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Abstract. It is known that for some time periodic potentials q(t, x) ≥ 0 having compact
support with respect to x some solutions of the Cauchy problem for the wave equation ∂2

t u−
∆xu + q(t, x)u = 0 have exponentially increasing energy as t →∞. We show that if one adds
a nonlinear defocusing interaction |u|ru, 2 ≤ r < 4, then the solution of the nonlinear wave
equation exists for all t ∈ R and its energy is polynomially bounded as t →∞ for every choice
of q. Moreover, we prove that the zero solution of the nonlinear wave equation is instable if
the corresponding linear equation has the property mentioned above.
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1. Introduction

Our goal in this paper is to show that a defocusing nonlinear interaction may improve, in
a certain sense, the long time properties of the solutions of the wave equation with a time
periodic potential.

Consider the Cauchy problem with potential perturbation of the classical wave equation in
the Euclidean space R3

∂2
t u−∆xu+ q(t, x)u = 0, u(0, x) = f1(x), ∂tu(0, x) = f2(x). (1.1)

Throughout this paper 0 ≤ q(t, x) ∈ C∞(R× R3) is periodic in time t with period T > 0 and
has a compact support with respect to x included in {x ∈ R3 : |x| ≤ ρ}, for some positive ρ. It
is easy to show that the Cauchy problem (1.1) is globally well-posed in H = H1(R3)×L2(R3).
The analysis of the long time behavior of the solution of (1.1) may be quite intricate (see e.g.
[6, 1]). A slight adaptation of the arguments presented in [1] leads the following result.

Theorem 1. There exist q and (f1, f2) ∈ H such that the solution of (1.1) satisfies :

∃C > 0, ∃α > 0 such that ∀ t ≥ 0, ‖u(t, ·)‖H1(R3) ≥ C eαt . (1.2)

The above result has been established in [1] for the Cauchy problem with initial data in the
energy space H = HD(R3)× L2(R3) with norm

‖f‖0 =
(
‖f1‖2

HD
+ ‖f2‖2

L2

)1/2
, f = (f1, f2),

where HD(R3) is the closure of C∞0 (R3) with respect to the norm ‖f‖HD
= ‖∇xf‖L2(R3).

In fact we show that the propagator of (1.1)

V (T, 0) : H 3 (f1(x), f2(x)) −→ (u(T, x), ut(T, x)) ∈ H
has an eigenvalue y, |y| > 1 which implies (1.2).

Our purpose is to show that adding a nonlinear perturbation to (1.1) forbids the existence
of solutions satisfying (1.2). Consider therefore the following Cauchy problem

∂2
t u−∆xu+ q(t, x)u+ |u|ru = 0, u(0, x) = f1(x), ∂tu(0, x) = f2(x) , (1.3)
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where 2 ≤ r < 4. We have the following statement.

Theorem 2. For any choice of q the Cauchy problem (1.3) is globally well-posed in H. More-
over, for every (f1, f2) ∈ H there exists a constant C > 0 such that for every t ∈ R, the solution
of (1.3) satisfies the polynomial bound

‖∇u(t, ·)‖L2(R3) + ‖∂tu(t, ·)‖L2(R3) ≤ 2
(
X(0)

r
r+2 + C|t|

) r+2
2r
,

‖u(t, ·)‖L2(R3) ≤ ‖f1‖L2(R3) + 2|t|
(
X(0)

r
r+2 + C|t|

) r+2
2r
,

where

X(t) =
∫

R3

(1
2
|∂tu|2 +

1
2
|∇xu|2 +

1
2
q|u|2 +

1
r + 2

|u|r+2
)
dx

and C > 0 depends only on q and r.

By global well-posedness we mean the existence, the uniqueness and the continuous depen-
dence with respect to the data. The proof of Theorem 2 is based on the equality

X ′(t) =
1
2
Re
∫

R3

(∂tq)|u|2dx (1.4)

and the estimate

|X ′(t)| ≤ CX1− r
r+2 (t).

It is classical to expect that the result of Theorem 1 implies the instability of the zero
solution of (1.3). More precisely, we have the following instability result.

Theorem 3. With q as in Theorem 1 the following holds true. There is η > 0 such that for
every δ > 0 there exists (f1, f2) ∈ H , ‖(f1, f2)‖H < δ and there exists n = n(δ) > 0 such that
the solution of (1.3) satisfies ‖(u(nT, ·), ∂tu(nT, ·)‖H > η.

We are not aware of any nontrivial choice of (f1, f2) ∈ H such that the solution u(t, x) of
(1.3) and ut(t, x) remain uniformly bounded in H for all t ≥ 0. The paper is organized as
follows. In the next section, we prove Theorem 1. The third section is devoted to the proof of
Theorem 2. First we obtain a local existence and uniqueness result on intervals [s, s+ τ ] with
τ = c(1 + ‖(f1, f2)‖H)−γ with constants c > 0 and γ > 0 independent on f . Next we establish
(1.4) for solutions

u(t, x) ∈ C([0, A],H2
x(R3)) ∩ C1([0, A],H1

x(R3)) ∩ L
2r+2
r−2

t ([0, A], L2r+2
x (R3))

and finally, by a local approximation in small intervals we justify (1.4) for every fixed A > 0
and 0 ≤ t ≤ A. In the fourth section, we prove Theorem 3 passing to a system

wn+1 = F(wn), n ≥ 0,

where F = U(0, T ) is the propagator of the nonlinear equation. In the fifth section we discuss
the generalizations concerning the nonlinear equations

∂2
t u−∆xu+ |u|ru+

r−1∑
j=0

qj(t, x)|u|ju = 0, r = 2, 3

with time-periodic functions qj(t+Tj , x) = qj(t, x) ≥ 0, j = 0, 1, r−1 having compact support
with respect to x.
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2. Proof of Theorem 1

2.1. The linear wave equation with time periodic potential. Let u(t, x; s) be the solu-
tion of the Cauchy problem

∂2
t u−∆xu+ q(t, x)u = 0, u(s, x) = f1(x), ∂tu(s, x) = f2(x) (2.1)

with f = (f1, f2) ∈ H. Therefore the operator

H 3 f → U(t, s)f = (u(t, x; s), ∂tu(t, x; s)) ∈ H

is called the propagator (monodromy operator) of (2.1) and there exist C > 0 and α ≥ 0 so
that

‖U(t, s)f‖0 ≤ Ceα|t−s|‖f‖0. (2.2)
Let U0(t − s)f = (u0(t, x; s), ∂tu0(t, x; s)), where u0 solves ∂2

t u0 −∆xu0 = 0 with initial data
f for t = s. Then we have

U(t, s)f − U0(t− s)f = −
∫ t

s
U0(t− τ)Q(τ)U(τ, s)fdτ, (2.3)

where

U0(t) =

(
cos(t

√
−∆) sin(t

√
−∆)√

−∆

−
√
−∆ sin(t

√
−∆) cos(t

√
−∆)

)
, Q(t) =

(
0 0

q(t, x) 0

)
.

Using the relation (2.3) and the compact support of q, allows us to obtain the estimate

‖U(t, s)f − U0(t− s)f‖H2(R3)×H1(R3) ≤ C‖U(t, s)f‖0 .

Moreover the support property of q also yields

suppx (U(t, s)f − U0(t− s)f) ⊂ {|x| ≤ ρ+ |t− s|} .

Consequently U(t, s) is a compact perturbation of the unitary operator U0(t− s).
Now consider the space H = H1(R3)× L2(R3) ⊂ H with norm

‖f‖1 =
(
‖f1‖2

H1(R3) + ‖f2‖2
L2(R3)

)1/2
, ‖f1‖2

H1(R3) = ‖∇xf1‖2
L2(R3) + ‖f1‖2

L2(R3).

The map U0(t) is not unitary in H. However, one easily checks that

‖U0(t)f‖1 ≤ C(1 + |t|)‖f‖1, ∀ t ∈ R,
with a constant C > 0 independent of t. Consequently, the spectral radius of the operator
U0(T ) : H → H is not greater than 1.

By using (2.3), it is easy to show by a fixed point theorem that for small t0 > 0 and
s ≤ t ≤ s+ t0 we have a local solution (v(t, x; s), ∂tv(t, x; s)) ∈ H of the Cauchy problem (2.1)
with initial data f ∈ H. For this solution one deduces
d

dt

∫
R3

(
|∂tv(t, x; s)|2 + |∇xv(t, x; s)|2 + |v(t, x; s)|2

)
dx = −2Re

∫
R3

qv∂tvdx+ 2Re
∫

R3

v∂tvdx

which yields
d

dt
‖(v(t, x; s), ∂tv(t, x; s))‖2

1 ≤ C1‖(v(t, x; s), ∂tv(t, x; s))‖2
1

with a constant C1 > 0 independent of f and s. The last inequality implies an estimate

‖(v(t, x; s), ∂tv(t, x; s))‖1 ≤ C2e
β|t−s|‖f‖1, s ≤ t ≤ s+ t0, β ≥ 0. (2.4)

By a standard argument this leads to a global existence of a solution of (2.1). Introduce the
propagator

H 3 f 7→ V (t, s)f = (v(t, x; s), ∂tv(t, x; s)) ∈ H
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corresponding to the Cauchy problem (1.1) with initial data f ∈ H. For V (t, s) we obtain an
estimate similar to (2.2). As in Section 5 in [6], it is easy to see that we have the following
properties

U(t, s) ◦ U(s, r) = U(t, r), U(s, s) = Id, U(t+ T, s+ T ) = U(t, s), t, s, r ∈ R.

The same properties hold for the propagator V (t, s). In particular, V (T, 0) = V ((k+1)T, kT ),
k ∈ N and V (nT, 0) = (V (T, 0))n.

As above notice that V (t, s)−U0(t− s) is a compact operator in L(H). For |z| � 1 we have

(V (T, 0)− zI)−1 = (U0(T )− zI)−1 − (U0(T )− zI)−1
(
V (T, 0)− U0(T )

)
(V (T, 0)− zI)−1,

hence [
I + (U0(T )− zI)−1

(
V (T, 0)− U0(T )

)]
(V (T, 0)− zI)−1 = (U0(T )− zI)−1.

Set K(z) = I + (U0(T )− zI)−1
(
V (T, 0)− U0(T )

)
. For |z| large enough K(z) is invertible. By

the analytic Fredholm theorem for |z| ≥ 1 + δ > 1 the operator K(z) is invertible outside a
discreet set and the inverse K−1(z) is a meromorphic operator-valued function. Consequently,
the operator V (T, 0) ∈ L(H) has in the open domain |z| > 1 a discrete set of eigenvalues with
finite multiplicities which could accumulate only to the circle |z| = 1.

2.2. Extending the result of [1] to H. In [1] it was proved that there are potentials q(t, x) ≥
0 for which the operator U(T, 0) : H → H has an eigenvalue z, |z| > 1. In this paper we deal
with the operator V (T, 0) : H → H and it is not clear if the eigenfunction ψ ∈ H with
eigenvalues z constructed in [1] belongs to H.

Below we make some modifications on the argument of [1] in order to show that for the
potential constructed in [1] the corresponding operator V (T, 0) : H → H has an eigenvalue
y, |y| > 1. For convenience we will use the notations in [1] and we recall some of them. The
potential in [1] has the form V ε(t, x) := bε(x) + q(t)χδ(x) with ε > 0, where bε(x) ∈ C∞0 (R3) is
supported in {0 < L ≤ |x| ≤ L+1} and equal to 1/ε for {L+ ε ≤ |x| ≤ L+1− ε}, χδ(x) ≥ 0 is
a smooth function with support in |x| < L and equal to 1 for |x| ≤ L− δ < L. Finally, q(t) ≥ 0
is a periodic smooth function with period T > 0. The number L is related to the interval of
instability of the Hill operator associated with q(t). The number δ > 0 is fixed sufficiently
small and the propagator Kδ(T ) related to the equation

∂2
t u−∆xu+ q(t)χδ(x)u = 0, t ≥ 0, |x| < L

with Dirichlet boundary conditions on |x| = L has an eigenvalue z1, |z1| > 1 with eigenfunction
ϕ ∈ H1

0 (|x| ≤ L), that is Kδ(T )ϕ = z1ϕ. Let Sε(T ) : H → H be the propagator corresponding
to the Cauchy problem for the equation

∂2
t u−∆xu+ V ε(t, x)u = 0, t ≥ 0, x ∈ R3

and let W ε(T ) : H → H be the propagator for the same problem with initial data in H. The
problem is to show that for ε > 0 sufficiently small W ε(T ) has an eigenvalues y, |y| > 1 (here
Sε(T ),W ε(T ) correspond to our notations U(T, 0), V (T, 0) and these operators have domains
H and H, respectively).

Extend ϕ as 0 outside |x| ≥ L and denote the new function ϕ ∈ H again by ϕ. Let

γ = {z ∈ C : |z − z1| = η > 0} ⊂ {z : |z| > 1}

be a circle with center z1 such that Kδ(T )− zI is analytic on γ and z1 is the only eigenvalue
of Kδ(T ) in |z− z1| ≤ η. If W ε(T ) has an eigenvalues on γ the problem is solved. Assume that
W ε(T ) has no eigenvalues on γ. It is easy to see that

(W ε(T )− zI)−1ϕ = (Sε(T )− zI)−1ϕ ∈ H, z ∈ γ.



NONLINEAR WAVE EQUATION 5

Indeed,

(W ε(T )− zI)−1ϕ = (Sε(T )− zI)−1ϕ+ (Sε(T )− zI)−1(Sε(T )−W ε(T ))(W ε(T )− zI)−1ϕ

and
(Sε(T )−W ε(T ))(W ε(T )− zI)−1ϕ = 0.

Our purpose is to study

(ϕ, (W ε(T )− zI)−1ϕ)H = (ϕ, (Sε(T )− zI)−1ϕ)H,

where (., , )H denotes the scalar product in H and (., .)H denotes the scalar product in H. It
was proved in [1] that for z ∈ γ one has the weak convergence in H

(Sε(T )− zI)−1ϕ ⇀ε→0 (Kδ(T )− zI)−1ϕ,

so
(ϕ, (Sε(T )− zI)−1ϕ)H −→ (ϕ, (Kδ(T )− zI)−1ϕ)H .

Here we have used the fact that ϕ = 0 for |x| > L. Let ϕ = (ϕ1, ϕ2). We claim that as ε → 0
we have

(ϕ1, ((Sε(T )− zI)−1ϕ)1)L2 −→ (ϕ1, ((Kδ(T )− zI)−1ϕ)1)L2 . (2.5)

To prove this write

ϕ1 = −∆ψ with ψ =
( 1

4π|x|
? ϕ1

)
.

The main point is the following

Lemma 1. We have ψ ∈ HD(R3).

Proof. Since

|∂xjψ(x)| =
∣∣∣ 1
4π

∫
R3

(xj − yj)ϕ1(y)
|x− y|3

dy
∣∣∣ ≤ 1

4π

∫
R3

|ϕ1(y)|
|x− y|2

dy,

we can apply the Hardy-Littlewood-Sobolev inequality. More precisely, by using Theorem 4.3
of [5] with n = 3, λ = 2, r = 2, p = 6/5, we obtain that

‖∂xjψ(x)‖L2(R3) ≤ C‖ϕ1(x)‖L6/5(R3).

Now using that ϕ1(x) is with compact support and the Hölder inequality, we obtain that

‖ϕ1(x)‖L6/5(R3) ≤ C1‖ϕ1(x)‖L2(R3).

This completes the proof of Lemma 1. �

Therefore

(−∆ψ, ((Sε(T )− zI)−1ϕ)1)L2 =
(
〈∇xψ,∇x((Sε(T )− zI)−1ϕ))1〉

)
L2

−→ε→0

(
〈∇xψ,∇x((Kδ(T )− zI)−1ϕ))1〉

)
L2

= (−∆ψ, ((Kδ(T )− zI)−1ϕ))1)L2

which proves the claim (2.5). Consequently,

(ϕ, (W ε(T )− zI)−1ϕ)H −→ (ϕ, (Kδ(T )− zI)−1ϕ)H. (2.6)

Moreover, Proposition 4.2 in [1] says that with a constant C0 > 0 we have uniformly for z ∈ γ
the norm estimate

‖(Sε(T )− zI)−1‖H ≤ C0, ∀ε ∈]0, ε0].

Since
‖(Sε(T )− zI)−1ϕ‖L2(|x|≤L) ≤ C1‖(Sε(T )− zI)−1ϕ‖H ,
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the sequence (ϕ, (W ε(T )−zI)−1ϕ)H is bounded for z ∈ γ. Repeating the argument of Section 5
in [1], one deduces(

ϕ,
1

2πi

∫
γ
(W ε(T )− zI)−1ϕdz

)
H
−→

(
ϕ,

1
2πi

∫
γ
(Kδ(T )− zI)−1ϕdz

)
H

= ‖ϕ‖2
H 6= 0.

This completes the proof that for small ε the operator W ε(T ) has an eigenvalue y, |y| > 1.

3. Proof of Theorem 2

3.1. Local well-posedness. Consider the linear problem

∂2
t u−∆xu+ q(t, x)u = F, u(s, x) = f1(x), ∂tu(s, x) = f2(x). (3.1)

By using the argument in [6], one may show that the solution of (3) satisfies the same local in
time Strichartz estimates as in the case q = 0. Notice that for these local Strichartz estimates
we don’t need a global control of the local energy and we can establish them without a condition
on the cut-off resolvent ϕ(V (T, 0)− z)−1ϕ. More precisely, we have the following

Proposition 1. For every finite a > 0 and f = (f1, f2) ∈ H, F ∈ L1([s, s + a];L2(R3)) the
solution of (3.1) satisfies

‖(u, ∂tu)‖C([s,s+a];H) + ‖u‖Lp
t ([s,s+a],Lq

x(R3)) ≤ C(a)
(
‖(f1, f2)‖H + ‖F‖L1([s,s+a];L2(R3))

)
, (3.2)

provided 1
p + 3

q = 1
2 , p > 2 (the constant C(a) in (3.2) depends on a, p and q(t, x)). Moreover,

if (f1, f2) ∈ H2(R3)×H1(R3) and F ∈ L1([s, s+ a];H1(R3)), we have

‖(u, ∂tu)‖C([s,s+a];H2×H1) + ‖∇xu‖Lp
t ([s,s+a],Lq

x(R3))

≤ C1(a)
(
‖(f1, f2)‖H2×H1 + ‖F‖L1([s,s+a];H1(R3))

)
. (3.3)

For the sake of completeness we present below the proof. The first step is to establish

Lemma 2. Let a > 0, (f0, f1) ∈ H(R3) and let F (t, x) ∈ L2
t ([s, s + a]; H1(R3)) be supported

in {(t, x) : |x| ≤ R}. Then for every fixed ϕ ∈ C∞0 (R3) the solution u(t, x) of (3.1) satisfies
the estimate∫ s+a

s
‖(ϕu(t, x), ϕ∂tu(t, x))‖2

H(R3)dt ≤ C
(
‖(f0, f1)‖H(R3) + ‖F‖L2

t ([s,s+a];H1(R3))

)2

with a constant C = C(a, ϕ,R) > 0 depending only on a, ϕ and R.

The proof is a trivial modification of the proof of Proposition 1 in [7] based on the estimate
(2.4) and the representation

(u, ut)(t, x) = U0(t− s)(f0, f1)−
∫ s+t

s

[
V (t, τ)Q(τ)U0(τ − s)f − V (t, τ)(0, F (τ, x))

]
dτ,

where

Q(τ) =
(

0 0
q(τ, x) 0

)
.

Next we write u = u0 + v, where u0 is the solution of the Cauchy problem{
(∂2

t −∆)u0 = F,

u0(s, x) = f0, ∂tu0(s, x) = f1,

while v is the solution of the problem{
(∂2

t −∆ + q)v = −qu0,

v(s, x) = ∂tv(s, x) = 0.
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For u0 we apply the Strichartz estimates for the free wave equation. On the other hand,
combining Lemma 2 and the Strichartz estimate for u0, one deduces

‖qv‖L1([s,s+a],L2(R3)) ≤ a1/2‖qv‖L2([s,s+a],L2(R3)) ≤ Ca1/2‖qu0‖L2([s,s+a],H1(R3))

≤ C2(a)
(
‖(f0, f1)‖H(R3) + ‖F‖L1([s,s+a],L2(R3))

)
.

Since (∂2
t −∆)v = −qv− qu0, we can apply the Strichartz estimates for the free wave equation

with right hand part −(qv + qu0). Taking into account the estimate for

‖qv + qu0‖L1([s,s+a],L2(R3)),

we complete the proof of (3.2). The proof of (3.3) is similar.

A standard application of (3.2), (3.3) is the following local well-posedness result for the
nonlinear wave equation

∂2
t u−∆xu+ q(t, x)u+ |u|ru = 0, u(s, x) = f1(x), ∂tu(s, x) = f2(x), 2 ≤ r < 4. (3.4)

Proposition 2. There exist C > 0, c > 0 and γ > 0 such that for every (f1, f2) ∈ H
there is a unique solution (u, ∂tu) ∈ C([s, s + τ ],H1(R3) × L2(R3)) of (3.4) on [s, s + τ ] with
τ = c(1 + ‖(f1, f2)‖H)−γ. Moreover, the solution satisfies

‖(u, ∂tu)‖C([s,s+τ ];H) + ‖u‖
L

2r+2
r−2

t ([s,s+τ ],L2r+2
x (R3))

≤ C‖(f1, f2)‖H . (3.5)

If in addition (f1, f2) ∈ H2(R3)×H1(R3), then (u, ∂tu) ∈ C([s, s+ τ ];H2(R3)×H1(R3)).

Remark 1. In the case r = 2 the Strichartz estimates are not needed because one may only
rely on the Sobolev embedding H1(R3) ↪→ L6(R3).

Let us recall the main step in the proof of Proposition 2. One may construct the solutions
as the limit of the sequence (un)n≥0, where u0 = 0 and un+1 solves the linear problem

∂2
t un+1 −∆un+1 + q(t, x)un+1 + |un|run = 0, u(s, x) = f1(x), ∂tu(s, x) = f2(x), (3.6)

where t ∈ [s, s+ τ ]. Set

‖u‖S := ‖(u, ∂tu)‖C([s,s+τ ];H) + ‖u‖
L

2r+2
r−2

t ([s,s+τ ],L2r+2
x (R3))

.

Using (3.2) for 2 < r < 4 with
1
p

=
r − 2
2r + 2

,
1
q

=
1

2r + 2
, (3.7)

we obtain
‖un+1‖S ≤ C‖(f1, f2)‖H + C‖un‖r+1

Lr+1([s,s+τ ];L2r+2
x (R3))

.

Now using the Hölder inequality in time, we can write

‖un‖Lr+1([s,s+τ ];L2r+2
x (R3)) ≤ τ

4−r
2r+2 ‖un‖

L
2r+2
r−2

t ([s,s+τ ],L2r+2
x (R3))

≤ τ
4−r
2r+2 ‖un‖S .

Therefore, we arrive at the bound

‖un+1‖S ≤ C‖(f1, f2)‖H + Cτ
4−r
2 ‖un‖r+1

S . (3.8)

Assume that we have the estimate

‖un‖S ≤ 2C‖(f1, f2)‖H.
Applying (3.8), and choosing τ so that

τ
4−r
2 (2C)r+1‖(f1, f2)‖r

H ≤ 1,
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we obtain the same bound for ‖un+1‖S . By recurrence we conclude that

‖un+1‖S ≤ 2C‖(f1, f2)‖H, ∀n ≥ 0.

Next, let wn = un+1 − un be a solution of the problem

∂2
twn −∆wn + q(t, x)wn = |un|run − |un+1|run+1, wn(0, x) = ∂twn(0, x) = 0.

By using the inequality ∣∣∣|v|rv − |w|rw∣∣∣ ≤ Dr|v − w|
(
|v|r + |w|r

)
,

with constant Dr depending only on r, we can similarly show that

‖un+1 − un‖S ≤
1
2
‖un − un−1‖S

which implies the convergence of (un)n≥0 with respect to the ‖ · ‖S norm.

Now assume that (f1, f2) ∈ H2(R3)×H1(R3) and introduce the norm

‖u‖S1 := ‖(u, ∂tu)‖C([s,s+τ ];H2(R3)×H1(R3)) + ‖∇xu‖
L

2r+2
r−2

t ([s,s+τ ],L2r+2
x (R3))

.

Therefore the sequence (un)n≥0 satisfies the estimate

‖un+1‖S1 ≤ C‖(f1, f2)‖H2(R3)×H1(R3) + C‖|un|run‖L1([s,s+a];H1(R3))

and we have

‖|un|run‖L1([s,s+a];H1(R3)) ≤ Crτ
4−r
2 ‖un‖r

S‖un‖S1 .

which leads to

‖un+1‖S1 ≤ C1‖(f1, f2)‖H2(R3)×H1(R3) + C1τ
4−r
2 ‖un‖r

S‖u‖S1 . (3.9)

Indeed, we can write

|un|run = ur/2+1
n un

r/2

and therefore

∂xj (u
r/2+1
n un

r/2) = (r/2 + 1)∂xjunu
r/2
n un

r/2 + r/2 ∂xjunu
r/2+1
n un

r/2−1

yields

|∇x(||un|run)| ≤ Cr|∇xun||un|r.

Applying the Hölder inequality, one obtains

‖∇x(||un|run)|‖L2
x
≤ C1‖∇xun‖L2r+2

x (R3)‖|un|r‖
L

2r+2
r

x (R3)
= C1‖∇xun‖L2r+2

x (R3)‖un‖r
L2r+2

x (R3)
.

Increasing, if it is necessary, the constant C > 0 we may arrange that (3.8) and (3.9) hold with
the same constant. Therefore we obtain a local solution u(t, x) ∈ C([s, s+τ ],H2(R3)×H1(R3))
in the same interval [s, s+ τ ].

Remark 2. We work in the complex setting, but if (f1, f2) is real valued, then the solution
remains real valued. Indeed, if u is a solution of (3.4) then so is u and we may apply the
uniqueness to conclude that u = u.
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3.2. Global well-posedness and polynomial bounds. Fix (f1, f2) ∈ H. Let u be the local
solution of (3.4) obtained in Proposition 2 (with s = 0). First we prove the following

Lemma 3. The solutions

u(t, x) ∈ C([0, A],H2
x(R3)) ∩ C1([0, A],H1

x(R3)) ∩ L
2r+2
r−2

t ([0, A], L2r+2
x (R3))

of (3.4) satisfy the relation

d

dt

∫
R3

(1
2
|∂tu|2 +

1
2
|∇xu|2 +

1
2
q|u|2 +

1
r + 2

|u|r+2
)
dx =

1
2
Re
∫

R3

(∂tq)|u|2dx, 0 ≤ t ≤ A. (3.10)

Remark 3. We show that (3.10) holds in the sense of distributions D′(]0, A[). Since the right
hand side of (3.10) is continuous in ]0, A[ the derivative of the left hand side can be taken in
the classical sense.

Proof. Let us first remark that
∫

R3 |u|j+2(t, x)dx ≤ ‖u(t, x)‖j+2
H1

x(R3)
for 0 ≤ j < 4, thanks to

the Sobolev embedding H1(R3) ↪→ Lj+2(R3). Moreover, from our assumption it follows that
u(t, x) ∈ C([0, A], L∞x (R3)) and this implies

|u|r(t, x)u(t, x) ∈ C([0, A], L2
x(R3)).

Therefore, from the equation (3.4) we deduce ∂2
t u(t, x) ∈ C([0, A], L2

x(R3)).
To verify (3.10), notice that

Re
( ∫

R3

(∂2
t u−∆xu+ |u|ru)∂tudx

)
= −Re

( ∫
R3

q(t, x)u∂tudx
)

= −1
2
d

dt

( ∫
R3

q|u|2dx
)

+
1
2

∫
R3

(∂tq)|u|2dx

and the integrals ∫
R3

(∂2
t u−∆xu)∂tudx,

∫
R3

|u|ruūtdx

are well defined. After an approximation with smooth functions and integration by parts we
deduce

Re
∫

R3

(
∂2

t u−∆xu
)
∂tudx =

d

dt

∫
R3

1
2
(|∂tu|2 + |∇xu|2)dx.

On the other hand,

(r/2 + 1)(u
r
2 ū

r
2
+1∂tu+ u

r
2
+1ū

r
2∂tū) = ∂t(u

r
2
+1)ū

r
2
+1 + ∂t(ū

r
2
+1)u

r
2
+1

and hence

Re
∫

R3

|u|ruūtdx =
1

r + 2
d

dt

( ∫
R3

|u|r+2dx
)
.

Thus (3.10) holds for 0 < t < A and by continuity one covers the interval [0, A]. �

We need the following simple lemma.

Lemma 4. Let 0 < γ < 1 and let X(t) : [0,∞) → [0,∞) be a derivable function such that for
some A > 0,

|X ′(t)| ≤ CX1−γ(t), 0 ≤ t ≤ A.

Then

X(t) ≤ (Xγ(0) + Cγt)
1
γ , 0 ≤ t ≤ A.
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Proof. First assume that X(t) > 0 for all 0 ≤ t ≤ A. We have∣∣∣ d
dt

(Xγ(t))
∣∣∣ = γ

∣∣∣Xγ−1(t)X ′(t)
∣∣∣ ≤ Cγ.

Hence

Xγ(t) =
∣∣∣∫ t

0
(Xγ)′(τ)dτ +Xγ(0)

∣∣∣ ≤ Xγ(0) + Cγt

and we obtain the assertion for X(t) > 0. In the general case, we apply the previous argument
to X(t) + ε, ε > 0 and we let ε→ 0. This completes the proof. �

Let u(t, x) ∈ C([0, A),H2
x(R3) ∩ C1([0, A],H1

x(R3)) ∩ L
2r+2
r−2

t ([0, A], L2r+2
x (R3)) be a solution

of (3.4) and let

X(t) =
∫

R3

(1
2
|∂tu|2 +

1
2
|∇xu|2 +

1
2
q|u|2 +

1
r + 2

|u|r+2
)
dx .

The support property q(t, x) = 0 for |x| > ρ and the Hölder inequality imply∣∣∣ ∫
R3

(∂tq)|u|2dx
∣∣∣ ≤ C‖u(t, ·)‖2

L2(|x|≤ρ) ≤ C1‖u(t, ·))‖2
Lr+2(|x|≤ρ).

Therefore
|X ′(t)| ≤ C2X

2
r+2 (t) = C2X

1− r
r+2 (t)

and applying Lemma 4, we deduce

X(t) ≤
(
X

r
r+2 (0) +

C2r

r + 2
t
) r+2

r 0 ≤ t ≤ A. (3.11)

As a consequence of (3.11) we get(
‖∂tu(t, ·)‖2

L2(R3) + ‖∇xu(t, ·)‖2
L2(R3)

) 1
2 ≤

√
2
(
X

r
r+2 (0) +

C2r

r + 2
t
) r+2

2r

and therefore

‖∂tu(t, ·)‖L2(R3) + ‖∇xu(t, ·)‖L2(R3) ≤ 2
(
X

r
r+2 (0) +

C2r

r + 2
t
) r+2

2r
.

On the other hand,

X(0) ≤ Ar‖(u, ut)(0, x)‖2
1

(
1 + ‖(u, ut)(0, x)‖r

1

)
with a constant Ar depending on r. Hence from (3.11) we get

‖∂tu(t, ·)‖L2(R3) + ‖∇xu(t, ·)‖L2(R3) ≤ 2
(
X

r
r+2 (0) +

C2r

r + 2
t
) r+2

2r

≤ 2
(
A

r
r+2
r ‖(u, ut)(0, x)‖

2r
r+2

1

[
1 + ‖(u, ut)(0, x)‖r

1

] r
r+2 +

C2r

r + 2
t
) r+2

2r
, 0 ≤ t ≤ A. (3.12)

Finally, from

u(t, x) = u(0, x) +
∫ t

0
∂tu(τ, x)dτ

one deduces

‖u(t, x)‖L2(R3) ≤ ‖u(0, x)‖L2(R3) + 2t
(
X

r
r+2 (0) +

C2r

r + 2
t
) r+2

2r
.

This yields a polynomial bound for the solutions

u(t, x) ∈ C([0, A],H2
x(R3)) ∩ C1([0, A],H1

x(R3)) ∩ L
2r+2
r−2

t ([0, A], L2r+2
x (R3)).
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Now we pass to the global existence of solution of (3.4). We will deal with the case 2 < r < 4,
while the case r = 2 can be covered by the Sobolev embedding theorem. We fix a number a > 0
and our purpose is to show that (3.4) has a solution for t ∈ [0, a] with initial data f ∈ H. We
fix p, q by (3.7) and let the Strichartz estimate (3.2) holds in the interval [0, a] with a constant
Ca > 0. The above argument yields a local solution u(t, x) with initial data f = (f1, f2) ∈ H
for t ∈ [s, s+ τ ]. Recall that τ = c(1 + ‖f‖H)−γ . Introduce the number

Ba := ‖f‖H + a(B1 +B2a)
r+2
2r ,

where B1 > 0 and B2 > 0 depend only on ‖f‖H and r. This number should be a bound of the
energy of the solution u(t, x) in [0, a] with initial data f ∈ H if the above argument based on
Lemma 3 and Lemma 4 works. However, the proof of Lemma 3 cannot be applied directly for
functions u(t, x) ∈ C([0, a],H1

x(R3)) ∩ C1([0, a], L2
x(R3)).

Define τ(a) := c(1+Ba)−γ < 1 with the constants c > 0, γ > 0 of Proposition 2 and observe
that the local existence theorem can be applied in the interval [s, s+ τ(a)] ⊂ [0, a] if the norm
of the initial data for t = s is bounded by Ba. To overcome the difficulty connected with
Lemma 3 and since we did not prove in Proposition 2 the continuous dependence with respect
to the initial data in H, we need to apply an approximation argument in [s, s + ε(a)], where
the number 0 < ε(a) ≤ τ(a) will be defined below. For simplicity we treat the case s = 0 below.

By the local existence let u(t, x) be the solution of (3.4) in [0, τ(a)] with initial data f =
(f1, f2) ∈ H. Choose a sequence gn = ((gn)1, (gn)2) ∈ H2(R3) × H1(R3) converging in H to
(f1, f2) ∈ H as n→∞ and let wn(t, x) be the solution of the problem (3.4) in the same interval
[0, τ(a)] with initial data gn. Then by Proposition 2,

wn(t, x) ∈ C([0, τ(a)],H2
x(R3) ∩ C1([0, τ(a)],H1

x(R3)) ∩ L
2r+2
r−2

t ([0, τ(a)], L2r+r
x (R3)).

Set vn = wn − u. We claim that for n→∞ we have

‖(vn, (vn)t)‖C([0,ε(a)],H) + ‖vn‖Lp
t ([0,ε(a)],Lq

x(R3)) → 0

with 0 < ε(a) ≤ τ(a) defined below. Clearly, vn is a solution of the equation

∂2
t vn −∆vn + q(t, x)vn = |u|ru− |wn|rwn.

Applying (3.2), one obtains

‖(vn, (vn)t)‖C([0,ε(a)],H) + ‖vn‖
L

2r+2
r−2

t ([0,ε(a)],L2r+2
x (R3))

≤ Ca‖gn − f‖H + Ca‖|u|ru− |wn|rwn‖L1([0,ε(a)],L2
x(R3)) (3.13)

and

‖(|u|ru− |wn|rwn)(t, .)‖L2
x
≤ C‖vn(t, .)‖L2r+2

x

(
‖u(t, .)‖r

L2r+2
x

+ ‖wn(t, .)‖r
L2r+2

x

)
.

Since 1
p + r

p +
(
1− r+1

p

)
= 1, by the generalized Hölder inequality in the integral with respect

to t in (3.13) for large n ≥ n0 we get

Ca‖|u|ru− |wn|rwn‖L1([0,ε(a)],L2
x(R3))

≤ DrCaε(a)
(1− r+1

p
)‖vn‖Lp([0,ε(a)],Lq

x)

(
‖u‖r

Lp([0,ε(a)],Lq
x) + ‖wn‖r

Lp([0,ε(a)],Lq
x)

)
≤ 2DrC

r+1
a (‖f‖H + 1)rε(a)(1−

r+1
p

)‖vn‖Lp([0,ε(a)],Lq
x).

Here Dr is a constant depending only on r and we used that by Proposition 2

‖wn‖
L

2r+2
r−2 ([0,ε(a)],L2r+2

x (R3))
≤ Ca‖gn‖H ≤ Ca(‖f‖H + 1), n ≥ n0 (3.14)
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with a similar estimate for ‖u‖
L

2r+2
r−2 ([0,ε(a)],L2r+2

x (R3))
. Clearly, 1 − r+1

p = 2 − r
2 > 0 and we

choose 0 < ε(a) ≤ τ(a), so that

2DrC
r+1
a (Ba + 1)rε(a)(1−

r+1
p

) ≤ 1
2
.

Then we may absorb the term on right hand side of (3.13) involving wn, u and letting n→∞,
we prove our claim. Moreover, for almost all t ∈ [0, ε(a)], taking into account (3.14), we have∣∣∣∫

R3

(
|u(t, x)|r+2 − |wn(t, x)|r+2

)
dx
∣∣∣

≤ Dr‖u(t, x)− wn(t, x)‖L2(R3)

(
‖u(t, x)‖r+1

L2r+2
x (R3)

+ ‖wn(t, x)‖r+1

L2r+2
x (R3)

)
dx −→n→∞ 0.

Consequently, we have∫
R3

(1
2

(
|∂twn|2 + |∇xwn|2 + q|u|2

)
+

1
r + 2

|wn|r+2
)
dx

−→n→∞

∫
R3

(1
2
(|∂tu|2 + |∇xu|2 + q|u|2) +

1
r + 2

|u|r+2
)
dx

in the sense of distributions D′(0, ε(a)). The equality (3.10) for 0 ≤ t ≤ ε(a) holds for wn and
passing to a limit in the sense of distributions, we conclude that (3.10) holds for u(t, x) for
0 < t < ε(a) and hence for 0 ≤ t ≤ ε(a). The right hand side of (3.10) is continuous with
respect to t, hence the derivative with respect to t is taken in a classical sense. Thus we are
in position to apply Lemma 4 for the u(t, x). Finally, we deduce (3.12) for the solution u(t, x)
and the norm ‖(u, ut)(t, .)‖H for t ∈ [0, ε(a)] is bounded by Ba introduced above.

Now we pass to the second step in the interval [ε(a), 2ε(a)] ⊂ [0, a]. As it was mentioned
above, we have a bound Ba for the norm of the initial data (u(ε(a), x), ut(ε(a), x)). By the
local existence we have solution in [ε(a), 2ε(a)] and u(t, x) is defined in [0, 2ε(a)]. On the other
hand, we may approximate the initial data (u(ε(a), x), ut(ε(a), x)) by functions g(2)

n ∈ H2×H1

and by the above argument the solution u(t, x) in [ε(a), 2ε(a)] is approximated by solutions
w

(2)
n (t, x) for which (3.10) holds for ε(a) ≤ t ≤ 2ε(a). Thus (3.10) is satisfied for u(t, x) for

ε(a) ≤ t < 2ε(a) and combining this with the first step, one concludes that the same is true
for 0 ≤ t ≤ 2ε(a). This makes possible to apply Lemma 4 for 0 ≤ t ≤ 2ε(a) and to deduce
(3.12) with uniform constants leading to a bound by Ba. We can iterate this procedure,
since τ(a), ε(a) depend only on ‖f‖H, Ca and r, while Ba depends on ‖f‖H, a and r. The
solution u(t, x) will be defined globally in a interval [0, α(a)] with 0 < a− α(a) < ε(a). Since
α(a) > a−ε(a) > a−1 and a is arbitrary, we have a global solution u(t, x) defined for t ≥ 0. An
application of Lemma 4 justifies the bound (3.12) for u(t, x) and for all t ≥ 0 with constants
depending only on ‖f‖H and r. A similar analysis holds for negative times t.

Remark 4. It is likely that in the case r = 2 by using the approach of [8] one may obtain
polynomial bounds on the higher Sobolev norms Hσ(R3) ×Hσ−1(R3), σ > 1, of the solutions
of (3.4).

3.3. A uniform bound. As a byproduct of the (semi-linear) global well-posedness, we have
the following uniform bound on the solutions of (3.4).

Proposition 3. Let R > 0 and A > 0. Then there exists a constant C(A,R) > 0 such that
for every (f1, f2) ∈ H such that ‖(f1, f2)‖H < R the solution u(t, x) of (3.4) satisfies

‖u‖Lr+1([0,A];L2r+2
x (R3)) ≤ C(A,R)‖(f1, f2)‖H . (3.15)
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Proof. Thanks to the global bounds on the solutions, we obtain that there exists R′ = R′(R,A)
such that if ‖(f1, f2)‖H < R, then the corresponding solutions satisfies

sup
0≤t≤A

‖(u(t, ·), ∂tu(t, ·)‖H ≤ R′ .

Denote by τ = τ(A,R′) > 0 the local existence time for initial data having H norm ≤ R′,
i.e. τ = c(1 + R′)−γ with the notations of Proposition 2. Next we split the interval [0, A] in
intervals of size τ. In every interval [kτ, (k + 1)τ ] we apply the estimate (3.2) with F = 0 and
constant CA independent on k. Thus we obtain a bound

‖u(t, x)‖
L

2r+2
r−2 ([kτ,(k+1)τ ],L2r+2

x (R3))
≤ Ck

A‖(f1, f2)‖H, 1 ≤ k + 1 ≤ A/τ.

By using the Hölder inequality for the integral with respect to t, we obtain easily (3.15). �

4. Proof of Theorem 3

Let
H 3 f → U(t, s)f = (v(t, x; s), vt(t, x; s)) ∈ H

be the monodromy operator corresponding to the Cauchy problem (3.4) with initial data f for
t = s. For U(t, s) we have the representation

U(t, s)f = V (t, s)f −
∫ t

s
V (t, τ)Q0

(
|U(τ, s)f |rU(τ, s)f

)
dτ, (4.1)

where

Q0 =
(

0 0
1 0

)
.

Therefore we can write U(t+ T, s+ T )f as

V (t+ T, s+ T )f −
∫ t+T

s+T
V (t+ T, τ)Q0

(
|U(τ, s+ T )f |rU(τ, s+ T )f

)
dτ

which in turn can be written as

V (t, s)f −
∫ t

s
V (t, τ)Q0

(
|U(τ + T, s+ T )f |rU(τ + T, s+ T )f

)
dτ.

By the uniqueness of the solution of the equation

U(t, s)f = V (t, s)f −
∫ t

s
V (t, τ)Q0(|U(τ, s)f |rU(τ, s)f)dτ,

one deduces U(t+ T, s+ T ) = U(t, s). Moreover, one has the property

U(p, r) = U(p, s) ◦ U(s, r), p, r, s ∈ R.

For the solution u(t, x; 0) of (3.4) (with s = 0) with initial data f ∈ H, set

wn = (u(nT, x; 0), ∂tu(nT, x; 0)) = U(nT, 0)f, n ∈ N.

Therefore

wn+1 = U((n+ 1)T, 0)f = U((n+ 1)T, nT ) ◦ U(nT, 0)f = U(T, 0)wn. (4.2)

Setting F = U(T, 0), we obtain a system

wn+1 = F(wn), n ≥ 0. (4.3)
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with a nonlinear map F : H → H. Consider the linear map L = V (T, 0) : H → H. Our purpose
is to how that L is the Fréchet derivative of F at the origin in the Hilbert space H. We use
the representation

F(h) = Lh−
∫ T

0
V (T, τ)Q0

(
|u(τ, x;h)|ru(τ, x;h)

)
dτ,

where u(t, x;h) is the solution of (3.4) with s = 0 and initial data h at time 0. Using the
Strichartz estimate and Proposition 3, we obtain for ‖h‖1 ≤ 1 the bound

sup
0≤t≤T

‖F(h)− Lh‖1 ≤ C‖u(t, x;h)‖r+1

Lr+1([0,T ];L2r+2
x (R3)

≤ C‖h‖r+1
1 ,

where C > 0 depends on T but is independent of h. This implies immediately that L is the
Fréchet derivative of F at the origin.

For the exponential instability at u = 0 we use following definition (see [2]).

Definition 1. (i) The equilibrium u = 0 is unstable if there exists ε > 0 such that for every
δ > 0 one can find a sequence {un} of solution of (4.3) such that 0 < ‖u0‖1 ≤ δ and ‖un‖1 ≥ ε
for some n ∈ N.
(ii) The equilibrium u = 0 is exponentially unstable at rate ρ > 1 if there exist ε > 0 and
C > 0 such that for every δ > 0 one can find a sequence {un} of solution of (4.3) satisfying
0 < ‖u0‖1 ≤ δ and ‖uN‖1 ≥ CρN‖u0‖1 for any N for which we have

max{‖u0‖1, ..., ‖uN‖1} ≤ ε.

Clearly, the exponential instability implies instability. We consider the case when the spec-
tral radius r(L) of L is greater than 1. The analysis in Section 2 shows that there exist positive
potentials q(t, x) ≥ 0 for which r(L) > 1. We will apply the Rutman-Dalecki theorem or a
more general version due to D. Henry (Theorem 5.1.5 in [4]). This theorem says that if the
Fréchet derivative L of F at zero is such that

‖F(u)− Lu‖1 ≤ b‖u‖1+p
1 whenever ‖u‖1 ≤ a (4.4)

for some a > 0, b > 0 and p > 0 and if the spectral radius r(L) of L satisfies r(L) > 1, then F
is exponentially unstable at u = 0. In our case the condition (4.4) holds with p = r and a = 1.
Thus we obtain the following

Theorem 4. Assume that the linear operator L has spectral radius r(L) > 1. Then F is
exponentially unstable at u = 0 with rate r(L).

It remains to observe that Theorem 4 implies Theorem 3.

Remark 5. The above argument showing nonlinear instability crucially relies on the fact that
we deal with a semi-linear problem, i.e. the solution map of (3.4) is of class C1 on H. It is
worth to mention that there are examples of problems which are not semi-linear (the solution
map is not of class C1) for which one can still get the nonlinear instability of some particular
solutions (known to be linearly unstable). In such cases a ”more nonlinear approach” is needed.
We refer to [3, 9] for more details on this issue.

5. Generalizations

We can consider more general nonlinear equations

∂2
t u−∆xu+ |u|ru+

r−1∑
j=0

qj(t, x)|u|ju = 0, r = 2, 3 (5.1)



NONLINEAR WAVE EQUATION 15

with smooth time-periodic functions qj(t + Tj , x) = qj(t, x) ≥ 0, j = 0, · · · , r − 1 having
compact support with respect to x. For solutions

u(t, x) ∈ C([0, τ ],H2(R3)) ∩ C1([0, τ ],H1(R3)) ∩ L
2r+2
r−2

t ([0, A], L2r+2
x (R3))

we obtain

Re
(∫

R3

(∂2
t u−∆xu+ |u|ru)ūtdx

)
= −Re(

∫
R3

r−1∑
j=0

qj(t, x)|u|juūtdx)

= − d

dt

r−1∑
j=0

(∫
R3

1
j + 2

qj |u|j+2dx
)

+
r−1∑
j=0

1
j + 2

∫
R3

(qj)t|u|j+2dx

and
1

j + 2

∣∣∣∫
R3

(qj)t|u|j+2dx
∣∣∣ ≤ Cj

(∫
R3

|u|r+2dx
)1− r−j

r+2
, j = 0, · · · , r − 1.

Setting

X(t) ≡
∫

R3

(1
2
|ut|2(t, x)+

1
2
|∇xu|2(t, x)+

r−1∑
j=0

1
j + 2

qj |u|j+2(t, x)+
1

r + 2
|u|r+2(t, x)

)
dx, 0 ≤ t ≤ A,

one deduces

|X ′(t)| ≤ Br

r−1∑
j=0

X(t)1−
r−j
r+2 ≤ Br(1 +X(t))1−

1
r+2 .

Therefore we can apply Lemma 4 to the quantity Y (t) = 1+X(t) which implies, as before, the
global existence and the polynomial bounds of the solutions of the Cauchy problem for (5.1).
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