If
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F is a filter on X finer than the Fr échet filter then a function ϕ : X → C such
that limF ϕ = 0 can naturally be thought as convergent to zero at infinity in a
generalized sense (we recall that limF ϕ = 0 means that for each ε > 0 the set of
points x such that |ϕ(x)| < ε belongs to F ). It is clear that

BF (X) := {ϕ ∈ B(X) | lim
F
ϕ = 0} (6.20)

is a C∗-algebra and that we can consider on H the Hilbert module structure de-
fined by the multiplier algebra MF := {ϕ(Q) | ϕ ∈ BF (X)}. We will be
interested in the corresponding classes of vanishing at infinity or quasilocal opera-
tors. To be precise, we shall speak in this context of (left or right) F -vanishing at
infinity operators or of (left or right) F -quasilocal operators. Below and later on
we use the notation N c = X \N .

Lemma 6.1 Let H ,K be Hilbert X-modules. Then an operator S ∈ B(H ,K )
is right F -quasilocal if and only if for each Borel set N with N c ∈ F and for each
ε > 0 there is a Borel set F ∈ F such that ‖χF (Q)SχN (Q)‖ ≤ ε.

Proof: We note first that the family of operatorsχN , where N runs over the family
of Borel sets with complement in F , is an approximate unit for BF (X). Indeed,
if ε > 0 and ϕ ∈ BF (X) then the set N = {x | |ϕ(x)| > ε} has the properties
required above and supx |ϕ(x)(1 − χN (x))| ≤ ε. Thus, according to Proposition
2.9, S is right F -quasilocal if and only if SχN (Q) is left F -vanishing at infinity
for each N . Now the result follows from (2.6).

The main restriction we have to impose on F comes from the fact that the
Friedrichs couple (G ,H ) which is involved in the definition of the class of opera-
tors that we study must be such that ϕ(Q) ∈ K(G ,H ) if ϕ ∈ BF (X). That this
is an important restriction follows from the following easily proven result:

Lemma 6.2 Let X be an Euclidean space, H = L2(X), and let G = H s be a
Sobolev space of order s > 0. If ϕ ∈ B(X) then ϕ(Q) ∈ K(G ,H ) if and only if

lim
a→∞

∫

|x−a|≤1
|ϕ(x)|dx = 0. (6.21)

The importance of such a condition in questions of stability of the essential spec-
trum has been noticed in [He, LV, OS, We]. That it is a natural condition follows
also from the characterizations that we shall give below in a more general context.

Let X be a locally compact non-compact abelian group. We shall say that a
function ϕ ∈ B(X) is weakly vanishing (at infinity) if

lim
a→∞

∫

a+K
|ϕ(x)|dx = 0 for each compact set K. (6.22)
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We shall denote by Bw(X) the set of functions ϕ satisfying (6.22). This is clearly
a C∗-algebra. Note that it suffices that the convergence condition in (6.22) be
satisfied for only one compact set K with non-empty interior.

Let us now express the condition (6.22) in terms of convergence to zero along
a certain filter. We denote |K| the exterior (Haar) measure of a set K ⊂ X and
we set Ka = a + K if a ∈ X . A subset N is called w-small (at infinity) if there
is a compact neighborhood K of the origin such that lima→∞ |N ∩Ka| = 0. The
complement of a w-small set will be called w-large (at infinity). The family Fw of
all w-large sets is clearly a filter on X finer than the Fr échet filter.

Observe that a Borel set is w-small if and only if its characteristic function
weakly vanishes at infinity. Denote f ∗ g the convolution of two functions on X .

Lemma 6.3 For a function ϕ ∈ B(X) the following conditions are equivalent:
(1) ϕ is weakly vanishing; (2) θ ∗ |ϕ| ∈ C0(X) if θ ∈ Cc(X); (3) limFw ϕ = 0;
(4) ϕ(Q)ψ(P ) is a compact operator on L2(X) for all ψ ∈ C0(X).

Proof: The equivalence of (1) and (2) is clear because
∫
Ka

|ϕ|dx = (χK ∗ |ϕ|)(a).
Then (3) means that for each ε > 0 the Borel set N where |ϕ(x)| > ε is w-
small. Since χN ≤ ϕ/ε, the implication (2) ⇒ (3) is clear, while the reciprocal
implication follows from χK ∗ |ϕ| ≤ sup |ϕ|χK ∗ χN + ε|K|. If (4) holds, let us
choose ψ such that its Fourier transform ψ̂ be a positive function in Cc(X) and let
f ∈ Cc(X) be positive and not zero. Since ψ(P )f is essentially the convolution
of ψ̂ with f , there is a compact set K with non-empty interior such that ψ(P )f ≥
cχK with a number c > 0. Let Ua be the unitary operator of translation by a
in L2(X), then Uaf → 0 weakly when a → ∞, hence ‖ϕ(Q)Uaψ(P )f‖ =
‖ϕ(Q)ψ(P )Uaf‖ → 0. Since U ∗

aϕ(Q)Ua = ϕ(Q−a) we get ‖ϕ(Q−a)χK‖ → 0,
hence (1) holds.

Finally, let us prove that (1) ⇒ (4). It suffices to prove that ϕ(Q)ψ(P ) is
compact if ψ̂ ∈ Cc(X) and for this it suffices thatψ̄(P )|ϕ|2(Q)ψ(P ) be compact.
Since ξ := |ϕ|2 ∈ Bw(X) and since ψ(P ) is the operator of convolution by a
function in θ ∈ Cc(X), we are reduced to proving that the integral operator S with
kernel S(x, y) =

∫
θ̄(z − x)ξ(z)θ(z − y)dz is compact. If K = supp θ and Λ is

the compact set K −K , then clearly there is a number C such that

|S(x, y)| ≤ C

∫

Kx

ξ(z)dzχΛ(x− y) ≡ φ(x)χΛ(x− y)

where φ ∈ C0(X). The last term here is a kernel which defines a compact operator
T . Thus η(Q)S is a Hilbert-Schmidt operator for each η ∈ Cc(X) and from
the preceding estimate we get ‖(S − η(Q)S)u‖ ≤ ‖(1 − η(Q))T |u|‖ for each
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u ∈ L2(X). Thus ‖S − η(Q)S‖ ≤ ‖(1 − η(Q))T‖ and the right hand side tends
to zero if η ≡ ηα is an approximate unit for C0(X).

We define now a second class of functions which vanishes at infinity in a gen-
eralized sense, and this for an arbitrary Borel space X equipped with a positive
measure µ such that µ(X) = ∞. Let us say that a set F ⊂ X is of cofinite mea-
sure if its complement F c is of finite (exterior) measure. The family of sets of
cofinite measure is clearly a filter Fµ and if X is a locally compact space and µ a
Radon measure then Fµ is finer than the Fr échet filter. Moreover, ifX is an abelian
locally compact non-compact group then Fµ ⊂ Fw and the inclusion is strict. If
ϕ is a function on X then limFµ ϕ = 0 means that for each ε > 0 the set where
|ϕ(x)| ≥ ε is of finite measure. We denote Bµ(X) the C∗-subalgebra of B(X)
consisting of functions with this property.

Proposition 6.4 Let (X,µ) be a positive measure space with µ(X) = ∞ and
let us equip L2(X) with the Hilbert module structure defined by Bµ(X). If S ∈
B(L2(X)) ∩ B(Lp(X)) for some p < 2, then S is right Fµ-quasilocal.

Proof: We first show that Mµ := {ϕ(Q) | ϕ ∈ Bµ(X)} defines indeed a Hilbert
module structure on H = L2(X). Let Nµ be the set of Borel subsets of finite
measure of X . Then {χN}N∈Nµ is an approximate unit of Bµ(X) because for
each ϕ ∈ Bµ(X) and each ε > 0 we have N = {x | |ϕ(x)| ≥ ε} ∈ Nµ and
sup |ϕ− χNϕ| ≤ ε. That the action of Mµ on H is non-degenerate follows from
the density of L1 ∩L∞ in L2 and the fact that each u ∈ L1 ∩L∞ can be written as
u = ϕv with ϕ =

√
|u| ∈ L2 ∩ L∞ ⊂ Mµ and v =

√
|u| sign u ∈ L2.

Now let S ∈ B(L2(X)) such that S induces a continuous operator in Lp(X)
for some number p such that 1 < p < 2. We shall prove that for each N ∈ Nµ

the operator T = SχN (Q) has the property: for each ε > 0 there is a Borel set
F ∈ Fµ such that ‖χF (Q)T‖ ≤ ε. According to Lemma 6.1, this implies the right
Fµ-quasilocality of S.

Since N is of finite measure,χN (Q) is a bounded operator L2 → Lp, hence
T ∈ B(L2, Lp). The rest of the proof is a straightforward application of the fol-
lowing factorization theorem, due to Bernard Maurey [Ma]:
Let 1 < p < 2 and let T be an arbitrary continuous linear map from a Hilbert
space H into Lp. Then there is R ∈ B(H , L2) and there is a function g ∈ Lq,
where 1

p = 1
2 + 1

q , such that T = g(Q)R.

In our case H = L2. Let a > 0 real and let F be the set of points x such that
|g(x)| ≤ a. Since g ∈ Lq with q <∞, we have F ∈ Fµ and

‖χF (Q)T‖B(L2) = ‖χF (Q)g(Q)R‖B(L2) ≤ a‖R‖B(L2).

Thus it suffices to choose a such that a‖R‖B(L2) = ε.
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We introduce now classes of vanishing at infinity functions of a more topo-
logical nature. We consider only the case of an Euclidean space X , the extension
to the case of locally compact groups or metric spaces being obvious. We set
Ba(r) = {x ∈ X | |x− a| < r}, Ba = Ba(1) and B(r) = B0(r).

Let us fix a uniformly discrete set L ⊂ X , i.e. a set such that inf |a − b| > 0
where the infimum is taken over couples of distinct points a, b ∈ L. Let Lε =
L+B(ε) be the set of points at distance < ε from L. We say that a subset N ⊂ X
is L-thin if for each ε > 0 there is r <∞ such that N \B(r) ⊂ Lε. In other terms,
N is L-thin if there is a family {δa}a∈L of positive real numbers with δa → 0 as
a → ∞ such that N ⊂ ⋃

Ba(δa). The complement of such a set will be called
L-fat. We denote FL the family of L-fat sets, we note that FL is a filter on X
contained in Fw and finer than the Fr échet filter, and we denote BL(X) the set of
bounded Borel functions such that limFL

ϕ = 0. So ϕ ∈ B(X) belongs to BL(X)
if and only if the set {|ϕ| ≥ λ} is L-thin for each λ > 0. The advantage of this
filter is that we have a simple criterion of FL-quasilocality.

Proposition 6.5 Let X = R
n and let S be a bounded operator on L2(X) such

that on the region x 6= y its distribution kernel is a function satisfying the estimate
|S(x, y)| ≤ c|x− y|−m for some m > n. Then S is FL-quasilocal.

Proof: Let θ ∈ Cb(X) such that θ(x) = 0 on a neighborhood of the origin and
Sθ(x, y) = θ(x − y)S(x, y). If ξ(x) = θ(x)|x|−m then for the operator Sθ of
kernel Sθ(x, y) we have ‖Sθu‖ ≤ c‖ξ ∗ |u|‖ hence ‖Sθ‖ ≤ c‖ξ‖L1 By choosing a
convenient sequence of functions θ we see that S is the norm limit of a sequence
of operators which besides the properties from the statement of the proposition are
such that S(x, y) = 0 if |x− y| > R(S). Since the set of FL-quasilocal operators
is closed in norm (see Subsection 2.3), we may assume in the rest of the proof that
the kernel of S has this property. In fact, in order to simplify the notations and
without loss of generality, we shall assume S(x, y) = 0 if |x− y| > 1.

Let N be an L-thin Borel set and let ε > 0. We shall construct an L-fat Borel
set with F ⊂ N c such that ‖χN (Q)SχF (Q)‖ ≤ ε. Since the adjoint operator S∗

has the same properties as S, this suffices to prove quasilocality.
We shall only need two simple estimates. First, if ρx(G) is the distance from a

Borel set G to a point x, then
∫

G

dy

|x− y|2m ≤ C(m,n)ρx(G)n−2m. (6.23)

Then, if B0, B are two balls with the same center and radiuses δ and δ + ε, then
∫

B0

ρx(B
c)n−2mdx ≤ C(m,n)εn−2mδn. (6.24)
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We shall choose ε = δn/2m. Then χB0(Q)SχBc(Q) is an operator with integral
kernel and we can estimate its Hilbert-Schmidt norm as follows:

‖χB0(Q)SχBc(Q)‖2
HS =

∫

X×X

χB0(x)|S(x, y)|2χBc(y)dxdy

≤ c

∫

B0

dx

∫

Bc

dy

|x− y|2m ≤ C

∫

B0

ρx(B
c)n−2mdx

≤ C ′εn−2mδn = C ′δλ (6.25)

where λ = n2/2m > 0.
We can assume that N =

⋃
aBa(δa), where the sequence of numbers δa satis-

fies δa → 0 as a → ∞. Denote Na = Ba(δa) and Ma = Ba(δa + εa), where we

choose εa = δ
n/2m
a as above. Choose r such that the balls Na are pairwise disjoint

and δa + εa < 1 if |a| > r and let R such that χNa(Q)SχB(R)c (Q) = 0 if |a| ≤ r.
Let M =

⋃
Ma and F = M c \B(R), so that F is a closed L-fat set. Then for any

u ∈ L2(X) we have:

‖χN (Q)SχF (Q)u‖2 =
∑

|a|>r

‖χNa(Q)SχF (Q)u‖2.

Since S is of range 1 we have χNa(Q)SχBa(2)c(Q) = 0 if δa < 1. Thus

‖χN (Q)SχF (Q)u‖2 ≤
∑

|a|>r

‖χNa(Q)SχF∩Ba(2)(Q)‖2 ‖χBa(2)(Q)u‖2

The number of b ∈ L such that Bb(2) meets Ba(2) is a bounded function of a,
hence there is a constant C depending only on L such that

‖χN (Q)SχF (Q)u‖ ≤ C sup
|a|>r

‖χNa(Q)SχF∩Ba(2)(Q)‖ ‖u‖.

We have F ⊂M c ⊂M c
a hence

‖χNa(Q)SχF∩Ba(2)(Q)‖ ≤ ‖χNa(Q)SχMc
a
(Q)‖HS ≤ C ′δλ/2a

because of (6.25). So the norm ‖χN (Q)SχF (Q)‖ can be made as small as we
wish by choosing r large enough.

Corollary 6.6 Let X = R
n, µ the Lebesgue measure, and L a uniformly discrete

subset of R
n. Then a pseudo-differential operator of class S0 on L2(X) is both

Fµ-quasilocal and FL-quasilocal.
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Proof: In the first case we use Proposition 6.4 by taking into account that a pseudo-
differential operator of class S0 belongs to B(Lp(X)) for all 1 < p < ∞ and
that the adjoint of such an operator is also pseudo-differential of class S 0. For
the second case, note that the distribution kernel of such an operator verifies the
estimates |S(x, y)| ≤ Ck|x− y|−n(1 + |x− y|)−k for any k > 0, see [Ho].

We shall consider now a general class of filters defined in terms of the metric
and measure space structure of the euclidean X . To each function ν : X →]0,∞[
such that lim infa→∞ ν(a) = 0 we associate a set of subsets of X as follows:

Nν = {N ⊂ X | lim sup
a→∞

ν(a)−1|N ∩Ba| <∞}. (6.26)

We recall thatBa is the unit ball centered at a. Clearly Fν = {F ⊂ X | F c ∈ Nν}
is a filter on X finner than the Fr échet filter. Our purpose is to give a criterion of
Fν-quasilocality. For this we make a preliminary remark concerning the class of
Cu(Q). We shall say that an operator S ∈ B(L2(X)) is of finite range if there is
r <∞ such that its distribution kernel satisfies S(x, y) = 0 for |x− y| > r.

Proposition 6.7 The set of linear continuous finite range operators on L2(X) is a
dense ∗-subalgebra of Cu(Q).

Proof: The fact that the set of finite range operators in B(L2(X)) is a ∗-algebra
is easy to check. We prove now that a finite range operator S ∈ B(L2(X)) is
of class Cu(Q). Let us denote Z = Z

n and for each a ∈ Z let Ka = a + K ,
where K =] − 1/2, 1/2]n , so that Ka is a unit cube centered at a and we have
X =

⋃
a∈Z Ka disjoint union. Let χa be the characteristic function of Ka and let

us abbreviate χa = χ(Q). If r is as above, we similarly define L =]−r−1, r+1]n,
La = a + L and denote ϕa the characteristic function of La. Note that there is a
number N such that any cube La intersects at most N other cubes Lb.

It suffices to prove that for each linear function ξ : X → R the commu-
tator [ξ(Q), S] is bounded, because this is equivalent to the fact that the map
k 7→ V ∗

k SVk is Lipschitz. We have
∑

u
χa = 1 strongly on L2 and [ξ(Q), S]χa =

ϕa[ξ(Q), S]χa due to the assumption concerning the range of S. Thus there is a
constant C depending only on N such that for u ∈ L2 with compact support:

‖[ξ(Q), S]u‖2 ≤ C
∑

‖ϕa[ξ(Q), S]χau‖2

= C
∑

‖ϕa[ξ(Q) − ξ(a), S]χa · χau‖2

≤ C
∑

C ′‖χau‖2 = CC ′‖u‖2

Now we shall prove that any operator of class Cu(Q) is a norm limit of finite
range operators and this in the more general setting of Hilbert X-modules. Let X
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be an abelian locally compact group and let H ,K be Hilbert X-modules. We fix
a Haar measure dk on X∗ and if S ∈ B(H ,K ) and Θ ∈ L1(X∗) we define

SΘ =

∫

X∗

V ∗
k SVkΘ(k)dk. (6.27)

The integral is well defined because k 7→ V∗
k SVk ∈ B(H ) is a bounded strongly

continuous map. In order to explain the main idea of the proof we shall make a
formal computation involving the spectral measure E(A) = χA(Q), see Lemmas
2.12 and 2.18 (we shall use the same notation for the spectral measures in H and
K ). We have for k ∈ X∗ and ϕ(Q) ∈ B(X)

ϕ(Q)V ∗
k = ϕ(Q)k(Q)∗ = (ϕk)(Q) =

∫
ϕ(x)k(x)E(dx).

Note also that for x, y ∈ X we have k(x)k(y) = k(−x)k(y) = k(y − x). Let
Θ̂(x) =

∫
k(x)Θ(k)dk be the Fourier transform of Θ. Then we have for all ϕ,ψ ∈

B(X):

ϕ(Q)SΘψ(Q) =

∫

X∗

Θ(k)dk

∫

X

∫

X
ϕ(x)k(x)k(y)ψ(y)E(dx)SE(dy)

=

∫

X

∫

X
Θ̂(x− y)ϕ(x)ψ(y)E(dx)SE(dy). (6.28)

We can rigorously justify this computation and give a meaning to the last integral
by taking into account that E(A)SE(B) induces a finitely additive measure on the
algebra generated by rectangles A × B in X × X (note that Θ̂ ∈ C0(X)). If S
is Hilbert-Schmidt then the measure is in fact σ-additive and the result becomes
obvious. We shall, however, avoid these questions and we shall directly prove only
what we need. Namely, we show the following:

(∗)
{

If the support of Θ̂ is a compact set Λ and if supp ϕ ∩ (Λ + supp ψ) = ∅

then ϕ(Q)SΘψ(Q) = 0.

Observe that if (∗) holds for a certain set of operators S then it also holds for the
strongly closed linear subspace of B(H ,K ) generated by it. So it suffices to
prove (∗) for S an operator of rank one Sf = v〈u, f〉 with some fixed u ∈ H and
v ∈ K . Now the computation giving (6.28) obviously makes sense in the weak
topology and gives for f ∈ H and g ∈ K :

〈g, ϕ(Q)SΘψ(Q)f〉 =

∫

X

∫

X
Θ̂(x− y)ϕ(x)ψ(y)〈g,E(dx)u〉〈u,E(dy)f〉,
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hence (∗) holds for such S.
Finally, note that if S ∈ Cu(Q) then S is norm limit of operators of the form

SΘ. For this it suffices to take Θ = |K|−1χK where K runs over the set of open
relatively compact neighbourhoods of the neutral element of X ∗, |K| being the
Haar measure of K . Then, by approximating conveniently Θ in L1 norm, one
shows that S is norm limit of operators SΘ such that Θ̂ has compact support.

Remark: This proposition gives a new proof of Proposition 2.23 for the case of
Hilbert X-modules. Indeed, it is obvious that a finite range operator is quasilocal.

Theorem 6.8 Let X = R
n and let ν : X →]0,∞[ such that lim infa→∞ ν(a) = 0

and sup|b−a|≤r ν(b)/ν(a) < ∞ for each real r. If S ∈ B(L2(X)) is of class
Cu(Q) and if S ∈ B(Lp(X)) for some p < 2, then S is right Fν-quasilocal.

Proof: We can approximate in norm in B(L2(X)) the operator S by operators
which are in B(L2(X)) ∩ B(Lp(X)) and have finite range. Indeed, the approxi-
mation procedure (6.27) used in the proof of Proposition 6.7 is such that it leaves
B(L2(X)) ∩ B(Lp(X)) invariant (because Vk are isometries in Lp too). Since the
set of right Fν-quasilocal operators is norm closed in B(L2(X)), we may assume
in the rest of the proof that S is of finite range. According to Lemma 6.1, it suffices
to show that, for a given Borel set N ∈ Nν and for any number ε > 0, there is a
Borel set M ∈ Nν such that ‖χMc(Q)SχN (Q)‖ < ε.

In the rest of the proof we shall freely use the notations introduced in the in the
second part of the Appendix (see also the proof of Proposition 6.7). In particular,
q is defined by 1

p = 1
2 + 1

q . If f ∈ L2(X) we have

‖χNf‖Lp(Ka) ≤ ‖χN‖Lq(Ka)‖f‖L2(Ka) ≤ |N ∩Ka|1/q‖f‖L2(Ka).

Since N ∈ Nν we can find a constant c such that |N ∩ Ka| ≤ cν(a) (note that
the definition (6.26) does not involve the restriction of ν to bounded sets). Thus,
if we take λa = ν(a)−1/q for a ∈ Z ≡ Z

n, we get χNf ∈ L with the notations
of the Appendix. In other terms, we see that we have χN (Q) ∈ B(L2(X),L ).
Let T = SχN (Q) and let us assume that we also have S ∈ B(L ). Then T ∈
B(L2(X),L ) and we can apply the Maurey type factorization theorem Theorem
A.8, where H = L2(X). Thus we can write T = g(Q)R for someR ∈ B(L2(X))
and some function g ∈ M , which means that G := supa∈Z ν(a)

−1/q‖g‖Lq(Ka) is
a finite number. If t > 0 and M = {x | g(x) > t} then we get for all a ∈ Z:

|M ∩Ka| = ‖χM‖qLq(Ka) ≤ ‖g/t‖qLq (Ka) ≤ (G/t)qν(a).

Note that the second condition imposed on ν in Theorem 6.8 ca be stated as fol-
lows: there is an increasing strictly positive function δ on [0,∞[ such that ν(b) ≤
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δ(|b−a|)ν(a) for all a, b. Indeed, we may take δ(r) = sup|b−a|≤r ν(b)/ν(a). Now
let a ∈ X and let D(a) be the set of b ∈ Z such that Kb intersects Ba. Clearly
D(a) contains at most 2n points b all of them satisfying |b− a| ≤ √

n+ 1. Hence:

|M ∩Ka| ≤
∑

b∈D(a)

|M ∩Kb| ≤ 2n sup
b∈D(a)

(G/t)qν(b) ≤ 2n(G/t)qδ(
√
n+1)ν(a),

which proves that M belongs to Nν . On the other hand, we have:

‖χMc(Q)T‖ = ‖χMc(Q)g(Q)R‖ ≤ ‖χMcg‖L∞‖R‖ ≤ t‖R‖.

To finish the proof of the theorem it suffices to take t = ε/‖R‖.
We still have to prove that S ∈ B(L ). Since S is of finite range, there is a

number r such that χa(Q)χb(Q) = 0 if |a− b| ≥ r. Then for any f ∈ L :
∑

a

λ2
a‖χaSf‖2

Lp =
∑

a

λ2
a‖

∑

|b−a|<r

χaSχbf‖2
Lp ≤ C

∑

|b−a|<r

λ2
a‖χaSχbf‖2

Lp

where C is a number depending only on r and n. Since S is bounded in Lp the last
term is less than CC ′

∑
|b−a|<r λ

2
a‖χbf‖2

Lp for some constant C ′. Finally, from
ν(b) ≤ δ(|b − a|)ν(a) ≤ δ(r)ν(a) we get

∑

|a−b|<r

λ2
a =

∑

|a−b|<r

ν(a)−2/q ≤ L(r)δ(r)2/qλ2
b

where L(r) is the maximum number of points from Z inside a ball of radius r.
Thus we have ‖S‖2

B(L ) ≤ CC ′L(r)δ(r)2/q .

Corollary 6.9 Let X = R
n and let S be a pseudo-differential operator of class

S0. Then S is Fw-quasilocal, i.e. for each ϕ ∈ Bw(X) there are ψ1, ψ2 ∈ Bw(X)
and T1, T2 ∈ B(L2(X)) such that ϕ(Q)S = T1ψ1(Q) and Sϕ(Q) = ψ2(Q)T2.

Proof: Since the adjoint of S is also a pseudo-differential operator of class S 0,
it suffices to show that S is right Fw-quasilocal. We have S ∈ B(Lp(X)) for all
1 < p <∞ and S is of class Cu(Q) because the commutators [Qj , S] are bounded
operators for all 1 ≤ j ≤ n. Thus we can apply Theorem 6.8 and deduce that
for any function ν as in the statement of the theorem, for any ε > 0, and for any
N ∈ Nν there is M ∈ Nν such that ‖χMc(Q)SχN (Q)‖ ≤ ε. Now let N be
a Borel w-small set, i.e. such that |N ∩ Ba| → 0 if a → ∞. We shall prove
that there is a function ν with the properties required in Theorem 6.8 and with
lima→∞ ν(a) = 0 such that N ∈ Nν . This finishes the proof of the corollary
because the relation M ∈ Nν implies now that M is w-small.
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We construct ν as follows. The relation θ(r) = sup|a|≥r |N ∩ Ba| defines a
positive decreasing function on [0,∞[ which tends to zero at infinity and such that
|N ∩ Ba| ≤ θ(|a|) for all a ∈ X . We set ξ(t) = θ(0) if 0 ≤ t < 1 and for k ≥ 0
integer and 2k ≤ t < 2k+1 we define ξ(t) = max{ξ(2k−1)/2, θ(2k)}. So ξ is a
strictly positive decreasing function on [0,∞[ which tends to zero at infinity and
such that θ ≤ ξ. Moreover, if 2k ≤ s < 2k+1 and 2k+p ≤ t < 2k+p+1 then

ξ(t) = ξ(2k+p) ≥ ξ(2k+p−1)/2 ≥ . . . ≥ 2−pξ(2k) = 2−pξ(s)

hence ξ(s) ≥ ξ(t) ≥ s
2tξ(s) if 1 ≤ s ≤ t. We take ν(a) = ξ(|a|), so ν is a bounded

strictly positive function on X with lima→∞ ν(a) = 0 and |N ∩ Ba| ≤ ν(a) for
all a. If a, b are points with |a|, |b| ≥ 1 and |a − b| ≤ r then ν(b)/ν(a) ≤ 1 if
|a| ≤ |b| and if |a| > |b| then

ν(b)

ν(a)
=
ξ(|b|)
ξ(|a|) ≤ 2|a|

|b| ≤ 2(1 + r).

Thus the second condition imposed on ν in Theorem 6.8 is also satisfied.

Remark 6.10 We stress that we shall need this corollary for a very simple class of
operators, namely S = ψ(P ) with ψ(k) = kα(

∑
|β|≤m k

2β)−1/2 and |α| ≤ m.

6.2 Applications

We shall give an application of the formalism presented in Subsection 6.1 in the
framework of Subsection 4.1. We consider on H the class of “vanishing at infin-
ity” functions corresponding to the C∗-algebra of multipliers Bw(X). The condi-
tions of decay at infinity (4.18) imposed in Proposition 4.1 come from the consid-
eration of H equipped with the Hilbert module structure defined by the algebra
B0(X). Note that if we equip H with the Hilbert module structure defined by
the algebra Bw(X) the property of compactness of the Friedrichs module (G ,H )
remains valid, cf. Lemma 6.2 and the space K inherits a natural direct sum Hilbert
module structure.

Our purpose is to apply Theorem 3.6 in this setting. The only thing which
remains to be checked is the left Fw-quasilocality of the operator D(∆∗

a − z̄)−1.
We shall establish such a result below assuming that the lower order coefficients
are also bounded operators, but it is clear that this assumption can be replaced by
much more general ones. Note also that in this subsection we are less precise and
identify the operators D∗aD and ∆a, although they act in different spaces.

In the next lemma we consider only the filter Fw. Of course, the result remains
true if Fw is replaced by Fµ or FL.
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Lemma 6.11 Let ∆a =
∑

|α|,|β|≤m P
αaαβP

β with aαβ ∈ B(H ) Fw-quasilocal
(e.g. aαβ ∈ B(X)) and let as assume that the operator ∆a : H m → H −m is
coercive, i.e. there are numbers µ, ν > 0 such that for all u ∈ H m:

Re 〈u,∆au〉 ≥ µ‖u‖2
H m − ν‖u‖2

H . (6.29)

Then Pα(∆a + z)−1 is Fw-quasilocal if |α| ≤ m and if Re z > 0 is large.

Proof: We shall denote by ∆ the operator ∆a corresponding to the case when a
is the identity matrix, so ∆ = D∗D =

∑
|α|≤m P

2α (of course, this is not the
Laplace operator). In fact, ∆ is the canonical (Riesz) positive isomorphism of G

onto G ∗ and (6.29) means Re ∆a ≥ µ∆ − ν. Note that we can include ν in the
term of order zero of ∆a, hence there is no loss of generality if we assume ν = 0.
Later computations look simpler if µ = 1 and we can reduce ourselves to this
situations by replacing a by a/µ. Thus we may assume that we have the estimate
Re ∆a ≥ ∆. Now let us decompose ∆a = ∆ + D∗(a − 1)D ≡ ∆ + V and, if
θ is a positive number, let us set Aθ = ∆ + θV . Then Aθ ∈ B(G ,G ∗) and we
have Re Aθ ≥ ∆, so that if Re z ≥ 0 then Aθ + z : G → G ∗ is bijective and
‖(Aθ + z)−1‖B(G ∗,G ) ≤ 1 (see the Appendix). It follows easily that the function
θ 7→ (Aθ + z)−1 ∈ B(G ∗,G ) is real analytic on ]0,∞[ which implies that the
function θ 7→ P α(Aθ+z)

−1 ∈ B(H ) is real analytic too. The set of Fw-quasilocal
operators is a closed subspace of the Banach space B(H ) and an analytic function
which on an open set takes values in a closed subspace remains in that subspace for
ever. Thus it suffices to how that the operator Pα(Aθ + z)−1 is Fw-quasilocal for
small values of θ. The operator P α(Aθ + z)−1 is also a holomorphic function of z
in the region Re z > 0, so by a similar argument we see that it suffices to consider
z ≥ 0. Below we shall take z = 0, the argument in general is identical.

For reasons of simplicity, we change again the notations: we set b = θ(a− 1),
we assume ‖b‖B(K ) < 1, and denote V = D∗bD andA = ∆+V . Let S = ∆−1/2,
where ∆ is considered as self-adjoint operator on H . Note that S is an isometry
of G ∗ onto H and of H onto G . Then we have:

A−1 = S(1 + SV S)−1S =
∑

k≥0

(−1)kS(SV S)kS

the series being norm convergent in B(G ∗,G ). Indeed, ‖DS‖B(H ,K ) = 1, hence

‖S(SV S)kS‖B(G ∗,G ) = ‖(SD∗bDS)k‖B(H ) ≤ ‖b‖kB(K )

and ‖b‖B(K ) < 1. Thus P αA−1 is a sum of terms P α(−1)kS(SV S)kS which
converges in norm, so it suffices that each of them be Fw-quasilocal. But

PαS(SV S)kS = (PαS)(SD∗)b(DS) . . . (SD∗)b(DS)S
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and each factor in the product is Fw-quasilocal: for b this is an hypothesis (or trivial
if the aαβ are functions), and for P αS, DS and SD∗ because of Corollary 6.9.

Below we give just an example of application of Theorem 3.6. The conditions
on the lower order coefficients can be improved without difficulty.

Theorem 6.12 Let ∆a be as in Lemma 6.11 and let b = (bαβ)|α|,|β|≤m with bαβ
bounded operators H m−|β| → H |α|−m such that ∆b is coercive. For |α|+ |β| =
m assume that bαβ−aαβ is left Fw-vanishing at infinity (which holds if bαβ−aαβ ∈
Bw(X)). If |α| + |β| < m we assume bαβ − aαβ ∈ K(H m−|β|,H |α|−m). Then
the operator ∆ is a compact perturbation of ∆a, in particular ∆a and ∆b have the
same essential spectrum.

Proof: We check the conditions of Theorem 3.6. Because of the coercivity as-
sumptions, condition (1) is fulfilled, and (2) is satisfied by Lemma 6.11. The part
of condition (3) involving the coefficients such that |α| + |β| = m) is satisfied by
definition, for the lower order coefficients it suffices to use (2.10).

Remark 6.13 If bαβ ∈ B(X) and bαβ − aαβ ∈ Bw(X) for all α, β, then the
compactness conditions on the lower order coefficients are satisfied. Indeed, if
ϕ ∈ Bw(X) then ϕ(Q) : H s → H −t is compact if s, t ≥ 0 and one of them is
not zero, see Lemma 6.2.

A Appendix

1. This Appendix consists of two parts: in the first one we discuss some elementary
abstract facts which are used without comment in the main text and in the second
one we present a Maurey type factorization theorem adapted to our needs.

Let (G ,H ) be a Friedrichs couple and G ⊂ H ⊂ G ∗ the Gelfand triplet
associated to it. To an operator S ∈ B(G ,G ∗) (which is the same as a continuous
sesquilinear form on G ) we associate an operator Ŝ acting in H according to the
rules: D(Ŝ) = S−1(H ), Ŝ = S|D(Ŝ). Due to the identification G∗∗ = G , the
operator S∗ is an element of B(G ,G ∗), so Ŝ∗ makes sense. On the other hand, if
Ŝ is densely defined in H then the adjoint Ŝ∗ of Ŝ with respect to H is also well
defined and we clearly have Ŝ∗ ⊂ Ŝ∗.

Lemma A.1 If S − z : G → G ∗ is bijective for some z ∈ C, then Ŝ is a closed
densely defined operator, we have Ŝ∗ = Ŝ∗ and z ∈ ρ(Ŝ). Moreover, the domains
D(Ŝ) and D(Ŝ∗) are dense subspaces of G .
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Proof: Clearly we can assume z = 0. From the bijectivity of S : G → G ∗ and
the inverse mapping theorem it follows that S and S∗ are homeomorphisms of G

onto G ∗. Since H is dense in G ∗, we see that D(Ŝ) and D(Ŝ∗) are dense in
G , hence in H . Since Ŝ∗ ⊂ Ŝ∗, the operator Ŝ∗ is also densely defined in H .
Thus Ŝ is densely defined and closable. We now show that it is closed. Consider
a sequence of elements un ∈ D(Ŝ) such that un → u and Ŝun → v in H . Then
Sun → v in G ∗ hence, S−1 being continuous, un → S−1v in G , so in H . Hence
u = S−1v ∈ D(Ŝ) and Ŝu = v.

We have proved that Ŝ is densely defined and closed and clearly 0 ∈ ρ(Ŝ).
Then we also have 0 ∈ ρ(Ŝ∗), so Ŝ∗ : D(Ŝ∗) → H is bijective. Since Ŝ∗ :

D(Ŝ∗) → H is also bijective and Ŝ∗ is an extension of Ŝ∗, we get Ŝ∗ = Ŝ∗.

A standard example of operator satisfying the condition required above is a
coercive operator, i.e. such that Re 〈u, Su〉 ≥ µ‖u‖2

G
− ν‖u‖2

H
for some strictly

positive constants µ, ν and all u ∈ G . Indeed, replacing S by S + ν, we may
assume Re 〈u, Su〉 ≥ µ‖u‖2

G
. Since S∗ verifies the same estimate, this clearly

gives ‖Su‖G ∗ ≥ µ‖u‖G and ‖S∗u‖G ∗ ≥ µ‖u‖G for all u ∈ G . Thus S and S∗

are injective operators with closed range, which implies that they are bijective.

If A is a self-adjoint operator on H then there is a natural Gelfand triplet
associated to it, namely D(|A|1/2) ⊂ H ⊂ D(|A|1/2)∗. Then A extends to a
continuous operator A0 : D(|A|1/2) → D(|A|1/2)∗ which fulfills the conditions
of Lemma A.1 and one has Â0 = A. In our applications it is interesting to know
whether there are other Gelfand triplets G ⊂ H ⊂ G ∗ with D(A) ⊂ G and
such that A extends to a continuous operator G → G ∗. For not semibounded
operators, e.g. for Dirac operators, many other possibilities exist such that G is not
comparable to D(|A|1/2). But if A is semibounded, then the class of spaces G is
rather restricted, as the next lemma shows.

Lemma A.2 Assume that A is a bounded from below self-adjoint operator on H

and such that D(A) ⊂ G densely. Then A extends to a continuous operator Ã :
G → G ∗ if and only if G ⊂ D(|A|1/2) and in this case Ã = A0|G .

Proof: We prove only the nontrivial implication of the lemma. So let us assume
that A extends to some Ã ∈ B(G ,G ∗). Replacing A by A + λ with λ a large
enough number, we can assume that A ≥ 1. For u ∈ D(A) we have

‖A1/2u‖H =
√
〈u,Au〉 =

√
〈u, Ãu〉 ≤ C‖u‖G ,

where C2 = ‖Ã‖G→G ∗ . Since D(A) is dense in G , it follows that the inclusion
map D(A) → D(A1/2) extends to a continuous linear map J : G → D(A1/2).
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If u ∈ G then there is a sequence {un} in D(A) such that un → u in G . Then
J(un) → J(u) in D(A1/2). Since G and D(A1/2) are continuously embedded in
H we shall have un → u in H and un = J(un) → J(u) in H , hence J(u) = u
for all u ∈ G . In other terms, G ⊂ D(A1/2).

We note that, under the conditions of the lemma, the inclusions D(A) ⊂ G and
G ⊂ D(|A|1/2) are continuous (by the closed graph theorem), so we have a scale

D(A) ⊂ G ⊂ D(|A|1/2) ⊂ H ⊂ D(|A|1/2)∗ ⊂ G
∗ ⊂ D(A)∗

with continuous and dense embeddings (because D(A) is dense in D(|A|1/2)).
In view of its importance in this paper, we state below the Cohen-Hewitt fac-

torization theorem [FD, Ch. V–9.2].

Theorem A.3 Let C be a Banach algebra with an approximate unit, let H be a
Banach space, and let Q : C → B(H ) be a continuous morphism. Denote H0

the closed linear subspace of H generated by the elements of the form Q(ϕ)v with
ϕ ∈ C and v ∈ H . Then for each u ∈ H0 there are ϕ ∈ C and v ∈ H such that
u = Q(ϕ)v.

2. In this second part of the appendix we shall prove a version of the factorization
theorem due to Bernard Maurey (see the proof of Proposition 6.4 here and Theorem
8 in [Ma]). Our proof follows closely that of Maurey; we shall, however, give all
the details, since the Banach space techniques involved in it are not very usual in
the context of spectral theory. We first recall the Ky Fan’s Lemma, see [DJT, 9.10].

Proposition A.4 Let K be a compact convex subset of a Hausdorff topological
vector space and let F be a convex set of functions F : K →] − ∞,+∞] such
that each F ∈ F is convex and lower semicontinuous. If for each F ∈ F there is
g ∈ K such that F (g) ≤ 0, then there is g ∈ K such that F (g) ≤ 0 for all F ∈ F .

We need a second general fact that we state below. Let (X,µ) be a σ-finite
positive measure space and let L0(X) be the space of µ-equivalence classes of
complex valued measurable functions on X with the topology of convergence in
measure. Let L be a Banach space with L ⊂ L0(X) linearly and continuously
and such that if f ∈ L0(X), g ∈ L and |f | ≤ |g| (µ-a.e.) then f ∈ L and
‖f‖L ≤ ‖g‖L .

Proposition A.5 There is a numberC , independent of L , such that for any Hilbert
space H and any T ∈ B(H ,L ) the following inequality holds

‖(∑j|Tuj |2)1/2‖L ≤ C‖T‖B(H ,L )(
∑

j‖uj‖2)1/2 (1.30)

for all finite families {uj} of vectors in H .
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This a rather standard consequence of Khinchin’s inequality [DJT, 1.10]. The
result is stated in [Pi] with an explicit value for C .

From now on we work in a setting adapted to our needs in Section 6, although
it is clear that we could treat by the same methods a general abstract situation. Let
X = Rn equipped with the Lebesgue measure, denote Z = Zn, and for each a ∈ Z
let Ka = a +K , where K =] − 1/2, 1/2]n , so that Ka is a unit cube centered at
a and we have X =

⋃
a∈Z Ka disjoint union. Let χa be the characteristic function

of Ka and if f : X → C let fa = f |Ka. We fix a number 1 < p < 2 and a family
{λa}a∈Z of strictly positive numbers λa > 0 and we define L ≡ 2̀

λ(L
p) as the

Banach space of all (equivalence classes) of complex functions f on X such that

‖f‖L :=
( ∑

a∈Z

‖λaχaf‖2
Lp

)1/2
<∞. (1.31)

Here Lp = Lp(X) but note that, by identifying χaf ≡ fa, we can also interpret L

as a conveniently normed direct sum of the spaces Lp(Ka), see [DJT, page XIV].
If λa = 1 for all a we set `2λ(L

p) = `2(Lp). Observe that `2(L2) = L2(X).
Let q be given by 1

p = 1
2 + 1

q , so that 1 < p < 2 < q < ∞. We also need the
space M ≡ `∞λ (Lq) defined by the condition

‖g‖M := sup
a∈Z

‖λaχag‖Lq <∞. (1.32)

The definitions are chosen such that ‖gu‖L ≤ ‖g‖M ‖u‖L2 where L2 = L2(X).
As explained at [DJT, page XV], the space M is naturally identified with the dual
space of the Banach space M∗ ≡ `1λ−1(L

q′), where 1
q + 1

q′ = 1, defined by the
norm

‖h‖M∗ :=
∑

a∈Z

‖λ−1
a
χah‖Lq′ .

Below, when we speak about w∗-topology on M we mean the σ(M ,M∗)-topology.
Clearly

M
+
1 = {g ∈ M | g ≥ 0, ‖g‖M ≤ 1}

is a convex compact subset of M for the w∗-topology.

Lemma A.6 For each f ∈ L there is g ∈ M
+
1 such that ‖f‖L = ‖g−1f‖L2 .

Proof: We can assume f ≥ 0. Since 1 = p
2 + p

q , we have:

‖fa‖Lp = ‖fa‖p/2Lp ‖fa‖p/qLp = ‖fp/2a ‖L2‖fp/qa ‖Lq = ‖f−p/qa f‖L2‖fp/qa ‖Lq
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with the usual convention 0/0 = 0. Now we define ga on Ka as follows. If fa = 0
then we take any ga ≥ 0 satisfying λa‖ga‖Lq = 1. If fa 6= 0 let

ga = λ−1
a

(
fa/‖fa‖Lp

)p/q
= λ−1

a ‖fp/qa ‖−1
Lq f

p/q
a .

Thus we have λa‖ga‖Lq = 1 for all a, in particular ‖g‖M = 1. By the preceding
computations we also have ‖fa‖Lp = ‖g−1

a fa‖L2‖ga‖Lq and so

‖f‖2
L =

∑
λ2
a‖fa‖2

Lp =
∑

λ2
a‖ga‖2

Lq‖g−1
a fa‖2

L2 =
∑

‖g−1
a fa‖2

L2

which is just ‖g−1f‖2
L2 .

The main technical result follows.

Proposition A.7 Let (fu)u∈U be a family of functions in L such that, for each
α = (αu)u∈U with αu ∈ R, αu ≥ 0 and αu 6= 0 for at most a finite number of u,
the function fα := (

∑
u |αufu|2)1/2 satisfies ‖fα‖L ≤ ‖α‖`2(U). Then there is

g ∈ M
+
1 such that ‖g−1fu‖L2 ≤ 1 for all u ∈ U .

Proof: For each α as in the statement of the proposition we define a function
Fα : M

+
1 →] −∞,+∞] as follows:

Fα(g) = ‖g−1fα‖2
L2 − ‖α‖2

`2(U) =
∑

u

α2
u

(
‖g−1fu‖2

L2 − 1
)
.

Our purpose is to apply Proposition A.4 with K = M
+
1 equipped with the w∗-

topology and F equal to the set of all functions Fα defined above. We saw before
that K is a convex compact set. From the second representation of Fα given
above it follows that F is a convex set. Each Fα is a convex function because
‖g−1fα‖2

L2 =
∫
g−2(fα)2dx and the map t 7→ t−2 is convex on [0,∞[. We shall

prove in a moment that Fα is lower semicontinuous. From Lemma A.6 it follws
that there is gα ∈ K such that ‖fα‖L = ‖g−1

α fα‖L2 . Then by our assumptions
we have

Fα(gα) = ‖fα‖2
L − ‖α‖2

`2(U) ≤ 0.

From Ky Fan’s Lemma it follows that one can choose g ∈ K such that Fα(g) ≤ 0
for all α, which finishes the proof of the proposition.

It remains to show the lower semicontinuity of Fα. For this it suffices to prove
that g 7→ ‖g−1f‖2

L2 ∈ [0,∞] is lower semicontinuous on K if f ∈ L , f ≥ 0.
But

‖g−1f‖2
L2 =

∑

a

∫

Ka

g−2
a f2

adx
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and the set of lower semicontinuous functions K → [0,∞] is stable under sums
and upper bounds of arbitrary families. Hence it suffices to prove that each map
g 7→

∫
Ka
g−2
a f2

adx is lower semicontinuous. This map can be written as a com-
position φ ◦ Ja where Ja : M → Lq(Ka) is the restriction map Jag = ga and
φ : Lq(Ka) → [0,∞] is defined by φ(θ) =

∫
Ka
θ−2f2

adx. The map Ja is con-
tinuous if we equip Lq(Ka) with the weak topology and M with the w∗-topology
because it is the adjoint of the norm continuous map Lq

′
(Ka) → M∗ which sends

u into the function equal to u on Ka and 0 elsewhere. Thus it suffices to show that
φ is lower semicontinuous on the positive part of Lq(Ka) equipped with the weak
topology and for this we can use exactly the same argument as Maurey. We must
prove that the set {θ ∈ Lq(Ka) | θ ≥ 0, φ(θ) ≤ r} is weakly closed for each real
r. Since φ is convex, this set is convex, so it suffices to show that it is norm closed.
But this is clear by the Fatou Lemma.

Theorem A.8 Let H be a Hilbert space and T : H → L a linear continuous
map. Then there exist a linear continuous map R : H → L2(X) and a positive
function g ∈ M such that T = g(Q)R.

Proof: Let U be the unit ball of H and for each u ∈ U let f u = Tu. From
Proposition A.5 we get

‖fα‖L = ‖(∑u|T (αuu)|2)1/2‖L ≤ A(
∑

u‖αuu‖2)1/2 ≤ A(
∑

u|αu|2)1/2

where A = C‖T‖B(H ,L ). Since there is no loss of generality in assuming A ≤ 1,
we see that the assumptions of Proposition A.7 are satisfied. So there is g ∈ M

+
1

such that ‖g−1Tu‖L2(X) ≤ 1 for all u ∈ U . Thus it suffices to define R by the rule
Ru = g−1Tu for all u ∈ H .
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