

ANNÉE UNIVERSITAIRE 2008 /2009 Première Session d'Automne

ETAPE: L2

UE MHT302

Épreuve Analyse 2

Date: 23 Décembre 2008

Heure : 8 Heure 30 Durée : 3 Heures

Épreuve de Monsieur: Charpentier Philippe

Tous Documents Interdits

Exercice I

Soit f la fonction définie sur \mathbb{R}^2 par la formule

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

- I. Montrer que f est continue sur \mathbb{R}^2 .
- 2. Montrer que f est de classe \mathscr{C}^{∞} sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 3. Calculer explicitement $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$ en tout point (x,y) de \mathbb{R}^2 (distinguer les cas $(x,y) \neq (0,0)$ et (x,y) = (0,0)).
- 4. Montrer que f est différentiable en tout point de \mathbb{R}^2 et que $(x,y) \mapsto df_{(x,y)}$ est continue de \mathbb{R}^2 dans $\mathscr{L}(\mathbb{R}^2;\mathbb{R})$.
- 5. Montrer que $\frac{\partial f}{\partial x}$ (resp. $\frac{\partial f}{\partial y}$) a une dérivée partielle $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ (resp. $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$) au point (0,0) puis en tout point de \mathbb{R}^2 .
- 6. Que peut-on dire de la continuité des fonctions $(x,y) \mapsto \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ et $(x,y) \mapsto \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$? (justifier la réponse)

Exercice II

Soit f la fonction, définie sur \mathbb{R}^2 par $f(x,y) = x^2 + y^2 + (ax + by + c)^2$, où a, b, c sont des paramètres réels.

- I. Étudier, suivant les valeurs des paramètres, l'existence d'extrema locaux pour f.
- 2. La fonction f possède-t-elle des extrema globaux (étudier le comportement de f lorsque ||(x,y)|| tends vers $+\infty$)? Si oui trouver leurs natures et leurs valeurs.

Exercice III

Le but de cet exercice est de chercher les fonctions f de classe \mathscr{C}^1 sur $]0,+\infty[\times\mathbb{R}$ solutions de l'équation (E) suivante :

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = \frac{y}{x}, \quad (x,y) \in]0, +\infty[\times \mathbb{R}$$
 (E)

1. Vérifier que la fonction

$$f_0(x,y) = \frac{y}{x} (1 + \ln x), \quad (x,y) \in]0, +\infty[\times \mathbb{R},$$

satisfait à l'équation (E).

- 2. Soit maintenant f une solution quelconque de (E) sur $]0,+\infty[\times\mathbb{R}$ de classe \mathscr{C}^1 . Soit g la fonction de classe \mathscr{C}^1 sur $]0,+\infty[\times\mathbb{R}$ définie par g(u,v)=f(u,uv).
 - (a) Calculer $\frac{\partial g}{\partial u}$ et $\frac{\partial g}{\partial v}$ en fonction des dérivées partielles de f.
 - (b) Montrer (en utilisant que f vérifie (E)) que

$$u\frac{\partial g}{\partial u}(u,v) = v, \quad (u,v) \in]0, +\infty[\times \mathbb{R}.$$

- (c) En déduire qu'il existe une fonction $h: \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^1 telle que $g(u,v) = v \ln u + h(v), (u,v) \in]0, +\infty[\times \mathbb{R}]$.
- (d) En déduire la forme générale des fonctions f de classe \mathscr{C}^1 sur $]0,+\infty[\times\mathbb{R}$ vérifiant l'équation (E).

Exercice IV

Soit $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré n à coefficients réels. Pour $a=(a_0,a_1,\ldots,a_n)\in\mathbb{R}^{n+1}$, on note P_a le polynôme de $\mathbb{R}_n[X]$ défini par $P_a(X)=\sum_{i=0}^n a_i X^i$.

- 1. Montrer que l'application $a \mapsto P_a$ est linéaire.
- 2. En utilisant l'inégalité de Cauchy-Schwarz, montrer que, pour $t \in [0,1], |P_a(t)| \le \sqrt{n+1} \|a\|$, où $\|a\|$ désigne la norme euclidienne de a.
- 3. Soit $f: \mathbb{R}^{n+1} \to \mathbb{R}$ la fonction définie par

$$f(a) = \int_0^1 \sin(P_a(t)) dt.$$

4. En appliquant la formule de Taylor-Lagrange à la fonction sin, montrer que, pour tous $a \in \mathbb{R}^{n+1}$ et $h \in \mathbb{R}^{n+1}$, on a

$$f(a+h) = f(a) + \int_0^1 P_h(t) \cos(P_a(t)) dt - \int_0^1 \frac{(P_h(t))^2}{2} \sin(P_a(t) + \vartheta(t)P_h(t)) dt,$$

où $t \mapsto \vartheta(t)$ est une fonction de]0,1[dans]0,1[.

5. En déduire que f est différentiable en tout point de \mathbb{R}^{n+1} et donner l'expression de la différentielle df_a de f en un point a.