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Abstract. We examine the wave equation in the exterior of a strictly convex

bounded domain K with dissipative boundary condition ∂νu − γ(x)∂tu = 0

on the boundary Γ and 0 < γ(x) < 1, ∀x ∈ Γ. The solutions are described by
a contraction semigroup V (t) = etG, t ≥ 0. The poles λ of the meromorphic

incoming resolvent (G−λ)−1 : Hcomp → Dloc are eigenvalues of G if Reλ < 0
and incoming resonances if Reλ > 0. We obtain sharper results for the location

of the eigenvalues of G and incoming resonances in Λ = {λ ∈ C : |Reλ| ≤
C2(1 + | Imλ|)−2, | Imλ| ≥ A2 > 1} and we prove a Weyl formula for their
asymptotic. For K = {x ∈ R3 : |x| ≤ 1} and γ constant we show that G has

no eigenvalues so the Weyl formula concerns only the incoming resonances.
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1. Introduction

Let K ⊂ Rd, d ≥ 3, d odd, be a bounded non-empty domain with C∞ strictly
convex boundary Γ. Let Ω = Rd \ K̄ be connected and K ⊂ {x ∈ Rd : |x| < ρ0}.
Consider the boundary problem

utt −∆xu = 0 in R+
t × Ω,

∂νu− γ(x)∂tu = 0 on R+
t × Γ,

u(0, x) = f1, ut(0, x) = f2

(1.1)

with initial data (f1, f2) ∈ H = H1(Ω) × L2(Ω). Here ν(x) is the unit outward
normal at x ∈ Γ pointing into Ω and γ(x) > 0 is a C∞ function on Γ. The solution
of the problem (1.1) has the form V (t)f = etGf, t ≥ 0, where V (t) is a contraction
semi-group in H with generator

G =
(

0 1
∆ 0

)
.

The operator G has domain D given by the closure in the graph norm

|‖f‖| = (‖f‖2H + ‖Gf‖2H)1/2

of functions f = (f1, f2) ∈ C∞(0)(R
d) × C∞(0)(R

d) satisfying the boundary condition

∂νf1 − γf2 = 0 on Γ. It is well known that the point spectrum σp(G) of G in
C− = {z ∈ C : Re z < 0} is formed by isolated eigenvalues with finite multiplicity,
σp(G) ∩ iR = ∅ and G has continuous spectrum σc(G) = iR (see Section 8, [7]).
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Notice that if Gf = λf with 0 6= f ∈ D, Reλ < 0, we have{
(∆− λ2)f1 = 0 in Ω,

∂νf1 − λγf1 = 0 on Γ
(1.2)

and u(t, x) = V (t)f = eλtf(x) is a solution of (1.1) with exponentially decreasing
global energy. Such solutions are called asymptotically disappearing and their
existence is important for the inverse scattering problems. We refer to [11], [12],
[13] for a description of the relation of asymptotically disappearing solutions to
scattering theory. On the other hand, a solution u(t, x) of (1.1) is called disap-
pearing if there exists T > 0 such that u(t, x) ≡ 0 for t ≥ T. The existence of a
such solution implies that the space

H(T ) = {u(t, x) : u(t, x) ≡ 0 for t ≥ T}

is infinite dimensional. Majda [8] proved that in the case 0 ≤ γ(x) < 1,∀x ∈ Γ and
C∞ boundary Γ and in the case γ(x) > 1,∀x ∈ Γ and real analytic boundary Γ
there are no disappearing solutions.

Let S (z) : L2(Sd−1) → L2(Sd−1) be the scattering operator defined in Section
3, [7] for d odd. The existence of z0, Im z0 > 0, such that KerS (z0) 6= {0}
implies that iz0 ∈ σp(G) (see Theorem 5.6 in [7]). Consequently, if σp(G) = ∅, the
operator S (z) has trivial kernel at all regular points of S (z) with Im z ≥ 0. (The
same property holds for the scattering operators related to Dirichlet and Neumann
problems since S −1(z) = S ∗(z̄) for these problems, provided that S −1(z) exists).
In [7] the energy space H was decomposed with three orthogonal parts

H = Da
− ⊕Ka ⊕Da

+, a > ρ0

(see Section 2 in [7] for the definition of Da
±, K

a). A function f ∈ H is incoming
(resp. outgoing) if its component in Da

+ (resp. Da
−) vanishes. It is easy to see that

if f is an eigenfunction of G, then f is incoming and the solution u(t, x) = V (t)f
remains incoming for all t ≥ 0. This leads to difficulties in the inverse scattering
problems.

The location in C− of the eigenvalues of G has been studied in [11] improving
previous results of Majda [9]. It was proved in [11] that if K is the unit ball
B3 = {x ∈ R3 : |x| ≤ 1} and γ ≡ 1, the operator G has no eigenvalues. For this
reason we study the cases

(A) : max
x∈Γ

γ(x) < 1, (B) : min
x∈Γ

γ(x) > 1.

The case (B) has been examined in [11] and it was proved that for every 0 <
ε� 1 and every N ∈ N, N ≥ 1 the eigenvalues lie in Λε ∪RN , where

Λε = {z ∈ C : |Re z| ≤ Cε(1 + | Im z|1/2+ε), Re z < 0},

RN = {z ∈ C : | Im z| ≤ AN (1 + |Re z|)−N , Re z < 0}.
Moreover, it was shown in [11] that for strictly convex obstacles K there exists
R0 > 0 such that the eigenvalues lie in {z ∈ C : |z| ≤ R0, Re z < 0} ∪ RN . Next,
for obstacles with arbitrary geometry a Weyl formula for the asymptotic of the
eigenvalues lying in

R = {λ ∈ C : | Imλ| ≤ C1(1 + |Reλ|)−2, Reλ ≤ −C0 ≤ −1}
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has been established in [12]. This formula has the form

]{λj ∈ σp(G) ∩R : |λj | ≤ r, r ≥ Cγ}

=
ωd−1

(2π)d−1

(∫
Γ

(γ2(x)− 1)(d−1)/2dSx

)
rd−1 +Oγ(rd−2), r →∞,

ωd−1 being the volume of the unit ball {x ∈ Rd−1 : |x| ≤ 1}. A similar result for
the Maxwell system with dissipative boundary conditions and γ(x) 6= 1,∀x ∈ Γ,
has been proved in [13].

It is important to note that in the case (B) the properties of the exterior Dirichlet-
to Neumann operator only in the elliptic region E are important (see Section 3 for
the definition the hyperbolic, glancing and elliptic regions H , G , E , respectively).
Our analysis in [12] has similarity with that in [14], where the operator on the
boundary is not invertible in some manifold included in the elliptic region. This
phenomenon creates Rayleigh resonances for elasticity operator.

The analysis of the case (A) is more difficult and only some results for the
location of eigenvalues are known. In [11] the previous result of Majda [9] has been
improved and it was shown that the eigenvalues of G for every 0 < ε � 1 are
included in the region Λε. By using the results in [18], it is possible to improve the
eigenvalue free regions replacing Λε by {z ∈ C : −A0 ≤ Re z < 0} with sufficiently
large A0 > 0. The same eigenvalues free region for strictly convex obstacles K and
d = 3 can be obtained from Theorems 2.1 and 2.2 in [4].

The eigenvalues in the half plane C− are the poles of the meromorphic incoming
resolvent (G−λ)−1 : H → D (see Section 2 for the definition of incoming/outgoing
solutions) and the eigenfunctions are incoming (see the analysis in Chapter IV, [7]).
Since G has continuous spectrum on iR, it is convenient to extend the incoming
resolvent. Let RD(λ) = (−∆D + λ2)−1 : L2(Ω) → D be the incoming resolvent
of the Dirichlet Laplacian with domain D which is analytic in C−. The resolvent
RD(λ) : L2(Ω)comp → Dloc has a meromorphic continuation in C. The same is
true for the incoming resolvent related to Neumann problem. These properties
make possible to extend the incoming resolvent (G − λ)−1 : Hcomp → Dloc from
C− to C as meromorphic function (see Section 2). The poles of this continuation
in C+ = {z ∈ C : Re z > 0} are called incoming resonances and noted by Res (G).
If we consider the outgoing resolvent (G − λ)−1 : H → D which is analytic for
Reλ > 0, we obtain the outgoing resonances as the poles of the meromorphic
continuation of the outgoing resolvent (G− λ)−1 : Hcomp → Dloc for λ ∈ C. These
outgoing resonances and the corresponding outgoing eigenvectors have been studied
in Section 5, [7]. Moreover, z ∈ C− is outgoing resonance if and only if −iz is a
pole of the scattering operator S (z) (see Lemma 5.2 and Lemma 5.4 in [7]).

Clearly,

((G− λ)−1)∗ = (G∗ − λ̄)−1 = −(−G∗ − (−λ̄))−1,

where G∗ =
( 0 −1
−∆ 0

)
is the adjoint operator with domain D∗ determined by the

boundary condition ∂νf1 + γ(x)f2 = 0 on Γ. For for γ(x) 6= 0 we obtain G 6= −G∗
and if w is an incoming resonance with resonance state f , then −w̄ is not an
outgoing resonance with resonance state f̄ . The incoming resolvent (G − λ)−1 for
Reλ ≤ −C0 � −1 is related to the problem (1.1) in R−t ×Ω, while the outgoing one
is related to (1.1). Changing the time t = −s, the problem in R−t ×Ω is transformed
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in 
utt −∆xu = 0 in R+

t × Ω,

∂νu+ γ(x)∂tu = 0 on R+
t × Γ,

u(0, x) = f1, ut(0, x) = f2.

(1.3)

The above problem for 0 < γ(x) is not L2 well posed (see for instance, Theorem
1 and Corollary 1 in [9]), while for 0 < γ(x) < 1 the problem (1.3) is C∞ well
posed with loss of regularity (see [4], [5]). This leads to difficulties if we wish to
develop a scattering theory related to (1.3) and to obtain a relation of the incoming
resonances with the poles of a suitable scattering operator.

Let c0 = minx∈Γ γ(x), c1 = maxx∈Γ γ(x). Introduce the set

Λ := {z ∈ C : |Re z| ≤ C2(1 + |Im z|)−2, |Im z| ≥ A2 > 1}.
In this paper we obtain sharper results for the location of eigenvalues and incoming
resonances for strictly convex obstacles. Our first result is the following

Theorem 1.1. Let K be strictly convex obstacle and let 0 < γ(x) < 1, ∀x ∈ Γ.
There exists R0 > 0 and A2 � 1 depending on c0 and c1 such that for every
N ∈ N, N ≥ 1, the eigenvalues of G are located in the region(

{z ∈ C : |z| ≤ R0} ∪ QN
)
∩ {Re z < 0},

where
QN = {z ∈ C : |Re z| ≤ BN (1 + | Im z|)−N , | Im z| ≥ A2}.

Moreover, the incoming resonances lying in Λ are located in(
{z ∈ C : |z| ≤ R0} ∪ QN

)
∩ {Re z > 0}.

The constants R0, A2 are very large. In particular, in Section 4 we show that we
must take

A2 ≥
1

min
{
c20,

√
1−c21
2

} ,
hence A2 ↗ +∞ when either c0 ↘ 0 or c1 ↗ 1. This is natural since for Neumann
problem (γ ≡ 0) we have no eigenvalues of G and all incoming resonances are in
a half plane {Re z > a > 0}, while for the ball B3 = {x ∈ R3, |x| ≤ 1} and
γ ≡ 1 there are no eigenvalues. The above theorem is similar to Theorem 2.1 in
[11] concerning the case γ(x) > 1, ∀x ∈ Γ. On the other hand, for the ball B3 and
0 < γ < 1, γ ≡ const in Appendix we show that σp(G) = ∅. We conjecture that the
same is true for 0 < γ(x) < 1, ∀x ∈ Γ and strictly convex obstacles K and hope to
study this question in a further work. The statement of Theorem 1.1 concerns only
the incoming resonances z ∈ Λ and the distribution of the these resonances outside
Λ is an open problem.

To study the distribution of eigenvalues and incoming resonances we generalise
in Proposition 2.2 the result in [11] and prove a trace formula involving extended
incoming resolvent (G − λ)−1 : Hcomp → Dloc and integration over curves inter-
secting the imaginary axis. Define the multiplicity of an eigenvalue or incoming
resonance λ by

mult(λ) = tr
1

2πi

∫
|z−λ|=ε

(λ−G)−1dz,

where 0 < ε� 1 is sufficiently small. In this paper we establish a Weyl asymptotic
for the eigenvalues and incoming resonances in Λ.
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Theorem 1.2. Let K be strictly convex and let 0 < γ(x) < 1, ∀x ∈ Γ. Then the
counting function of the eigenvalues and incoming resonances of G lying in Λ and
taken with their multiplicities has the asymptotic

]{λj ∈ (σp(G) ∪ Res (G)) ∩ Λ, |λj | ≤ r, r ≥ Cγ}

=
2ωd−1

(2π)d−1

(∫
Γ

(1− γ2(x))(d−1)/2dSx

)
rd−1 +Oγ(rd−2), r →∞, (1.4)

ωd−1 being the volume of the unit ball {x ∈ Rd−1 : |x| ≤ 1}.
The constant Cγ depends on γ and Cγ ↗ +∞ when either c0 ↘ 0 or c1 ↗ 1. The

eigenvalues and incoming resonances are symmetric with respect to real axis and
this explains the factor 2 in (1.4). If the conjecture for the absence of eigenvalues of
G is true, the asymptotic (1.4) will concern only the incoming resonances. In this
direction our result will be similar to that in [14] dealing with Weyl asymptotic of
Rayleigh resonances. In particular, for the ball B3 and γ constant (1.4) implies the
existence of incoming resonances lying in a small neighborhood of the imaginary
axis. The location of the outgoing resonances is different and it is possible to
show that for non trapping obstacles the outgoing resonances in C− are in a region
bounded by logarithmic curves. The operator iG is not self adjoint but the proof of
Theorem 4.43 in [2] can be modified to cover this case by using the representation
of the outgoing resolvent

(G− λ)−1 = −
∫ ∞

0

e−λtV (t)dt, Reλ > 0.

The existence of incoming resonances zj with Re zj ↘ 0 is related to the loss of
exponential decay of the solutions of (1.3). Ikawa [5] studied the exponential decay
for the problem (1.3) with boundary condition

∂νu+ γ(x)∂tu+ d(x)u = 0 on R+
t × Γ,

assuming γ(x) < 1 and d(x) ≤ −d0 < 0, ∀x ∈ Γ with large d0 > 0. In our case we
have d(x) ≡ 0 and the existence of incoming resonances close to iR for B3 implies
that a such decay of solutions is not possible. It is interesting to study this open
problem for general strictly convex obstacles.

Our approach is based on the following ideas. The behaviour of the exterior
Dirichlet-to-Neumann operator N(λ), λ ∈ Λ for ∆ − λ2 in the hyperbolic region
H is crucial for our analysis (see section 2 for the definition of N(λ)). Setting

λ = i
√
z
h , 0 < h � 1, we are going to study the Dirichlet problem (2.12) and

the corresponding semi-classical Dirichlet-to-Neumann operator N (z, h) for z =
1 + iIm z and −ch| log h| ≤ Im z ≤ hε, c > 0 (see Section 2). A semi-classical
parametrix for N (z, h) and |Im z| ≤ h2/3 has been constructed in [15]. We need a
more precise information for the parametrix in H and for this purpose we present
in subsection 3.1 a construction similar to that in Section 4, [20]. The trace formula
(2.7) can be transformed into (2.9) with integration with respect to complex semi-

classical parameter h̃ = i
λ , 0 < Re h̃ � 1. For the analysis in Sections 5 and 6 we

need a parametrix T̃N (h̃) for the operator Ñ (h̃) related to the problem (3.14) in

H which depends holomorphically of h̃ ∈ L. Here

L = {h̃ ∈ C : |Im h̃| ≤ C0|h̃|2, 0 < Re h̃ ≤ h0}.
To do this, we make another construction in subsection 3.2 following that in Ap-
pendix A.2 in [16].
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The location of eigenvalues and incoming resonances in Λ is studied in Section
4. The idea is to prove that the eigenfunction or resonances states are supported
in the hyperbolic region H . The proof is technically complicated. An eigenfunc-
tion/incoming resonance state f of G satisfies the equation

(N(z, h)−
√
zγ(x))f = 0. (1.5)

We use a microlocal partition of unity f = Q−δ f + Q0
δf + Q+

δ f with h-pseudo-

differential operators Q+
δ , Q

−
δ , Q

0
δ having symbols supported in the regions E ,H , G ,

respectively. Here 0 < δ � c20 depends of c0. By using (1.5) and the parametrix

for N (z, h)Q+
δ and N (z, h)Q

(0)
δ constructed in [18], [20], [21], [15], we show in sub-

sections 4.1 and 4.2 that for small δ and h we have Q+
δ f = Q0

δf = 0. This makes

possible to reduce (1.5) to (N(z, h) −
√
zγ(x))Q−δ f = 0. For the last equation we

exploit the equality Im ((N (1, h) − γ)Q−δ f,Q
−
δ f) = 0 and apply a Taylor expan-

sion with respect to Im z combined with the approximation of N (z, h)Q−δ by the

parametrix TN (z, h)Q−δ constructed in subsection 3.1. Our argument is similar to
that used in [18], [11] for the eigenvalues free regions created by the characteristic
set of N(z, h)−

√
zγ(x) in E .

To obtain a Weyl formula, we are inspired by the strategy in [14] (see also
[12], [13]). To do this, in Section 5 we introduce a suitable self-adjoint operator
P (h), 0 < h ≤ h0, and study the eigenvalues of P (h). We extend P (h) as an

operator P (h̃) which is holomorphic with respect to h̃ ∈ L with Re h̃ = h. For this

purpose we modify outside H the parametrix −T̃N (h̃) constructed in subsection

3.2 and holomorphic of h̃ ∈ L and consider

P (h̃) := −T̃N (h̃)Ã0(h̃) + γ(x) + (Id− Ã0(h̃))Op
(√

1 + h̃2r0

)
.

Here the operator Ã0(h̃) is chosen to be holomorphic in L and for Re h̃ = h the
classical principal symbol of P (h) becomes

p1 = −
√

1− h2r0(x′, ξ′)(1−β(h2r0(x′, ξ′))+γ(x′)+β(h2r0(x′, ξ′))
√

1 + h2r0(x′, ξ′),

where r0(x′, ξ′) is the principal symbol of the Laplace-Beltrami operator −∆|Γ
induced on Γ. The function β(t) ∈ C∞(R : [0, 1]) defined in subsection 4.3 has the
properties: β(t) = 0 for t ≤ 1− δ, β(t) = 1 for t ≥ 1− δ/2, β′(t) ≥ 0, ∀t ∈ R, with

δ =
c20
2 . Our modification cut the contributions from glancing and elliptic regions.

Moreover, the set

E = {(x′, ξ′) : p1(x′, ξ′) ≤ 0} ⇐⇒ {(x′, ξ′) : r0(x′, ξ′) ≤ 1− γ2(x′)} ⊂H (1.6)

is independent of the choice of δ and β and the same is true for the characteristic
set Σ := {(x′, ξ′) : p1(x′, ξ′) = 0} (see (5.7)). In Proposition 5.1 we establish the

positivity of the operator hdP (h)
dh , choosing h = o((1 − c21)). Next our argument is

similar to that applied in [14], [12], [13]. We introduce the eigenvalues

µ1(h) ≤ µ2(h) ≤ ... ≤ µk(h) ≤ ...

of P (h) for 0 < h ≤ h0. In Section 6 the trace formula for P (h̃) given in Proposition

6.2 and the trace formula (2.9) are compared. By using the choice of P (h̃), we show
that these trace formulas differ by negligible term. Thus the problem is reduced to
count for 0 < r−1 ≤ h0 the number of the negative eigenvalues µk(r−1) of P (r−1).
As in [14], [12], this number is given by (6.12) and we obtain the asymptotic (1.4).
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Our arguments with some modification can be applied to cover the case of even
dimension d.

Acknowledgements. We would like to thank Johannes Sjöstrand for the useful
and stimulating discussions concerning the construction of the parametrix. We
thank also Jean-François Bony and Plamen Stefanov for the interesting discussions
concerning the absence of eigenvalues.

2. Preliminaries

In this section we collect some facts from [11], [12] and we prove a trace formula
involving the extended incoming resolvent (G− λ)−1 : Hcomp → Dloc. The results
in this section hold for non trapping obstacles. For λ ∈ C introduce the exterior
Dirichlet-to-Neumann map

N(λ) : Hs(Γ) 3 f −→ ∂νu|Γ ∈ Hs−1(Γ),

where u = K(λ)f is the solution of the problem
(−∆ + λ2)K(λ)f = 0 in Ω,

K(λ)f = f on Γ,

K(λ)f : λ− incoming.

(2.1)

A function u(x) is λ-outgoing (λ-incoming) if there exists R > ρ0 and g ∈
L2
comp(Rd) such that

u(x) = R±0 (λ)g, |x| ≥ R,
where R±0 (λ) = (−∆0 + λ2)−1 is the outgoing (+) (incoming (-)) resolvent of the
free Laplacian −∆0 in Rd. The resolvents R±0 (λ) are analytic in C for d odd and
they have kernels

R±0 (λ, x, y) =
(−1)(d−1)/2

2(2π)(d−1)/2

(1

r
∂r

)(d−3)/2(e∓λr
r

)∣∣∣
r=|x−y|

.

Remark 2.1. Our definition of outgoing/incoming solutions coincides with that
in Chapter IV, [6]. Setting λ = iµ, we see that the incoming resolvent R−0 (iµ) =
(−∆0 − µ2)−1 for Imµ > 0 is bounded form L2(Rd) to L2(Rd), hence R−0 (iµ)
becomes the outgoing resolvent defined in Section 3.1, [2]. Throughout our exposition
the incoming resolvents are outgoing ones in the sense of [3], [16], [2].

It is clear that if G(f1, f2) = λ(f1, f2) with Re λ < 0, then f1 ∈ H2(Ω) is λ-
incoming solution of (−∆ + λ2)f1 = 0. In particular, the incoming eigenvectors
defined in Section 5, [7] are the eigenfunctions of G.

Let RD(λ) = (−∆D+λ2)−1 be the incoming resolvent of the Dirichlet Laplacian
∆D in Ω with domain D = H2(Ω) ∩H1

0 (Ω) which is analytic for λ ∈ C−. Let

Dloc = {u ∈ L2
loc(Ω) : χ(x) ∈ C∞0 (Rd), χ(x) ≡ 1in a neighborhood ofK̄ ⇒ χu ∈ D}.

For d odd the incoming resolvent has meromorphic extension

RD(λ) : L2
comp(Ω)→ Dloc

from C− to C . The solution of the problem (2.1) with f ∈ H3/2(Γ) has the form

u = e(f) +RD(λ)((∆− λ2)(e(f)), (2.2)

where e(f) : H3/2(Γ) 3 f → e(f) ∈ H2
comp(Ω) is an extension operator. Clearly, we

may find ∂νu|Γ by applying (2.2).
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For non trapping obstacles and d odd RD(λ) is analytic in

Λ0 = {λ ∈ C : Re λ < C0 log |Im λ|, |Im λ| ≥ C1 > 1}, C0 > 0

and from (2.2) we deduce that operator N(λ) is analytic in the same domain. More-
over, for non trapping obstacles the Laplacian with Neumann boundary conditions
has no resonances in Λ0 with suitable positive constants C0, C1 and this implies the
analyticity of N(λ)−1.

Going back to the problem (1.2), we write for λ ∈ Λ0 the boundary condition as

C(λ)v := (N(λ)−λγ)v = N(λ)
(
Id−N(λ)−1λγ

)
v = 0, v = f1|Γ ∈ H3/2(Γ). (2.3)

For λ ∈ Λ0 the operator C(λ) : Hs(Γ) → Hs−1(Γ) has the same singularities as
N(λ). On the other hand, N(λ)−1 : Hs(Γ) → Hs+1(Γ) is compact operator and
C(λ0) is invertible for some λ0. Applying analytic Fredholm theorem (see [11],
[12]), the operator C(λ) is a meromorphic operator valued function for λ ∈ Λ0.
Here and below a meromorphic operator valued function B(z) means that B(z)
have Laurent expansion with finite number negative powers of z and coefficients
having finite rank.

For the resolvent (λ−G)−1 : H → D, λ /∈ σp(G), Reλ < 0 we proved in [11] the
following trace formula.

Proposition 2.1. Let ω ⊂ {λ ∈ C : Reλ < 0} be a closed positively oriented curve
without self intersections. Assume that C(λ)−1 has no poles on ω . Then

trH
1

2πi

∫
ω

(λ−G)−1dλ = trH1/2(Γ)

1

2πi

∫
ω

C(λ)−1 ∂C
∂λ

(λ)dλ. (2.4)

The left hand term in (2.4) is equal to the number of the eigenvalues of G in the
domain U bounded by ω counted with their multiplicities. It is clear that λ ∈ C−
is an eigenvalues of G if there exists a function 0 6= f ∈ H3/2(Γ) such that

C(λ) = N(λ)f − λγ(x)f = 0. (2.5)

Since G has continuous spectrum on iR (see Section 8, [7]), we cannot extend
the trace formula (2.4) with the resolvent (λ − G)−1 for curves intersecting the
imaginary axis. To do this, we extend below the incoming resolvent.

For d odd, RD(λ) : L2
comp(Ω) → Dloc, N(λ)−1 and C(λ) are meromorphic

operator valued functions in C. By using (2.3) and meromorphic Fredholm theorem,
we conclude that C(λ)−1 will be meromorphic in C. If RD(λ) and N(λ)−1 are
analytic in some domain V ⊂ C, we can apply the analytic Fredholm theorem to
obtain that C(λ)−1 is meromorphic for λ ∈ V. In particular, for non trapping
obstacles there exists a > 0 such that RD(λ) : L2

comp(Ω) → Dloc and N(λ)−1 are
analytic for Reλ < a and for strictly convex obstacles K this statement holds. It is
easy to see that we can extend the incoming resolvent (G−λ)−1, λ /∈ σp(G),Reλ < 0
as meromorphic function (G− λ)−1 : Hcomp → Dloc for λ ∈ C, where

Dloc = {u ∈ Hloc, χ(x) ∈ C∞0 (Rd), χ(x) ≡ 1 in a neighborhood ofK̄ ⇒ χu ∈ D}.

Let

(
u
w

)
= (G−λ)−1

(
f
g

)
with (f, g) ∈ Hcomp. For λ ∈ C− we have w = λu+f,

u = −RD(λ)(g + λf) +K(λ)q
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with q = u|Γ and K(λ)q determined by (2.1). From the boundary condition

∂ν

[
−RD(λ)(g + λf) +K(λ)q

]∣∣∣
Γ
− λγq − γf

∣∣
Γ

= 0,

one gets

q = C(λ)−1
[
∂ν

(
R+
D(λ)(g + λf)

)∣∣∣
Γ

+ γf |Γ
]
,

provided that C(λ)−1 exists. Thus we obtain

u = −RD(λ)(g + λf) +K(λ)C(λ)−1
[
∂ν

(
RD(λ)(g + λf)

)∣∣∣
Γ

+ γf |Γ
]
. (2.6)

The operator C(λ)−1 has meromorphic extension and

RD(λ) : L2
comp(Ω)→ Dloc, K(λ) : H3/2(Γ)→ Dloc

are meromorphic operator valued functions. Consequently, (u,w) ∈ Dloc yields a

meromorphic extension of the incoming resolvent (G−λ)−1

(
f
g

)
. We call incoming

resonances the poles z, Re z ≥ 0 of this incoming resolvent and denote them by
Res(G). Similarly, we can define the outgoing resonances as the poles w,Rew ≤ 0, of
the meromorphic continuation of the outgoing resolvent (G− λ)−1 : Hcomp → Dloc
which is analytic for Rew > 0 and meromorphic for Rew ≤ 0.

Now assume that a > 0 is such that RD(λ) : L2
comp(Ω)→ Dloc and N(λ)−1 are

analytic for Re λ < a. This implies that K(λ) is also analytic for Re λ < a. Let
ζ ⊂ {z ∈ C : Rez < a} be closed positively oriented curve without self intersections
such that C(λ)−1 has no poles on ζ. Let (f, g) ∈ Hcomp and let ϕ(x) ∈ C∞0 (Rd) is
chosen so that ϕ ≡ 1 on supp f ∪ supp g. From (2.6) we give

ϕu = −ϕRD(λ)(g + λf) + ϕK(λ)C(λ)−1
[
∂ν

(
RD(λ)(g + λf)

)∣∣∣
Γ

+ γf |Γ
]
,

ϕw = λϕu+ f.

Since ϕRD(λ)(g + λf) is analytic for Reλ < a, the integral over ζ of this term
vanishes and (

f
g

)
→
∫
ζ

ϕ(G− λ)−1

(
f
g

)
dλ =

∫
ζ

(
ϕu
ϕw

)
dλ

=

∫
ζ

ϕ

(
A11 A12

A21 A22

)(
f
g

)
dλ.

By the cyclicity of the trace the factor ϕ can be transferred to the right and the
trace of above operator becomes

tr

∫
ζ

(A11 +A22)dλ = tr

∫
ζ

K(λ)C(λ)−1
[
∂νRD(λ)2λ+ γ

]∣∣∣
Γ
dλ

= tr

∫
ζ

C(λ)−1
(
∂ν

(
RD(λ)2λK(λ)

)∣∣
Γ

+ γ
)
dλ.

In the last equality we used the fact that K(λ) is analytic and following Lemma
2.2 in [14] we can transfer K(λ) to the right. Since

(−∆ + λ2)
∂K(λ)

∂λ
= −2λK(λ),

∂K(λ)

∂λ

∣∣∣
Γ

= 0,

one deduces

∂ν

(
RD(λ)2λK(λ)

)∣∣
Γ

= −∂N(λ)

∂λ
.

Thus we obtain
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Proposition 2.2. Let a > 0 and let ζ ⊂ {z ∈ C : Re z < a} be closed positively
oriented curve without self intersections such that the incoming resolvent RD(λ) :
L2
comp(Ω)→ Dloc and N(λ)−1 are analytic for Reλ < a. Assume that there are no

poles of C(λ)−1 on ζ. Then the extended incoming resolvent (λ−G)−1 : Hcomp →
Dloc satisfies

tr
1

2πi

∫
ζ

(λ−G)−1dλ = trH1/2(Γ)

1

2πi

∫
ζ

C(λ)−1 dC(λ)

dλ
dλ. (2.7)

It is clear that if the resolvent (λ−G)−1 : Hcomp → Dloc has a pole at λ0, then
C(λ)−1 must have a pole at λ0. From (2.3) this means that (Id−N(λ)−1λγ)−1 has
a pole at λ0. The fact that N(λ)−1 is compact implies that for some f ∈ H3/2(Γ)
we have

(Id−N(λ0)−1λ0γ)f = 0,

hence C(λ0)f = 0. Choosing an incoming solution of (2.1) with Dirichlet data f ,
from the last condition we obtain the existence of a solution v ∈ Dloc of the problem

(−∆ + λ2
0)v = 0 in Ω,

∂νv − λ0γ(x)v = 0 on Γ,

v : λ0 − incoming.

(2.8)

If v ∈ D, λ0 is an eigenvalues of G. If v /∈ D, we obtain an incoming resonance λ0

and a resonance state v ∈ Dloc for which (G−λ0)v = 0 in the sense of distributions.
In conclusion, the left hand side of (2.7) is equal to the sum of the multiplicities
of the eigenvalues and the incoming resonances of G included in the domain U
bounded by ζ.

It is easy to examine the case λ ∈ iR. First, let λ0 ∈ iR, λ0 6= 0 and let v be an
incoming solution of (2.8). Write v = ψv + (1− ψ)v with a function ψ ∈ C∞0 (Rd),
equal to 1 in a neighborhood of K̄. Then (−∆ + λ2

0)((1− ψ)v) = F ∈ L2(Rd) with
F = 0 for |x| > a0 and some a0 > 0. Since (1 − ψ)v is incoming, by Corollary 4.3
in [6] (see also Theorem 4.17 in [2], where outgoing solutions are incoming ones in
our sense), we deduce (1−ψ)v = 0 for |x| > a0 and this yields v ∈ D. The operator
G has no eigenvalues on iR, hence v = 0. We will use this result in the proof of
Proposition A.4 in Appendix. Second, let λ0 = 0. Then ∆v = 0 and ∂νv|Γ = 0.
Since v is incoming, we have v = O(r2−d), ∂rv = O(r1−d) as |x| = r →∞. Applying
the proof of Theorem 4.19 in [2], we conclude that v = 0.

For the analysis in Section 5 it is convenient to replace C(λ) by the operator

−C(λ) = −N(λ) + λγ and write (2.7) with −C(λ). Next setting C̃(λ) = −N(λ)
λ + γ,

for contour ζ and domain U not including 0, we obtain

tr
1

2πi

∫
ζ

C(λ)−1 dC(λ)

dλ
dλ = tr

1

2πi

∫
ζ

C̃(λ)−1 dC̃(λ)

dλ
dλ.

Now we pass to semi-classical parametrisation h̃ = i
λ , 0 < Re h̃ � 1 and intro-

duce the operator C(h̃) := ih̃N (ih̃−1) + γ = −Ñ (h̃) + γ. We have Imλ > 0 and
consider a contour ζ ⊂ {z ∈ C : Im z > 0}. Applying the above equality, the trace
formula (2.7) becomes

tr
1

2πi

∫
ζ

(λ−G)−1dλ = tr
1

2πi

∫
ζ̃

C(h̃)−1Ċ(h̃)dh̃, (2.9)
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where Ċ denote the derivative with respect to h̃ and ζ̃ is the curve ζ̃ = {z ∈ C : z =
i
w , w ∈ ζ}. The eigenvalues and incoming resonances are symmetric with respect to
real axis, since if v is a solution of (2.8) with Imλ0 > 0, then v̄0 is a solution with
λ̄0. On the other hand, according to Theorem 1.1 in [11],in the case 0 < γ(x) < 1
for fixed d0 > 0 there are only finite number eigenvalues λ with | Imλ| ≤ d0.
Hence it is sufficient to study the eigenvalues in the half plane {Imλ > 0}. Clearly,

Re h̃ = Im λ
|λ|2 , Im h̃ = Re λ

|λ|2 . For λ ∈ Λ we obtain |Im h̃| ≤ C1|h̃|4 and we will work

with h̃ ∈ L, where

L := {h̃ ∈ C : |Im h̃| ≤ C0|h̃|2, 0 < |h̃| ≤ h0}. (2.10)

The operator Ñ (h̃) is related to the problem
(h̃2∆ + 1)u = 0 in Ω,

u = f on Γ.

u− incoming.

(2.11)

For the analysis of the location of eigenvalues and incoming resonances in Section

4 it is more convenient to work with another parametrisation λ = i
√
z
h with z =

1 + i Im z, |Im z| ≤ 1, 0 < h ≤ h0 and Re
√
z > 0. Thus we have again Im λ > 0.

The problem (2.1) becomes
(−h2∆− z)u = 0 in Ω,

u = f on Γ,

u− incoming.

(2.12)

and we introduce the operator N (z, h)f = −ih∂νu|Γ. We have

C(f) =
i

h

(
N (z, h)f −

√
zf
)

and the equation C(f) = 0 yields

(N (z, h)−
√
z)f = 0. (2.13)

Now we recall some definition concerning semi-classical wave fronts sets. Given

a manifold X with dimension d − 1, consider T̃ ∗(X) = T ∗(X) ∪ S∗(X), where
S∗(X) ' {(x,∞ξ) : (x, ξ) ∈ S∗(X)}. The point in T ∗(X) will be called finite and
the points in S∗(X) will be called infinite (see [1], [3], [14]). We are interested of
semi-classical distributions u(x, h) ∈ D′(X), 0 < h ≤ h0 for which

∀χ ∈ C∞0 (X), |(̂χu)(ξ)| ≤ CNh−N (1 + |ξ|)N for someN,

û being the semi-classical Fourier transform

û(ξ, h) =

∫
e−

i〈x,ξ〉
h u(x, h)dx.

Let ρ = (x0, ξ0) ∈ T ∗(X). Then ρ /∈ W̃F (u) if there exists ψ ∈ C∞0 (X) and

ζ(ξ) ∈ C∞0 (Rd−1) with ψ(x0) = 1, ζ(ξ0) = 1 such that |ζ(ξ)ψ̂u(ξ)| ≤ CNh
N , ∀N.

Similarly, an infinite point ρ = (x0,∞ξ0) ∈ S∗(X) is not in W̃F (u) if there exists
ψ(x) ∈ C∞0 (X) with ψ(x0) = 1 such that

|ψ̂u(ξ)| ≤ CNhN (1 + |ξ|)−N , ∀N
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for all ξ, |ξ| > C in some conic neighborhood of ξ0. Next as in [14], we introduce
the the space of symbols a(x, ξ;h) ∈ Sm,k(Γ× Rd−1 × (0, h0]) such that

|∂αx ∂
β
ξ a(x, ξ;h)| ≤ Cα,βh−k〈ξ〉m−|β|, ∀(x, ξ) ∈ Γ× Rd−1, ∀α,∀β.

Let Smρ,δ(Γ× Rd−1) be the class of symbols a(x, ξ) ∈ C∞(Γ× Rd−1) such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−ρ|β|+δ|α|, ∀(x, ξ) ∈ Γ× Rd−1, ∀α,∀β

and let Sm,kcl ⊂ Sm,k be the class of symbols a(x, ξ;h) having asymptotic expansion

a(x, ξ;h) ∼
∞∑
j=0

hj−kaj(x, ξ)

with aj ∈ Sm−j1,0 (Γ× Rd−1). Denote by Oph(a) the h-pseudo-differential operator

(Oph(a)f)(x) = (2πh)−d+1

∫
T∗X

ei〈x−y,ξ〉/ha(x, ξ;h)f(y)dydξ.

Set S−∞,∞ =
⋂
m,k S

m,k and introduce the spaces of h-pseudo-differential operators

Lm,k, Lm,kcl with symbols in Sm,k, Sm,kcl , respectively.

Passing to semi-classical wave fronts of operators A ∈ Lm,k, consider the com-

pactification T̃ ∗(Γ) = T ∗(Γ) ∪ S∗(Γ). We say that ρ = (x0, ξ0) /∈ W̃F (A) if the
symbol of A in a neighborhood of ρ is in the class S−∞,−∞. For ρ = (x0,∞ξ0) ∈
T̃ ∗(Γ) \ T ∗(Γ), we have ρ /∈ W̃F (A) if the symbol of A is in the class S−∞,−∞ in

the set {(x, ξ) : x ∈ U0,
ξ
|ξ| ∈ V0, |ξ| ≥ C} with U0, V0 being neighborhoods of

x0, ξ0, respectively.

3. Parametrix in the hyperbolic region

3.1. Parametrix for N (z, h). Throughout this and following sections we assume
that the obstacle K is strictly convex. In this subsection we use the parametrisation

λ = i
√
z
h , 0 < h � 1, z = 1 + iθ, while in the subsection 3.2 we will work with

λ = i
h̃
, h̃ ∈ L. Moreover, we assume that θ satisfies the inequalities

−ch| log h| ≤ θ ≤ hε, c > 0, 0 < ε� 1.

Introduce local geodesic coordinates (x1, x
′), x′ ∈ V ⊂ Rd−1, where the boundary

Γ locally is given by x1 = 0 and x1 > 0 in the domain Ω. In these coordinates one
has

−h2∆ = h2D2
x1

+Q(x, hDx′) + ha0(x)Dx1
, Dxj = −i∂xj , j = 1, ..., d

with second order operator Q with symbol Q = r0(x′, ξ′)− x1q(x, ξ
′). Here

r0(x′, ξ′) = 〈B(x′)ξ′, ξ′〉 ≥ α0|ξ′|2, α0 > 0, ∀ξ ∈ Rd−1

and q(x′, ξ′) ≥ q0|ξ′|2, q0 > 0. Define the hyperbolic H , glancing G and elliptic
regions E by

H = {(x′, ξ′) ∈ T ∗(Γ) : 1− r0(x′, ξ′) > 0},
G = {(x′, ξ′) ∈ T ∗(Γ) : 1− r0(x′, ξ′) = 0},
E = {(x′, ξ′) ∈ T ∗(Γ) : 1− r0(x′, ξ′) < 0}.

For 0 < δ � 1 consider the function χ−δ (x′, ξ′) = ψ−
(
r0(x′,ξ′)−1

δ

)
, where

ψ− ∈ C∞(R; [0, 1]), supp ψ− ⊂ (−1,−∞)
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and ψ−(t) ≡ 1 for t ≤ −3/2. Let ζ0 = (x′0, ξ
′
0) ∈ supp χ−δ and let U be a small

neighborhood of ζ0 contained in the set {(x′, ξ′) ∈ T ∗(Γ) : 1 − r0(x′, ξ′) ≥ δ/2} ⊂
H . Choose ψ(x′, ξ′) ∈ C∞0 (U) such that ψ = 1 in a neighborhood of ζ0 and

introduce the symbol ρ(x′, ξ′) :=
√
z − r0(x′, ξ′).

Our purpose is to construct a parametrix for the problem
(−h2∆− z)u = 0, x ∈ Ω,

u = Oph(χ−δ )f, x ∈ Γ,

u− i
√
z
h − incoming,

(3.1)

with f ∈ L2(Γ) and to obtain an approximation for the operator

N (z, h)Oph(χ−δ )f = −ih∂νu|Γ.

The local parametrix of (3.1) is u−ψ = Φ(x1)K−ψ f with

(K−ψ f)(x) = (2πh)−d+1

∫∫
e

i
h (〈y′,ξ′〉+ϕ(x,ξ′,θ))a(x, ξ′, θ, h)f(y′)dy′dξ′, (3.2)

where Φ(x1) = χ0(x1

δ0
), χ0 ∈ C∞0 (R) is such that χ0(t) = 1 for |t| ≤ δ0, χ0(t) = 2

for |t| ≥ 2, 0 < δ0 � 1. This incoming condition will be arranged later by applying
incoming resolvents to local parametrix.

We follow the construction in Section 4, [20] and for convenience of the reader
we present some details. The main difference with [20] is that we treat the case
−ch| log h| ≤ θ ≤ hε for strictly convex obstacles, while in [20] the analysis was given
for h1−ε ≤ θ ≤ hε for obstacles with arbitrary geometry. The symbol a(x, ξ′, θ, h)
will have support for (x′, ξ′) ∈ U , so in the construction below the condition 1 −
r0(x′, ξ′) ≥ δ/2 holds. The phase ϕ satisfies

ϕ2
x1

+ 〈B(x)ϕx′ , ϕx′〉 = 1 + iθ + θMRM , ϕ|x1=0 = −〈x′, ξ′〉 (3.3)

and has the form

ϕ =

M−1∑
j=0

(iθ)jϕj(x, ξ
′)

with real valued phase functions ϕj . The function ϕ0 is a local solution of the
problem {

∂x1
ϕ0 =

√
1− 〈B(x)∇x′ϕ0,∇x′ϕ0〉,

ϕ0|x1=0 = −〈x′, ξ′〉
(3.4)

existing for small x1 and

∂x1
ϕ0|x1=0 =

√
1− r0(x′, ξ′),

where 1 − r0 ≥ δ/2. The sign of
√

1− r0(x′, ξ′) determines the propagation of
singularities in the interior of Ω. The functions ϕj , 1 ≤ j ≤ M − 1, satisfy the
equations

k∑
j=0

∂x1
ϕj∂x1

ϕk−j +

k∑
j=0

〈B(x)∇x′ϕj∇x′ϕk−j〉 = εk, ϕk|x1=0 = 0, 1 ≤ k ≤M − 1



14 V. PETKOV

with ε1 = 1, εk = 0, k ≥ 2 and the remainder RM is bounded uniformly with
respect to θ. From the above equations with k = 1 one obtains

θ∂x1ϕ1|x1=0 =
θ

2
√

1− r0
≥ θ

2
, for θ ≥ 0, (3.5)

θ∂x1ϕ1|x1=0 ≥ −
ch| log h|√

2δ
, for θ < 0. (3.6)

This implies

Im ∂x1
ϕ|x1=0 = θ∂x1

ϕ1|x1=0 +O(θ2) ≥ θ

3
, θ ≥ 0

and for small θ and x1 we have

Im ϕ = θϕ1 +O(x1θ
2) ≥ x1θ

4
, θ ≥ 0,

Im ϕ ≥ −cx1h| log h|
2
√

2δ
, θ < 0.

The eikonal equation (3.3) yields

(∂x1ϕ|x1=0)2 = ρ2(1 +O(θM )),

hence for x1 small enough

∂x1
ϕ|x1=0 = ρ+O(θM/2). (3.7)

The amplitude has the form

a =

m∑
k=0

hkak(x, ξ′, θ),

where the functions ak satisfy the transport equations

2i∂x1ϕ∂x1ak + 2i〈B(x)∇x′ϕ,∇x′ak〉+ ∆ak−1 = θMQ
(k)
M , 0 ≤ k ≤ m,

a0|x1=0 = ψ, ak|x1=0 = 0, k ≥ 1, a−1 = 0.

We search the functions ak in the form

ak =

M−1∑
j=0

(iθ)kak,j(x, ξ
′, θ),

with a0,0|x1=0 = ψ, ak,j |x1=0 = 0 for k + j ≥ 1. We refer to Section 4, [20] for the
determination of ak,j .

The construction of K−ψ implies

(h2∆ + z)u−ψ = K−1,ψf +K−2,ψf.

Here

K−1,ψf =
[
h2
(

2Φ′(x1)∂x1
+ Φ′′(x1)

)
+ ha0(x)Φ′(x1)

]
K−ψ f,

(K−2,ψf)(x) = (2πh)−d+1

∫∫
e

i
h (〈y′,ξ′〉+ϕ(x,ξ′,θ))A−2,ψ(x, ξ′, θ, h)f(y′)dy′dξ′

with

A−2,ψ = Φ(x1)
(
θMRMa+ θM

m∑
k=0

hk+1Q(k)
M + hm+2∆am

)
. (3.8)
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By using a partition of unity on suppχ−δ with functions ψj , we arrange
∑J
j=1 ψj =

χ−δ and consider the parametrix w =
∑J
j=1 u

−
ψj
. Set

K−k =

J∑
j=1

K−k,ψj , k = 1, 2, A−2 =

J∑
j=1

A−2,ψj .

Let R−0 (z, h) = (−h2∆0 − z)−1 be the incoming resolvent of the free Laplacian
∆0 in Rd witch for Im z > 0 is an analytic operator valued function bounded from
L2(Rd) to H2(Rd). Let Ψ ∈ C∞0 (Rd) be a cut-off function such that Ψ = 1 on a
small neighborhood of K. Then the cut-off resolvent Ψ(−h2∆0− z)−1Ψ is analytic
in C. Introduce the semi-classical Sobolev spaces Hs

h(X) with semi-classical norm

‖f‖Hsh(X) = ‖〈hD〉sf‖L2(X), 〈hD〉 := (1− h2∆X))1/2.

For Re
√
z ≥ 1 the sut-off resolvent satisfy the estimates (see for instance Theo-

rem 3.1 in [2] and recall Remark 2.1) .

‖ΨR−0 (z, h)Ψ‖L2(Rd)→Hjh(Rd) ≤ Cjh
−1(h+

√
|z|)j−1e

L
h (Im z)− , j = 0, 1, 2, (3.9)

where L > sup{|x − y| : x, y ∈ supp Ψ} and x− = max{0,−x}. In particular, for
Im z > 0 the exponential factor on the right hand side is equal to 1, while for
−ch| log h| ≤ Im z < 0 this factor is bounded by h−cL.

Similarly, introduce the incoming resolvent R−(z, h) = (−h2∆D − z)−1, where
∆D is the Laplacian with Dirichlet boundary condition on Γ and domain D =
H2(Ω)∩H1

0 (Ω). Then R−(z, h) : L2(Ω) −→ D for Imz > 0 and ΨR−(z, h)Ψ admits
a meromorphic continuation in C with poles in {z ∈ C : Im z < 0}. Since the
obstacle K is non-trapping, for

Re
√
z ≥ 1, Im z ≥ −ch| log h|, 0 < h ≤ h0

we have the estimates (see Theorem 4.43 in [2] and Theorem 2 in Chapter X, [17])

‖ΨR−(z, h)Ψ‖L2(Ω)→Hjh(Ω) ≤ Cjh
−1eT

(Im z)−
h , Cj > 0, T > 0, j = 0, 1, 2. (3.10)

To build a global parametrix, consider

ũ = w −R−0 (z, h)K−1 f −R−(z, h)K−2 f.

The operator K−2 is bounded from L2(Γ) to L2
loc(Ω). To prove this, consider K−2

as a h-Fourier integral operator with real phase function 〈y′, ξ′〉 − Re ϕ(x, ξ′, θ)

and amplitude b(x, ξ′, θ, h) = e−
Im ϕ
h A−2 (x, ξ′, θ, h) depending on the parameter

x1 ∈ [0, 2δ0]. Write

b = exp
(
−x1θ

2h

( 1√
1− r0

+O(x1) +O(θ)
))
A−2 = exp

(
−x1θ

2h
g
)
A−2 .

Therefore

∂αx′b =
∑

|β1|+|β2|=|α|

Cβ1,β2

(x1θ

2h

)|β1|
exp
(
−x1θ

2h
g
)

(∂β1

x′ g)(∂β2

x′ bβ2)

with some symbol bβ2 . For small 0 ≤ x1 ≤ 2δ0 and small h the product(x1θ

2h

)|β1|
exp
(
−x1θ

2h
g
)
, θ ≥ 0
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is bounded since g ≥ 1/2. For −ch| log h| ≤ θ < 0 the product(c| log h|x1θ√
2δ

)|β1|
exp
(
−c| log h|x1θ√

2δ
g
)
, θ ≥ 0

is bounded by (C1| log h|)|β1|h−C2 with C1 > 0, C2 > 0 independent of h. Similarly,

we estimates the derivatives ∂βξ′b. Consequently, taking into account (3.8), we have

|∂αx′∂
β
ξ′b| ≤ Cα,β | log h||α|+|β|h−C2

(
O(hεM ) +O(hm+2)

)
, C2 > 0

with large M and m. For θ ≥ 0 the factor | log h||α|+|β|h−C2 must be replaced by 1.
On the other hand, for small x1 the phase 〈y′, ξ′〉−Reϕ(x1, ξ

′, θ) is non-degenerate
and ∣∣∣det

(∂2Re ϕ

∂x′∂ξ′

)∣∣∣ ≥ D > 0

because ϕ|x1=0 = −〈x′, ξ′〉. By a standard argument we consider the h-pseudo-
differential operator (K−2 )∗K−2 with parameter x1 and deduce the estimate

‖K−2 f‖L2(Ω) ≤ ANhN‖f‖L2(Γ) (3.11)

with big N choosing M and m large and depending on N . Applying the estimates
(3.10), we conclude that ‖R(z, h)K−2 f‖H3/2

h (Γ)
= O(hN−3/2)‖f‖L2 exploiting the

operator of restriction

γ0 = O(h−1/2) : H2
h(Ω)→ H

3/2
h (Γ).

To deal with the term R−0 (z, h)K−1 f , we will apply the argument in Appendix
A.II.1, [3] for K−1 f = F (h). For this purpose repeating the proof of Corollary A.II.4,

[3], one proves that the semi-classical wave front set W̃F (F (h)) is included in the
intersection of the set of outgoing rays issued from {(y′, η′) ∈ T ∗(Γ) : (y′, η′) ∈
supp χ−δ } with a bounded set W such that dist (W,K) ≥ ε0 > 0. The set W is
determined by the support of the derivatives Φj(x1), j = 1, 2, while the wavefront

W̃F (K−ψ ) is determined by the set {(x, ϕx) : (x′, ξ′) ∈ supp χ−δ } and the fact that

the phase ϕ is chosen so that ϕx1 > 0 (see [3], [1]). Finally, W̃F (R−0 (z, h)F (h)) is

given by the outgoing rays issued from W̃F (F (h)) (By Remark 2.1, the resolvent
R−0 (z, h) is outgoing in the sense of [3]). Since K is strictly convex, these rays don’t
meet the boundary Γ and

‖R−0 (z, h)F (h)‖Hmh (O) = Om(h∞)‖f‖L2 , ∀m ∈ N

in a small neighborhood O of K. We conclude that u−ũ is a solution of the problem
(−h2∆− z)(u− ũ) = 0, x ∈ Ω,

u− ũ = −(R0(z, h)F (h))|Γ, x ∈ Γ,

(u− ũ)− incoming.

(3.12)

Therefore ‖N (z, h)(Oph(χ−δ )f − ũ|Γ)‖H1
h
≤ CNhN‖f‖L2 , ∀N and

N (z, h)ũ|Γ = N (z, h)w|Γ +O(hN ).

By our construction we obtain N (z, h)w|Γ = TN (z, h)Oph(χ−δ )f with a h-pseudo-
differential operator TN (z, h) having principal symbol

√
z − r0 and

‖(N (z, h)− TN (z, h))Oph(χ−δ )‖L2→H1
h
≤ C ′NhN . (3.13)
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3.2. Parametrix for Ñ (h̃). In the trace formula (2.9) we have integration with

respect to h̃ = i
λ and it is convenient to have a parametrix holomorphic with respect

to h̃. Comparing with the parametrisation λ = i
√
z
h , used in the first part, we give

Reh̃ = Re
√
z

|z| h and Reh̃ = h if and only if Re
√
z = |z|. This leads to difficulties if we

wish to extend the approximation TN (z, h) as a holomorphic function of h̃ modulo
some remainder. To overcome this problem, we will construct another parametrix
in the hyperbolic region for h̃ ∈ L, where L is defined by (2.10). Setting Re h̃ = h,

for small h0 we have |Im h̃| ≤ C1h
2.

Next we repeat without changes the construction in Appendix A2, [16] and search
a parametrix for the problem

(−h̃2∆− 1)u = 0, x ∈ Ω,

u = Oph̃(χ−δ )f, x ∈ Γ,

u− incoming.

(3.14)

Here Oph̃(χ−δ ) is a pseudo-differential operator with large parameter 1
h̃

having the

form

(Oph̃(χ−δ )f)(x′) = (2πh̃)−d+1

∫∫
e

i
h̃
〈y′−x′,ξ′〉χ−δ (x′, ξ′)f(y′)dy′dξ′.

The symbol χ−δ has compact support with respect to ξ′ and the above operator is

well defined for h̃ ∈ L (see Appendix A1, [16]) since∣∣∣ 1
h̃
− 1

h

∣∣∣ =
∣∣∣ Im h̃

hh̃

∣∣∣ ≤ C1. (3.15)

Notice that for λ ∈ Λ we study the problem (2.11).
The local parametrix in local geodesic coordinates (x1, x

′) introduced above has

the form Φ(x1)HN (h̃), where

(HN (h̃)f)(x) = (2πh̃)−d+1

∫∫
e

i
h̃

(〈y′,ξ′〉+ψ(x,ξ′))a(x, ξ′, h̃)f(y′)dy′dξ′.

The phase function ψ is real valued and satisfies the equation{
|∇xψ|2 = 1,

ψ|x1=0 = −〈x′, ξ′〉.
(3.16)

In local coordinates used in the previous construction we have

(∂x1
ψ)2 + 〈B(x)∇x′ψ,∇x′ψ〉 = 1.

The phase ψ is determined as ϕ0 above and we obtain ∂x1
ψ|x1=0 =

√
1− r0(x′, ξ′) ≥√

δ for (x′, ξ′) ∈ supp χ−δ . The amplitude has the form

a =

N−1∑
j=0

aj(x, ξ
′)h̃j

and aj(x, ξ
′) are determined as solutions of the transport equations

2i〈∇ψ,∇aj〉+ i(∆ψ)aj = −∆aj−1, j = 0, ..., N − 1,
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with conditions a0|x1=0 = χ−δ (x′, ξ′), aj |x1=0 = 0, j ≥ 1 and a−1 = 0. By using

(3.15), we may write HN (h̃) as a Fourier integral operator with real valued phase
〈y′,ξ′〉+ψ(x,ξ′)

h making the factor

exp
(
i(

1

h̃
− 1

h
)(〈y′, ξ′〉+ ψ(x, ξ′))

)
in the amplitude. Thus as in Corollary A.II.8 in [3] and (A.19) in [16], we obtain

W̃F (HN (h̃)) ⊂
{

(x, ξ, y′, η′) ∈ T ∗(U \ Γ)× T ∗(Γ) : ‖ξ‖x = 1,

(x, ξ) belongs to the outgoing ray issued from (y′, η′) ∈ supp χ−δ

}
.

Here U ⊂ Rd is a small neighborhood of Γ and ‖ξ‖x is the norm of dual vari-
able induced by local coordinates. Next we construct a global parametrix by
using a partition of unity, the incoming free resolvent (−h̃2∆0 − 1)−1 and the

incoming resolvent (−h̃2∆D − 1)−1 of the Dirichlet Laplacian ∆D. The operator

Ñ (h̃)Oph̃(χ−δ )f = −ih̃−1∂νu|Γ (see Section 2) has an approximation by a h̃-pseudo-

differential operator T̃N (h̃)Oph̃(χ−δ ) and T̃ (h̃) has principal symbol
√

1− r0(x′, ξ′).
Similarly to (3.13) we get

‖(Ñ (h̃)− T̃N (h̃))Oph(χ−δ )‖L2→H1
h
≤ BNhN , h̃ ∈ L. (3.17)

The advantage of the above construction is that the symbol of T̃N (h̃) is holomorphic

for h̃ ∈ L.

4. Location of the eigenvalues and incoming resonances

Recall that an eigenfunction f of G with eigenvalue λ satisfies the equation
C(λ)f = 0. The same is true for the incoming resonances λ. We will use the

parametrisation λ = i
√
z
h , z = 1 + i Im z, |Im z| ≤ 1 introduced in Section 2 and the

equation (2.13).
Denote by (., .) the scalar product in L2(Γ) and by ‖.‖ the L2(Γ) norm. Through-

out this section we choose 0 < δ � c20 and impose the condition

− δ0 ≤ −ch| log h| ≤ Im z ≤ min
{
δ,

√
1− c21
2c1

√
δ
}

= δ0. (4.1)

Hear 0 < c0 ≤ c1 < 1 are the constants introduced in Section 1 and δ was used
in the construction of the parametrix in the hyperbolic region in Section 3. In
subsection 4.1 there are no restrictions on δ > 0, in subsection 4.2 we take δ � c20
and in subsection 4.3 we choose δ ≤ c0.

In [11] it was proved that for 0 < γ(x) < 1 the eigenvalues λ of G are located in
the region

{λ ∈ C : |Re λ| ≤ Cε(1 + |Im λ|)1/2+ε, Re λ < 0}, 0 < ε� 1.

Since Reλ = − Im
√
z

h < 0, Imλ = Re
√
z

h , Re
√
z ≤
√

2, for fixed ε < 1/6 and small
h we deduce

0 < Im z ≤ C0h
1/2−ε ≤ h1/3.

We choose 0 < h ≤ min{δ6, δ0}. For fixed δ if h is small enough, 0 < Im z ≤
h1/3 implies the inequality on the right hand side of (4.1). In Section 5 we take
h = o((1 − c1)2) in the proof of Proposition 5.1, so for c1 ↗ 1 we must work with
h small enough. Our purpose is to show that 0 < |Im z| ≤ BNhN for every integer
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N if λ = i
√
z/h is eigenvalue or incoming resonance. This implies the statement of

Theorem 1.1.
The principal symbol of a parametrix for N (z, h)−γ

√
z in hyperbolic and elliptic

regions becomes (see subsection 3.1 and Section 5 in [20])
√
z − r0 − γ

√
z = ρ− γ

√
z, (4.2)

where

ρ(x′, ξ′) :=
√

1 + iIm z − r0(x′, ξ′).

Denote by

Σ := {(x′, ξ′) ∈ T ∗(Γ) : r0(x′, ξ′) = 1− γ2(x′)} ⊂H ,

the singular set, where the operator Oph(
√

1− r0−γ) is not elliptic. Then 1−γ2 ≤
1− c20 < 1− δ implies

Σ ⊂ {(x′, ξ′) : r0 ≤ 1− δ}.
Introduce a partition of unity on R given by

ψ−(t) + ψ0(t) + ψ+(t) ≡ 1, ∀t ∈ R,

where ψ0(t) ∈ C∞0 (R; [0, 1]), ψ0(t) = 1 for |t| ≤ 1, ψ0(t) = 0 for |t| ≥ 3/2, while

ψ±(t) ∈ C∞(R; [0, 1]), supp ψ− ⊂ (−∞,−1), supp ψ+ ⊂ (1,+∞).

Define

χ±δ (x′, ξ′) = ψ±
(r0(x′, ξ′)− 1

δ

)
, χ0

δ(x
′, ξ′) = ψ0

(r0(x′, ξ′)− 1

δ

)
and notice that Σ ∩

(
supp χ0

δ ∪ supp χ+
δ

)
= ∅. Let Q±δ = Oph(χ±δ ), Q0

δ = Oph(χ0
δ)

be h-pseudo-differential operators. For h1/2 ≤ δ one obtains the estimates

‖Qjδ‖L2(Γ)→L2(Γ) ≤ Qj , j = ±, 0
with constants Qj independent of h and δ. In fact,∑

|α|≤d

h|α|/2 sup
(x′,ξ′)∈T∗(Γ)

∣∣∣∂αx′ψj(r0 − 1

δ

)∣∣∣ ≤ Qj j = ±, 0

and an application of Proposition 3.1 in [18] implies the estimate of ‖Qjδ‖L2→L2 .

4.1. Analysis of Q+
δ f . First we treat the elliptic region E , where we have a

parametrix S(z, h) with principal symbol (4.2), such that for small h one has

‖(N (z, h)− S(z, h))Q+
δ ‖ ≤ A1h (4.3)

with constant A1 > 0 independent of h. This implies

|((N (z, h)− S(z, h))Q+
δ f,Q

+
δ f)| ≤ A2h‖Q+

δ f‖
2.

Here and below we denote by Aj different constants independent of h. These
constants may depend of δ, while by Bj we denote different constants independent
of δ and h.

Choose a function ζ(t) = (1 + δ − t)α(t) with α(t) ∈ C∞(R; [0, 1]), α(t) = 1
for t ≤ 1 + δ, α(t) = 0 for t ≥ 1 + 3δ

2 and introduce the symbol re = r0 + ζ(r0).

Obviously, re = r0 for r0 ≥ 1 + 3
2δ and

re = r0(1− α(r0)) + (1 + δ)α(r0) ≥ 1 + δ, ∀(x′, ξ′).
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Therefore

Re =
√

1− re + itIm z −
√

1− r0 + itIm z =
r0(1− ζ(r0))√

1− re + itIm z +
√

1− r0 + itIm z

vanishes on the support of χ+
3
2 δ

and Oph(Re)Q
+
3
2 δ
f can be estimated by O(h∞)‖f‖.

Let se :=
√

1− re + iIm z. Then |Im
√
z| = |Im z|

2Re
√
z
≤ |Im z|

2 . On the other hand,

Im se = Re
√
re − 1− iIm z ≥

√
re − 1.

According to (4.1),

|Im z| <
√
δ

c1
≤
√
re − 1

c1
,

and we give

Im
(
se − γ

√
z
)
≥
√
re − 1− c1

|Im z|
2
≥
√
re − 1

2
≥ c2
√

1 + r0,

where 0 < c2 ≤
√
δ

2
√

2
. In fact, for r0 ≤ 1 + 3

2δ we arrange δ ≥ 4c22(2 + 3δ
2 ) taking

0 < c2 ≤
√
δ

2
√

2 + 3δ
2

≤
√
δ

2
√

2
.

For r0 ≥ 1 + 3
2δ we obtain re = r0 and

4c22 + 1 ≤ (1− 4c22)(1 +
3δ

2
) ≤ (1− 4c22)r0

which is satisfied for 3
2δ ≥ 4c22(2 + 3δ

2 ). By a standard argument we deduce

Im
(

(S(z, h)− γ
√
z)Q+

δ f,Q
+
δ f
)
≥ c2(Oph(

√
1 + r0)Q+

δ f,Q
+
δ f)−A3h‖Q+

δ f‖
2.

(4.4)
Consequently,

‖(N (z, h)− γ
√
z)Q+

δ f‖H−1/2‖Q+
δ f‖H1/2 ≥ c2‖Q+

δ f‖H1/2 −A4h‖Q+
δ f‖

2
H1/2

and for small h one obtains

‖Q+
δ f‖H1/2 ≤ C2

∥∥( (N (z, h)√
z

− γ
)
Q+
δ f
∥∥
H−1/2 (4.5)

with constant C2 > 0 depending of δ. The estimate (4.5) holds for every function
f ∈ H1/2 and not only for eigenfunctions. In Section 6 we will use it for the proof
of (6.5).

As an application of (4.4) we will show that C(f) = 0 implies Q+
δ f = 0. Assume

that ‖f‖ = 1 we observe that

((S(z, h)−
√
zγ)Q+

δ f,Q
+
δ f) = (Q+

δ (S(z, h)−
√
zγ)f,Q+

δ f) + ([S(z, h), Q+
δ ]f,Q+

δ f)

−([
√
zγ,Q+

δ ]f,Q+
δ f) =

(
([S(z, h), Q+

δ ]− [
√
zγ,Q+

δ ])f,Q+
δ f
)

+Oδ(h)‖Q+
δ f‖

2.

Here in the second equality we used the fact that (N (z, h) −
√
zγ)f = 0. On the

other hand, the symbol of the commutator [Oph(se), Q
+
δ ] modulo a remainder b̃N,e,δ

has the form

bN,e,δ =
∑

1≤j≤N−1

(ih)j

j!

∑
|α|=j

[
Dα
ξ′(s2)Dα

x′(χ
+
δ )−Dα

ξ′(χ
+
δ )Dα

x (se)
]

=

N−1∑
j=1

bj
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with Dx′ = −i∂x′ , Dξ′ = −i∂ξ′ . The derivatives Dα
x′(χ

+
δ ) yield a factor δ−|α|, while

the derivatives Dα
ξ′se yield a factor (1 − re + iIm z)1/2−|α|. Since re ≥ 1 + 3

2δ, by

using the condition h1/3 ≤ δ, we estimate

|bj | ≤
Cj
j!
hj/3

(h1/3

δ

)2j√
δ ≤ Dj

√
δhj/3, ∀(x′, ξ′), 1 ≤ j ≤ N − 1

with constant Cj depending of the derivatives of ψ+ and r0 and independent of δ

and h. A similar estimate holds for h|β|/2|∂βx′bj |, |β| ≤ d, and for the remainder

b̃N,e,δ. Consequently,

‖[S(z, h), Q+
δ ]‖L2→L2 ≤ B5

√
δh1/3 (4.6)

with a constant B5 > 0 independent of h and δ. The same argument can be applied
to estimate the commutator [γ,Q+

δ ]. Thus we obtain a upper bound∣∣Im ((S(z, h)− γ
√
z)Q+

δ f,Q
+
δ f
)∣∣ ≤ (B6

√
δh1/3 +A5h)‖Q+

δ f‖
2

with constant B6 > 0 independent of δ and A5 > 0 depending on δ. Combing this

with (4.4), taking c2 =
√
δ

2
√

2
and using h1/3 ≤ δ, we deduce

√
δ

2
√

2
‖Q+

δ f‖
2 ≤

(
B6

√
δh1/3 + (A3 +A5)h2/3δ

)
‖Q+

δ f‖
2.

We fix δ and the constants A3, A5. Choosing h small enough, we obtain Q+
δ f = 0.

Remark 4.2. In this subsection the argument works without restrictions on 0 <
δ < 1.

4.2. Analysis of Q0
δf . First, using Q+

3
2 δ
f = 0, from C(f) = 0 we deduce

(N (z, h)−
√
zγ)(Q−3

2 δ
f +Q0

3
2 δ
f) = 0.

Consider

Re
(
Q0
δ

(
−N (z, h) +

√
zγ
)

(Q−3
2 δ
f +Q0

3
2 δ
f), Q0

δf
)

= 0.

It is easy to estimate the terms involving Q−3
2 δ
, since

supp χ0
δ ∩ supp χ−3

2 δ
= ∅. (4.7)

In the hyperbolic region we have a paramterix TN (z, h) and we can apply (3.13).
This implies

|(Q0
δ(−N (z, h) +

√
zγ)Q−3

2 δ
f,Q0

δf)| ≤ CNhN‖Q0
δf‖2

and we give

Re
(
Q0
δ

(
−N (z, h) + γ

√
z
)
Q0

3
2 δ
f,Q0

δf
)
≤ CNhN‖Q0

δf‖2.

Next
Q0
δγQ

0
3
2 δ

= [Q0
δ , γ]Q0

3
2 δ

+ γQ0
δ(Q

0
3
2 δ
− 1) + γQ0

δ .

The commutator on the right hand side has a norm O(hδ ) = O(δ2) and for the

second term we use the fact that χ0
3
2 δ

= 1 on the support of χ0
δ . Consequently,

c0‖Q0
δf‖2 ≤ Re

(
γ
√
zQ0

δf,Q
0
δf
)
≤ Re

(
Q0
δN (z, h)Q0

3
2 δ
f,Q0

δf
)

+(C ′Nh
N +B7δ

2)‖Q0
δf‖2 (4.8)
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with constant B7 > 0 independent of δ and h.
The problem is reduced to an estimate of the term involving N (z, h)Q0

3
2 δ

and we

prove the following

Lemma 4.1. For Im z satisfying (4.1) and h small enough we have

‖N (z, h)Q0
3
2 δ
‖L2→L2 ≤ B8

√
δ +A9h

1/12 (4.9)

with B8 > 0 independent of δ and A9 > 0 independent of h.

Proof. We consider several cases concerning Im z.
1. Im z ≥ h1/3. Following the results in [18], [19], [21] for Im z ≥ h1/2−ε and

ε = 1/6, we obtain

‖(N (z, h)−Oph(ρ))Q0
3
2 δ
‖L2→L2 ≤ C1

h

Im z
≤ C1h

2/3

with constant C1 > 0 independent of h and depending on δ. For Im z ≤ δ on the

support of χ0
3
2 δ

we have |
√

1− r0 + i Im z| ≤
√

13δ
4 . Applying Proposition 3.1 in

[18] we deduce

‖Oph(ρ)Q0
3
2 δ
‖L2→L2 ≤ B9

√
δ.

2. h2/3 ≤ Im z ≤ h1/3. In this case, we will apply Proposition 3.3 in [20]. Set

λ̃ = −iλ =
√
z
h and for f ∈ L2(Γ) consider the problem

(∆ + λ̃2)u = 0 in Ω,

u = Q0
δf on Γ,

u− (iλ̃)− incoming.

(4.10)

Here we replace δ2 in Section 3, [20] by δ. Since Im z > 0 and u is i
√
z/h-incoming,

u is decreasing for |x| = r → ∞. Hence we may use an integration by parts to
obtain Lemma 3.1 in [20] for unbounded domains and the proof of Proposition 3.3
in [20] works. To apply this proposition, we need the conditions

1 ≤ |Im λ̃| ≤ δRe λ̃, Re λ̃ ≥ Cδ � 1.

Obviously,

Im λ̃ = h−1 Im z

2Re
√
z
, Re λ̃ = h−1Re

√
z ≥ h−1.

The analysis of the proof of Proposition 3.3 in [20] shows that it is sufficient to take

Cδ = 1
δ1/8

and Re
√
z

h ≥ 1
h ≥

1
δ1/8

holds. On the other hand, for Im z ≥ h2/3 and
small h one gets

1 ≤ 1

2h1/3
√

2
≤ Im z

2hRe
√
z

and Im z ≤ 2δ(Re
√
z)2 is satisfied by (4.1). Now the estimate (3.11) in [20] for the

solution u of (4.10) yields

‖N (z, h)Q0
δf‖L2(Γ) ≤ B10

(√
δ+|Imλ̃|−1/4

)
‖f‖L2(Γ) ≤ B10

(√
δ+23/8h1/12

)
‖f‖L2(Γ)

with a constant B10 > 0 independent of δ and λ̃. We replace δ by 3δ/2 changing
the constant B10.

3. −ch| log h| ≤ Im z ≤ h2/3. In this case we have |Im z| ≤ 2/3 and a semi-
classical parametrix for the exterior Dirichlet-to-Neumann map N (z, h) for strictly
convex obstacle has been constructed in Chapter 10 of [15]. In particular, the
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estimate (10.32) in [15] for the principal symbol next(x
′, ξ′;h) of N (z, h) in suitable

local coordinates yields

|∂αx′∂
β
ξ′next(x

′, ξ′;h)| ≤ Cα,β(|1− r0|+ h2/3)1/2−β1 ,

where ξ1 is the dual variable after a second microlocalisation. The derivatives with
respect to x′ are estimated by O(|1 − r0|1/2 + h1/3) and applying Proposition 3.1
in [18] once more, we deduce

‖N (z, h)Q0
δ‖L2→L2 ≤ B11(

√
δ + h1/3)

with a constant B11 > 0 independent of δ and h. Combining the estimates in the
three cases we deduce (4.9). �

Remark 4.3. The estimate (4.9) is not optimal. The term h1/12 comes form the
case 2, where we have used the results of [20] established for obstacles with arbitrary
geometry. For strictly convex obstacles we may apply the parametrix constructed
in Section 5, [11] for h2/3 ≤ Im z ≤ hε, 0 < ε � 1. However, Theorem 5.2 in
[11] yields an estimate for ‖N (z, h)Oph(χ0

ε/2)‖ = O(hε/4) and some extra work is

necessary. Moreover, if hε/2 ≤ δ, then h should be taken very small for ε� 1.

Going back to (4.8), we obtain the estimate

c0‖Q0
δf‖2 ≤ (B12

√
δ +A10h

1/12)‖Q0
δf‖2

with a constant B12 > 0 independent of δ. We fix δ =
c20

4B2
12

and then A10 will

be fixed too. Finally, for small h we arrange A10h
1/12 < c0/2 and conclude that

Q0
δf = 0.

For further references notice that for all f ∈ H1/2, δ � c20 and small h we have
an estimate similar to (4.5)

‖Q0
δf‖H1/2 ≤ C4

∥∥(N (z, h)√
z
− γ
)
Q0
δf
∥∥
H−1/2 (4.11)

with constant C4 > 0 depending of δ. To do this, consider

Re
(
− (N (z, h)√

z
+ γ)Q0

δf,Q
0
δf
)

and apply (4.9) for the norm of N (z, h).

4.3. Analysis of Q−δ f . Set f−δ := Q−δ f and consider

0 = Im
(

(N (z, h)− γ
√
z)f−δ , f

−
δ

)
= Im

(
(TN (z, h)− γ

√
z)f−δ , f

−
δ

)
+O(hN )‖f−δ ‖

2,

where TN (z, h) is the parametrix in the hyperbolic region constructed in subsection
3.1. The operator TN (1, h) is self-adjoint, hence Im (TN (1, h)f−δ , f

−
δ ) = 0. This

implies ∣∣∣Im ((TN (z, h)− γ
√
z)f−δ , f

−
δ

)∣∣∣
= |Im z|

∣∣∣Re
((∂TN (zt, h)

∂z
− γ

2
√
zt

)
f−δ , f

−
δ

)∣∣∣ = O(hN )‖f−δ ‖
2 (4.12)
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with zt = 1 + itIm z, 0 < t < 1, |Im z| ≤ δ. Introduce the operator

F = Oph

( 1

2
√
zt − r0

)
− γ

2
√
zt

As in Lemma 3.9 in [18] and Lemma 4.1 in [11] we obtain∣∣∣Re
((∂TN (zt, h)

∂z
− γ

2
√
zt

)
f−δ , f

−
δ

)
− Re (F (f−δ ), f−δ )

∣∣∣ ≤ A11h‖f−δ ‖
2 (4.13)

with constant A11 independent of h. Next Re (Fg, g) = 1
2 ((F + F ∗)g, g) and the

principal symbol of the self-adjoint operator 1
2 (F + F ∗) is

1

2
Re
( 1√

1 + itIm z − r0

− γ√
1 + itIm z

)
.

Let β(t) ∈ C∞(R; [0, 1]) be such that β(t) = 0 for t ≤ 1 − δ and β(t) = 1 for
t ≥ 1− δ/2, β′(t) ≥ 0, ∀t ∈ R. Introduce the symbol

r̃0(x′, ξ′) := r0(1− β(r0)) +
(

1− δ

2

)
β(r0)

and notice that

1− r̃0 = (1− r0)(1− β(r0)) +
δ

2
β(r0).

Then r0 = r̃0 on supp χ−δ and for 1− δ ≤ r0 ≤ 1− δ/2 one deduces

1− r̃0 ≥
δ

2
(1− β(r0)) +

δ

2
β(r0) = δ/2,

because 1− 3δ
2 ≥ 1− c20 > 0. Consequently,

1− r̃0 ≥ δ/2, ∀(x′, ξ′) ∈ T ∗(Γ).

Moreover,

Rh =
√

1 + itIm z − r̃0−
√

1 + itIm z − r0 =
r0 − r̃0√

1 + itIm z − r̃0 +
√

1 + itIm z − r0

implies ‖Oph(Rh)f−δ ‖ = O(h∞)‖f−δ ‖. The same is true for the operator with symbol

1√
1 + itIm z − r̃0

− 1√
1 + itIm z − r0

.

We are going to study the operator with principal symbol

s(x′, ξ′; z) = Re
( 1√

1 + itIm z − r̃0

− γ√
1 + itIm z

)
. (4.14)

Our purpose is to prove that for Im z satisfying (4.1), the symbol s(x′, ξ′; z) is
elliptic.

Set y =
√

1 + t2(Im z)2, q =
√

(1− r̃0)2 + t2(Im z)2, and let

zt = yeiϕ, 1− r̃0 + i Im z = qeiψ, 0 ≤ |ϕ| ≤ π/4, 0 ≤ |ψ| ≤ π/4.
Therefore

s(x′, ξ′; z) = Re
(e−iψ/2
√
q
− γ e

−iϕ/2
√
y

)
=

1
√
yq

[√
y cos

ψ

2
− γ√q cos

ϕ

2

]
=

1
√
yq

y cos2 ψ
2 − γ

2q cos2 ϕ
2√

y cos ψ2 +
√
q cos ϕ2
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=
1

2
√
yq

y(1 + cosψ)− γ2q(1 + cosϕ)
√
y cos ψ2 +

√
q cos ϕ2

.

On the other hand,

y(1 + cosψ)− γ2q(1 + cosϕ) = y
(

1 +
1− r̃0

q

)
− γ2q

(
1 +

1

y

)
=

1

yq

[
y2(1− r̃0 + q)− γ2q2(1 + y)

]
.

Write the symbol in the brackets [...] as

s1 = y2
(

2(1− r̃0) +
t2(Im z)2

q + 1− r̃0

)
− γ2(1 + y)((1− r̃0)2 + t2(Im z)2)

≥ (1 + y)
[
(1− r̃0)(y − γ2(1− r̃0))− γ2t2(Im z)2 +

y2t2(Im z)2

(1 + y)(q + 1− r̃0)

]
≥ (1 + y)

[
d0 − γ2(Im z)2

]
with

d0 = (1− r̃0)(1− γ2(1− r̃0)) ≥ (1− r̃0)(1− c21(1− r̃0)) = G(r̃0).

The function G(r̃0) has a maximum for r̃0 = 1 − 1
2c21

= c3 and c3 < 1 − δ/2. Let

minr̃0∈[0,1−δ/2]G(r̃0) = d1. If c21 ≤ 1/2, then d1 = δ
2 (1− c21 δ2 ). For 0 < c3 < 1− δ/2,

we have

d1 =

{
δ
2 (1− c21 δ2 ), if 1

2 < c21 ≤ 1
1+δ/2 ,

1− c21, if c21 >
1

1+δ/2 .

For simplicity we use the crude estimate d0 ≥ δ
2 (1− c21).

By (4.1)

|Im z| ≤
√
δ

2c1

√
1− c21 ≤

1

γ

√
d0

2
(4.15)

and we obtain

s(x′, ξ′; z) ≥ d0

4(yq)3/2(
√
y +
√
q)
≥ d0

4y2q3/2
≥ d0

8(1 + δ2)3/4
.

Notice that for some values of γ(x) the term

Y = −γ2 +
y2

(1 + y)(q + 1− r̃0)

could be positive. On the other hand,

y2

(1 + y)(q + 1− r̃0)
=

1

4(1− r̃0)
+O(|Im z|)

and for r̃0 = 0, Im z = 0, the function Y may take negative values. For this reason
we simply estimate Y from below by −γ2. Finally,

Re (F (f−δ ), f−δ ) ≥
( d0

8(1 + δ2)3/4
−A12h

)
‖f−δ ‖

2

with A12 > 0 independent of h. Assuming f−δ 6= 0 and taking together (4.12) and
(4.13), for small h we have

|Im z| ≤ BNhN , ∀N ∈ N.
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Now for λ = i
√
z
h with z = 1 + iIm z one obtains

Re
√
z ≥ 1, |Im

√
z| =

∣∣ Im z

2Re
√
z

∣∣ ≤ BN
2
hN

and for 0 < h ≤ δ0 we deduce

1

h
≤ | Imλ| ≤

√
2

h
,

|Re λ| =
∣∣∣ Im√z

h

∣∣∣ ≤ BN
2
hN−1 ≤ CN |Im λ|−N+1, |Im λ| ≥ 1

δ0
.

Next √
δ

2c1
≤ c0

2c1
≤ 1

2

and from (4.1) we give δ0 ≤ min{c20,
√

1−c21
2 }. This completes the proof of Theorem

1.1.

5. Properties of the operator P (h̃) for real h̃

In the section we use the notations of preceding sections. Let h̃ ∈ L, h = Re h̃.
Introduce a function α(x′, ξ′) ∈ C∞(T ∗(Γ) : [0, 1]) such that

α(x′, ξ′) =

{
0, if r0 ≥ 1− c20(1+ε1)

2 ,

1, if r0 ≤ 1− 3c20
5 ,

where 0 < ε1 � 1 satisfies the inequality 5(1+ε1) < 6. Let T̃N (h̃) be the parametrix
in the hyperbolic region H constructed in subsection 3.2 for the problem (3.14)

with boundary data Oph̃(α)f. Recall that this parametrix is holomorphic for h̃ ∈ L.
As in (3.17) we obtain

(Ñ (h̃)− T̃N (h̃))Oph̃(α) = RN (h)Oph̃(α), h̃ ∈ L

with ‖RN‖L2(Γ)→H1(Γ) = O(|h|N ). The operator −T̃N (h)Oph(α) is self-adjoint.

However for h2r0 > 1 the principal symbol −
√

1− h2r0 of T̃N (h) is not real valued

(see the end of Section 3). To deal with a holomorphic in h̃ operator, we add some

additional terms. We fix δ =
c20
2 and consider the function β(t) ∈ C∞(R; [0, 1])

introduced in the previous section with this δ. Recall that β(r0(x′, ξ′)) = 0 for

r0 ≤ 1− c20
2 and β(r0(x′, ξ′)) = 1 for r0 ≥ 1− c20

4 . This choice of δ is not related to
that in Section 4. In fact, in the proof of Theorem 1.1 we have choose δ � c0 and
we obtained an eigenvalue free region QN depending of c0 and c1 and small h. The
function β and δ will be fixed and there are no confusion. Later in Section 6 we
will use the functions χ±ω , χ

0
ω and the small parameter ω will different from δ fixed

here.
Set A(h) = Op(1−β(r0(x′, hξ′)). In the following Op(a) with symbol a(x′, hξ′;h)

denotes the classical pseudo-differential operator

(Op(a)f)(x) = (2π)d−1

∫∫
ei〈y

′−x′,ξ′〉a(x′, hξ′;h)f(y′)dy′dξ′

and similarly if one has h̃ at the place of h. Obviously,

sup(1− β(r0(x′, ξ′))) ∩ supp α(x′, ξ′) = ∅. (5.1)
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Let

Q(h̃) = −T̃N (h̃)A(h) + γ(x) + (Id−A(h))Op(

√
1 + h̃2r0).

To extend Q(h̃) for h̃ ∈ L we must extend holomorphically for h̃ ∈ L the operator
A(h). Since the symbol of this operator vanishes for large ‖ξ′‖, we may apply

Proposition A.1 in [14]. According to this result, for small h0 and h̃ ∈ L there

exists an operator R(h̃) such that

∂k
h̃
R(h̃) = O(|h̃|∞) : H−s → Hs, ∀k ≥ 0, ∀s ≥ 0

and Ã0(h) = A(h)+R(h) extends holomorphically to the domain L. Moreover, the

extension Ã0(h̃) has the form Ã0(h̃) = B(h; h̃
|h| ) with a classical pseudo-differential

operator B ∈ L0,0
cl (Γ) and ρ /∈ W̃F (A(h)) implies ρ /∈ W̃F (Ã0(h̃)). After this

manipulation we introduce the operator

P (h̃) := −T̃N (h̃)Ã0(h̃) + γ(x) + (Id− Ã0(h̃))Op
(√

1 + h̃2r0

)
which is holomorphic for h̃ ∈ L. Notice that (5.1) implies

W̃F (Id−A(h)) ∩ W̃F (Op(α(x′, hξ′)) = ∅,

hence

W̃F (Id− Ã0(h̃)) ∩ W̃F (Op(α(x′, hξ′)) = ∅.
This leads to

(C(h̃)− P (h̃))Op(α) = −
(
Ñ (h̃)− T̃N (h̃)Ã0(h̃)

)
Op(α) +O(|h|∞)

= −
(
Ñ (h̃)− T̃N (h̃)

)
Op(α) +O(|h|∞) = O(|h|N ). (5.2)

In this section we study the self-adjoint operator P (h) for Re h̃ = h with principal
symbol

p1(x′, hξ′) := −
√

1− h2r0(1− β(h2r0)) + γ(x) + β(h2r0)
√

1 + h2r0.

Choose 0 < 2η = 1− c21 ≤ 1− 2δ, ε0 = η2

8(1+η). For two operators L1, L2 we say

that L1 ≤ L2 if (L1u, u) ≤ (L2u, u).

Proposition 5.1. For small h depending of ε0 we have the inequality

h
dP (h)

dh
+ P (h)Op((1 + h2r0)−1/2)P (h) ≥ ε0Op(

√
1 + h2r0). (5.3)

Proof. We have

h
dp1

dh
= h2r0

(1− β(h2r0)√
1− h2r0

+
β(h2r0)√
1 + h2r0

)
+2h2r0β

′(h2r0)
(√

1− h2r0 +
√

1 + h2r0

)
and one obtains hdp1dh ≥ 0, ∀(x′, ξ′).

We consider several cases.
1. 0 ≤ h2r0 ≤ η. Then

√
1− h2r0 ≥

√
1− η, β(h2r0) = 0 and

p1 = −
√

1− h2r0 + γ ≤ −
√

1− η + c1 = − η

c1 +
√

1− η
.
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This implies

h
dp1

dh
+

p2
1√

1 + h2r0

≥ η2

(1 + η)(c1 +
√

1− η)2

√
1 + h2r0 > 2ε0

√
1 + h2r0. (5.4)

2. η < h2r0 ≤ 1− δ. Then β(h2r0) = 0 and

h
dp1

dh
+

p2
1√

1 + h2r0

≥ η√
1− h2r0

≥ η
√

1 + h2r0. (5.5)

3. 1− δ < h2r0 ≤ 1− δ
2 . We obtain

h
dp1

dh
+

p2
1√

1 + h2r0

≥ (1− δ)
(1− β(h2r0)√

δ
+

β(h2r0)√
2− δ/2

)
>

1− δ√
2− δ/2

≥ 1− δ
2− δ/2

√
1 + h2r0 >

1− δ
2

√
1 + h2r0. (5.6)

4. h2r0 > 1− δ
2 . Therefore, β(h2r0) = 1 and

p2
1√

1 + h2r0

>
√

1 + h2r0.

Clearly, η < 1−δ
2 and 2ε0 = η2

4(1+η) < η. Taking together the estimates (5.4), (5.5),

(5.6), we get

h
dp1

dh
+

p2
1√

1 + h2r0

− 2ε0

√
1 + h2r0 ≥ 0.

By the sharp semiclassical Gärding inequality we deduce(
hOp(

dp1

dh
)f +Op

( p2
1√

1 + h2r0

)
f, f
)
≥ 2ε0

(
Op(

√
1 + h2r0)f, f

)
− C1h‖f‖2H1/2 .

The norm of the low order terms on the left hand side of (5.3) can be estimated by

C2h‖f‖2, C2 > 0. Finally, h
(
C1‖f‖2H1/2 +C2‖f‖2

)
can be absorbed by ε0‖f‖2H1/2

choosing h small, and this completes the proof. �

Remark 5.4. The choice of ε0 is independent of δ and the function β(r0) and ε0 =
o((1−c1)2), so ε0 ↘ 0 as c1 ↗ 1. We have a similar phenomenon in the case γ(x) >
1, ∀x ∈ Γ (see Remark 2 in [12]), where ε0 = o((1 − c̃0)2), c̃0 = minx∈Γ γ(x) > 1.
On the other hand, h depends of ε0 and we must take h ≤ h0 = o((1− c1)2).

Let 0 < h ≤ h0 � 1 and let

µ1(h) ≤ µ2(h) ≤ ... ≤ µk(h) ≤ ...
be the eigenvalues of the self-adjoint operator P (h). We repeat without changes the
arguments of Section 4 in [12] and Section 4 in [14]. For convenience of the reader,
we mention briefly the main steps and we refer to [12], [14] for more details. The
number of negative eigenvalues

k0 = ]{k : µk(h0) ≤ 0} = (2πh0)−(d−1)

∫∫
p1(x′,ξ′)≤0

dx′dξ′ +O(h−d+2
0 )

is finite and

E = {(x′, ξ′) : p1(x′, ξ′) ≤ 0} = {(x′, ξ′) : r0(x′, ξ′) ≤ 1− γ2(x′)}. (5.7)

In fact, p1 ≤ 0 implies
r0 ≤ 1− γ2 ≤ 1− c20.
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On the other hand, β(r0) > 0 yields r0 > 1 − δ = 1 − c20
2 and this contradicts the

above inequality. Thus (x′, ξ′) ∈ E ⇐⇒ β(r0(x′, ξ′)) = 0 and we obtain (5.7).
Notice that k0 is independent of δ and the function β. For k > k0 the eigenvalues

µk(h0) are positive. By applying (5.3), we show that µk(h) are locally Lipschitz

functions and the derivatives dµk(h)
dh are almost defined. Repeating the argument in

[12], [14], for µk(h) ∈ [−α, α], 0 < α� 1, h ∈ [h1, h2], one establishes the estimates

ε0

2
≤ hdµk(h)

dh
≤ c2, k > k0.

We discuss briefly only the proof of lower bound in the above estimate. Let h1

be small and let µk(h1) have multiplicity m. For h sufficiently close to h1 one has
exactly m eigenvalues and we denote by F (h) the space spanned by them. We
denote by ȧ(h) the derivatives of a(h) with respect to h. Let h2 be close to h1 and
let e(h2) be a normalised eigenfunction with eigenvalue µk(h2). We construct a
smooth extension e(h) ∈ F (h), h ∈ [h1, h2] of e(h2) with ‖e(h)‖ = 1, ė(h) ∈ F (h)⊥.
Obviously, e(h1) will be normalised eigenfunction with eigenvalue µk(h1). Since

µk(h) ∈ [−α, α], h ∈ [h1, h2], we have ‖P (h)e(h)‖ ≤ α. To estimate hdµk(h)
dh from

below, we apply (5.3). For α =
√

ε
2 we have

h
dµk(h)

dh
= (hṖ (h)e(h), e(h)) ≥ ε0(Op(

√
1 + h2r0)e(h), e(h))

−(Op((1 + h2r0)−1/2)P (h)e(h), P (h)e(h)) ≥ ε0 − α2 ≥ ε0/2.

Consequently, for h ∈ [h1, h2] one has

µk(h2)− µk(h1) ≥ ε0

2

∫ h2

h1

h−1dh ≥ ε0

2h2
(h2 − h1)

and
ε0

2
≤ hdµk(h)

dh
.

The above inequality combined with the continuity of µk(h) implies that if for
h < h0, k > k0 we have µk(h) < 0, then there exists unique h < hk < h0 such
that µk(hk) = 0. Clearly, the operator P (hk) is not invertible. Thus we are led to
count for 0 < 1

r ≤ h0 the number of the negative eigenvalues of P (1/r) which can
be expressed by well known formula.

Repeating without any change the argument in [14], we choose p > d and con-
struct intervals Ik,p containing hk with length |Ik,p| ∼ hp+1 and |µk(h)| ≥ hp for h ∈
(0, h0] \ Ik,p. Next, one constructs closed disjoint intervals Jk,p, |Jk,p| = O(hp+2−d)
so that ⋃

k>k0

Ik,p =
⋃
k>k0

Jk,p

and we obtain the following

Proposition 5.2 (Prop. 4.1, [14]). Let p > d be fixed. The inverse operator
P (h)−1 : L2 → L2 exists and has norm O(h−p) for h ∈ (0, h0] \ Ωp, where Ωp =
∪kJk,p. Moreover, the number of intervals Jk,p that intersect [h/2, h] for 0 < h ≤ h0

is at most O(h1−p).
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6. Relation between the trace formulas for P (h̃) and C(h̃)

In this section we study C(h̃) and P (h̃) for complex h̃ ∈ L. Moreover, δ =
c20
2

and β are fixed as in the preceding section. We obtain without changes many
statements of Sections 5, 6 in [14]. We refer to [14] for the details and below precise
citations are given. First, one repeats the proof of Lemma 5.1 in [14] exploiting
Proposition 5.1. Thus we get

‖P (h̃)−1‖L(H−1/2,H1/2) ≤ C
h

| Im h̃|
, h > 0, Im h̃ 6= 0. (6.1)

Second, as in Section 5 in [12], one introduces an elliptic operator M(h̃) holomorphic

in L such that P (h̃) −M(h̃) : Os(1) : H−s → Hs, ∀s. A modification is necessary
since the principal symbol p1 vanishes on the set Σ = {(x′, ξ′) : p1(x′, ξ′) = 0}. For
this purpose we repeat the argument of Section 5 in [12] and for convenience of the
reader we present the proof.

Consider a symbol σ(x′, ξ′) ∈ C∞0 (T ∗(Γ); [0, 1]) such that

σ(x′, ξ) =

{
1, (x′, ξ′) ∈ T ∗(Γ), r0(x′, ξ′) ≤ 1− 11c20

12 ,

0, (x′, ξ′) ∈ T ∗(Γ), r0(x′, ξ′) ≥ 1− 5c20
6 .

Introduce the operator

M(h) = P (h) +Op(σ(x′, hξ′)).

The principal symbol of M(h) has the form

m(x′, hξ′) = −
√

1− h2r0(1− β(h2r0)) + γ(x) + β(h2r0)
√

1 + h2r0 + σ(x′, hξ′).

The operator M(h) is elliptic since for h2r0 ≤ 1− 11c20
12 we have m ≥ γ(x) ≥ c0, for

1− 11c20
12 < h2r0 ≤ 1− c20

2 we get β(h2r0) = 0 and

m ≥ γ(x)−
√

1− h2r0 ≥ γ(x)−
√

11

12
c0,

while for 1− c20
2 < h2r0 ≤ 1− c20

4 we obtain m ≥ γ(x)−
√

1− h2r0 ≥ γ(x)−
√

1
2c0.

Finally, for h2r0 ≥ 1− c20
4 we have β(h2r0) = 1 and m ≥ γ(x).

Consequently, m ∈ S1
0,1, the operator M−1(h) : Hs−Hs+1 is bounded by Os(1)

and W̃F (P (h) −M(h)) ⊂ {(x′, ξ′) : r0 ≤ 1 − 5c20
6 }. By applying Proposition A.1

in [14], we can extend homomorphically σ(x′, hξ′) to η(x′, ξ′; h̃) for h̃ ∈ L. Thus
M(h) has a holomorphic extension

M(h̃) = P (h̃) +Op(η(x′, ξ′; h̃))

for h̃ ∈ L and W̃F (P (h̃) −M(h̃)) ⊂ {(x′, ξ′) : r0 ≤ 1 − 5c20
6 }. The last relation

implies P (h̃)−M(h̃) : Os(1) : H−s → Hs, ∀s.
Next, one deduces the estimate

‖P (h̃)−1‖L(Hs,Hs+1) ≤ Cs
h

| Im h̃|
, h > 0, Im h̃ 6= 0 (6.2)

applying (6.1) and the representation

P−1 = M−1 −M−1(P −M)M−1 +M−1(P −M)P−1(P −M)M−1, (6.3)
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combined with the property of P (h̃) − M(h̃) mentioned above. Following [14],
introduce a piecewise smooth simply positively oriented curve γk.p as a union of

four segments: {h ∈ Jk,p, Im h̃ = ±hp+1} and {h ∈ ∂Jk,p, | Im h̃| ≤ hp+1}, where
Jk,p is one of the intervals in Ωp defined in Proposition 5.2. Then we have

Proposition 6.1 (Prop. 5.2, [14]). For every h ∈ γk,p the inverse operator P (h̃)−1

exists and
‖P (h̃)−1‖L(Hs,Hs+1) ≤ Csh−p, h̃ ∈ γk,p.

For the operator P (h̃), we obtain a trace formula repeating without any change
the proof in [14]. Let µk(hk) = 0, k > k0. Define the multiplicity of hk as the
multiplicity of the eigenvalue µk(hk) and denote the derivate of A with respect to

h̃ by Ȧ.

Proposition 6.2 (Prop. 5.3, [14]). Let τ ⊂ L be a closed positively oriented C1

curve without self intersections which avoids the points hk with µk(hk) = 0. Then

tr
1

2πi

∫
τ

P (h̃)−1Ṗ (h̃)dh̃

is equal to the number of hk in the domain bounded by τ.

Introduce an operator χ ∈ L0,0
cl (Γ) which is holomorphic for h̃ ∈ L so that

W̃F (χ) ⊂ {(x′, ξ′) ∈ T ∗(Γ) : r0(x′, ξ′) ≤ 1− 3c20
4
},

W̃F (1− χ) ⊂ {(x′, ξ′) ∈ T ∗(Γ) : r0(x′, ξ′) ≥ 1− 4c20
5
}.

We apply (6.3) for P−1(1− χ), and exploiting

W̃F (P (h̃)−M(h̃)) ∩ W̃F (1− χ) = ∅,
we get

P−1 = P−1χ+M−1(1− χ) +K1, h̃ ∈ γk,p (6.4)

with K1 : O(|h̃|s) : H−s → Hs, ∀s. For the analysis below consider a product

χ1P
−1χ2, where χ1, χ2 ∈ L0,0

cl are such that W̃F (χ1)∩ W̃F (χ2) = ∅, and W̃F (χ1)

or W̃F (χ2) is disjoint from {(x′, ξ′) : r0 ≤ 1− 5c20
6 }. Applying once more (6.3), we

deduce χ1P
−1χ2 : O(|h|s) : H−s → Hs, ∀s.

We pass to the analysis of the inverse of the operator C(h̃). First choosing small
ω > 0, introduce a partition of unity on T ∗(Γ)

1 = χ−ω + χ0
ω + χ+

ω ,

where the functions χjω(x′, ξ′), j = 0,± have been introduced in Section 4. We

replace δ by ω to avoid a confusion with δ =
c20
2 fixed above and choose ω � c20.

Let Qjω = Op(χjω(x′, hξ′)), j = 0,±. The estimates (4.5) and (4.11) can be written

as estimates for C(h̃) = −Ñ (h̃) + γ(x), because

N (h, z)√
z

=
−ih∂νu|Γ√

z
= −ih̃∂νu|Γ = Ñ (h̃).

Notice that for the proof of (4.11) we must take ω � c20 sufficiently small. From
these estimates we deduce

‖(1−Q−ω )f‖H1/2 ≤ ‖Q0
ωf‖H1/2 + ‖Q+

ω f‖H1/2
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≤ B
(
‖C(h̃)Q0

ωf‖H−1/2 + ‖C(h̃)Q+
ω f‖H−1/2

)
with constant B > 0 depending of ω and small h. We fix ω ≤ c20

12 and obtain

‖f‖H1/2 ≤ B
(
‖C(h̃)f‖H−1/2 + 2‖C(h̃)Q+

ω f‖H−1/2

+‖C(h̃)Q−ω f‖H−1/2

)
+ ‖Q−ω f‖H1/2 .

By using a parametrix SN (h) in the elliptic region, we have C(h̃)Q+
ω = SN (h)Q+

ω +

RN , RN = O(|h̃|N ). Then

C(h̃)Q+
ω = Q+

ωC(h̃) + [SN (h), Q+
ω ] +O(|h̃|N )

and it easy to estimate the norm of the commutator [SN (h), Q+
ω ] by O(|h̃|). Also

by using the parametrix T̃N (h̃) in the hyperbolic region, we obtain the same result

for the commutator [T̃N (h̃), Q−ω ]. The terms with norms O(|h̃|) can be absorbed by
the left hand side of the last inequality and we give

‖f‖H1/2 ≤ B1

(
‖C(h̃)f‖H−1/2 + ‖Q−ω f‖H1/2

)
. (6.5)

Introduce the operator C̃(h̃) := C(h̃) + χ̃, where χ̃ ∈ L0,0
cl depends homomorphi-

cally of h̃ ∈ L and W̃F (χ̃) is included in a neighborhood of Σ. To do this, choose
ζ ∈ C∞0 (T ∗(Γ); [0, 1]), so that

ζ(x′, ξ′) =

{
1, if r0(x′, ξ′) ≤ 1− 6c20

7 ,

0, if r0(x′, ξ′) ≥ 1− 5c20
6 .

Extend ζ homomorphically to ζ̃ for h̃ ∈ L as we have proceeded above with η, and
define the operator χ̃ with symbol ζ̃. Obviously,

W̃F (χ̃) ⊂
{

(x′, ξ′) ∈ T ∗(Γ) : r0 ≤ 1− 5c20
6

}
,

Moreover, it is easy to see that C̃(h̃) is elliptic operator. Indeed, choose a symbol
η1 ∈ C∞0 (T ∗(Γ); [0, 1]) satisfying

η1(x′, ξ′) =

{
1, if r0(x′, ξ′) ≤ 1− ω

2 ,

0, if r0(x′, ξ′) ≥ 1− ω
3 .

and set υ = Oph(η1). We apply (6.5) for (1− υ)f and deduce

‖(1−υ)f‖H1/2 ≤ B1

(
‖(1−υ)C(h̃)f‖H−1/2 +‖[C(h̃), υ]f‖H−1/2 +O(|h̃|∞)‖f‖H1/2

)
.

(6.6)

Since W̃F (1− υ)∩ W̃F (χ̃) = ∅, we have (1− υ)C(h̃) = (1− υ)C̃(h̃) +O(|h̃|∞) and

we may replace (1 − υ)C(h̃) by (1 − υ)C̃(h̃) in the last inequality. On the other

hand, C̃(h̃) is elliptic in the hyperbolic region and similarly to (4.5) we give

‖υf‖H1/2 ≤ B2

(
‖C̃(h̃)υf‖H−1/2 +Ah‖f‖H1/2

)
. (6.7)

The commutator [C(h̃), υ] yields a term with norm O(|h|) and taking together (6.6)
and (6.7), we conclude that

‖f‖H1/2 ≤ B3‖C̃(h̃)f‖H−1/2 , h̃ ∈ L. (6.8)
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This proves that C̃(h̃) is invertible with inverse C̃−1(h̃) holomorphic for h̃ ∈ L.

Passing to C−1(h̃), consider the operator

D = C̃−1(h̃)(1− χ) + P−1(h̃)χ, h̃ ∈ γk,p.
We have

CD = I + (C − C̃)C̃−1(1− χ) + (C − P )P−1χ.

Let α̃ = Op(α) ∈ L0,0
cl with symbol α(x′, hξ′) be the operator introduced in the

preceding section. Clearly,

W̃F (α̃) ⊂
{

(x′, ξ′) : r0 ≤ 1− c20(1 + ε1)

2

}
, W̃F (1− α̃) ⊂

{
(x′, ξ′) : r0 ≥ 1− 3c20

5

}
.

Then (C − P )(1 − α̃)P−1χ : O(|h̃|s) : H−s → Hs. On the other hand, according
to (5.2), one has

(C − P )α̃ = RN α̃ (6.9)

with RN : Os(|h̃|N ) : Hs → Hs. Applying (6.2),we conclude that

(C − P )P−1χ = Os(|h̃|N−p), H−s → Hs, h̃ ∈ γk,p.

Next C− C̃ = −χ̃ and W̃F (χ̃)∩W̃F (1−χ) = ∅ implies χ̃C̃−1(1−χ) = O(|h̃|s) :

H−s → Hs. Finally, CD = Id+O(|h̃|N−p) and we can take N arbitrary large. We

obtain an inverse D(Id+O(|h̃|N−p))−1 of C(h̃) and this implies the following

Proposition 6.3. For h̃ ∈ γk,p we have

‖C−1(h̃)‖L(Hs,Hs+1) ≤ Cs|h̃|−p. (6.10)

Similarly to (6.4), we get

C−1(h̃) = C̃−1(h̃)(1− χ) + P−1(h̃)χ+K2(h̃), h̃ ∈ γk,p (6.11)

with K2(h̃) : Os(|h̃|N−p) : H−s → Hs.

Now we are going to compare the traces involving C(h̃) and P (h̃) and our argu-
ment is very similar to that in [14]. First, using (6.11), we have

tr
1

2πi

∫
γk,p

C−1(h̃)Ċ(h̃)dh̃ = tr
1

2πi

∫
γk,p

P−1(h̃)χĊ(h̃)dh̃+Op(|h̃|N−p).

since C̃−1(h̃)(1− χ) is holomorphic. Next write

P−1(h̃)χĊ(h̃) = (1− α̃)P−1(h̃)χĊ(h̃) + α̃P−1(h̃)χĊ(h̃)

and observe that W̃F (1 − α̃) ∩ W̃F (χ) = ∅. Thus the norm of first term on the

right hand side is estimated by O(|h̃|∞). For the second one we apply the cyclicity
of the trace and obtain

P−1(h̃)χ
(
Ċ(h̃)− Ṗ (h̃)

)
α̃+ P−1(h̃)χṖ (h̃)α̃.

By using Cauchy formula for the derivative ∂
∂h̃

(C(h̃)− P (h̃)) and (6.9), we deduce

that P−1(h̃)χ
(
Ċ(h̃)− Ṗ (h̃)

)
α̃ = O(|h̃|N−p). To handle the term P−1(h̃)χṖ (h̃)α̃ by

the cyclicity of the trace we transfer the operator α̃ on the left and conclude that

tr
1

2πi

∫
γk,p

P−1(h̃)χĊ(h̃)dh̃ = tr
1

2πi

∫
γk,p

P−1(h̃)χṖ (h̃)dh̃+O(|h̃|N−p).
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Finally, taking into account (6.4) and the analyticity of M−1(1− χ), we give

tr
1

2πi

∫
γk,p

P−1(h̃)χṖ (h̃)dh̃ = tr
1

2πi

∫
γk,p

P−1(h̃)Ṗ (h̃)dh̃+O(|h̃|∞).

The difference

tr
1

2πi

∫
γk,p

C−1(h̃)χĊ(h̃)dh̃− tr
1

2πi

∫
γk,p

P−1(h̃)χṖ (h̃)dh̃

is a negligible term, hence this difference is zero. Repeating the argument in [14],
[12], we obtain a bijection between (0, h0] 3 hk ⇔ µj ∈ (σp(G) ∪ Res (G)) and we
must count the negative eigenvalues µk(r−1) of P (r−1), r ≥ Cγ . By the well known
formula we have

]{k : µk(r−1) ≤ 0} =
rd−1

(2π)d−1

∫
p1((x′,ξ′)≤0

dx′dξ′ +Oγ(rd−2). (6.12)

Applying (5.7), the integration is over {(x′, ξ′) : r0(x′, ξ′) ≤ 1 − γ2(x′)} and we
obtain the leading term in (1.4). This completes the proof of Theorem 1.2.

Appendix

In this Appendix we assume that K = B3 = {x ∈ R3 : |x| ≤ 1} and γ ≥ 0 is a
constant. We will prove the following

Proposition A.4. For K = B3 and 0 < γ < 1 the operator G has no eigenvalues.

Proof. Consider the dissipative problem
(−∆ + λ2)u = 0 in |x| > 1,

∂ru− λγu = 0, on |x| = 1,

u− λ− incoming.

(A.1)

Set in (A.1) λ = iµ. The incoming solution of (A.1) in polar coordinates (r, ω) ∈
R+ × S2 has the form

u(r, ω, µ) =

∞∑
n=0

n∑
m=−n

an,m
h

(1)
n (µr)

h
(1)
n (µ)

Yn,m(ω).

Here h
(1)
n (r) =

H
(1)

n+1/2
(r)

r1/2
are the spherical (modified) Hankel functions of first kind,

Yn,m(ω) are the eigenfunctions of the Laplace-Beltrami operator −∆S2 with eigen-
values n(n+ 1) and

u||x|=1 = f(ω) =

∞∑
n=0

n∑
m=−n

an,mYn,m(ω).

To satisfy the boundary condition we must have

C(n;µ, γ)an,m = 0, ∀n, −n ≤ m ≤ n,

where

C(n;µ, γ) = ∂r

(h(1)
n (µr)

h
(1)
n (µ)

)∣∣∣
r=1
− iµγ, n ∈ N, Imµ > 0.
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Our purpose is to prove that C(n;µ, γ) 6= 0 for Imµ > 0 and all n ∈ N. This
implies an,m = 0 and f ≡ 0. Hence u ≡ 0 since the Dirichlet problem has no
eigenvalues. We have the representation

h(1)
n (x) = (−1)n+1 e

ix

x
Rn

( i

2x

)
with

Rn(z) :=

n∑
m=0

(n+m)!

(n−m)!

zm

m!
=

n∑
m=0

cmz
m.

It is well known that the zeros of H
(1)
n+1/2(z) are located in the domain Im z < 0, so

Rn(z) 6= 0 for Re z ≥ 0. Taking the derivative with respect to r, we obtain

C(n;µ, γ) = (1− γ)iµ−
n∑

m=0

(m+ 1)(n+m)!

m!(n− n)!

( i

2µ

)m(
Rn(

i

2µ
)
)−1

.

Setting w = i
2µ , we will study for Rew > 0 the equation

−C
(
n;

i

2w
, γ
)

=
1− γ
2w

+

n∑
m=0

(m+ 1)cmw
m(Rn(w))−1

=
(1− γ)Rn(w) +

∑n
m=0 2(m+ 1)cm(γ)wm+1

2wRn(w)
=

∑n+1
m=0 bm(γ)wm

2wRn(w)
= 0. (A.2)

The coefficients bm(γ) have the form

bm(γ) = (1− γ)cm + 2mcm−1, m = 1, ..., n,

bn+1(γ) = 2(n+ 1)cn = 2(n+ 1)
(2n)!

n!
, b0(γ) = 1− γ.

We fix 0 < γ < 1 and for 0 ≤ ε ≤ 1 consider the polynomial

Bn(w; ε) :=

n+1∑
k=0

bk(εγ)wk.

Let wj(n; ε) = 1, ..., n + 1 be the roots of the equation Bn(w; ε) = 0 with respect
to w. By using the result of Fujiwara (see [10]), we obtain an upper bound for
|wj(n; ε)|, j = 0, ..., n+ 1 given by

2 max
{∣∣∣bn(εγ)

bn+1

∣∣∣, ∣∣∣bn−1(εγ)

bn+1

∣∣∣1/2, ..., ∣∣∣b1(εγ)

bn+1

∣∣∣1/n, ∣∣∣b0(εγ)

2bn+1

∣∣∣1/(n+1)}
= Mn(ε).

Since bn+1 is independent of γ and ε and 0 < bk(εγ) ≤ bk(0), 0 ≤ ε ≤ 1, k =
0, ..., n, we deduce

Mn(ε) ≤Mn(0), 0 ≤ ε ≤ 1.

To estimate Mn(0), observe that the sequence bn+1(εγ) > bn(εγ) > ... > b1(εγ) >
1− εγ is decreasing. Indeed,

ck − ck−1 =
(n+ k − 1)!

(k − 1)!(n− k)!

[n+ k

k
− 1

n− k + 1

]
=

(n+ k − 1)!

k!(n− k + 1)!
(n2 − k2 + n).

Thus the maximal term in the above upper bound becomes

2bn(εγ)

bn+1
=

(1− εγ)cn + 2ncn−1

(n+ 1)cn
=

1− εγ
n+ 1

+
n

n+ 1
= 1− εγ

n+ 1
≤ 1

and we take Mn(0) = 1.
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Consider the contour ω = α ∪ β ⊂ {w ∈ C : Rew ≥ 0}, where

α = {w ∈ C : |w| = 2,Rew ≥ 0}, β = {w = iy ∈ C : |y| ≤ 2}.

By using the factorisation of Bn(w; ε), we give

|Bn(w; ε)| ≥ bn+1, ∀w ∈ α, 0 ≤ ε ≤ 1. (A.3)

On the other hand, Bn(w; ε) 6= 0 for w ∈ β, 0 ≤ ε ≤ 1. Indeed, Bn(0; ε) = 1−εγ 6= 0
and for w = iy, y 6= 0 one has C(n; 1

2y , εγ) 6= 0. In fact, R 3 1
2y = −iλ yields

λ ∈ iR \ {0} and in Section 2 it was shown that there are no eigenvalues and
incoming resonances on iR \ {0}. If C(n;−iλ0, εγ) = 0 for some λ0 ∈ R and some
n, taking an,m 6= 0 and ak,m = 0, k 6= n, we obtain a function f 6= 0 such that
C(−iλ0)f = 0 which is impossible. We claim that there exists δ0(n) > 0 such that

|Bn(w; ε)| ≥ δ0(n), ∀w ∈ β, 0 ≤ ε ≤ 1. (A.4)

Assume (A.4) not true. Then there exists a sequence {iym, εm} ∈ β × [0, 1] such
that

|Bn(iym; εm)| ≤ 1

m
, ∀m ∈ N.

Choosing convergent subsequence {ymk , εmk} and passing to limit (ymk , εmk) →
(y0, ε0) ∈ β× [0, 1], we obtain a contradiction with Bn(iy0, ε0) 6= 0. This proves the
claim.

Now consider the integral

qn(ε) =
1

2πi

∫
ω

B′n(w; ε)

Bn(w; ε)
dw, 0 ≤ ε ≤ 1.

Here qn(ε) ∈ N is equal to the number of the roots of Bn(w; ε) = 0 counted with
their multiplicities lying in the interior of the domain bounded by ω. We will
prove that qn(ε) depends continuously of ε ∈ [0, 1], hence qn(ε) is constant. Let
ε1, ε2 ∈ [0, 1]. Write

B′n(w; ε1)

Bn(w; ε1)
− B′n(w; ε2)

Bn(w; ε2)

= Bn(w; ε1)−1Bn(w; ε2)−1
(

[B′n(w; ε1)−B′n(w; ε2)]Bn(w; ε2)

+B′n(w; ε2)[Bn(w; ε2)−Bn(w; ε1)]
)
.

On the other hand,

Bn(w; ε1)−Bn(w; ε2) = (ε2 − ε1)γ

n∑
m=0

cmw
m

and a similar equality holds for B′n(w; ε1) − B′n(w; ε2). Taking into account (A.3)
and (A.4), we have an upper bound

|B−1
n (w, ε)| ≤ max

{ 1

bn+1
,

1

δ0(n)

}
, ∀w ∈ ω, 0 ≤ ε ≤ 1 (A.5)

and we conclude that qn(ε) is continuous. This implies qn(ε) = qn(0) = 0 since
for Neumann problem (γ = 0) we have no roots of the equation Bn(w; 0) = 0 with
Rew > 0. �
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Remark A.5. A shorter proof of Proposition A.4 may be given by using the con-
tinuity of the roots wj(n; ε) with respect to ε. If we have a root wj(n; ε) with
Rewj(n; ε) > 0 for some 0 < ε < 1, then for ε ↘ 0 we obtain Re wj(n; 0) ≥
0, wj(n; 0) 6= 0 since the roots wj(n; ε) cannot cross the imaginary axis. This leads
to a contradiction with the fact that Bn(w; 0) 6= 0 in {Rew ≥ 0}. The above proof
is based on complex analysis and the same approach could be useful for the general
case of strictly convex obstacles.

We may apply another perturbation argument. Consider the polynomial

Fn(w; η) =

n+1∑
m=0

bm(1 + η)wm

for |η| � 1. Let wj(η) be the roots of Fn(w; η) = 0 with respect to w. Clearly, for

|η| small enough we have a simple root w(η) such that w(0) = 0 and ∂Fn
∂w (0; 0) = 2.

The other roots of Fn(w; 0) = 0 are different from 0 and they have strictly negative
real part (see Appendix in [11]). The root w(η) must be real, otherwise we will
have two perturbed roots for η close to 0. Taking the derivative with respect to η,
we obtain

∂Fn
∂w

(w(η); η)w′(η) +
∂Fn
∂η

(w(η); η) = 0

and for η = 0 we deduce w′(0) = 1/2. This implies ±w(η) > 0 for ±η > 0 and
small |η| (w(η) < 0 for η < 0 follows also from the fact that Bn(w; γ) = 0 with
0 < γ < 1 has no positive real roots). For γ = 1 + η > 1 the root w(η) yields an
eigenvalue λ = − 1

2w(η) < 0, while for γ = 1− η < 1 we have an incoming resonance

λ = − 1
2w(−η) > 0. The other roots wj(η) with Rewj(0) < 0 remain in the half

plane {Re z < 0} for small |η|.
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