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Abstract. We prove Weyl asymptotics N(r) = crd + Oε(r
d−κ+ε),

∀ 0 < ε � 1, for the counting function N(r) = ]{λj ∈ C \ {0} : |λj | ≤
r2}, r > 1, of the interior transmission eigenvalues (ITE), λj . Here
d ≥ 2 denotes the space dimension and 0 < κ ≤ 1 is such that there
are no (ITE) in the region {λ ∈ C : |Im λ| ≥ C(|Re λ| + 1)1−

κ
2 } for

some C > 0.
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1. Introduction and statement of results

Let Ω ⊂ Rd, d ≥ 2, be a bounded, connected domain with a C∞ smooth
boundary Γ = ∂Ω. A complex number λ ∈ C, λ 6= 0, will be called an
interior transmission eigenvalue (ITE) if the following problem has a non-
trivial solution: 

(∇c1(x)∇+ λn1(x))u1 = 0 in Ω,

(∇c2(x)∇+ λn2(x))u2 = 0 in Ω,

u1 = u2, c1∂νu1 = c2∂νu2 on Γ,

(1.1)

where ν denotes the exterior Euclidean unit normal to Γ, cj , nj ∈ C∞(Ω),
j = 1, 2 are strictly positive real-valued functions. The spectral problem
for (ITE) is related to a non self-adjoint operator A (see Section 3) and
in the isotropic case c1(x) = c2(x) = 1 the boundary problem (1.1) is not
parameter-elliptic. For these reasons many well-known techniques devel-
oped for self-adjoint operators or for parameter-elliptic boundary problems
are not applicable. The positive (ITE) are related to the inverse scattering
problems . More precisely, if λ = k2 is a real (ITE), then the far-field op-
erator F (λ) : L2(Sd−1) −→ L2(Sn−1) with kernel the scattering amplitude
s(k, θ, ω) is not injective and its range is not dense. This is crucial for the
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so-called linear sampling method (see [5], [1]) which works if we avoid the
real (ITE). For this reason the problem of the existence and the discrete-
ness of (ITE) draw the attention of many authors (see the survey [3] for
a comprehensive review and a more complete list of references). Secondly,
it was proved that we can determine the (ITE) from the far-field operator.
Finally, it was established that in some cases the knowledge of all complex
(ITE) determines the index of refraction of the scattering obstacle (see [3],
[6]). This explains the increasing interest toward (ITE) and the fact that a
lot of papers concerning the existence and the spectral properties of (ITE)
in relation with the inverse scattering problems of reconstruction have been
recently published.

On the other hand, the analysis of the (ITE) leads to some interesting
and difficult mathematical spectral problems for non self-adjoint operators.
These problems are connected with two major questions:

(A) Describe the eigenvalue-free regions in the complex plane.

(B) Find a Weyl asymptotic of the counting function of the eigenvalues.

In contrast to the case of self-adjoint operators these questions are much
more difficult and there are no general results. As far as the Weyl asymp-
totics are concerned, one may study the leading term of the counting func-
tion and one can search an optimal remainder. On the other hand, even
in the case of boundary problems for non self-adjoint operators which are
parameter-elliptic, the Weyl asymptotics in the literature concern mainly
the leading term (see [2] for some results in this direction for non self-adjoint
operators).

The question (A) has been investigated by the second author in [27] (see
also [10] for a weaker result) and the result in [27] plays an important role
in our analysis. In the present paper our purpose is to study the question
(B). Under some conditions the (ITE) form a discrete set in C \ {0} and
they have as an accumulation point only infinity (see for instance [11], [24]).
Introduce the counting function

N(r) := ]
{
λj ∈ C \ {0} : λj is (ITE), |λj | ≤ r2

}
, r > 1,

where the eigenvalues are counted with their multiplicity (see Section 3 for
the precise definition of the multiplicity). Recently, many works concerning
the Weyl asymptotics of N(r) have been published both in the isotropic
(c1 ≡ c2 ≡ 1) and anisotropic cases (see [19], [8], [20], [13], [15], [16], [18],
[9]). In [18] the case when Ω = {x ∈ Rd : |x| ≤ 1} and c1 ≡ c2 ≡ 1, n1 ≡
1, n2 = const 6= 1 has been investigated and for d = 1 a sharp asymptotics
of N(r) with remainder O(1) has been established. In all other works
only the leading term of N(r) was obtained. We should mention that in
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[13] the anisotropic case has been studied and the asymptotics of N(r)
with a remainder is stated. However, the proof has a gap and only the
asymptotics with leading term seems to be correct. The isotropic case is
more difficult since the boundary problem is not parameter-elliptic and the
tools for elliptic boundary problems cannot be applied. In the isotropic
case when n1(x) ≡ 1, n2(x) > 1, ∀x ∈ Ω̄, it has been recently established
in [9], [20] the asymptotics

N(r) ∼ (τ1 + τ2)rd, r → +∞, (1.2)

where τ1 and τ2 are defined below. It is important to remark that in [9],
[20] the analysis is based on the study of some trace class operators leading
to an asymptotics∑

j

1
|λj |p + t

= αt
−1+ d

2p + o(t−1+ d
2p ), t→ +∞, (1.3)

where p ∈ N is sufficiently large. Combining this asymptotics with the
Tauberian theorem of Hardy and Littlewood, one obtains (1.2) and the
remainder is given by the principal part divided by a logarithmic factor.
To obtain a sharper remainder one could apply a finer Tauberain theorem
(see [17]), but for this purpose it is necessary to establish asymptotics like
(1.3) with sharper remainder for t lying on certain parabola in C. This,
however, seems to be a very difficult problem.

In the present work we follow another approach inspired by the paper [4],
where asymptotics have been established for the number of the resonances
associated to an exterior transmission boundary problem. The purpose is
to study the asymptotic behavior of N(r) under the condition

c1(x)n1(x) 6= c2(x)n2(x), ∀x ∈ Γ. (1.4)

Our main result is the following

Theorem 1.1. Assume (1.4) fulfilled. Assume also either the condition

c1(x) = c2(x), ∂νc1(x) = ∂νc2(x), ∀x ∈ Γ, (1.5)

or the condition
c1(x) 6= c2(x), ∀x ∈ Γ. (1.6)

Then, the (ITE) form a discrete set in C and we have the following asymp-
totics

N(r) = (τ1 + τ2)rd +Oε(rd−κ+ε), r → +∞, (1.7)

for every 0 < ε� 1, where

τj =
ωd

(2π)d

∫
Ω

(
nj(x)
cj(x)

)d/2
dx,
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ωd being the volume of the unit ball in Rd, and κ = 1
2 if (1.5) holds, κ = 2

5 if
(1.6) holds. Moreover, if in addition to (1.6) we assume either the condition

n1(x)
c1(x)

6= n2(x)
c2(x)

, ∀x ∈ Γ, (1.8)

or the condition
n1(x)
c1(x)

=
n2(x)
c2(x)

, ∀x ∈ Γ, (1.9)

then (1.7) holds with κ = 1
2 .

To prove this theorem we use in an essential way the eigenvalue-free
regions obtained in [27]. In fact, we prove in the present paper a more
general result saying that if there are no interior transmission eigenvalues
in a region of the form{

λ ∈ C : |Imλ| ≥ C(|Reλ|+ 1)1−
κ
2

}
, C > 0, 0 < κ ≤ 1, (1.10)

then the asymptotics (1.7) with remainder Oε(rd−κ+ε) is true. On the
other hand, it is proved in [27] that under the assumptions of Theorem 1.1,
we have indeed an eigenvalue-free region (1.10) with κ replaced by κ − ε,
where κ is given by Theorem 1.1. Note that the parametrix construction
and the results concerning the Dirichlet-to-Neumann map in [22], Section
11, suggest that for strictly concave domains there are reasons to expect
that (1.10) is true with κ = 2

3 . It is also worth noticing that if we have
an eigenvalue-free region of the form (1.10) with κ = 1 − ε, ∀ε, we get
asymptotics with an almost optimal remainder term Oε(rd−1+ε) in (1.7).
The existence of such an eigenvalue-free region with κ = 1 − ε has been
established recently by the second author [28] for strictly concave domains
assuming (1.5) fulfilled. According to our result, the problem of bounding
the remainder in the Weyl formula for the (ITE) is reduced to that of
getting an eigenvalue-free region in C, and a larger eigenvalue-free region
yields a sharper bound for the remainder. To our best knowledge, it seems
that our paper is the first one where such a relationship is established.

For reader’s convenience, in what follows in this section we will discuss
the main steps in the proof of Theorem 1.1. The starting point of our
argument is a trace formula (see Section 3 and (3.5)) which allows us to
relate the number of the (ITE) with the number of the eigenvalues, νj ,
of two self-adjoint operators for which the Weyl asymptotics are known
to hold, together with a trace of an operator given by an integral involv-
ing a meromorphic operator-valued function, T (λ), and its inverse T−1(λ)
(see formula (3.6)). The main problem to deal with is to estimate the
trace of this integral and it yields the bound Oε(rd−κ+ε) of the remain-
der. We apply this formula to obtain an asymptotics for the difference
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N(r) − N(r/
√

2), r → +∞, and by a standard argument it is easy to see
that this is sufficient to prove (1.7).

Since it is more convenient to work in the semi-classical setting, we reduce
our problem to a semi-classical one by introducing a small parameter h =√

2
r , r � 1. Thus we are going to count the number of points {zk}, zk

h2 being
an (ITE), in a region of the form{

z ∈ C : 1−Ahκ−ε ≤ |Re z| ≤ 2 +Ahκ−ε, |Im z| ≤ hκ−ε
}
, A > 0,

provided we have an eigenvalue-free region (1.10) with κ − ε in place of κ
(see Proposition 3.7). This requires to make a change of variables λ = z/h2

in the trace formula (3.6) and to study the behavior of the integral term
when 0 < h ≤ h0(ε) and

z ∈ Z = {z ∈ C : 1/2 < |Re z| < 3, |Im z| < 1}.

Next we construct a meromorphic function gh(z) with poles among the
points {h2νj} and such that if an (ITE), λk, does not belong to the set {νj},
then h2λk is a zero of gh(z) and the multiplicities of the corresponding zeros
of gh(z) and (ITE) agree. It should be mentioned that the construction of
the function gh(z) is not trivial and it requires to build a semi-classical
parametrix for the corresponding Dirichlet-to-Neumann map N (z, h) in
the elliptic zone. This is carried out in Section 2 by using the parametrix
construction in [27].

The estimate of the remainder is reduced to that of the integral

1
2πi

∫
γ0

d

dz
log gh(z)dz, (1.11)

where γ0 ⊂ Z is a suitable closed contour chosen so that on γ0 we have
neither zeros nor poles of gh(z). The main property of the function gh(z)
is the estimate

log |gh(z)| ≤ Cεh
1−d−ε, ∀ 0 < ε� 1,

provided the distance between z and the set {h2νj} is greater than hM ,
M > 0 being arbitrary (see Lemma 3.4). This estimate plays a crucial
role in the estimate of (1.11). Next in Lemma 3.5 we show that for z ∈
Z, |Im z| ≥ hκ−ε, we also have

log
1

|gh(z)|
≤ Cεh

1−d−ε, ∀ 0 < ε� 1.

Moreover, the function log gh(z) is holomorphic in z ∈ Z, |Im z| ≥ hκ−ε

and satisfies the bound ∣∣∣∣ ddz log gh(z)
∣∣∣∣ ≤ Cεh

1−d−2ε

|Imz|
(1.12)
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in the domain

W :=
{
z ∈ C :

2
3
≤ |Re z| ≤ 5

2
, 2hκ−ε ≤ |Im z| ≤ 1

2

}
.

The next step consists of choosing a closed contour γ0 = γ1 ∪ γ3 ∪ γ2 ∪ γ4,
where γ3 ⊂ W, γ4 ⊂ W are linear segments parallel to the real axis. For
the integrals over γj , j = 3, 4, we apply (1.12) and one gets∣∣∣∣∣

∫
γj

d

dz
log gh(z)dz

∣∣∣∣∣ ≤ Cεh
1−d−3ε, j = 3, 4. (1.13)

We take γj = [w−j , w̃
−
j ] ∪ γ̃j ∪ [w̃+

j , w
+
j ], j = 1, 2 with suitable contours γ̃j

(see Section 3 for the notation). The estimates of the imaginary parts of the
integrals over γ̃j , j = 1, 2, are more delicate since these contours cross the
positive real axis and we must avoid the points {h2νk}. Our argument is
similar to the choice of the contour in [4] and the details are given in Section
3. The main point is Lemma 3.8, where the contours γ̃j are constructed so
that ∣∣∣∣∣Im

∫
eγj

d

dz
log gh(z)dz

∣∣∣∣∣ ≤ Cεh
−d+κ−2ε, j = 1, 2. (1.14)

Combining this with (1.13), we obtain the statement of Proposition 3.7 and
by scaling we get the asymptotics of N(r)−N(r/

√
2).

Acknowledgment. Thanks are due to the referee for the comments and
remarks concerning the initial version of the paper.

2. Parametrix of the Dirichlet-to-Neumann map in the
elliptic zone

Let f ∈ H1(Γ) and consider the problem{
(P (h)− z)u = 0 in Ω,

u = f on Γ,
(2.1)

where

P (h) = − h2

n(x)
∇c(x)∇,

0 < h � 1, z ∈ Z = {z ∈ C : 1
2 < |Re z| < 3, |Im z| < 1}, c, n ∈ C∞(Ω)

being strictly positive functions. The Dirichlet-to-Neumann map is defined
by

N (z, h)f := γDνu : Hm+1(Γ) → Hm(Γ),
where m ≥ 0, Dν = −ih∂ν and γ denotes the restriction on Γ. Denote by
GD the Dirichlet self-adjoint realization of the operator −n−1∇c∇ on the
Hilbert space H = L2(Ω, n(x)dx). It is well-known that the spectrum of
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GD consists of a discrete set of positive eigenvalues which are also poles of
the resolvent (λ−GD)−1. Moreover, if νk ∈ specGD, we have

(λ−GD)−1 =
Πk

λ− νk
modulo an operator-valued function holomorphic at νk, where Πk is a finite
rank projection. The multiplicity of νk is defined as being the rank of Πk.
Let V(h) := {νk ∈ specGD : h2νk ∈ Z}. The following properties of the
Dirichlet-to-Neumann map are more or less well-known but we will give a
proof for the sake of completeness.

Lemma 2.1. The Dirichlet-to-Neumann map N (z, h) is a meromorphic
operator-valued function in z ∈ Z with poles at h2νk, νk ∈ V(h). Moreover,

N (z, h) =
Π̃k(h)
z − h2νk

(2.2)

modulo an operator-valued function holomorphic at h2νk, where Π̃k(h) is
of rank ≤ mult(νk). If δ(z, h) := min{1,dist{z, spech2GD}} > 0, then we
have the bound

‖N (z, h)‖Hm+1(Γ)→Hm(Γ) ≤
Ch

δ(z, h)
, (2.3)

where C > 0 is a constant which may depend on m.

Proof. Clearly, there exists an extension operator Em : Hm+1(Γ) →
Hm+3/2(Ω) such that γEmf = f and Emf is supported near Γ. If f ∈
Hm+1(Γ) and z/h2 does not belong to specGD, it is easy to see that the
solution u of (2.1) can be expressed by the formula

u = Emf − (h2GD − z)−1(P (h)− z)Emf.

Hence

N (z, h)f = γDνEmf − γDν(h2GD − z)−1(P (h)− z)Emf. (2.4)

It follows from (2.4) thatN (z, h) is a meromorphic operator-valued function
in z ∈ Z with poles among the poles of (h2GD − z)−1 and that (2.2) holds
with

Π̃k(h) = γDνΠk(P (h)− h2νk)Em.

This implies rank Π̃k(h) ≤ rank Πk as desired. By (2.4) we also have

‖N (z, h)f‖Hm(Γ) ≤ Ch‖f‖Hm+1(Γ)

+Ch
∥∥(h2GD − z)−1

∥∥
Hm+3/2(Ω)→Hm+3/2(Ω)

‖Emf‖Hm+3/2(Ω)

+Ch
∥∥(h2GD − z)−1

∥∥
Hm−1/2(Ω)→Hm+3/2(Ω)

‖P (h)Emf‖Hm−1/2(Ω) .

Clearly, we have

‖Emf‖Hm+3/2(Ω) ≤ C‖f‖Hm+1(Γ),
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‖P (h)Emf‖Hm−1/2(Ω) ≤ Ch2 ‖Emf‖Hm+3/2(Ω) ≤ Ch2‖f‖Hm+1(Γ).

On the other hand, the coercive estimate

‖v‖Hs+2(Ω) ≤ C ‖GDv‖Hs(Ω) + C ‖v‖Hs(Ω) , ∀v ∈ D(GD) ∩Hs(Ω)

implies the bounds∥∥(h2GD − z)−1
∥∥
Hm+3/2(Ω)→Hm+3/2(Ω)

≤ C
∥∥(h2GD − z)−1

∥∥
L2(Ω)→L2(Ω)

≤ C

δ(z, h)
,∥∥(h2GD − z)−1

∥∥
Hm−1/2(Ω)→Hm+3/2(Ω)

≤ C
∥∥(GD − i)(h2GD − z)−1

∥∥
Hm+3/2(Ω)→Hm+3/2(Ω)

∥∥(GD − i)−1
∥∥
Hm−1/2(Ω)→Hm+3/2(Ω)

≤ C̃

h2δ(z, h)
.

Therefore, (2.3) follows from the above estimates and the proof is complete.
2

Let (x′, ξ′) be coordinates on T ∗Γ and denote by r0(x′, ξ′) the principal
symbol of the Laplace-Beltrami operator, −∆Γ, on Γ equipped with the
Riemannian metric induced by the Euclidean one in Rd. It is well-known
that r0 is a polynomial function in ξ′, homogeneous of order 2, and C2|ξ′|2 ≥
r0(x′, ξ′) ≥ C1|ξ′|2 with constants C2 > C1 > 0. Set m(x) = n(x)

c(x) . Let
φ ∈ C∞(R), φ(σ) = 1 for |σ| ≤ 1, φ(σ) = 0 for |σ| ≥ 2, and set

χ(x′, ξ′) = φ
(
δ0r0(x′, ξ′)

)
,

where 0 < δ0 � 1. For (x′, ξ′) ∈ supp (1− χ), introduce the function

ρ(x′, ξ′, z) = i
√
r0(x′, ξ′)− γm(x′)z = i

√
r0

(
1− z

γm

r0

)1/2

.

Since
|z|γm

r0
≤ 1

2
, ∀z ∈ Z, (x′, ξ′) ∈ supp (1− χ),

the functions ρ and ρ−1 are holomorphic in z ∈ Z and

Im ρ(x′, ξ′, z) ≥ C
√
r0(x′, ξ′)

with some constant C > 0. In what follows in this section we will construct
a parametrix for the operator N (z, h)Oph(1−χ), where Oph(1−χ) denotes
the h − ΨDO with symbol 1 − χ. In fact, this construction is carried out
in [27] and here we will only recall the main points. First, notice that it
suffices to make the construction locally and then to glue up all pieces by
using a partition of the unity on Γ. Given an arbitrary point x0 ∈ Γ, there
exists a small neighborhood O(x0) ⊂ Ω of x0 and local normal coordinates
(x1, x

′) ∈ O(x0) such that x0 = (0, 0), Γ ∩ O(x0) is defined by x1 = 0, x′
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being coordinates in Γ∩O(x0), x1 > 0 in Ω∩O(x0), and in these coordinates
the operator

P(z, h) = − h2

c(x)
∇c(x)∇− z

n(x)
c(x)

can be written in the form

P(z, h) = D2
x1

+ r(x,Dx′)− zm(x) + hq(x,Dx) + h2q̃(x).

Here we have set Dx1 = −ih∂x1 , Dx′ = −ih∂x′ , r(x, ξ′) = 〈R(x)ξ′, ξ′〉,
R = (Rij) being a symmetric (d− 1)× (d− 1) matrix-valued function with
smooth real-valued entries, q(x, ξ) = 〈q(x), ξ〉, q(x) and q̃(x) being smooth
functions. Moreover, we have r(0, x′, ξ′) = r0(x′, ξ′), r0(x′, ξ′) being the
principal symbol of −∆Γ written in the coordinates (x′, ξ′). Let ψ(x′) ∈
C∞0 (Γ∩O(x0)), ψ = 1 in a neighborhood of x0. In [27], it was constructed
a parametrix, ũψ, of (2.1) satisfying the condition ũψ|x1=0 = Oph(1−χ)ψf
and having the form

ũψ(x) = (2πh)−d+1

∫ ∫
e

i
h
ϕ(x,y′,ξ′,z)φ

(
x1

δ1

)
a(x, ξ′, z, h)f(y′)dy′dξ′,

where φ is as above and δ1 > 0 is a small constant independent of x, ξ′, h, z.
The phase ϕ is a complex-valued function such that

ϕ|x1=0 = −〈x′ − y′, ξ′〉, ∂x1ϕ|x1=0 = ρ, Imϕ ≥ x1Im ρ/2,

and the amplitude a satisfies a|x1=0 = ψ(x′)(1− χ(x′, ξ′)). More generally,
the functions ϕ and a are of the form

ϕ = −〈x′ − y′, ξ′〉+
N−1∑
k=1

xk1ϕk(x
′, ξ′, z) = −〈x′ − y′, ξ′〉+ ϕ̃,

a =
N−1∑
k=0

N−1∑
j=0

xk1h
jak,j(x′, ξ′, z),

N � 1 being an arbitrary integer. The phase ϕ satisfies the eikonal equa-
tion mod O(xN1 ):

(∂x1ϕ)2 + r(x,∇x′ϕ)−m(x)z = xN1 ΨN (x, ξ′, z) (2.5)

and a satisfies the equation

e−
i
h
ϕP(z, h)e

i
h
ϕa = xN1 AN (x, ξ′, z, h) + hNBN (x, ξ′, z, h), (2.6)

where ΨN , AN and BN are smooth functions. It was shown in Section 4
of [27] that ak,j ∈ S−j , j ≥ 0, k ≥ 1, ∂kx1

AN ∈ S2, ∂kx1
BN ∈ S1−N , k ≥ 0,

uniformly in z ∈ Z and 0 < x1 ≤ δ1. Recall that Sk are the spaces of all
functions a ∈ C∞(T ∗Γ) satisfying the estimates∣∣∣∂αx′∂βξ′a(x′, ξ′)∣∣∣ ≤ Cα,β〈ξ′〉k−|β|, 〈ξ′〉 = (1 + |ξ′|2)1/2
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for all multi-indices α and β. Moreover, the functions ak,j , AN , BN are
polynomials in ρ, ρ−1 and z, and therefore they are holomorphic in z ∈ Z.
As in [27], it is easy to see that

P(z, h)ũψ = Oph(pψ)f,

where the function

pψ = e
i
h
〈x′,ξ′〉

[
P(z, h), φ

(
x1

δ1

)]
e−

i
h
〈x′,ξ′〉e

i
h

eϕa+e i
h

eϕφ
(
x1

δ1

)(
xN1 AN + hNBN

)
is holomorphic in z and satisfies the bounds

|∂αx pψ| ≤ Cα,N

(
h

〈ξ′〉

)N−`−|α|
for |α| ≤ N − ` (2.7)

with some ` independent of N and α. The parametrix, Ñψ(z, h), of the
operator N (z, h)Oph(1− χ)ψ is defined by

Dx1 ũψ|x1=0 = Ñψ(z, h)f = Oph(ηψ)f,

where

ηψ = a
∂ϕ

∂x1
|x1=0 − ih

∂a

∂x1
|x1=0 = ψ(1− χ)ρ− ih

N−1∑
j=0

hja1,j ,

a1,0 = − i
2
q(0, x′, 1, ξ′/ρ)ψ − 1

2ρ
〈R(0, x′)ξ′,∇x′ψ(x′)〉.

Since
1
ρ

=
1

i
√
r0

(
1− z

γm

r0

)−1/2

=
1

i
√
r0

+O
(
〈ξ′〉−3

)
,

we deduce that mod S−2 the function a1,0 is given by the expression

a1,0 = −1
2
q(0, x′, 1, ξ′/

√
r0)ψ +

i

2
√
r0
〈R(0, x′)ξ′,∇x′ψ(x′)〉

=
〈
i∇x′c(0, x′)

2c(0, x′)
,
ξ′
√
r0

〉
ψ +

i∂x1c(0, x
′)

2c(0, x′)
ψ + q0(x′, ξ′) (2.8)

with some function q0 ∈ S0 independent of the functions c and n.
Let {ψj}Jj=1 be a partition of the unity on Γ. Set

p =
J∑
j=1

pψj
, η =

J∑
j=1

ηψj
, ũ =

J∑
j=1

ũψj
.

The operator

Ñ (z, h) =
J∑
j=1

Ñψj
(z, h) = Oph(η)
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is an h − ΨDO on Γ with a principal symbol ρ(1 − χ), holomorphic in
z ∈ Z. Let uψj

be the solution of (2.1) with uψ|Γ = Oph(1 − χ)ψf . Then
u =

∑J
j=1 uψj

is the solution of (2.1) with u|Γ = Oph(1 − χ)f . Moreover,
it is easy to see that, if z/h2 does not belong to specGD, we have

u = ũ−
(
h2GD − z

)−1 c

n
P(z, h)ũ

which yields the identity

N (z, h)Oph(1− χ)f = Ñ (z, h)f − γDν
(
h2GD − z

)−1 c

n
Oph(p)f. (2.9)

It follows from (2.7) that if N is taken large enough, the operator

F (z, h) := N (z, h)−Ñ (z, h) = N (z, h)Oph(χ)−γDν
(
h2GD − z

)−1 c

n
Oph(p)

is meromorphic with values in the space of trace class operators on L2(Γ).
Let µj(F ) be the characteristic values of F . Recall that µj(F ) are defined
as being the eigenvalues of the self-adjoint operator (F ∗F )1/2.

Lemma 2.2. If z/h2 does not belong to specGD, then for every integer
0 ≤ m ≤ N/4 we have the bound

µj(F (z, h)) ≤ C

δ(z, h)

(
hj1/(d−1)

)−2m
, ∀j, (2.10)

where the constant C > 0 depends on m and N but is independent of z, h,
j, and δ(z, h) is defined in Lemma 2.1.

Proof. We will use the well-known fact that the characteristic values of
the Laplace-Beltrami operator on a compact Riemannian manifold without
boundary (in our case Γ, dim Γ = d− 1) satisfy

µj
(
(1−∆Γ)−m

)
≤ Cmj

−2m/(d−1), ∀j, (2.11)

for every integer m ≥ 0. On the other hand, by using the trace theorem
and Lemma 2.1, we obtain

‖F (z, h)‖L2(Γ)→H2m(Γ) ≤ ‖N (z, h)‖H2m+1(Γ)→H2m(Γ) ‖Oph(χ)‖L2(Γ)→H2m+1(Γ)

+Ch
∥∥∥(h2GD − z

)−1
∥∥∥
H2m+3/2(Ω)→H2m+3/2(Ω)

‖Oph(p)‖L2(Γ)→H2m+3/2(Ω)

≤ Ch

δ(z, h)
‖Oph(χ)‖L2(Γ)→H2m+1(Γ) +

Ch

δ(z, h)
‖Oph(p)‖L2(Γ)→H2m+3/2(Ω) .

Since the function χ is compactly supported, we have the bound

‖Oph(χ)‖L2(Γ)→H2m+1(Γ) ≤ Cmh
−2m−1. (2.12)

In view of (2.7) we also have

‖Oph(p)‖L2(Γ)→H2m+3/2(Ω) ≤ Cm,Nh
N−2m−`1 (2.13)
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with some `1 independent of m and N , provided 0 ≤ m ≤ N/4 and N
being large enough. By (2.12) and (2.13) we conclude

‖F (z, h)‖L2(Γ)→H2m(Γ) ≤
Cmh

−2m

δ(z, h)
. (2.14)

Clearly, (2.10) follows from (2.11) and (2.14) and the proof is complete. 2

3. Analysis of the transmission eigenvalues

For λ ∈ C \ {0} define the operator R(λ)v = u, where u = (u1, u2) and
v = (v1, v2) solve the problem

(
− 1
n1(x)∇c1(x)∇− λ

)
u1 = v1 in Ω,(

− 1
n2(x)∇c2(x)∇− λ

)
u2 = v2 in Ω,

u1 = u2, c1∂νu1 = c2∂νu2 on Γ.

(3.1)

Denote byG(j)
D , j = 1, 2, the Dirichlet self-adjoint realization of the operator

−n−1
j ∇cj∇ on the Hilbert space Hj = L2(Ω, nj(x)dx). Set H = H1 ⊕H2

and define also the operators Kj(λ)f = u, where u is the solution of the
problem 

(
− 1
nj(x)

∇cj(x)∇− λ
)
u = 0 in Ω,

u = f on Γ.
(3.2)

Differentiating this equation with respect to λ, one obtains easily the iden-
tity

dKj(λ)
dλ

= (G(j)
D − λ)−1Kj(λ). (3.3)

Introduce the operator

T (λ) := c1γ∂νK1(λ)− c2γ∂νK2(λ).

Proposition 3.1. If T (λ)−1 is a meromorphic operator-valued function
with residue of finite rank, the same is true for R(λ) and we have the
formula

R(λ) =

(
R11(λ), R12(λ)

R21(λ), R22(λ)

)
: H → H, (3.4)

where

R11(λ) = (G(1)
D − λ)−1 −K1(λ)T (λ)−1c1γ∂ν(G

(1)
D − λ)−1,

R22(λ) = (G(2)
D − λ)−1 +K2(λ)T (λ)−1c1γ∂ν(G

(2)
D − λ)−1,

R12(λ) = K1(λ)T (λ)−1c1γ∂ν(G
(2)
D − λ)−1,

R21(λ) = −K2(λ)T (λ)−1c2γ∂ν(G
(1)
D − λ)−1.
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Moreover, if γ0 ⊂ C is a simple closed positively oriented curve which avoids
the eigenvalues of G(j)

D , j = 1, 2, as well as the poles of T (λ)−1, then we
have the identity

−trH (2πi)−1

∫
γ0

R(λ)dλ+
2∑
j=1

trHj (2πi)−1

∫
γ0

(G(j)
D − λ)−1dλ

= trL2(Γ) (2πi)−1

∫
γ0

T (λ)−1dT (λ)
dλ

dλ. (3.5)

Proof. Clearly, if (uj , vj) satisfies (3.1) and λ does not belong to specG(1)
D ∪

specG(2)
D , we have

uj = (G(j)
D − λ)−1vj +Kj(λ)f,

where f = γu1 = γu2. The boundary condition in (3.1) implies the identity

0 = c1∂νu1− c2∂νu2 = T (λ)f + c1γ∂ν(G
(1)
D −λ)−1v1− c2γ∂ν(G(2)

D −λ)−1v2.

Hence

uj = (G(j)
D −λ)−1vj−Kj(λ)T (λ)−1

(
c1γ∂ν(G

(1)
D − λ)−1v1 − c2γ∂ν(G

(2)
D − λ)−1v2

)
which clearly implies (3.4). Moreover, if T (λ)−1 is meromorphic, so are
the operators Rij(λ), and by (3.4) the operator R(λ) is meromorphic, too.
Using (3.3) and the cyclicity of the trace (see Lemma 2.2 of [23]), we get

trH (2πi)−1

∫
γ0

R(λ)dλ = trH1 (2πi)−1

∫
γ0

R11(λ)dλ+trH2 (2πi)−1

∫
γ0

R22(λ)dλ

= trH1 (2πi)−1

∫
γ0

(G(1)
D −λ)−1dλ−trH1 (2πi)−1

∫
γ0

K1(λ)T (λ)−1c1γ∂ν(G
(1)
D −λ)−1dλ

+trH2 (2πi)−1

∫
γ0

(G(2)
D −λ)−1dλ+trH2 (2πi)−1

∫
γ0

K2(λ)T (λ)−1c2γ∂ν(G
(2)
D −λ)−1dλ

= trH1 (2πi)−1

∫
γ0

(G(1)
D −λ)−1dλ−trL2(Γ) (2πi)−1

∫
γ0

T (λ)−1c1γ∂ν(G
(1)
D −λ)−1K1(λ)dλ

+trH2 (2πi)−1

∫
γ0

(G(2)
D −λ)−1dλ+trL2(Γ) (2πi)−1

∫
γ0

T (λ)−1c2γ∂ν(G
(2)
D −λ)−1K2(λ)dλ

= trH1 (2πi)−1

∫
γ0

(G(1)
D − λ)−1dλ+ trH2 (2πi)−1

∫
γ0

(G(2)
D − λ)−1dλ

−trL2(Γ) (2πi)−1

∫
γ0

T (λ)−1c1
dγ∂νK1(λ)

dλ
dλ+trL2(Γ) (2πi)−1

∫
γ0

T (λ)−1c2
dγ∂νK2(λ)

dλ
dλ

which implies (3.5). 2
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If R(λ) is a meromorphic operator-valued function with residue of finite
rank, we define the multiplicity of a pole λk ∈ C of R(λ) by

mult (λk) = rank (2πi)−1

∫
|λ−λk|=ε

R(λ)dλ, 0 < ε� 1.

Let the curve γ0 be as in Proposition 3.1 and denote by Mγ0 and M
(j)
γ0 ,

j = 1, 2, the number (counted with the multiplicity) of the poles of R(λ)
and the eigenvalues of G(j)

D , respectively, in the interior of γ0. Proposition
3.1 implies the following

Corollary 3.2. We have the identity

Mγ0 = M (1)
γ0 +M (2)

γ0 + trL2(Γ) (2πi)−1

∫
γ0

T (λ)−1dT (λ)
dλ

dλ. (3.6)

Proof. It is easy to see that R(λ) = (A− λ)−1, where the operator A is
defined by

A

(
u1

u2

)
=

(
− 1
n1(x)∇c1(x)∇u1

− 1
n2(x)∇c2(x)∇u2

)
with domain

D(A) =
{
(u1, u2) ∈ H : ∇c1(x)∇u1 ∈ L2(Ω), ∇c2(x)∇u2 ∈ L2(Ω),

γu1 = γu2, c1γ∂νu1 = c2γ∂νu2} .
Hence the finite-rank operator

−(2πi)−1

∫
|λ−λk|=ε

R(λ)dλ = (2πi)−1

∫
|λ−λk|=ε

(λ−A)−1dλ

is in fact a projection (e.g. see [12]), and therefore the rank coincides with
the trace. Thus, (3.6) follows from (3.5). 2

Let z and h be as in the previous section and denote by Nj , Ñj , Fj ,
j = 1, 2, the operators defined by replacing in the definition of N , Ñ , F
introduced in Section 2 the pair (c, n) by (cj , nj). Clearly, we have the
relationship

hT (z/h2) = c1N1(z, h)− c2N2(z, h)

= c1F1(z, h)− c2F2(z, h) + c1Ñ1(z, h)− c2Ñ2(z, h). (3.7)
In what follows Hs

h will denote the Sobolev space Hs(Γ) equipped with the
semi-classical norm.

Lemma 3.3. There exist an invertible, bounded operator E(z, h) : Hs
h →

Hs+k
h = O(1), with an inverse E(z, h)−1 : Hs

h → Hs−k
h = O(1), ∀s ∈ R,

and trace class operators Ll(z, h) and Lr(z, h) such that

E(z, h)
(
c1Ñ1(z, h)− c2Ñ2(z, h)

)
= I + Ll(z, h), (3.8)
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c1Ñ1(z, h)− c2Ñ2(z, h)

)
E(z, h) = I + Lr(z, h), (3.9)

where k = −1 if (1.5) holds, k = 1 if (1.6) holds. Moreover, the operators
E,E−1, Ll, Lr are holomorphic with respect to z for z ∈ Z.

Proof. Set mj = nj

cj
, ρj = i

√
r0 − zγmj , j = 1, 2, and let the real-

valued function χ, 0 ≤ χ ≤ 1 be as in Section 2, with a sufficiently large
support. It follows from the parametrix construction in Section 2 that
c1Ñ1 − c2Ñ2 = Oph(b) with a symbol b =

∑N
j=0 h

j bj , where bj ∈ S1−j are
holomorphic in z ∈ Z, and

b0 = (c1ρ1 − c2ρ2)(1− χ).

Let χ0 ∈ C∞(T ∗Γ) be a real-valued compactly supported function such
that 0 ≤ χ0 ≤ 1 and χ0 = 1 on suppχ. It suffices to show that the operator
Oph(χ0 + b) is invertible. Indeed, this would imply (3.8) and (3.9) with
E = (Oph(χ0 + b))−1 and Ll = EOph(χ0), Lr = Oph(χ0)E.

An easy computation shows that

b0 =
c̃(x′)(c0(x′)r0(x′, ξ′)− z)

c1ρ1 + c2ρ2
(1− χ(x′, ξ′)),

where c̃ and c0 are the restrictions on Γ of the functions

c1n1 − c2n2 and
c21 − c22

c1n1 − c2n2
,

respectively. Let us see that

C1〈ξ′〉k ≤ |χ0 + b0| ≤ C2〈ξ′〉k (3.10)

with some constants C1, C2 > 0, where k = −1 if c0(x′) ≡ 0 and k = 1 if
c0(x′) 6= 0, ∀x′ ∈ Γ. Since

b0 =
c̃(c0r0 − z)
i(c1 + c2)

√
r0

(1− χ)
(
1 +O

(
〈ξ′〉−1

))
,

we have with some positive constants C̃, C̃1, C̃2,

2|χ0 + b0| ≥ |χ0 + Re b0|+ |Im b0| ≥ χ0 − |Re b0|+ |Im b0|

≥ χ0 +
C̃1

〈ξ′〉
|c0r0 − z|(1− χ)

(
1−O

(
〈ξ′〉−1

))
≥ χ0 + C̃2〈ξ′〉k(1− χ) ≥ C̃〈ξ′〉k

which yields the lower bound in (3.10). The upper bound is obvious.
It follows from (3.10) that (χ0 + b0)−1 ∈ S−k. Moreover, when c1 ≡ c2,

∂νc1 ≡ ∂νc2 on Γ, by (2.8) one concludes that b1 ∈ S−2. Hence the operator
Oph(χ0+b) is invertible with an inverse which is an h−ΨDO with a symbol
belonging to the class S−k. In particular, we have (Oph(χ0 + b))−1 : Hs

h →
Hs+k
h = O(1), Oph(χ0 + b) : Hs

h → Hs−k
h = O(1), ∀s ∈ R.
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2

Set Vj(h) := {νk ∈ specG(j)
D : h2νk ∈ Z}, j = 1, 2. Define the operator

K as follows:

K(z, h) = E(z, h) (c1F1(z, h)− c2F2(z, h)) + Ll(z, h) if k = −1,

K(z, h) = (c1F1(z, h)− c2F2(z, h))E(z, h) + Lr(z, h) if k = 1.
We obtain easily that

E(c1N1 − c2N2) = I +K if k = −1,

(c1N1 − c2N2)E = I +K if k = 1.
Clearly, the operator K is trace class and meromorphic in z ∈ Z with poles
{wk}, wk/h2 ∈ V1(h) ∪ V2(h), and residue of finite rank, so we can define
the meromorphic function

gh(z) := det (I +K(z, h)) .

Lemma 3.4. For all z ∈ Z such that

δ](z, h) := min{1,dist{z, spech2G
(1)
D ∪ spech2G

(2)
D }} > 0

we have the bound

log |gh(z)| ≤ Cεh
1−dδ](z, h)−ε, ∀ 0 < ε� 1. (3.11)

Proof. It follows from Lemma 2.2 and the properties of the characteristic
values that µj(K) satisfy the bound (2.10) with a new constant C > 0 and
δ replaced by δ]. In fact, for k = −1 we have

µj1+j2−1(K) ≤ µj1

(
(E(z, h) (c1F1(z, h)− c2F2(z, h))

)
+ µj2(Ll(z, h)).

Since the operator E(x, h) is bounded, for the first term on the right
hand side we apply Lemma 2.2. On the other hand, µj2(EOph(χ0)) ≤
Cµj2(Oph(χ0)) and for µj2(Oph(χ0)) we obtain easily (2.10) with δ(z, h) =
1 since χ0 has compact support. Next, if j = j1 + j2 − 1, then we have
j1 ≥ (j + 1)/2 or j2 ≥ (j + 1)/2. The case k = 1 is similar.

Therefore, we have

log |gh(z)| ≤
∞∑
j=1

log (1 + µj(K)) ≤
∞∑
j=1

log
(
1 + Cδ](z, h)−1h−2mj−2m/(d−1)

)
≤
∫ ∞

0
log
(
1 + Cδ](z, h)−1h−2mt−2m/(d−1)

)
dt

= Cmh
−d+1

(
δ](z, h)

)− d−1
2m

∫ ∞

0
log
(
1 + t−2m/(d−1)

)
dt

≤ C̃mh
−d+1δ](z, h)−

d−1
2m . (3.12)
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Now, given any 0 < ε� 1, we can take m ∼ d−1
2ε and N ≥ 4m, and (3.11)

follows from (3.12). 2

The next lemma is an almost direct consequence of the results of [27].

Lemma 3.5. Let κ be as in Theorem 1.1. Then, given any 0 < ε� 1, the
operator I + K(z, h) is invertible on L2(Γ) for z ∈ Z, |Im z| ≥ hκ−ε, and
its inverse satisfies in this region the bound∥∥∥(I +K(z, h))−1

∥∥∥
L2→L2

≤ Ch−` (3.13)

with some constants C, ` > 0. For these values of z we also have

log
1

|gh(z)|
≤ Cεh

1−d−ε, ∀ 0 < ε� 1. (3.14)

Moreover, the function log gh(z) is holomorphic in z ∈ Z, |Im z| ≥ hκ−ε

and satisfies the bound ∣∣∣∣ ddz log gh(z)
∣∣∣∣ ≤ Cεh

1−d−2ε

|Im z|
(3.15)

in W := {z ∈ C : 2
3 ≤ |Re z| ≤ 5

2 , 2hκ−ε ≤ |Im z| ≤ 1
2}.

Proof. It follows from the analysis in Section 5 of [27] that, under the as-
sumptions of Theorem 1.1, the operator c1N1(z, h)−c2N2(z, h) is invertible
for z ∈ Z, |Im z| ≥ hκ−ε and∥∥∥(c1N1(z, h)− c2N2(z, h))

−1
∥∥∥
H1

h→L2
≤ Ch−` if k = −1,∥∥∥(c1N1(z, h)− c2N2(z, h))

−1
∥∥∥
L2→H1

h

≤ Ch−` if k = 1.

Now (3.13) follows from these bounds and Lemma 3.3 because

(I +K)−1 = (c1N1 − c2N2)
−1E−1 if k = −1,

(I +K)−1 = E−1 (c1N1 − c2N2)
−1 if k = 1.

The bound (3.14) can be obtained in precisely the same way as (3.11) by
using (3.13) and the formula

1
gh(z)

= det
(
I − (I +K(z, h))−1K(z, h)

)
.

Note that the norm ‖(I + K(z, h))−1‖ will add a factor h−
l(d−1)

2m which for
sufficiently large m yields a factor O(h−ε).

Clearly, it follows from the Fredholm theorem that, under the assump-
tions of Theorem 1.1, the operator-valued function (I +K(z, h))−1 : L2(Γ) →
L2(Γ) is meromorphic in Z with finite rank residue and holomorphic with
respect to z ∈ Z for |Im z| ≥ hκ−ε. Therefore the functions gh(z) and 1

gh(z)
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are holomorphic in z ∈ Z, |Im z| ≥ hκ−ε, and hence so is log gh(z). Fix
an arbitrary w ∈W . Then the function f(z) = log gh(z)

gh(w) is holomorphic in
z ∈ Z, |Im z| ≥ hκ−ε and f(w) = 0. It follows from the bounds (3.11) and
(3.14) that Ref(z) ≤ Oε(h1−d−2ε) for z ∈ Z, |Im z| ≥ hκ−ε In particular,
the later estimate holds on the circle Cw = {z ∈ C : |z − w| = |Imw|

2 }
since for every z ∈ Cw we have |Im z| ≥ |Im w|

2 . Applying the Caratheodory
theorem (e.g. see 5.5 in [26]), we get

|f ′(z)| = Oε(h1−d−2ε)|Imw|−1 for |z − w| ≤ |Imw|
3

.

This implies (3.15) because f ′(z) = d
dz log gh(z). 2

Let γ0 ⊂ Z be a simple closed positively oriented curve which avoids the
eigenvalues of h2G

(j)
D , j = 1, 2, as well as the poles of T (z/h2)−1. Denote

by Mγ0(h) the number of the poles, {λk}, of R(λ) such that h2λk are in
the interior of the domain ω0 with boundary γ0. Similarly, we denote by
M

(j)
γ0 (h) the number of the eigenvalues, {νk}, of G(j)

D such that h2νk are in
ω0. Corollary 3.2 implies the following

Lemma 3.6. We have the identity

Mγ0(h) = M (1)
γ0 (h) +M (2)

γ0 (h) +
1

2πi

∫
γ0

d

dz
log gh(z)dz. (3.16)

Proof. We apply (3.6) and use the identities

hT (z/h2) = E−1(z, h)(I+K(z, h)), (hT (z/h2))−1 = (I+K(z, h))−1E(z, h)

combined with the analyticity of E(z, h) in z and the following well-known
formula

tr (I +K(z, h))−1dK(z, h)
dz

=
d

dz
log det(I +K(z, h)).

The above formula for log det(I + K(z, h)) is classical for finite rank per-
turbations of the identity. For trace class ones this formula follows by an
approximation with finite rank operators (see for example, Section 5, [21]).

2

It follows from (3.16) that z0 ∈ Z \ spec(h2G
(1)
D ) ∪ spec(h2G

(2)
D ) is a

zero of gh(z) if and only if z0 is a pole of R(z/h2) (and hence z0/h2 is an
interior transmission eigenvalue) and the multiplicities coincide. Similarly,
one can see that if z̃0 is a pole of gh(z) with multiplicity m̃0, then z̃0 ∈
spec(h2G

(1)
D )∪spec(h2G

(2)
D ) and m̃0 ≤ m̃1+m̃2, where m̃j is the multiplicity

of z̃0/h2 as an eigenvalue of G(j)
D . In what follows we will use the formula

(3.16) to prove the following
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Proposition 3.7. For every 0 < ε � 1 and A > 0, independent of h, we
have the asymptotics

I(h) := ]
{
zk, zk/h

2 is (ITE) : 1−Ahκ−ε ≤ |Re zk| ≤ 2 +Ahκ−ε, |Im zk| ≤ hκ−ε
}

= (2d/2 − 1)(τ1 + τ2)h−d +Oε,A(h−d+κ−3ε), 0 < h ≤ h0(ε, A). (3.17)

Proof. We will consider only the case Re zk > 0, since the case Re zk < 0
is similar (and even simpler since the function gh(z) does not have poles in
Re z < 0). Consider the points w±1 = 1−Ahκ−ε ± i

3 , w±2 = 2 +Ahκ−ε ± i
3 ,

w̃±1 = 1−Ahκ−ε ± i3hκ−ε, w̃±2 = 2 +Ahκ−ε ± i3hκ−ε and set

Θ1 =
{
z ∈ C : 1− 2(A+ 1)hκ−ε ≤ Re z ≤ 1 + hκ−ε, |Im z| ≤ 4hκ−ε

}
,

Θ2 =
{
z ∈ C : 2− hκ−ε ≤ Re z ≤ 2 + 2(A+ 1)hκ−ε, |Im z| ≤ 4hκ−ε

}
.

The following lemma will be proved later on.

Lemma 3.8. There exist positively oriented piecewise smooth curves γ̃1 ⊂
Θ1 and γ̃2 ⊂ Θ2, where γ̃1 connects the point w̃−1 with w̃+

1 , while γ̃2 connects
the point w̃+

2 with w̃−2 , such that∣∣∣∣∣Im
∫

eγj

d

dz
log gh(z)dz

∣∣∣∣∣ ≤ Cεh
−d+κ−2ε, j = 1, 2. (3.18)

Now we apply Lemma 3.6 with a contour γ0 = γ1 ∪ γ3 ∪ γ2 ∪ γ4, where
γ3 ⊂ W is the segment [w+

1 , w
+
2 ] on the line passing through the points

w+
1 and w+

2 , and γ4 ⊂ W is the segment [w−2 , w
−
1 ] on the line passing

through the points w−2 and w−1 . Next, γ1 = [w−1 , w̃
−
1 ] ∪ γ̃1 ∪ [w̃+

1 , w
+
1 ],

γ2 = [w+
2 , w̃

+
2 ] ∪ γ̃2 ∪ [w̃−2 , w

−
2 ] (see Figure 1).

Since γj ⊂W , |γj | = O(1), j = 3, 4, by (3.15) we have∣∣∣∣∣
∫
γj

d

dz
log gh(z)dz

∣∣∣∣∣ ≤
∫
γj

∣∣∣∣ ddz log gh(z)
∣∣∣∣ |dz|

≤ Cεh
−d+1−2ε

∫
γj

|dz| ≤ Cεh
−d+1−2ε, j = 3, 4. (3.19)

Applying (3.15) once more, we have∣∣∣∣∣
∫

[w±j , ew±j ]

d

dz
log gh(z)dz

∣∣∣∣∣ ≤ Cεh
−d+1−2ε

∫ 1/2

3hκ−ε

dσ

σ
≤ Cεh

−d+1−3ε, j = 1, 2.

(3.20)
On the other hand, since the counting function of the eigenvalues of G(j)

D
satisfies the Weyl law, we deduce

M (j)
γ0 (h) ≤ ]

{
νk ∈ specG(j)

D : 1− 2(A+ 1)hκ−ε ≤ h2νk ≤ 2 + 2(A+ 1)hκ−ε
}
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Figure 1. Contour γ0

= τj

(
2
h2

+
2(A+ 1)hκ−ε

h2

)d/2
− τj

(
1
h2
− 2(A+ 1)hκ−ε

h2

)d/2
+Oε(h−d+1)

= (2d/2 − 1)τjh−d +Oε,A(h−d+κ−ε)
and similarly

M (j)
γ0 (h) ≥ ]

{
νk ∈ specG(j)

D : 1 + hκ−ε ≤ h2νk ≤ 2− hκ−ε
}

= (2d/2 − 1)τjh−d −Oε(h−d+κ−ε).
Consequently,

M (j)
γ0 (h) = (2d/2 − 1)τjh−d +Oε,A(h−d+κ−ε). (3.21)

Taking together (3.16), (3.18), (3.19), (3.20) and (3.21), we obtain

Mγ0(h) = (2d/2 − 1)(τ1 + τ2)h−d +Oε,A(h−d+κ−3ε). (3.22)

Thus, to establish (3.17), it remains to show that the counting function
I(h) satisfies

|I(h)−Mγ0(h)| ≤ Cε,Ah
−d+κ−3ε. (3.23)

Given a parameter θ > 0, independent of h, introduce B±j (θ) = {z ∈
C : |z − w̃±j | ≤ θhκ−ε}. Clearly, there exists θ0 > 0 such that Θj ⊂
B+
j (θ) ∪ B−j (θ), ∀θ ≥ θ0, j = 1, 2. Let

{
z±,jk

}
be the zeros (repeated
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with their multiplicities) of gh(z) in B±j (2θ0) and let
{
y±,jk

}
be the poles

(repeated with their multiplicities) of gh(z) in B±j (4θ0). Therefore the
function

f±,jh (z) = gh(z)
∏
k

(
z − y±,jk

)
is holomorphic in the interior of B±j (4θ0). Obviously,

{
y±,jk

}
are among

the eigenvalues of the operators G(1)
D and G(2)

D in an interval of the form

[1−O(hκ−ε), 1 +O(hκ−ε)] ∪ [2−O(hκ−ε), 2 +O(hκ−ε)].

Hence, by the Weyl law for the counting function of these eigenvalues, as
in the proof of (3.21), we get

]
{
y±,jk

}
≤ Cε,Ah

−d+κ−ε, j = 1, 2. (3.24)

By (3.14) and (3.24), we have

log
∣∣∣f±,jh (w̃±j )

∣∣∣ = log
∣∣∣gh(w̃±j )

∣∣∣+∑
k

log
∣∣∣w̃±j − y±,jk

∣∣∣
≥ −Cεh−d+1−ε − ]

{
y±,jk

}
C log

1
h
≥ −2Cε,Ah−d+κ−2ε. (3.25)

On the other hand, applying (3.11) and (3.24), for z ∈ B±j (θ), θ0 < θ < 4θ0,∣∣∣z − y±,jk

∣∣∣ ≥ hM , M � 1, we obtain

log
∣∣∣f±,jh (z)

∣∣∣ = log |gh(z)|+
∑
k

log
∣∣∣z − y±,jk

∣∣∣
≤ Cεh

−d+1−ε + ]
{
y±,jk

}
M log

1
h
≤ 2Cε,Ah−d+κ−2ε. (3.26)

We claim that there exists 3θ0 < µ1 < 4θ0 such that the distance between{
y±,jk

}
and the circle ∂B±j (µ1) is greater than hM , provided M � d. In-

deed, if we suppose the contrary, this would imply that the length of the in-
terval J±j := R∩

(
B±j (4θ0) \B±j (3θ0)

)
is upper bounded by ]

{
y±,jk ∈ J±j

}
hM =

O(hM−d), which is impossible if M is taken large enough. This proves the
claim. Thus, by (3.26) we have the estimate log

∣∣∣f±,jh (z)
∣∣∣ = Oε(h−d+κ−2ε)

on ∂B±j (µ1), which in turn implies log
∣∣∣f±,jh (z)

∣∣∣ = Oε(h−d+κ−2ε) onB±j (3θ0).
Combining this with (3.25) and the Jensen theorem (see for example 3.6 in
[26]), yields for the zeros z±,jk in B±j (2θ0) the following bound

]
{
z±,jk : z±,jk ∈ B±j (2θ0)

}
≤ Cε,Ah

−d+κ−2ε. (3.27)
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Since the left-hand side of (3.23) is upper bounded by the number of the
zeros and the poles of the function gh(z) in B+

1 (θ0) ∪ B−1 (θ0) ∪ B+
2 (θ0) ∪

B−2 (θ0), the estimate (3.23) follows from (3.24) and (3.27). 2

Remark 3.9. The bound (3.27) of the number of the zeros z±,jk of gh(z)
in B±j (2θ0) does not depend on the statement of Lemma 3.8 but only on
the application of the Jensen theorem based on (3.25), (3.26). We will use
(3.27) in the proof of Lemma 3.8 below.

Proof of Lemma 3.8. We will consider only the case j = 1, since the case
j = 2 is similar. Introduce the function

ζh(z) := gh(z)
∏

w∈M1

(z − w)−1
∏

w∈M2

(z − w) ,

where M1 = {z+,1
k } ∪ {z−,1k } is the set of all zeros of gh(z) in B−1 (2θ0) ∪

B+
1 (2θ0) and M2 = {y+,1

k } ∪ {y−,1k } is the set of all poles of gh(z) in
B−1 (4θ0)∪B+

1 (4θ0). Since ζh(z) does not have zeros and poles in B−1 (2θ0)∪
B+

1 (2θ0), the function log ζh(z) is holomorphic in B−1 (2θ0) ∪ B+
1 (2θ0). We

need the following

Lemma 3.10. The function ζh(z) satisfies the bound

log |ζh(z)| ≤ Cεh
−d+1−2ε, ∀z ∈ B−1 (θ) ∪B+

1 (θ), (3.28)

for every 0 < θ < 2θ0 independent of h.

Proof. Set U = ∪w∈M{z ∈ C : |z − w| ≤ hM}, where M � d and
M = M1 ∪M2. Clearly, U = ∪νUν , where every Uν is a domain with a
piecewise smooth boundary and Uν ∩ Uµ = ∅ if ν 6= µ. Moreover, we have∑

ν

measure (∂Uν) ≤ 2πhM ]{w ∈M} ≤ ChM−d.

Let θ < θ1 < 2θ0 be independent of h. Let {U±νi
} be the set of all Uν

such that Uν ∩ ∂B±1 (θ1) 6= ∅. We now construct a closed curve, β±1 (θ1)
as follows: we keep all arcs on ∂B±1 (θ1) having no common points with
{U±νi

} and replace the arc ∂B±1 (θ1) ∩ U±νi
with arcs on ∂U±νi

connecting the
corresponding end points. Thus we can guarantee that β±1 (θ1) belongs to
an O(hM−d) neighborhood of ∂B±1 (θ1) and, moreover, the distance between
β±1 (θ1) and the set M is greater than hM . In the same way, as in the proof
of (3.25) and (3.26) above, by using (3.11), (3.14), (3.24) and (3.27), we get

log |ζh(z)| ≤ Cεh
−d+1−2ε, ∀z ∈ β±1 (θ1). (3.29)

Since B±1 (θ) is in the interior of the domain bounded by β±1 (θ1), the esti-
mate (3.29) implies (3.28). 2
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We will now construct the curve γ̃1. Let {Uνi} be the set of all Uν
such that Uν ∩ [w̃−1 , w̃

+
1 ] 6= ∅. We keep all segments on [w̃−1 , w̃

+
1 ] having

no common points with {Uνi} and replace the segments on [w̃−1 , w̃
+
1 ] ∩ Uνi

with arcs on ∂Uνi connecting the corresponding end points. Thus we get
a piecewise smooth curve γ̃1 belonging to an O(hM−d) neighborhood of
[w̃−1 , w̃

+
1 ] and the distance between γ̃1 and the set M is greater than hM .

Hence γ̃1 ⊂ Θ1. Now we can write∫
eγ1

d

dz
log gh(z)dz =

∫
[ ew−1 , ew+

1 ]

d

dz
log ζh(z)dz

+
∑
w∈M1

∫
eγ1(z − w)−1dz −

∑
w∈M2

∫
eγ1(z − w)−1dz. (3.30)

We will show that∣∣∣∣ ddz log ζh(z)
∣∣∣∣ ≤ Cεh

−d+1−κ−ε, ∀z ∈ Θ1, (3.31)∣∣∣∣Im ∫
eγ1(z − w)−1dz

∣∣∣∣ ≤ 3π, ∀w ∈M. (3.32)

Since the length of the interval |w̃−1 , w̃
+
1 ] is 6hκ−ε, the estimate (3.31) implies

that the absolute value of the first integral on the right-hand side of (3.30)
is Oε(h−d+1−2ε). Thus, (3.18) would follow from (3.30), (3.31), (3.32) and
the bounds (3.24) and (3.27).

To prove (3.31), we apply the Caratheodory theorem (see 5.5. [26]) for
the derivative of the function f±(z) = log ζh(z)

ζh( ew±1 )
. Note that log |ζh(w̃±1 )|

can be bounded from below in the same way as in (3.25) above. Therefore,
applying (3.28), we get for the real part of f±(z) the estimate

Re f±(z) = log |ζh(z)| − log |ζh(w̃±1 )| ≤ Ch−d+1−2ε, ∀z ∈ ∂B±1
(3

2
θ0

)
.

Since f±(w̃±1 ) = 0, we conclude by the Caratheodory theorem that |f ′±(z)| =
Oε(h−d+1−κ−ε) in the disc B±1 (θ0), which clearly implies (3.31).

To establish (3.32), observe that if w does not lie on the line connecting
the points w̃−1 and w̃+

1 and if σ0 > 0 denotes the distance from w to this
line, after a suitable change of variables, we have∣∣∣∣∣Im

∫ ew+
1

ew−1 (z − w)−1dz

∣∣∣∣∣ =
∫ b

a

σ0dσ

σ2
0 + σ2

≤
∫ ∞

−∞

dσ

1 + σ2
= π. (3.33)

Since the integral in the left-hand side of (3.32) differs from the integral in
the left-hand side of (3.33) either by 0 or 2πi, the estimate (3.33) implies
(3.32) in this case. If w lies on the line connecting the points w̃−1 and w̃+

1 ,
then the integral on the left-hand side of (3.32) is a limit of integrals of the
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first kind, and hence (3.32) will be true in this case, too. This completes
the proof of Lemma 3.8. 2

Proof of Theorem 1.1. Let κ be as described in Theorem 1.1. Let
A1 and A2 be arbitrary real numbers, independent of h, and let A >
max{|A1|, |A2|} be independent of h. It follows from the proof of Proposi-
tion 3.7 (see (3.27)) that

]
{
zk, zk/h

2 is (ITE) : 1−Ahκ−ε ≤ |Re zk| ≤ 1 +Ahκ−ε, |Im zk| ≤ O(hκ−ε)
}

= Oε,A(h−d+κ−2ε),

]
{
zk, zk/h

2 is (ITE) : 2−Ahκ−ε ≤ |Re zk| ≤ 2 +Ahκ−ε, |Im zk| ≤ O(hκ−ε)
}

= Oε,A(h−d+κ−2ε).

Therefore, by (3.17) we get for every 0 < ε� 1

]
{
zk, zk/h

2 is (ITE) : 1−A1h
κ−ε ≤ |Re zk| ≤ 2 +A2h

κ−ε, |Im zk| ≤ O(hκ−ε)
}

= (2d/2 − 1)(τ1 + τ2)h−d +Oε,A1,A2(h
−d+κ−3ε), 0 < h ≤ h1(A1, A2, ε).

Choose h =
√

2
r , r � 1. The above asymptotics yields{

λ ∈ C : λ is (ITE),
r2

2
−A1r

2−κ+ε ≤ |Reλ| ≤ r2 +A2r
2−κ+ε, |Imλ| ≤ r2−κ+ε

}
= (1− 2−d/2)(τ1 + τ2)rd +Oε,A1,A2(r

d−κ+3ε), r ≥ r1(A1, A2, ε).

Recall that according to the results in [27], there are no (ITE) in the region{
λ ∈ C :

r2

2
≤ |λ| ≤ r2, |Imλ| ≥ r2−κ+ε

}
for every 0 < ε� 1, provided r ≥ r0(ε) � 1. On the other hand, it is clear
that the region {

λ ∈ C :
r2

2
≤ |λ| ≤ r2, |Imλ| ≤ r2−κ+ε

}
is contained in the region{

λ ∈ C :
r2

2
− r2−κ+ε ≤ |Reλ| ≤ r2, |Imλ| ≤ r2−κ+ε

}
and contains the region{

λ ∈ C :
r2

2
≤ |Reλ| ≤ r2 − r2−κ+ε, |Imλ| ≤ r2−κ+ε

}
.

Thus we get the asymptotics

N(r)−N(r/
√

2) = (1−2−d/2)(τ1+τ2)rd+Oε(rd−κ+ε), r ≥ r0(ε), (3.34)
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for every 0 < ε� 1. Here we replace 3ε by ε, which is not important since
our argument works for every 0 < ε� 1. The asymptotics (3.34) yields

N(r/2k/2)−N(r/2(k+1)/2) = (2−kd/2−2−(k+1)d/2)(τ1+τ2)rd+2−kd/2Oε(rd−κ+ε)
(3.35)

for every integer k ≥ 0 such that r2−k/2 ≥ r0(ε). Let k0(r) ∈ N be the
smallest integer such that r2−k0(r)/2 < r0(ε). It is clear that we have

N(r/2(k0(r)+1)/2) ≤ N(r0(ε)) = R0(ε) (3.36)

with a constant R0(ε) > 0 independent of r. Moreover,(
2−(k0(r)+1)/2r

)d
≤ (r0(ε))d = R1(ε)

with R1(ε) > 0 independent of r. Summing up the asymptotics (3.35) and
using (3.36), we get (1.7). Thus the proof of Theorem 1.1 is complete. 2
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