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ABSTRACT. For a C? Axiom A flow ¢; : M — M on a Riemannian manifold M and a basic
set A for ¢, we consider the Ruelle transfer operator Lj_sr4.4, where f and g are real-valued
Holder functions on A, 7 is the roof function and s,z € C are complex parameters. Under some
assumptions about ¢; we establish estimates for the iterations of this Ruelle operator in the spirit
of the estimates for operators with one complex parameter (see [4], [21], [22]). Two cases are
covered: (i) for arbitrary Holder f, g when |Im z| < B|Im s|* for some constants B >0, 0 < pu < 1
(1 =1 for Lipschitz f,g), (ii) for Lipschitz f,¢g when |Im s| < Bi|Im z| for some constant B > 0 .
Applying these estimates, we obtain a non zero analytic extension of the zeta function ((s, z) for
P; — e < Re(s) < Py and |z| small enough with simple pole at s = s(z). Two other applications
are considered as well: the first concerns the Hannay-Ozorio de Almeida sum formula, while the
second deals with the asymptotic of the counting function wp(7T) for weighted primitive periods of
the flow ¢;.

1. INTRODUCTION

Let M be a C? complete (not necessarily compact) Riemannian manifold, ¢; : M — M (t € R)
a C% flow on M and let o, : M — M be a C? weak mixing Axiom A flow ([2], [11]). Let A be a
basic set for ¢y, i.e. A is a compact locally maximal invariant subset of M and ¢; is hyperbolic and
transitive on A.

Given a Hélder continuous function F : A — R and a primitive periodic orbit v of ¢¢, denote
by A(7) the least period of v. The weighted period of v is defined by Ap(vy) = fo/\(V) F(¢¢(xy))dt,
where x, € 7. The weighted version of the dynamical zeta function (see Sect. 9 in [11]) is given by

Co(s, F) := H(l — eAF(v)—sA(w)>

Y

-1

For F' = 0 we obtain the classical Ruelle dynamical zeta function.
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2 RUELLE OPERATORS WITH TWO PARAMETERS

It is well known (see for instance Chapter 6 in [11]) that the analysis of the dynamical zeta
function can be reduced to that of a Dirichlet series by using a symbolic coding of A given by
a fixed Markov family {Ri}f::l. For our analysis it is convenient to consider a Markov family of
pseudo-rectangles R; = [U;, Si| = {[z,y] : © € U;,y € S;} (see section 2 for the notation and more
details). Let P : R = U¥_|R; — R be the related Poincaré map, let 7() > 0 be the first return
time function on R, and let o : U = Uk " Ui — U be the shift map given by o = 70 o P, where
7). R — U is the projection along stable leaves. The flow ¢; on A is naturally related to the
suspension flow o] on the suspension space R (see section 2 for details). There exists a natural
semi-conjugacy projection 7(z,t) : R — A which is one-to-one on a residual set (see [2]). Then
following the results in [2], [3], a closed o-orbit {x, 0z, ...,0" !z} is projected to a closed orbit 7 in
A with a least period A\(y) = 7"(z) := 7(z) + 7(0(x)) + ... + 7(c" 1(2)).

Passing to the symbolic model (see [2], Chapter 6 in [11]), the analysis of (,(s, F) is reduced
to that of the Dirichlet series

Z Z f"(z) sT™(x)

with a Hoélder continuous function f(z) = fOT(x) F(n(z,t))dt : R — R. To deal with certain
problems (see Chapter 9 in [11] and [17]) it is necessary to study a more general series

i Z (z)e [T (@)—s7"(2)

with a Holder continuous function G : A — R and g(z) = fOT(x) G(m(z,t))dt : R — R. For this
purpose it is convenient to examine the zeta function

C(s,2) = H(l _ GAFWHA(WAG(W)) — eXP(Z Y S @@ )) (1.1)

% onr=x

-1

depending on two complex variables s, z € C. Formally, we have

0l
s) = 1082

2=0
The analysis of the series in (1.1) is based on the investigation of the iterations of the Ruelle
operator

L srizqu(e Z fy y)+29(y) v(y), s,z € C,

oy=x

" ragV(@) = Z el W)= W) +29" W)y (), n e N.
ony=x
The precise definition of the Ruelle operator acting on spaces of Holder functions is given in section
4. Thus, the strategy for the proof of the analytic continuation of the dynamical zeta function
comprises two majors steps:

since

(I) Prove that suitable ”contraction” estimates for the iterations of the Ruelle operator L' Fsrizg
imply the convergence by packets of the Dirichlet series which yields an analytic continuation of the
corresponding zeta function.

(IT) Establish suitable ”contraction” estimates for the iterations.
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This strategy has been used for zeta functions depending on one complex parameter and related
spectral estimates, called Dolgopyat estimates, have been proved in many cases ([4], [20], [21], [22])
under some conditions on ¢;. The most general case of such estimates known so far for Ruelle
operators with one complex parameter is that described by the Standing Assumptions in section 4
below (see [21], [22]).

In this paper we study both problems (I) and (II) for zeta functions and Ruelle operators
depending on two parameters s,z € C. These problems are motivated by particular important
applications in mind, however we believe they are also of an independent interest.

1.1. Results. Under some hypothesis on the flow ¢; (see section 4 for our standing assumptions)
we prove spectral estimates for the iterations of Ruelle operator L’}_ sttzg with two complex
parameters s,z € C. These estimates are in the spirit of those obtained in [4], [20], [21], [22]
for Ruelle operators with one complex parameter s € C. It should be emphasized that the
transition from one to two complex parameters is highly non-trivial, and so far there have been no
results of this kind in the literature. In particular, in the treatment of this case completely new
difficulties appear when |Im s| — oo and |Im z| — oo.

In what follows, first in Theorem 5 we prove spectral estimates in the case of arbitrary Holder
continuous functions f, g when there exist constants B > 0 and 0 < pu < 1 such that |[Imz| <
B|Im s|* and |Im s| > by > 0. When f, g are Lipschitz one can take p = 1. This covers completely
the case when |z| is bounded and the estimates have the same form as those for operators with
one complex parameter. Moreover, these estimates are sufficient for the applications in [11] and
[18] when |z| runs in a small neighbourhood of 0 (see sections 7 and 8). Notice that in the special
case of a geodesic flow on a surface with negative curvature in the proof of Lemma 3.5 in [18] it
was mentioned that one can obtain a non-vanishing extension of ((s, z) for sufficiently small |z|.
However no proof of this result was given, and indeed one needs some of the results in this paper
to obtain this — in particular, the generalisation of Ruelle’s lemma to the case of two complex
parameters (see section 3) and the estimates of the corresponding Ruelle operator established in
sections 5 and 6 below. In fact, in section 6 we deal with the more difficult situation when f, g are
Lipschitz and there exists a constant By > 0 such that |Im s| < By|Im z| (see Theorem 6).

To study the analytic continuation of ((s,z) for Py —ng < Res < Py, we need a generalisation
of Ruelle’s lemma mentioned above which yields a link between the convergence by packets of a
Dirichlet series like (1.3) below and log ((s, z) and the estimates of the iterations of the correspond-
ing Ruelle operator. The reader may consult [24] for a precise result in this direction completing
some points the previous works ([19], [16], [9]), treating this question. For our needs in this paper
we prove in section 3 an analogue of this lemma for Dirichlet series with two complex parameters
following the approach in [24]. Combining Theorem 4 with the estimates in Theorem 5 (b), we
obtain the following

Theorem 1. Assume the standing assumptions in section 4 fulfilled for a basic set A. Then for
any Hélder continuous functions F,G : A — R there exists ng > 0 such that the function ((s, z)
admits a non vanishing analytic continuation for

(s,2) € {(s,2) € C? : Py —mno < Res, s # s(2), 2| < no}

with a simple pole at s(z). The pole s(z) is determined as the root of the equation Pr(f—st+zg) =0
with respect to s for |z| < no.

Applying the results of sections 5 and 6, we study also the analytic continuation of ((s,iw) for
Py —n9 < Res and w € R, |w| > 7o, in the case when F,G : A — R are Lipschitz functions
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(see Theorem 7). Here both complex parameters s, w may go to infinity, the analysis of this case
is more complicated and we study the situation when z = iw. Our investigation was motivated by
the necessity to have an analytic continuation of the zeta functions appearing in the arguments in
[23], [7]. This analytic continuation combined with the arguments in [23] opens some perspectives
for investigations on sharp large deviations for Anosov flows with exponentially shrinking intervals
in the spirit of [12]. Some other applications are also possible, in particular we expect to obtain
the result of Theorem 7 for arbitrary Hélder functions F,G : A — R, which for now is an open
problem.

Our first application concerns the so called Hannay-Ozorio de Almeida sum formula (see [5], [10],
[18]). Let ¢ : M — M be the geodesic flow on the unit-tangent bundle over a compact negatively
curved surface M. In [18] it was proved that there exists ¢ > 0 such that if (§(7))~' = O(eT),
then for every Holder continuous function G : M — R, we have

im X)) = /
Ll T > N Aa()e = | Gdp, (1.2)
T—=53><A)<T+=5~

where ~ runs over the set of primitive periodic orbits of the flow in M, \*(y) = Ag(y) with
E(x) = limy_o % log [Jac (Dét|gu(x))|, while p is the unique ¢-invariant probability measure which
is absolutely continuous with respect to the volume measure on M. The measure p is called SRB
(Sinai-Ruelle-Bowen) measure (see [3]). Notice that in the above case the Anosov flow ¢; is weak
mixing and M is an attractor. Applying Theorem 1 and the arguments in [18], we prove the
following

Theorem 2. Let A be an attractor, that is there exists an open neighborhood V' of A such that
A = Ni>09e(V). Assume the standing assumptions of section 4 fulfilled for the basic set A. Then
there exists € > 0 such that if (5(T))~" = O(e"), then for every Hélder function G : A — R the
formula (1.2) holds with the SRB measure p for ¢y.

Our second application concerns the counting function
FrT) = Y OO
AMLT

where v is a primitive period orbit for ¢y : A — A, A(v) is the least period and Ap(y) =

0’\(7) F(¢¢(xy))dt, x, € 7. For F' = 0 we obtain the counting function mo(T") = #{v: A(y) < T}.
These counting functions have been studied in many works (see [16] for references concerning 7y (7")
and [11], [15] for the function 7x(7")). The study of 7 (T') is based on the analytic continuation of

the function
-1
Cr(s) = H(l _ eAF(V)—sA(V)>  s€C,
5
which is just the function ((s,0) defined above. We prove the following

Theorem 3. Let A be a basic set and let F': A — R be a Hoélder function. Assume the standing
assumptions of section 4 fulfilled for A. Then there exists € > 0 such that

7p(T) = li(e™ Y1+ O(eT)), T — oo,

where li(z) := [ 1Oéydy ~ gz T 0.
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In the case when ¢; : T*(M) — T*(M) is the geodesic flow on the unit tangent bundle 7" (M)
of a compact C? manifold M with negative section curvatures which are i—pinching the above result
has been established in [15]. It follows from [21] and [22] that the special case of a geodesic flow in
[15] is covered by Theorem 3.

The proof of Theorem 5 for Holder functions f and g = 0 implies some new result even for the
Ruelle operator with one complex parameter under the standing assumptions. For example, we have
to study quite precisely the approximations of f by smooth functions and estimate the Lipschitz
constants of the corresponding eigenfunctions related to maximal eigenvalues. This particular result
is given in Lemma 4 and appears to be of an independent interest.

The results of our work for contact Anosov flows satisfying some pinching conditions, called in
section 4 simplifying assumptions, have been announced in [13]. Here we treat a more general case
and present detailed proofs of the results.

1.2. Examples. Here we describe several examples that provide specific applications of the results
in this paper.

Example 1. If G = 0 we obtain the classical Ruelle dynamical zeta function
-1
Co(s) = H(l - e_s’\(“*)> :
gl

Then Pr(0) = h, where h > 0 is the topological entropy of ¢; and (4(s) is absolutely convergent
for Res > h (see Chapter 6 in [11]).

Example 2. Consider the expansion function £ : A — R defined by
1
E(z) = }gl% n log |[Jac (D] gu(a))|-

Introduce the function A*(y) = Ag(v) and we define f : R — R by

@)
@) = — /0 E(r(x, 1))dt.

Then we have —\"(y) = f™(z) , f is Holder continuous and Pr(f) = 0 (see [3]). Consequently, the

series
=1 n n
Zf Z el (@)=s7"(2) (1.3)
n:ln

or=x
is absolutely convergent for Re s > 0 and nowhere zero and analytic for Re s > 0 except for a simple
pole at Res = 0 (see Theorem 9.2 in [11]). The roof functions 7(x) is constant on stable leaves
of rectangles R; of the Markov family, so we can assume that 7(z) depends only on x € U. By a
standard argument (see [11]) we can replace f by a Hélder function f(z) which depends only on
x € U so that f ~ f . Thus the series (1.3) can be written by functions f , T depending on only
x € U. We keep the notation f below assuming that f depends only on x € U. The analysis of the
analytic continuation of (1.3) is based on spectral estimates for the iterations of the Ruelle operator

Ly _gv(z) = Z S W=7 Wy(y), v e C*(U), s € C.
oy=x

(see [4], [16], [21], [22], [24] for more details).
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Example 3. Let f, 7 be real- Valued H('jlder functions and let Py > 0 be the unique real number

such that Pr(f — Pyr) = 0. Let g(z fo x,t))dt, where G : A — R is a Holder function.
Then if the suspended flow o7 is Weak—mlxmg, the function (1.1) is nowhere zero analytic function
for Res > Py and z in a neighborhood of 0 (depending on s) with nowhere zero analytic extension
to Res = Py (s # Py) for small |z|. This statement is just Theorem 6.4 in [11]. To examine the
analytic continuation of ((s, z) for Py —n9 < Re s and small |z|, it is necessary to have some spectral
estimates for the iterations of the Ruelle operator

Li—srpzgu(z) = > €f W+29W)y(y), v e C*(U), s € C,z e C. (1.4)

oy=x

The analytic continuation of ((s, z) for small |z| and that of n4(s) play a crucial role in the argument
in [18] concerning the Hannay-Ozorio de Almeida sum formula for the geodesic flow on compact neg-
atively curved surfaces. We deal with the same question for Axiom A flows on basic sets in section 8.

Example 4. In [7] for Anosov flows the authors examine the spectral properties of the Ruelle
operator (1.4) with f = 0 and z = iw, w € R and the analyticity of the corresponding L-function
L(s, z). The properties of the Ruelle operator

L (pytatityriiw W € R, neEN,

are also rather important in the paper [23] dealing with the large deviations for Anosov flows. Here
as above Py € R is such that Pr(f — Pyr) = 0. However, it is important to note that in [7] and
[23] the analysis of the Ruelle operators covers mainly the domain Res > Py and there are no
results treating the spectral properties for Py — 79 < Res < Py and z = iw, w € R. To our best
knowledge the analytic continuation of the function ((s, z) for these values of s and z has not been
investigated in the literature so far which makes it quite difficult to obtain sharper results.

2. PRELIMINARIES

As in section 1, let ¢; : M — M be a C? Axiom A flow on a Riemannian manifold M, and let
A be a basic set for ¢;. The restriction of the flow on A is a hyperbolic flow [11]. For any = € M
let W2 (z), W¥(x) be the local stable and unstable manifolds through x, respectively (see [2], [6],
[11]). When M is compact and M itself is a basic set, ¢; is called an Anosov flow. It follows from
the hyperbolicity of A that if ¢y > 0 is sufficiently small, there exists €; > 0 such that if x,y € A
and d(z,y) < €1, then W¢ (z) and ¢;_¢, (W (y)) intersect at exactly one point [z,y] € A (cf.
[6]). That is, there exists a unique t € [—ep, €g] such that ¢.([z,y]) € W (y). Setting A(x,y) = t,
defines the so called temporal distance function.

We will use the set-up and some arguments from [21]. As in [21], fix a (pseudo-) Markov family
R = {Ri}F_| of pseudo-rectangles R; = [U;, S;] = {[z,y] : * € Us,y € S;}. Set R = UF_|R;, U =
UE_,U;. Consider the Poincaré map P : R — R, defined by P(z) = ¢,(;)(x) € R, where 7(z) > 0
is the smallest positive time with ¢, () € R. The function 7 is the so called first return time
associated with R. Let ¢ : U —s U be the shift map given by o = 1) o P, where #¥) : R — U
is the projection along stable leaves. Let U be the set of those points « € U such that P™(z) is not
a boundary point of a rectangle for any integer m. In a similar way define R. Clearly in general 7
is not continuous on U, however under the assumption that the holonomy maps are Lipschitz (see
section 4) T is essentially Lipschitz on U in the sense that there exists a constant L > 0 such that if
z,y € U; N o~ 1(U;) for some 4,7, then |7(z) — 7(y)| < Ld(z,y). The same applies to o : U — U.
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The hyperbolicity of the flow on A implies the existence of constants ¢y € (0,1] and 3 > v > 1
such that

o2 dun, ) < dlo™ (ur), 0™ (u2)) < Td(un, o) (2.1)
whenever 07 (u;) and o7 (ug) belong to the same U;; for all j =0,1...,m.

Define a k x k matrix A = {A(4,7) J 1 by

Afi.) = {1 if P(Int R;) NInt R; # 0,

0 otherwise.

It is possible to construct a Markov family R so that A is irreducible and aperiodic (see [2]).

Consider the suspension space R = {(z,t) € RxR: 0 <t < 7(x)}/ ~, where by ~ we identify
the points (z, 7(x)) and (ox,0). The corresponding suspension flow is defined by o7 (x, s) = (z, s+t)
on R” taking into account the identification ~ . For a Hoélder continuous function f on R, the
topological pressure Pr(f) with respect to o is defined as

Pr(f) = mseli\r/)l {h(a, m) +/fdm},

where M, denotes the space of all o-invariant Borel probability measures and h(o, m) is the entropy
of ¢ with respect to m. We say that f and g are cohomologous and we denote this by f ~ g if there
exists a continuous function w such that f = g + w o 0 — w. For a function v on R one defines

v"(z) = v(z) +v(o(z) + ... + v(e"L(z)).
3. RUELLE’S LEMMA WITH TWO COMPLEX PARAMETERS

Let B(ﬁ) be the space of bounded functions q : U —s C with its standard norm |q[lo =
sup, .7 l9(z)]. Given a function ¢ € B(ﬁ), the Ruelle transfer operator L : B(ﬁ) — B(ﬁ) is
defined by (Lgh)(u) = Z 1Wn(v)  If g € B(ﬁ) is Lipschitz on U with respect to the Riemann

o(v)=u
metric, then L, preserves the space CLip(ﬁ ) of Lipschitz functions q: U—C. Similarly, if ¢ is
v-Hélder for some v > 0, the operator L, preserves the space C¥(U ) of v-Holder functions on U. In

this section we assume that g,7 and f are real-valued v—Holder continuous functions on U. Then
we can extend these functions as Holder continuous on U.
We define the Ruelle operator Lg_3r+zf : C’”(U) — C¥(U) by

Lf 87'+ng Z € —erw)tze(y) ( )a 8,z € C.

oYy=x

Next, for v > 0 define the v-norm on a set B C U by

lwl, = sup{w cx,ye BNU;, i=1,...k, © # y}
d(z, y)”
Let ||w]|, = ||w]|so + |w|v, and denote by ||.||, be the corresponding norm for operators. Let x;(x)

be the characteristic function of U;.
Introduce the sum

Zaf—srtzg) = 3 o' @),

o=z
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Our purpose is to prove the following statement which can be considered as Ruelle’s lemma
with two complex parameters.

Theorem 4. For every Markov leaf U; fix an arbitrary point x; € U;. Then for every e > 0 and
sufficiently small ag > 0,cq > 0 there exists a constant Ce > 0 such that

k
Zn(f — ST+ Zg) - Z L?fsTJrngi(xi)
i=1

< C(1+s)(1+z]) Z ”L?:g_Hw”V,yo—muem(€+Pr(f*aT+cg)), Vn € N (3.1)
m=2

for s=a+1ib, z = c+iw, |a|] < ag, |c| < cp.

The proof of this theorem follows that of Theorem 3.1 in [24] with some modifications. We have
to take into account the presence of a second complex parameter z. Given a string o = (ag, ..., ¥p—1)
of symbols «; taking the values in {1, ..., k}, we say that a is an admissible word if A(a;, aj41) =1
for all 0 < j <n —1. Set |&| = n and define the cylinder of length n in the leaf U,, by

Uy =UyyNo Wy, N...0o" Ny, .

Each Uj; is a cylinder of length 1. Next we introduce some other words (see [24]). Given a word
a=(ag,...,an—1) and i = 1,.... k, if A(ap—1,7) =1 and A(i, ) = 1, we define

i = (O, ey Ap—1,1), 10 = (T, Q0 eey Ap—1), & = (A, e, Ap—2).
We have the following

Lemma 1. Let w be a v-Hélder real-valued function. Let x and y be on the same cylinder U, with
|| = m. Then there exists a constant B > 0 depending only on w,v and the constants cy and 7o
in (2.1) such that

[w™ (2) —w™ (y)| < Bld(o™ 2, 0™ y))".
The proof is a repetition of that of Lemma 2.5 in [24] and we leave the details to the reader.

Proposition 1. Let m > 1 and let w be a function which is v-Hoélder continuous on all cylinder
of length m + 1. Then for the transfer operator Ly_g ., we have

Li—srizg = Olaj=m+1C"(Ua) D w —> Ly sr1 29w € Djo|=mC” (Ua).

Proof. Let w be v-Hélder on Uy, for all i such that A(i,ap) = 1. Let x,y € Int U, and let
|U| = max;—;_j diam(U;). Then

’Lf—37+zgw(x) - Lf—ST+Zgw(y)|
_ Z ef(ix)fsT(i:c)Jrzg(ix)w(ix)_ Z ef(iy)fsr(iy)+zg(iy)w(iy)

A(i,a0)=1 A(i,a0)=1

< Z le=sT(W)] (|687(iy)787(ix) — 1|]ef @290 (i) | + |ef W29 gy (1) — ef(ix)Jrzg(iz)w(m)’)
A(i,a0)=1

< el 37 <|s|]T|Be“0|T‘V‘U|Ve|f‘°°+00|9‘°°\w|oo + e +29) g (1)) — 6f(im)+zg(im)w(ix)|).

A(t,a0)=1
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Repeating this argument, we get
Z |/ W) +29() gy () — f (12 +29(2) gy, ()|
A(i,a0)=1
< eoble 3T (2]lgl el T el ) 4 [ef W (iy) — e/ Duia)]),
A(i,a0)=1

and we conclude that

\Lf,STJngw(x) - Lf*STJrzgw(y)’ < Clwlyd(z,y)”. O

Now, as in [24], we will choose in every cylinder U, a point z, € U,. For the reader’s conve-
nience we recall the choice of z,.
(1) If U, has an n-periodic point, then we take z, € U, so that 0"z, = z,.
(2) If U, has no n-periodic point and n > 1 we choose z, € U, arbitrary so that z, ¢ 0(U,,, ,).
(3) if |a| = n = 1, then we take x, = x;, where i = o and z; € U; is one of the points fixed in
Theorem 4.

Let xq be the characteristic function of U,. Then Lemma 3.4 and Lemma 3.5 in [24] are applied
without any change and we get

Zn(f — ST + 29) = Z (L?}—s7—+ngoz)(xa)‘
|a)]=n

Proposition 2. We have

k
Zn(f —sT+29) — Z L?—sr+ngi(l“i)
=1

n
= YUY L wisXal@a) = X LY igxs(@s). (3:2)
m=2 |a|=m |8]=m—1
The proof is elementary by using the fact that
k

Z(L?—ST—i-ngUi)(xi) = Z( 7}_37+ZgXa)($a)-

=1 o] =1
Now we repeat the argument in [24] without any change and conclude that
Z L rizgxs(zp) = Z L orizgXa(Ta).
|Bl=m—1 laj=m
Thus, the proof of (3.1) is reduced to an estimate of the difference
?_5T+ZQXC“($O‘) - L?—57+zgxa($&)~

Observe that x, and x5 are on the same cylinder Us. According to Proposition 1, the function

L’JL srtzgXa is v-Hélder continuous on Ug. Consequently, for every n > 2 we obtain

’L?fsr+zgxa(xa) - L}Lfsr+zgxa($d>’ < HL?,STJFZQXQHVd(.%'a,.CE@)V,
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where ||.||, denotes the operator norm derived from the v-Holder norm. Going back to (3.2), we
deduce

k
Zu(f = 57+ 29) = 3 L rsgi(i)
=1

n
< D> I I g Xallud(@a, wa). (3-3)

m=2 |a|=m
This it makes possible to apply (2.1) and to conclude that
d(xe,xg) < C”'yo_y(m_Q)d(Jm_zxa, Jm_zw@)” < Coyy ™.
To finish the proof we have to estimate the term |[L7" ., xgllv. Given a word « of length n > 1
and z € 0(U,,_,) NInt U; for any i with A(ay,—1,7) = 1, we define o, (z) to be the unique point y
such that 0" (y) = z and y € U,. For a symbol i we define iz = o; *(z).

First we have

Lemma 2.

e(f—ST'FZg)m(”B_lm), if x € o(Ug,,_,),

0, otherwise.

(L?L—ST—&—ngﬁ) (.’E) = {

The proof is a repetition of that of Lemma 3.7 in [24] and it is based on the definition of o !
above and the fact that

(LF sriagxp) (@) = > el (h)xs(y).
oMy=x
or every admissible wor wit = m, we fix a point yg € o _,) which will be chosen
F dmissibl d g with |8 fi i 8 Ug,,_,) which will be ch
as in [24]. Define zg = oEl(yﬂ).
Lemma 3. There exist constants By > 0, By > 0, By > 0 such that we have the estimate
IE7crg ()l < Bo eIV B o By fsfeolV 100051 )

% <€(;0|U|v15’2 I B2‘Z|eco|U|"(1+’yau)Bz>e(fmfaTercgm)(zm'

Proof. We will follow the proof of Lemma 3.8 in [24]. Let xz and y be in the same Markov leaf.
If Yy §é U(Uﬁm—1)7 then ’L;‘n—ST—&-zg(Xﬁ)(x)‘ = ’L;‘n—sT—&-zg(X,B)(x) - L;cn—ST—l—zg(Xﬁ)(y)‘ = 0. In the case
when x ¢ o(Ug,, ,), we repeat the same argument. So we will consider the case when both z and
y are in o(Upg,, ,).

We have

LT s sy (x8) ()] = [V~ (@ DT" et idg™) (o5 )|

< eXp<(fm —ar™ +cg™)(og ' x) = (f" — o™ + cgm)(aﬂ‘ly))e(fm*aTm“gm)(Zﬂ).
On the other hand, applying Lemma 1 with w = 7, we get
|Tm(cr§1m) - Tm(O'ElyN < Bl(d(am_la§1$, am_la/gly))” < B|UJ".

The same argument works for the terms involving ™ and ¢", applying Lemma 1 with w = f, g,
respectively. Thus we obtain

‘L?Lfsﬂrzg(x,@)(l'” < 6(00+a031+0032)|U|“e(fm—a’rm-‘rcgm)(zﬁ)'
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and this implies an estimate for [L7' . (Xp)[oo- Next,

‘L}nfsTJrzg(Xﬁ)(x) - L}n;STJng(XB)(y)’
< |ef’"(0§1(x))—f’"(051(y)) _ 1|‘ef’"(Ugl(y))‘|€—ST’"(J§1(90))+ST’"(J§1(1/)) _ 1He—87m(051(y))|
X|ezgm(agl(:v))—zg’”(agl(y)) _ 1||6,Z9’”(051(y))|_
As in [24], we have
16*57“’"(0;}1(@HST"’(UEI(Z/)) _ 1"6*81””1(0571(11))‘ < ng‘s‘eaoB1(1+VJ")\U\”6—GTW(Zﬁ)d(x7y)V.

For the product involving zg" we have the same estimate with Bs,|z|,¢o and ¢ in the place of
By, |s|,ap and a. A similar estimate holds for the term containing f”* with a constant Bs in the
place of By. Taking the product of these estimates we obtain a bound for |[L7' . (xs)(z) —
L7 o 1.,(xg)(y)|, this implies the desired estimate for the y-Holder norm of Lf_sr124(X). This
completes the proof. O

Now the proof of Theorem 4 is reduced to the estimate of 35 _,, el —at™+cg™)(z5) Introduce

the real-valued function h = f —a7+cg. Then we have to estimate szm eh™(28) For this purpose

we repeat the argument on pages 232-234 in [24] and deduce with some constant dy > 0 depending
only on the matrix A and every € > 0 the bound

T ) < edolblo e lmtdo) (e Pr(R)
|8]=m

Combing this with the previous estimates, we get (3.1) which completes the proof of Theorem 4.
O

4. RUELLE OPERATORS — DEFINITIONS AND ASSUMPTIONS

For a contact Anosov flows ¢; with Lipschitz local stable holonomy maps it is proved in section
6 in [21] that the following local non-integrability condition holds:

(LNIC): There exist zy € A, €9 > 0 and 0y > 0 such that for any € € (0, €p], any 2 € ANW(zp) and
any tangent vector n € E*(z) to A at 2 with ||n|| = 1 there exist Z € ANWX(2), y1,92 € ANWE(Z)
with §1 # §a2, 0 = 0(2,91,92) > 0 and € = € (2,71, 92) € (0, €] such that

|A(exp(v), 7y, (2)) — AexpZ (v), 75, (2))] = 6 [[v]|
forall z € WHZ)NA and v € E%(z;€) with exp¥(v) € A and (ﬁ,m) > 0y, where n, is the parallel

translate of n along the geodesic in Wl (z0) from z to z.
For any x € A, T > 0 and ¢ € (0, €] set

Bi(x,0) ={y € W(z) : d(de(x), de(y)) <0, 0<t <T}.

We will say that ¢, has a regular distortion along unstable manifolds over the basic set A if
there exists a constant ¢y > 0 with the following properties:

(a) For any 0 < ¢ < e < ¢p there exists a constant R = R(J, €) > 0 such that
diam(A N BY(z,€)) < Rdiam(A N By (z,9))
for any z € A and any T > 0.
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(b) For any € € (0, €] and any p € (0,1) there exists § € (0, €] such that for any z € A and any
T > 0 we have diam(A N BY(z,0)) < p diam(A N BY(z,€)).

A large class of flows on basic sets having regular distortion along unstable manifolds is described
in [22].
In this paper we work under the following Standing Assumptions:

(A) ¢ has Lipschitz local holonomy maps over A,
(B) the local non-integrability condition (LNIC) holds for ¢; on A,
(C) ¢ has a regular distortion along unstable manifolds over the basic set A.

A rather large class of examples satisfying the above conditions is provided by imposing the
following pinching condition:

(P): There exist constants C' > 0 and 8 > « > 0 such that for every x € M we have
1
ae%tHUH < ldge(z) - ul < Ce* lul| , we E“x) ,t>0

for some constants ag, B, > 0 with a < a, < B, < B and 2a, — By > « for all x € M.

We should note that (P) holds for geodesic flows on manifolds of strictly negative sectional
curvature satisfying the so called %-pinching condition. (P) always holds when dim(M) = 3.

Simplifying Assumptions: ¢; is a C? contact Anosov flow satisfying the condition (P).

As shown in [22] the pinching condition (P) implies that ¢; has Lipschitz local holonomy maps
and regular distortion along unstable manifolds. Combining this with Proposition 6.1 in [21], shows
that the Simplifying Assumptions imply the Standing Assumptions.

As in section 2 consider a fixed Markov family R = {Ri}f;l for the flow ¢; on A consisting
of rectangles R; = [U;, S;] and let U = UF_,U;. The Standing Assumptions imply the existence of
constants ¢ € (0,1] and 71 > 79 > 1 such that (2.1) hold.

In what follows we will assume that f and g are fixed real-valued functions in C"‘(ﬁ) for
some fixed o > 0. Let P = Py be the unique real number so that Pr(f — P 7) = 0, where Pr(h) is
the topological pressure of h with respect to the shift map ¢ defined in Section 2. Given ¢t € R with
t > 1, following [4], denote by f; the average of f over balls in U of radius 1/t. To be more precise,
first one has to fix an arbitrary extension f € C“(V) (with the same Holder constant), where V' is
an open neighborhood of U in M, and then take the averages in question. Then f; € C*°(V), so
its restriction to U is Lipschitz (with respect to the Riemann metric) and:

(8) 1 = filloo < Ifla/t® ;

(b) Lip(/;) < Const ||l ;

(c) For any 3 € (0,a) we have |f — fi|g < 2|fl|a/t*".

In the special case f € CHP(U) we set f; = f for all ¢ > 1. Similarly for g. Let Ay > 0
be the largest eigenvalue of L¢_p,, and let 7y be the (unique) probability measure on U with
L} _p, 7 = Dp. Fix a corresponding (positive) eigenfunction hgy € C’O‘(U) such that [, hodip = 1.
Then dvy = hg dvy defines a o-invariant probability measure vg on U. Setting

fo=f—P71+Inho(u) —Inho(o(u)),

we have L’}@)yo =1y, i.e. / Lo H dyy = / H dvy for any H € C(U), and Ls1=1.
U U



RUELLE OPERATORS WITH TWO PARAMETERS 13

Given real numbers a and t (with |a| + ﬁ small), denote by Ay the largest eigenvalue of

Ly, _(pta)r o0 CLip(U ) and by hg; the corresponding (positive) eigenfunction such that fU hat AdVgr =
1, where v, is the unique probability measure on U with L}t_ (P+a)rVat = Vat-

As is well-known the shift map o : U — U is naturally isomorphic to an one-sided subshift
of finite type. Given 6 € (0,1), a natural metric associated by this isomorphism is defined (for
x #y) by do(x,y) = 0™, where m is the largest integer such that z,y belong to the same cylinder
of length m. There exist § = 0(«) € (0,1) and 8 € (0, ) such that (d(z,y))* < Const dy(z,y)
and dg(z,y) < Const (d(z,y))? for all 2,y € U. One can then apply the Ruelle-Perron-Frobenius
theorem to the sub-shift of fine type and deduce that hy; € C” (ﬁ ). However this is not enough for
our purposes — in Lemma 4 below we get a bit more.

Consider an arbitrary 5 € (0, ). It follows from properties (a) and (c) above that there exists
a constant Cy > 0, depending on f and « but independent of 3, such that

I[fe = (P +a)7] = (f = P7)lls < Colal + 1/¢°7] (4.1)

for all |a| < 1 and ¢t > 1. Since Pr(f — P7) = 0, it follows from the analyticity of pressure and
the eigenfunction projection corresponding to the mazimal eigenvalue Agr = ePr(fi=(P+a)7) of the
Ruelle operator Ly, _(piq)r on CB(U) (cf. e.g. Ch. 3 in [11]) that there exists a constant ag > 0
such that, taking Cy > 0 sufficiently large, we have

1 1
PeCs - (Pl <Co (o + 25) o Mot molla <G (lal+ ) @42

for |a| < ag and 1/t < ag. We may assume Cy > 0 and ag > 0 are taken so that 1/Cy < Ay < Cy,
| ftlloo < Cop and 1/Cy < hgr(u) < Cp for all uw € U and all |al, 1/t < ay.

Given real numbers a and ¢ with |a|,1/t < ap consider the functions
fao=ft— (P4+a)T+Inhgy —In(hg 00) —InAge
and the operators
Lot = Lf,—ivr : CU) — C(U) , My =Ly, :CU) — CU).

One checks that My 1 = 1.
Taking the constant Cy > 0 sufficiently large, we may assume that

1
ot = olls < Co [l + ot |+ lel 1/t < ao (43)
We will now prove a simple uniform estimate for Lip(hg:). With respect to the usual metrics
on symbol spaces this a consequence of general facts (see e.g. Sect. 1.7 in [1] or Ch. 3 in [11]),
however here we need it with respect to the Riemann metric.
The proof of the following lemma is given in the Appendix.

Lemma 4. Taking the constant ag > 0 sufficiently small, there_exists a constant T" > 0 such that
for all a,t € R with |a| < ag and t > 1/ag we have hgy € CYP(U) and Lip(hes) < T't.
It follows from the above that, assuming ag > 0 is chosen sufficiently small, there exists a
constant 7' > 0 (depending on |f|, and ag) such that
”fatHoo S T ) ||gtHoo S T 9 Lip(hat) S Tt 9 Lip(fat) S Tt (44)
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for |al,1/t < ap. We will also assume that 7' > max{||7||o, Lip(7'|(7) }. From now on we will
assume that ag, Cp, T, 1 < 79 < 71 are fixed constants with (2.1) and (4.1) — (4.4).

5. RUELLE OPERATORS DEPENDING ON TWO PARAMETERS — THE CASE WHEN b IS THE LEADING
PARAMETER

Throughout this section we work under the Standing Assumptions made in section 4 and with
fixed real-valued functions f,g € C*(U) as in section 4. Throughout 0 < 8 < « are fixed numbers.
We will study Ruelle operators of the form Ly (p; i qtib)rzg, Where z = ¢ +iw, a,b,c,w € R,
and |a|, || < ap for some constant ap > 0. Such operators will be approximates by operators of the

form

~

Laptz = Lfuy_itrizg - CH(U) — C(U).
In fact, since fu; — ibT + zg; is Lipschitz, the operators L.y, preserves each of the spaces C’a/(ﬁ )
for 0 < o/ <1 including the space CLip(ﬁ ) of Lipschitz functions h : U —s C. For such h we will
denote by Lip(h) the Lipschitz constant of k. Let ||k]|o denote the standard sup norm of h on U.
For [b] > 1, as in [4], consider the norm |.||r;p, on CHP(U) defined by IRl Lips = lIRllo + Limh),

and also the norm ||h||5p = ||h]|co + % on CP(U).

Our aim in this section is to prove the following

Theorem 5. Let ¢, : M — M satisfy the Standing Assumptions over the basic set A, and let
0< B <a LtR = {Ri}le be a Markov family for ¢, over A as in section 2. Then for any

real-valued functions f,g € C*(U) we have:

(a) For any constants € > 0, B > 0 and v € (0,1) there exist constants 0 < p < 1, ag > 0,
bp>1, Ag >0 and C = C(B,€) > 0 such that if a,c € R satisfy |a|, |c| < ao, then

1L o esionsPliLips < C 0™ I [llLips
for all h € cliv(g , all integers m > 1 and all byw,t € R with |b] > by, 1 < t < -~ log|b|* and
Ao
|lw| < B1b|.

(b) For any constants ¢ > 0, B> 0, v € (0,1) and § € (0,«) there exist constants 0 < p < 1,
ap >0, bp > 1 and C = C(B,€) > 0 such that if a,c € R satisfy |a|, |c| < ag, then

HL?z(Pf+a+ib)7+(c+iw)gh”ﬁ,b < Cpm ’b|6 Hh”ﬁ,b

for all h € CP(U), all integers m > 1 and all b,w € R with |b| > by and |w| < B|b|".
(c) If f,g € CLip(ﬁ), then for any constants e > 0, B > 0 and B € (0,«) there exist constants
0<p<l,ap>0,by>1and C =C(B,e) >0 such that if a,c € R satisfy |a|, |c| < ag, then
HL?7(Pf+a+ib)7—+(c+iw)ghuLip,b < Cpm ’b|€ ||h”Lip,b

for all he CP(U), all integers m > 1 and all b,w € R with |b| > by and |w| < B |b|.

We will first prove part (a) of the above theorem and then derive part (b) by a simple approxi-
mation procedure. To prove part (a) we will use the main steps in section 5 in [21] with necessary
modifications. The proof of part (c) is just a much simpler version of the proof of (b).

Define a new metric D on U by

D(z,y) = min{diam(C) : z,y € C, C a cylinder contained in U;}
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if x,y € U; for some i = 1,...,k, and D(z,y) = 1 otherwise. Rescaling the metric on M if
necessary, we will assume that diam(U;) < 1 for all 7. As shown in [20], D is a metric on U with
d(z,y) < D(z,y) for z,y € (7, for some 4, and for any cylinder C in U the characteristic function
x¢ of C on U is Lipschitz with respect to D and Lipp(xp) < 1/diam(C).

We will denote by C’llsip(ﬁ) the space of all Lipschitz functions h : U — C with respect to the
metric D on U and by Lipp(h) the Lipschitz constant of h with respect to D.

Given A > 0, denote by K4(U) the set of all functions h € C’Llp(U) such that A > 0 and
%M < AD(u, ) for all u,o’ € U that belong to the same U; for some i = 1, ..., k. Notice

that h € K4(U) implies |Inh(u) — Inh(v)| < A D(u,v) and therefore e=4 P(w:v) < (u) < eA D)

= h(v)
for all u,v € Uy, i = 1,... k.
We begin with a lemma of Lasota-Yorke type, which necessarily has a more complicated form
due to the more complex situation considered. It involves the operators Lyp,, and also operators
of the form

Mate = Liyyicq - C*(U) — C*(U).

Fix arbitrary constants v € (0,1) and 4 with 1 <4 < 7.
Lemma 5. Assuming ag > 0 is chosen sufficiently small, there exists a constant Ag > 0 such that
for all a,c,t € R with |al|, |c| < ap and t > 1 the following hold:

(a) If H € KE(A) for some E >0, then

’(Matc )( ) (Matc )( )| SAO [E +6A0t :| D(u,u/)
(MG H) ()

forallm >1 and allu,v' € U, i =1,... k.

(b) If the functions h and H on U and E > 0 are such that H >0 on U and |h(v) — h(v')| <
EH() D(v,v") for any v,v" € Uy, i = 1,...,k, then for any integer m > 1 and any b,w,t € R
with |b|,t, |w| > 1, for z = c+ iw we have

73, h(us) — £ ()] < Ao (f;< m ) + <|b\+eAOtt+t\wr><Matc\h|><u'>) D)

whenever u,u’ € (72 for somei=1,... k. In particular, if
log |b]¥
tgoa’ . t<BpY , jw| < B (5.1)
0

for some constant B > 0, then

m FE
|‘Cabtz ( ) abtzh(u/)| < Al <"A}/m

for some constant A1 > 0.

( %HW0+%K¢MMM))DWM)

A proof of this lemma is given in the Appendix.

From now on we will assume that ag, 9 and Ay are fixed with the properties in
Lemma 5 above and a,b,c,w,t € R are such that |a| < ag, ¢ < 19, |b],t,|w| > 1 and (5.1)
hold. As before, set z = ¢ + id.

We will use the entire set-up and notation from section 4 in [21]. In what follows we recall the
main part of it.
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Following section 4 in [21], fix an arbitrary point zp € A and constants ¢; > 0 and 6, €
(0,1) with the properties described in (LNIC). Assume that zg € Inty(Ur), Uy € AN W (20)
and S1 C ANW¢ (20). Fix an arbitrary constant 61 such that

0<bp<b <.

Next, fix an arbitrary orthonormal basis e1,. .., e, in E%(z) and a C' parametrization r(s) =
exp¥ (s), s € V, of a small neighborhood Wy of 2y in W (20) such that Vj is a convex compact
neighborhood of 0 in R™ & span(ey,...,e,) = E%(zp). Then r(0) = zp and 6%2,1"(8)‘8:0 = ¢; for
alli = 1,...,n. Set U) = Wy N A. Shrinking W), (and therefore Vj as well) if necessary, we may
assume that U) C Inty (Uy) and ’<g—;(s), %(3)> — 0ij
s € Vg, so that

SEm) < (dr(e)-€, dr(s) m) <2em) . Eme E'(), s €V,

and 3 ||s — §'[| < d(r(s),r(s) < 2]||s — &[], 5,5 € V.
Definitions ([21]): (a) For a cylinder ¢ C Uj and a unit vector £ € E%(zp) we will say that
a separation by a &-plane occurs in C if there exist u,v € C with d(u,v) > %diam(C) such that
—1 —1
(erigorry  €) 261
Let S¢ be the family of all cylinders C contained in U} such that a separation by an ¢-plane
occurs in C.

is uniformly small for all ¢, = 1,...,n and

(b) Given an open subset V of U} which is a finite union of open cylinders and 6 > 0, let
Ci,...,Cp (p = p(6) > 1) be the family of maximal closed cylinders in V with diam(C;) < §. For

any unit vector £ € E¥(zg) set Méé)(V) =U{C;:C; €S, 1<j<p}.

In what follows we will construct, amongst other things, a sequence of unit vectors &1, &2,...,§j, €
E%(z9). For each ¢ =1,...,j0 set By = {n € S" 1 : (n,&) > 6y} . For t € R and s € E%(2) set
I 19(s) = w, t #0 (increment of g in the direction of 7).

Lemma 6. ([21]) There exist integers 1 < n; < Ny and ¢y > 1, a sequence of unit vectors

i, M2 .--,Me € E"(20) and a non-empty open subset Uy of Ul which is a finite union of open
cylinders of length ny such that setting U = o™ (Uy) we have:

(a) For any integer N > Ny there exist Lipschitz maps vg),vy) U —U (t=1,...,4) such
that O’N(UZ(Z) (x)) = x for all x € U and Uy) (U) is a finite union of open cylinders of length N
(i=1,2:0=12,..10).

(b) There exists a constant 6 > 0 such that for all ¢ =1,..., 4y, s € r~1(Up), 0 < |h] < § and
n € By with s +hn € r~Y({UyN A) we have

I (T @ FON) = VO FON) | () 2

(c) We have vy)(U) ﬂvyl)(U) = () whenever (i,0) # (i',0').
(d) For any open cylinder V in Uy there exists a constant &' = §' (V) > 0 such that

VCMPWV)UMPDV)U... UMDV

N | S

for all 6 € (0,0'].
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Fix Uy and U with the properties described in Lemma 1; then U = U.
£o)
Set § = 5, mop = ma , and fix an arbitrary point c U N,
1211(1<n€]n0 11<n£<>1§mg nd fix an arbitrary point Zg 0

Fix integers 1 < n; < No_and ¢y > 1, unit vectors 1, n2, ..., My, € E*(20) and a non-empty open
subset Uy of Wy with the properties descrlbed in Lemma 6. By the choice of Uy, ™ : Uy — U is
one-to-one and has an inverse map 1 : Y — Uy, which is Lipschitz.

Set £ = max {4A0 , 2?_017“ }, where Ay > 1 is the constant from Lemma 5.4, and fix an

integer N > Ny such that

2 A 12y™ E

VNZmaX{6AO, 0072 0, > 7 }
H codp

Then fix maps vl@ U —U (0 =1,...,4,i=1,2) with the properties (a), (b), (c) and (d) in

Lemma 6. In particular, (c) gives

OO No W) =0 . 6,0 # @, 0).

Since Uy is a finite union of open cylinders, it follows from Lemma 6(d) that there exist a
constant ¢’ = ¢'(Up) > 0 such that

MPUo)U...UMP(U) STy, 6 €(0,0],

Fix ¢’ with this property. Set

) 1 1 1 coro  ca(y—1)
— 1min —_— C e ~
‘1 32C, " AE T §por2 ) A 16T 7

and let b € R be such that |b] > 1 and

€
0]
Let Gy, (1 <m < p) be the family of mazimal closed cylinders contained in Uy with diam(C,,,) <

%1' such that Uy C U?chm and Uy = U _Cp,. As in [21],

<.

€1

L < diam(Cp,) < o

\b!
Fix an integer ¢y > 1 such that

I<m<p. (5.2)

Op < 601 — 32 pqo_l.
Next, let Dy,..., D, be the list of all closed cylinders contained in Uy that are subcylinders of
co-length pg qo of some Cy, (1 < m < p). Then Upy=CU...U Cp =D1U...UD,. Moreover,

ppoqo+1~%§diam(1?j)§pqo-% , 1<j<q.
Given j =1,...,q, £ = 1,... 0y and i = 1,2, set D; = D; N U, Z; = o™(D;), Z; = Z; n U,

x© = vz(e)(Z ), and X(@ X( )ﬂU It then follows that D; = ¢)(Z;), and U = Uj_, Z;. Moreover,
N=m (vlm x)) = zp( ) for all x € U, and all Xi(d.) are cylinders such that X(E) N X( = = () whenever

1
Co ppo qo+ ' 2

diam(x") >
AT
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foralli=1,2,7=1,...,qand £ =1,...,{y. The characteristic function w(e) = XX(e) U— [0, 1]

ofX() belongs toC (ﬁ) and L1pD(X()) < 1/diam( Z(l;))
LetJbeasubsetofthesetuz{( O) 0 1<i<2,1<5<q,1<0</4y}. Set
1
4’

Co ppoqurQ €1 1 sin2 5,0 €1
44N 7 4e2TN 256 ’

and define the function w = wy : U —» [0,1] by w = 1 — pg Z w . Clearly w € C’ ((7) and
(i,5,0)eJ

po = po(N) = min{

1—p<w(u) <1forany u e U. Moreover,

. o 2ua] b
LlpD(w)gf_W.g.

Next, define the contraction operator N = Nj(a,b,t,c) : CLlp(U) — C’gp(ﬁ) by
(Nh) atc(we] : h‘)

Using Lemma 5 above, the proof of the following lemma is the same as that of Lemma 5.6 in
[21].
Lemma 7. Under the above conditions for N and p the following hold :

(a) Nh € Kgp(U U) for any h € KE|b|(U)

(b) If h € Cglp(U) and H € KE|b|(U) are such that |h| < H in U and |h(v) — h(v")| <
Eb|H (V") D(v,0") for any v,v" € Uj, j =1,...,k, then for anyi=1,...,k and any u,u’ € U; we

have

[(L35-P) () = (Lph) ()] < EB|(NH)(u') D(u, ).
Definition. A subset J of = will be called dense if for any m = 1,...,p there exists (i,j,¢) € J
such that D; C Cp,.

Denote by J = J(a,b) the set of all dense subsets J of =.
Although the operator N here is different, the proof of the following lemma is very similar to
that of Lemma 5.8 in [21].

Lemma 8. Given the number N, there exist po = p2(N) € (0,1) and ag = ag(N) > 0 such that
/:\(NJH)QCZV < p2 /AHQdV whenever |al,|c| < ag, t > 1/ag, J is dense and H € KE|b|((7).
U U

In what follows we assume that h, H € CLlp(U ) are such that

HeKpy@) , |hw|<H@) , uel, (5.3)
and R
|h(u) — h(v)| < E|b|H(u") D(u,u’) whenever u,u' €U; , i=1,... k. (5.4)

Let again z = ¢ + iw. Define the functions Xéi) U —C (L=1,...,50,1=1,2) by

et =N 426001 ) gy (0O (1)) 4 U= 420 (03 @) gy (0 (1))

(1)
Xe \u) = )
o (1 — p)ear @i ) teal 017 ) pr (o) (1)) 4 S va” @) reod 030 ) Fr (0 ()
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B =it 4208 017 @)y (0 (1)) 4 U =0TV +208) (57 () y (D) (1))

(2)
Xp \U) = )
) efﬁ(vie)(U))+cgiv(v§a(U))H(v§‘v’> (u) + (1 — Iu)efﬁ(vz (w))+egl (v (O(U))H(U(f) (u))

and set yp(u) = b7V (WS () — 7V ({9 ()], u € U.

Definitions. We will say that the cylinders D; and Dj are adjacent if they are subcylinders of
the same C,, for some m. If D; and Dj are contained in C,, for some m and for some £ =1,..., 4
there exist u € D; and v € D; such that d(u,v) > 3 diam(Cy,) and <M , m> > 01, we

will say that D; and Dj: are n-separable in Cy,.
As a consequence of Lemma 6(b) one gets the following.

Lemma 9. (Lemma 5.9 in [21]) Let j, j' € {1,2,...,q} be such that D; and Dj are contained in Cp,
and are ng-separable in Cy, for some m =1,...,p and £ = 1,...,4y . Then |y(u) — ve(u')| > c261

0
for alluGZ and ' € Z 1, where 02:1—g.

The following lemma is the analogue of Lemma 5.10 in [21] and represents the main step in
proving Theorem 1.

Lemma 10. Assume |b| > by for some sufficiently large by > 0, |al|,|c| < ap, and let (5.1) hold.
Then for any j = 1,...,q there exist i € {1,2}, j' € {1,...,¢q} and £ € {1,..., 4y} such that D;

and Dy are adjacent and Xgi) (u) <1 forallu € 2j,.

To prove this we need the following lemma which coincides with Lemma 14 in [4] and its proof
is almost the same.

Lemma 11. If h and H satisfy (5.3)-(5.4), then for any j=1,...,q,i=1,2 and L = 1,..., 4y we

have: 0
o H ()
(a) —
= HO ) -
(b) Bither for all u € Z; we have P W) < 3H (), or A (u))] > LH Y (u)) for
all w € Z;.

<2 for allv/' v € Z;;

Sketch of proof of Lemma 10. We use a modification of the proof of Lemma 5.10 in [21].
Given j =1,...,q, let m =1,...,p be such that D; C C,,. Asin [21] we find 7,5 =1,...,¢
such that D] ,D n C Cpy and Dy and Djn are n- separable in C

Fix ¢, j' and j” with the above properties, and set Z = Z UZ UZ . If there exist ¢ € {j,7, 5"}
and i = 1,2 such that the first alternative in Lemma 11(b) holds for Z;, ¢ and i, then p < 1/4
implies Xéi) (u) <1 for any u € Z,.

Assume that for every t € {j,7,5"} and every i = 1,2 the second alternative in Lemma 11(b)
holds for Zy, £ and 4, i.e. |h(v(” ()] > L Hw (u)), v e Z.

Since (Z) = 73 UYS Uﬁju C Cpn, given u, v’ € Z we have UN*m(vi(g)(u)), oN—m (vi(e) (u')) € Cp.

Moreover, C' = v(@( 1(Cy)) is a cylinder with diam(C’) < anl‘bl. Thus, the estimate (9.3) in
the Appendix below implies
C’ltel

N, (6) O
o 0 ) = o 0 )] < R
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Using the above assumption, (5.1), (5.2) and (4.4), and assuming e.g.
(£) ()
e P (o ()] 2 e D (),
we get1

et 7D e (w)) — o 7 D (u))
) L

min{|e=o8 (57 D p(of) (w))], exo8 (57 Do
|e*9t N ), h(v @(u)) 9t (via(u’))h(vz(f)
(
v (

u%ﬂkm

4
cgt )

® © 2oa (o]
et el . 9t @7 @) R (v (w)) = h(w P ()]
- eea 0O (w)) A P Aol ()|
2oV 0P (W) _ pzgd 0O W) peloN @ @) =gl 0P W) (bl H (o0
< 2 . ‘+6 - |blH (v; " (u ))D(Uge)(u),vi(ﬁ)(u/))
ol () () |h(v;” ()]
co™ (09 (u coN (9 (!
o et e OO g 00 w) s W) 4 4|20 diam(C)

eoof’ (0 ()

< (€t + fw|Cit) D (), v (i) + AB|ple2Na0T L

007N

(B+do)y™er 4En"e s
coy co(e~2m0Ty)N =12

assuming ag > 0 is chosen sufficiently small and N sufficiently large. So, the angle between the
complex numbers

<

29 (0 (w) h(vl@) (u)) and e*9 (v () h(vz-([) (u'))
(regarded as vectors in R?) is < /6. In particular, for each i = 1,2 we can choose a real continuous
function 6;(u), u € Z, with values in [0, 7/6] and a constant A; such that
o2 (0 () h(v{® (u)) = eli+0(w) sl ( o) (v (w))]

for all u € Z. Fix an arbitrary ug € Z and set \ = ve(up). Replacing e.g A2 by Ay + 2m7 for some
integer m, we may assume that |A2 — A1 + A\| < 7. Using the above, § < 2sinf for 6 € [0,7/6], and
some elementary geometry yields |6;(u) — 0;(u')| < 2sin |6;(u) — 0;(u)| < =2

The difference between the arguments of the complex numbers

bV (@i (W) g2gl (vie)(U)h(Ugf) (u)) and oAbV (W) () gl (vf) @ h (i (w))
is given by the function
PO () = [br™ (05 (u))+02(u)+ 2] = b7 (0] () +01 (W) + A1) = (Ao = A1) +3e(1) + (0 () — 1 (w)) -

Given v € Z s and u” € Z i, since D i and D . are contained in C,, and are ng-separable in Cp,, it
follows from Lemma 9 and the above that

DO () = TO@N] = re(u’) = ye(u”)] = 101 (u) = Or(u")] = [B2(u) — o (u)] >

C2€1
5 -

1Using some estimates as in the proof of Lemma 5(b) in the Appendix below and [|cgi¥[jo < aoNT by (4.4).
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Thus, T (/) = TOW")] > Le; for all v € 27" and u” € Ej//. Hence either [T (u')| > 2¢; for
all u' € Ej/ or [T (u")| > 2¢; for all u” € Eju.

Assume for example that [T (u)| > Fei forallu € Ej/. Since Z C 0™ (Cy), as in [21] we have
for any u € Z we get |Ty(u)| < 3% Thus, Ze < 1O (u)| < 3z fgr all u € Z\j/. Now as in [4] (see
also [21]) one shows that Xél)(u) <1 and Xf)(u) <1forallue Zj. O

Parts (a) and (b) of the following lemma can be proved in the same way as the corresponding
parts of Lemma 5.3 in [21], while part (c) follows from Lemma 5(b).

Lemma 12. There exist a positive integer N and constants p = p(N) € (0,1), ag = ag(N) > 0,
bp = bo(N) > 0 and E > 1 such that for every a,b,c,t,w € R with |al|, |c| < ag, |b] > by such that
(5.1) hold, there exists a finite family {N;}jey of operators

Ny = Nj(a,b,t,c) : CEP(U) — CEP(D),

where J = J(a, b, t,c), with the following properties:
(a) The operators Ny preserve the cone Kgpp(U) ;

(b) For all H € KEW((?) and J € J we have /A(./\/'JH)2 dvg < p /AH2 dvy.
L U/\ U -
(c) If h,H € Cglp(U) are such that H € KE|b‘(U),J\h(u)| < H(u) for allu € U and
|h(u) — h(u')| < E|b|H(u') D(u,u') whenever u,u’ € U; for some i = 1,...,k, then there exists
J € J such that |LY h(u)| < (NsH)(u) for allu € U and for z = ¢+ iw we have
|(Lab=l) () = (Lop.h) ()| < BIb|(NFH) (u') D(u, )
whenever u,u’ € [A]Z for somei=1,... k.

Proof of Theorem 5(a). Using an argument from [4] one derives from Lemma 12 that there exist
a positive integer N and constants p € (0,1) and ag > 0, bg > 1, Ay > 0 such that for any

a,b,c,t,w € R with |a|,|¢| < ao, |b| > by for which (5.1) hold, and for any h € CHP(T) with
|AllLips < 1 we have

/ [CIEh? dvg < p™ , m >0, (5.5)
U
Then the estimate claimed in Theorem 5(a) follows as in [4] (see also the proof of Corollary

3.3(a) in [20]). O

The proof of Theorem 5(b) can be derived using an approximation procedure as in [4] — see the
Appendix below for some details.
6. SPECTRAL ESTIMATES WHEN w IS THE LEADING PARAMETER

Here we try to repeat the arguments from the previous section however changing the roles of
the parameters b and w. We continue to use the assumptions made at the beginning of section 5,
however now we suppose that f € CMP(U). We will consider the case

bl < Blu (6.1)
for an arbitrarily large (but fixed) constant B > 0.
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Assume that G : A — R is a Lipschitz functions which is constant on stable leaves of B; =
{¢t(x) : x € R;,0 <t < 7(z)} for each rectangle R; of the Markov family and A = mingep G(x) > 0.
Set

L =Lip(G) , D =diam(A),

where without loss of generality we may assume that D > 1. We will also assume that

co 0

LSI&,A ’Where ﬂ:m

The function @
sa) = [ Goena . ver
0

is constant on stable leaves of R, so it can be regarded as a function on U. Clearly g € C’Lip(ﬁ ).

Remark. Notice that if we replace G by G + d for some constant d > 0, then

7(z)
J@) = [ (Gl +d) it = g(o) + dr(a),
SO
Lt,—ibrtiwg = Lpy—ivrtiw(g'—dr) = Lfa—i(b+dw)r—iwg’ -

Choose and fix d > 0 so that LGiI(?ESi)

and the operator L, _iprtiwg = Lfo—ib'r+iwg» Where ' = b+ dw. Thus, without loss of generality
we may assume that I;rTT(g) < fi, which is equivalent to (6.2). As in [12], this will imply a non-
integrability property for g (see Lemma 10 below). In other words, dealing with an initial function
G one has to first change it to arrange (6.2), and then with the new parameters b and w that appear
in front of ir and ig consider the cases |w| < Blb| (as in Theorem 5(c)) and |b| < Blw|, which is
considered in this section.

< fi. Then for G’ = G+d and ¢’ = g+ dr we have %I?T(g') <p,

As in section 5, we will use the set-up and some arguments from [21]. Let R = {R;}*_, be a
Markov family for ¢; over A as in section 2.
Here we prove the following analogue of Theorem 5(c).

Theorem 6. Let ¢; : M — M be a C? flow satisfying the Standing Assumptions over the basic
set A. Assume in addition that (6.2) holds. Then for any real-valued functions f,qg € CLip(ﬁ), any
constants € > 0 and B > 0 there exist constants 0 < p < 1, ag > 0, wg > 1 and C = C(B,¢e) > 0
such that if a,c € R satisfy |a|, |c| < ag, then

L5 (Pytativyr+(etiw)gLipe < C ™ [0 [Pl Lip,s (6.3)
for all integers m > 1 and all b,w € R with |w| > wo and |b] < B |w]|.

Recall the definitions of A\g > 0, g, hg, fo from section 4; now we have hg, foy € CLip((A] ). Fix a
small ag > 0. Given a real number a with |a| < ag, denote by A\, the largest eigenvalue of Ly (piayr

on CHP(U) and by h, the corresponding (positive) eigenfunction such that fU he dvg = 1, where
v, is the unique probability measure on U with L;i( Pta)yrYa = Va: Given real numbers a, b, c, w

with |al, |c| < ap consider the function

fa=f—(P+a)T+Inhy —In(hgoo) —Ini,
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and the operators

Lapz = Ly, CU)—CU) , Ma=L C(U) — C(U),

—ibT4zg9 : fa—l-cg :
where z = ¢ + iw. Notice that Lf 1=1.

Taking the constant Cy > 0 sﬁfﬁciently large, we may assume that

Lip(fa = fo) < Colal ., |fa = folo < Colal , la| < ao. (6.4)

Thus, ssuming ag > 0 is chosen sufficiently small, there exists a constant 7' > 0 (depending on f
and ag) such that

[ fallo €T, Lip(he) <T , Lip(fa) <T (6.5)

for |a| < ag. As before, we will assume that 7' > max{ ||7]|o, Lip(TW) }, and also that Lip(g) < T
and ||gllo < T.

Essentially in what follows we will repeat (a simplified version of) the proof of Theorem 5, so
we will use the set-up in section 5 — see the text after Lemma 6, up to and including the definition
of €1.

Let a,b,c,w € R be so that |al|, |c| < ag, |w| > wp, where wy is a sufficiently large constant
defined as by in section 5, and |b| < B|w|. Set z = ¢ + iw.

Let Cp, (1 < m < p) be the family of mazimal closed cylinders contained in Uy with diam(C,,) <
T such that Uy C U?chm and Uy = P _,Cp,. As before we have

w]
pe—lgdiam(Cm)ge—l , 1<m<np.
jwl |wl
Fix an integer go > 1 as in Sect. 5, and let D, ..., D, be the list of all closed cylinders contained

in Uy that are subcylinders of co-length po qo of some Cp, (1 <m < p). Then Uy =C1 U...UCp =
Dy U...UD, and

oo+l |Ll| < diam(D;) < p® - o

w w

Next, define the cylinders Z; = o™ (13]) and XZ-(? = vlm(ij) as in section 5, and consider the
characteristic functions wl(? = Xgo U—s [0,1]. Let J be a subset of the set E = E(a,w) =

irj
{(,5,0) : 1<i<2,1<j53<q,1<l</{} Define g > 0 as in section 4 and w = wy :
U—[0,1] by w=1— pg Z wl(? Finally define N' = Nj(a,b,c) : Cglp(ﬁ) — C]If)lp(ﬁ) by
(i.4.6)eJ

, 1<75<q.

(Nh) = My (ws - h).

Then we have the following analogue of Lemma 5.

Lemma 13. Assuming ag > 0 is chosen sufficiently small, there exists a constant Ag > 0 such that
for all a,c € R with |al,|c| < ag the following hold:

(a) If H € Kg(U) for some E > 0, then

(M H ) (u) — (MILH) ()| E /
(Mo H) (o) <o [’%" i 1] Dlw)

forallm>1 and allu,v' € U;, i =1,... k.
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(b) If the functions h and H on U and E > 0 are such that H >0 on U and |h(v) — h(v")] <
EH(') D(v,v") for any v,v' € U;, i = 1,...,k, then for any integer m > 1 and any b,w € R with
|b], |w| > 1, for z = ¢+ iw we have

|(L34h) (1) = (Lahyh) ()| < Elw|(NH)(u') D(u, ).
whenever u,u’ € ﬁl for somei=1,... k.

The proof is a simplified version of that of Lemma 5 and we omit it.

Next, changing appropriately the definition of a dense subset J of =, Lemma 8 holds again
replacing Ky (U) by KE‘w"(U).

~

Assume that h, H € C’llslp(U) are such that

~ ~

H e KgU) , [h(u)] <Hu) , uwel, (6.6)
and R
|h(u) — h(v')| < E|lw|H(u") D(u,u’) whenever u,u' € U; , i=1,... k. (6.7)

Define the functions Xéi) U —C by

FN _iprN 429N v(e) u L FN _iprN 4 2gN v(e) u 4
o, el =itV +20") (17 (W) (0 () 4 U TN +20™)(w57( )>h<v§>(u))’
Xg \U) = ; z )
(1- u)efév(viz)(u))+cgN(v§Z>(U))H(U§€) (u)) + efév(vég)(U))+09N(v§e>(U))H(U£€) (u))
FN _iprN 4 gV v(z) u L FN _iprN 4 2gN v(z) u 4
o ‘e(fa br¥29™) 017 (@) jy ({0 (1)) 4 el b 2g™) (057 ( )>h<v§>(u)))

- I O g™ G0 1 (00 () 4 (1 — el 05 (e 0570 g (o) ()

and set yo(u) = w [TN(Uy) (u)) — TN(v](f) (w)], u e U. The crucial step in this section is to prove the
following analogue of Lemma 9:

Lemma 14. Let j,j' € {1,2,...,q} be such that D; and Dj are contained in C,, and are -
separable in Cy, for some m = 1,....p and £ = 1,..., 4y . Then |y(u) — ve(u')| > cser for all
Ad p

R

To prove the above we need the following.

u € /Z\j and u' € /Z\j/, where c3 =

Lemma 15. (Lemma 6 in [12]) Assume that (6.2) holds. Under the assumptions and notation in
Lemma 1, for all £ = 1,..., 4y, s € 7~ (Up), 0 < |h| <6 and n € By so that s+ hn € v~ (Uy N A)

we have .
0/~ 0, Ad

[ (a¥ GO = gV @@ ))] (5 = 5

Proof of Lemma 14. This just a repetition of the proof of Lemma 5.9 in [21], where instead of using
Lemma 6(b) we use the above Lemma 14. We omit the details. O

Next, we need to prove the analogue of Lemma 10.

Lemma 16. Assume |w| > wq for some sufficiently large wo > 0 and let |b| < Blw|. Then for
any j =1,...,q there exist i € {1,2}, j' € {1,...,q} and £ € {1,..., 4y} such that D; and Dj are

adjacent and Xéi) (u) <1 forallu € 2]-/.
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Sketch of proof of Lemma 16. We will use Lemma 11 which holds again with (5.3)-(5.4) replaced
by (6.6)-(6.7).

Given j =1,...,¢,let m =1,...,p be such that D; C Cp,. Asin [21] we find j/,j" =1,...,¢
such that D] 1, Dju C Cpy and Dy and Djn are ny- separable in C

Fix £, j' and j” with the above properties, and set Z = Z UZ UZ . If there exist t € {4, 7', 7"}
and i = 1,2 such that the first alternative in Lemma 11(b) holds for Z, ¢ and i, then p < 1/4

implies X( )( ) <1 for any u € Z;.
Assume that for every ¢ G { J,7',7"} and every i = 1,2 the second alternative in Lemma 11(b)

holds for Z;, £ and 4, i.e. [h(v\" (u D =G H(v O, ue 2.
Again we have w(Z) D U D U D i C Cm, and C' = vl(g)(anl (Crm)) is a cylinder with

diam(C’) < m. Thus, assuming e.g. |h ( )| > \h(vz(g) (u'))|, we get

e @0 00 (1)) — 0L @ (O @)

min{|A(v}" ()], [h(v{” ()]}
E\w!H( )

< Jer ) — gm0 D), o w')
e ( )]
< [p|C1 D ((2)(16),11@(@)( ))+4E!w|D( (), ( )
B 4F)e
< (Blw\01+4E|wy)diam(cf)g% <z
T

assuming N is chosen sufficiently large. So, the angle between the complex numbers
el (0] (w) h(!” (1)) and ™ (0 ) h(v{ (u'))

(regarded as vectors in R?) is < /6. In particular, for each i = 1,2 we can choose a real con-

tinuous function 6;(u), v € Z, with values in [0,7/6] and a constant ); such that h(vy) (u)) =

ei(’\"+9"(“))|h(vy) (w))| for all u € Z. Fix an arbitrary ug € Z and set A = vo(ug). Replacing e.g Ao

by A2+ 2mm for some integer m, we may assume that [Aa —A; + A| < 7. Using the above, § < 2sin 6

for § € [0,7/6], and some elementary geometry yields |6;(u) — 0;(u')] < 2sin |6;(u) — 0;(u')] < <E.
The difference between the arguments of the complex numbers

b (00 ))eing(“V)(“)h(vy)(u)) and eibrN(vé“(u))eiwgw(vy)@)h(véﬁ)(u))

is given by the function
PO (u) = [wgn (vy” () +62 (u)+A2] —[w gn (01 () 4601 (u)+M1] = 2= A1)+ () +(B2(uw) —61 (w)) -

Given u' € Z o, and u” € Z i, since D i and D o are contained in C,, and are ng-separable in Cp,, it
follows from Lemma 9 and the above that

PO (W) = TOWN| > e’ = e(u”)] = 61 (u') — 61 (u")] — [a(') — Ba(u")] > ©

N I\D‘m
—

Thus, T () —TOW")] > Se; for all v € Z » and u” € Z . Hence either [T (v/
all u' € Zj/ or |[T®) (u")| > ?61 for all " € ZJ//.

| > % for
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Assume for example that [I“) (u)| > Z¢; for all u € 2]-/. Since Z C 0™ (Cy), as in [21] we have
for any u € Z we get |Ty(u)| < 3% Thus, Ze; < 7O (u)] < 3% for all u € Ej/. Now as in [4] (see
also [21]) one shows that Xél)(u) <1 and XEQ)(u) <1foralue Ej/. O

Proof of Theorem 6. This is now the same as the proof of Theorem 5(a). O

7. ANALYTIC CONTINUATION OF THE FUNCTION ((s, 2)

Consider the function ((s, z) introduced in section 1. Recall that s = a+ib, z = ¢+ iw with real
a,b, c,w € R. First, we assume that f and g are functions in C*(A) with some 0 < o < 1. Passing to
the symbolic model defined by the Markov family R we obtain functions? in C®(R) which we denote
again by f and g. We assume that Pr(f — Py7) = 0 and we set s = Py 4+ a+ib. The functions f, g
depend on z € R. A second reduction is to replace f and g by functions f , § € C*2(U) depending
only on z € U so that f = f+hi —hio0, g = §+hy—hsoo (see Proposition 1.2 in [11]). Since for
periodic points with 6"z = = we have f"(x) = f"(x), g"(z) = §g"(x), we obtain the representation

((s,2) = exp( EOO l § efn(I)—(Pf+a+ib)7'"(x)+(c+iw)§"(x)> )
n
n=1

or=x

In this section we will prove under the standing assumptions that there exists ¢ > 0 and ¢y > 0
such that the function ((s, z) has a non-vanishing zero analytic continuation for —e < a < 0 and
|z] < € with a simple pole at s = s(z), s(0) = Py. Here s(z) is determined from the equation
Pr(f — st + zg) = 0. For simplicity of the notation we denote below f and § again by f, g.

First consider the case 0 < § < |b| < by. Since our standing assumptions imply that the flow
¢¢ is weak mixing, Theorem 6.4 in [11] says that for every fixed b lying in the compact interval
[0, bo] there exists €(b) > 0 so that the function ((s, z) is analytic for |s — Py 4ib| < €(b), |z| < €(b).
This implies that there exists 19 = 70(J,bp) > 0 such that ((s, z) is analytic for Py — 179 < Res <
Py 4+ 10,6 < |Ims| < by, 2| < no. Decreasing 6 > 0 and 1, if it is necessary, we apply once more
Theorem 6.4 in [11], to conclude that ((s, z)(1 — e7(/=57+29)) is analytic for

se{seC: |Res— P <n,|Ims| <5}

and |z| < ngp. Consequently, the singularities of ((s, z) are given by (s, z) for which we have Pr(f —
sT + zg) = 0 and, solving this equation, we get s = s(z) with s(0) = Py. It is clear that we have a
simple pole at s(z) since %Pr(f — s7 + zg) # 0 for |z| small enough.

Now we pass to the case when |Ims| = [b] > by > 0, |z| < no. Then we fix a 8 € (0,/2) and

we get with 0 < p < 1 the inequality |Imb| > By|z|* with By = 3—2. Thus we are in position to
0

apply the estimates of Theorem 5(b) saying that for every € > 0 there exist 0 < p < 1 and Ce > 0
so that

ILT by vasityr gl < Cep™ bl ¥im € N (7.1)

%In fact, one has to define first f and g as functions in C* (R) and then extend them as a-Hélder functions on R.
In the same way one should proceed with Hoélder functions on U.



RUELLE OPERATORS WITH TWO PARAMETERS 27

for |a| < ao,|b| > bo, |2| < no. Next we apply Theorem 4 with functions f,g € C?(U). For
|Res — Pr| <o, [Ims| > by and |z| < ng we deduce

k
1Za(f = (P +a+ 3007+ 29) < S UL (b, s ayrpag (00 (@)
=1

KOO+ 1) S Ny iy gl ™ em PP —Prrarrs el

m=2

< KILF-( g + Ce(1+ |b)|b|* an B gm(etPr(f—(Pr+a)r+eg)

m=2

(Pg+a+ib)T+zg

Taking 19 and e small, we arrange

,yo—ﬁee—i—PT(f—(Pf-i-a)T-&-cg) <<l

for |a] < no, |¢| < no, since Pr(f — Pyr) = 0 and v, < 1. Next increasing 0 < p < 1, if it is
necessary, we get 7—; < 1. Thus the sum above will be bounded by

C1 bl D0 (52)" < Clppp "

m=2

for |a| < no, |z| < no. The analysis of the term HL" || g follows the same argument and

Pf+a+1b +zg
it is simpler. Finally, we get

\Zo(f — (Pf + a+ib)T + 2g)| < B|b|'T*p", ¥n € N
and the series

Z Zn(f — (Py +a+ib)T + zg9)

is absolutely convergent for |a| § Mo, |b| > bo,|2z| < no. This implies the analytic continuation of
((s, z) for |[Res — Pr| < no, |Im s| > bo, |z| < no, thus completing the proof of Theorem 1.

0log((s,z)

To obtain a representation of the function n4(s) = T‘z:@ for s sufficiently close to Py,
notice that for such values of s we have
dlog(1 — efrlf=s7+29)) 1 [gdm | Gdpp
=— A = A =——+4A
g (5) 0z ‘ZZO + Ao(s) s— Py [Tdm 1(s) s — Py +Auls),

where m is the equilibrium state of f — P¢7, pp is the equilibrium state of F' and Ag(s) and A;(s)
are analytic in a neighborhood of Py (see Chapter 6 in [11]). More precisely, up is a o invariant
probability measure on R” such that

Pr(F) = hiof. ) + [ Fln(a,t)dur.

where h(o7, ) is the metric entropy of o] with respect to up (see Chapter 6 in [11]).
Taking 7 small enough, for |z| < ng, |Res — P¢| < 1o and [Im s| > 79 from the estimates for
Zn(f — (Pf +a+1ib)T + zg) above, we deduce

|log ((s,2)| < Ce max(l, | Im s|1+6>.
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To estimate 74(s), as in [17], we apply the Cauchy theorem for the derivative

1 log (s, €)
2mid |¢|=6 52

ﬁlog((s,z)‘zzo = dé = O(JTm 5| 79), | Im s| > 1.

0z

with 0 > 0 sufficiently small. Thus we obtain a O(max(l, | Im s\1+6>> bound for the function

A =my(e) = =, [ Ganr

which is analytic for | Re s — Pr| < n9. Decreasing 79 and applying Phragmén-Lindel6f theorem, by
a standard argument we obtain a bound O(max(l, | Im s\o‘)) with 0 < a < 1. Consequently, we
have the following

Proposition 3. Under the assumptions of Theorem 1 there exist ng > 0 and 0 < a < 1 such that
for Res > Py —ng we have

1
= A 2
o= 5 [ Gaur+ 4 (7.2)
with an analytic function A(s) satisfying the estimate
|A(s)| < C'max(l, | Ims]a). (7.3)

Next define F7(C) := {F : R" — C} and F™(R) := {F : R” — R} the spaces of complex-
valued (real-valued) functions which are continuous. If G € F7(C) is Lipschitz continuous and if
the standing assumptions for A are satisfied, the function

@)
o(z) = /0 Glr(a, 1))t

is Lipschitz continuous on R. Moreover, if the representative of G' in the suspension space R"
is constant on stable leaves, the function g(x) depends only on x € U. Now we introduce two
definitions of independence.

Definition 1. Two functions fi, fo : U — R are called o— independent if whenever there are
constants t1,ty € R such that t1f1 + tafa is co homologous to a function in C(U : 27Z), we have
t1 =t =0.

For a function G € F7(R) consider the skew product flow S& on S! x R™ by
StG’(e%rioz7 y) _ <627ri(a+Gt(y))’ O'Z— (y)> '

Definition 2 ([8]). Let G € F™(R). Then G and o] are flow independent if the following condition
is satisfied. If tog,t1 € R are constants such that the skew product flow S with H = tq+ t1G is not
topologically mixing, then tg = t; = 0.

Notice that if G and o] are flow independent, then the flow o] is topologically weak mixing
and the function G is not co homologous to a constant function. On the other hand, if G and o]
are flow independent, then g(z) = fOT(x) G(w(x,t))dt and T are o— independent.

Below we assume that g and 7 are o — independent and we suppose that F, G is a Lipschitz functions
A having representative in R” which are constant on stable leaves. Thus we obtain functions f, g
which are in CTAP(T). We will now obtain an analytic continuation of ((s, z) for Py—ny < Res < Py
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and z = iw. Set r(s,w) = f — (Pr+a+1ib)7 + iwg. We choose M > 0 large enough so that we can
apply Theorem 6 for |w| > M. We consider two cases.

Case 1. 1y < |w| < M. We consider two sub cases: la) |Ims| < M, 1b) |Ims| > M;. Here
M; > 0 is chosen large enough so that Theorem 5 (b) holds with |Im s| > M;.

Let |Ims| < M;. Assume first that Imr(sp,wp) is cohomologous to ¢ + 27Q with an integer-
valued function @ € C(U;Z) and a constant ¢ € [0,27). If ¢ = 0, since g and 7 are o— independent,
from the fact that b7 +wg is co homologous to a function in C(U; 27Z), we deduce b = w = 0 which
is impossible because b = Im s # 0. Thus we have ¢ # 0. Consequently, the operator L_g riwg has
an eigenvalue e'°. Then there exists a neighborhood U; C C xR of (s, wp) such that for (s,w) € U;
we have Pr(r(s,w)) # 0 and for (s,w) € Us we have an analytic extension of log ((s,w) given by

Ki(s,w)

PGy T s w)

log ((s,w) =
with functions K (s,w), Ji(s,w) analytic with respect to s for (s, w) € Uy. Second, let Im r(sg, wp)
be not cohomologous to ¢+ 27(Q). Then the spectral radius of L_g 4wy is strictly less than 1 and
this will be the case for (s, w) is a small neighborhood Us C C x R of (sg,wp). Applying Theorem
4, this implies easily that log ((s,iw) has an analytic continuation with respect to s.

Passing to the case 1b), we observe that |Im s| > %|w| Then, we apply Theorem 5(c) com-
bined with Theorem 4 to obtain an analytic continuation of log {(s,iw). Moreover, our argument
works for z = ¢ + iw with |¢| < ny and 7y < |w| < M and we obtain an analytic continuation of
log ((s, z) for Py —ng < Res < Py, |c| < mo, no < Jw| < M.

Case 2. |w| > M. We consider two-sub cases: 2a) |Ims| > Blw|, 2b) |Im s| < Blw|, B = 4.
If we have 2a), we apply Theorem 5(c). In the case 2b) we use the argument of section 6 replacing
g(x) by ¢'(x) = g(x)+dr(z), where the constant d > 0 is chosen so that for the function G' = G+d

we have rl;liili gl, < ft, where i > 0 is the constant introduced in section 5. Next we write

L (ppta+ibyr+iwg = Lf—(Pj+ati(o+dw)r+iwg -

For the Ruelle operator involving ¢’ we can apply Theorem 6 since |b+ dw| < (B +d)|w|, |w| > M
and g is a Lipschitz function. An application of Theorem 4 implies the analytic continuation of
log ¢(s,iw) for Pf —ny < Res < Py and |w| > M. From the above analysis we deduce the following

Theorem 7. Assume the standing assumptions fulfilled for the basic set A. Let F,G : A — R be
Lipschitz functions having representatives in RT which are constant on stable leaves. Assume that
g and T are o-independent. Then there exists ng > 0 such that ((s,iw) admits a non zero analytic
continuation with respect to s for Py —ny < Res, w € R and |w| > no.

8. APPLICATIONS

8.1. Hannay-Ozorio de Almeida sum formula. The proof of (1.2) in [18] is based on the
analytic continuation of the Dirichlet series

@]
n(s) = Z Z Aa(7)emA ==X g e ¢

v m=1
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for 1 —n9 < Res < 1. For this purpose the authors examine the analytic continuation of the
symbolic function 74(s) with g(x) = fg(m) G(w(x,t))dt defined in section 1 and they use the fact
that the difference 7(s) — n,(s) is analytic in a region Res > 1 — €/, € > 0. Next for the geodesic
flow on surfaces with negative curvature they establish Proposition 3 with Py = 1. Since M is an
attractor, the equilibrium state of the function —FE(x) is just the SRB measure u of ¢; (see [3]) and
the residuum in (7.2) becomes [ Gdp.

For the proof of Proposition 3 in [18] the authors exploit the link between the analytic con-
tinuation of ((s,z) and the spectral estimates of the Ruelle operator obtained by Dolgopyat [4].
However, in [18] Ruelle’s lemma in [16] was used whose proof is rather sketchy and contains some
steps which are not done in detail (see [24] for more information and comments concerning these
steps and the gaps in their proofs). On the other hand, the estimates of Dolgopyat [4] are estab-
lished only for Ruelle operators with one complex parameter, and to take into account the second
parameter z some complementary analysis is necessary.

We should mention that [24] contains a correct and complete proof of Ruelle’s lemma in the
case of one complex parameter and a Holder function 7(z). A version of this lemma with two
complex parameters is given in section 3 above. Next, in Theorem 5 the spectral estimates for the
Ruelle operator with two complex parameters are established for Axiom A flows on a basic set A
of arbitrary dimension under the standing assumptions. If A is an attractor, according to [3], the
equilibrium state of —F(z) coincides with the SRB measure p of ¢;. Thus we can apply Proposition
3 to obtain a representation of 74(s) with residue [ Gdp. Using (7.2) and repeating the argument
of section 4 in [18], we obtain Theorem 2.

8.2. Asymptotic of the counting function for period orbits. As we mentioned in section 1,
the analysis of 7 (7T') is based on the analytic continuation of the function (s, 0) defined in section
1. From the arguments in section 7 with z = 0 and the proof of Proposition 3 we get the following

Proposition 4. Under the standing assumptions in section 4 there exists ng > 0 such that ?;8

admits an analytic continuation for Pr(F)—ny < Res with a simple pole at s = Pr(F') with residue
1. Moreover, there exists 0 < a < 1 such that for |Ims| > 1 we have

|€Z8| < C|Ims|®. (8.1)

To obtain an asymptotic of mp(7T), we examine the functions
T
WD =Y A wn@) = [ e
enPr(F)NY) <T 0

By a standard argument (see [16] and [15]) we obtain the representation

7> Gy T T
T [ — d - — O T 9
=7 /Resu_m)pr(m( G et s T o)

where in the second equality the estimate (8.1) is used. This implies an asymptotic for ¥(7") and
repeating the argument in [16], [15], one obtains Theorem 3.
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9. APPENDIX: PROOFS OF SOME LEMMAS

Proof of Lemma 4. Denote by fg(ﬁ ) the space of all functions h : U —> R that are Lipschitz
with respect to dyp. Let g € CLip(ﬁ), and let § = 6, € (0,1) be as in section 4. Then g € F4(U).
Let A > 0 be the maximal positive eigenvalue of L, on .7-"9((7 ) and let h > 0 be a corresponding
normalized eigenfunction. By the Ruelle—Perron—Frobemus theorem, we have that Lml converges
Llp(Lml) < C for

uniformly to h. We will show that there exists a constant C' > 0 such that
all m; this would then imply immediately that h € C4P(U) and Lip(h) < C.

Take an arbitrary constant K > 0 such that 1/K < h(z) < K for all z € U. Given u,u’ € U;
for some i = 1,...,k and an integer m > 1 for any v € U with o™ (v) = u, denote by v' = v'(v) the

Am

unique v’ € U in the cylinder of length m containing v such that o™ (v') = /. By (2.1) we have

m—1 m—1
|9m (0) = gm (V)] < D lg(o7 (v)) = 9(o” ()] < Lin(g Ao ’m < C'Lip(g) d(u, v)
=0 ]:0 o

for some constant C’ > 0. Thus,

(Lp1) @) = (L)) < 3 e = e

_ 9m () ‘egmw)—gm(v/) 1

o™ (v)=u o™ (v)=u
< O Lip(g) Z eIm (V) |gm (v) — gm (V")
o™ (v)=u

< MY C'Lip(g) d(u,u) Y el
o™ (v)=u

< eClLip(g)C'Lip(g)d(u,u’) Z egm(”)Kh(v)
o™ (v)=u

= C'LPW C'KLip(g) d(u, u') (LIh)(u)

= VP C'KLip(g) d(u, u') N" h(u)

< A" C'K2HPO Lip(g) d(u, o).

Thus, for every integer m the function k- Lyl e CLIP(U) and A%Lip(LGl) < C'K?eC"1P0) Lip(g).
As mentioned above this proves that the elgenfunctlon h e CLip(ﬁ )

Using this with g = f; proves that he, € CHP(U) for all |a| < ag and t > 1/ag. However the
above estimate for Lip(hqt) would be of the form < C e“tt for some constant C' > 0, which is not
good enough.

We will now show that, taking ag > 0 sufficiently small, we have Lip(hy) < Ct for some
constant C' > 0 independent of a and t.

Using (4.2) and choosing ag > 0 sufficiently small, we have \gy > 4 for all |a| < ag and

< % for m > myg. There exists a constant dy > 0

depending on mg such that for any u, v’ belonging to the same U; but not to the same cylinder of
length mg we have d(u,u") > dy. For such u,u’ we have

has() — o) _ 2husllo _ 2C
d(u,u’) ~ dy T do
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So, to estimate Lip(hg) it is enough to consider pairs u,u’ that belong to the same cylinder of
length my.
lhat (W) —hat (u)]
d(u,u’)

the supremum is taken over all pairs u # u' that belong to the same cylinder of length mg. If
L < Lip(hgt), then the above implies Lip(hq:) < % < % t.

Assume that L = Lip(hgt). Then there exist u,u’ belonging to the same cylinder of length my
such that

Fix for a moment a,t with |a] < ag and ¢t > 1/ag. Set L = sup,, , where

3L _ has(e) ~ Purla)
4 d(u,u’)

Fix such a pair u,u’. Let m > mg be an integer. For any v € U with o ™(v) = u, denote by

(9.1)

v/ = v/(v) the unique v’ € U in the cylinder of length m containing v such that ™ (v') = u/. By
(2.1), d(d? (v),07 (v")) < ,ylm_Jd( ,u') forall j =0,1,...,m—1, so

— ¢

m—1
f"(0) = [ ()] < D 1 filo? (v) = file? (V)] < ConstLip(f;) d(u,u') < Const ¢ d(u, ).
j=0

At the same time, by property (i), || f¢|]lo < T" for some constant 7" > 0, so

|7 (0) = f7M(0" ()] < 2m| fillo < 2mT™".

Similarly,
|(P+a)T™(v) — (P +a)T™(v")] < Constd(u,u) <T",
assuming 7" > 0 is chosen sufficiently large. Thus,

‘e(fHPm)T)m(v’Hfﬁ(Pm)r)mw) )

< ST (fy — (P4 a)r)™(v) — (fi — (P + a)T)" (V)| < ™" Const t d(u, o).

Using Lf (P—l—a)That Althat, we obtain

Nt [t () = har ()| = | D7 eVm@ran™ @ g, ) = N~ S EPran™ @) b, o)

< z (A ) ) + > \U;;‘?”“W"(”)e(f““’*“”)’”(”')
< 11; s Z eft (P+a)T)™(v) T
LGy Z 6<fﬁ<j$a)f)mw> | — = (PHa)T)™ () =(fim (P+a)r)™ (0)
B Ld(U;ﬂU’)— ST e PO ot T Consttd(u, o) Y el (PHanT @)
oy ocMu=u omy=u
< (cO{;m+Coe3mT" Constt> d(u,u’) Z elfr=(Pta)m)™(v) Cohat(v)

oMy=u

L s /!
= <c o + Coe®™T" Const t> d(u, u") CoAlthai(u) < ( — + Coe®™ T Const t> d(u,u') CEN™.
0

oY
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P 2 2 1
This, (9.1) and the choice of mg imply 3£ < f;g& + C3e3™T" Constt < & + C3e*T" Const t.

This is true for all m > mg. In particular for m = mg we get % < C’ge?’moT” Const t, and so
Lip(het) = L < Const t. m

Proof of Lemma 5. (a) Let u,u’ € U; for some i = 1,...,k and let m > 1 be an integer. For
any v € U with ¢™(v) = u, denote by v = v/(v) the unique v' € U in the cylinder of length m
containing v such that ¢™(v') = u’. Then

—_

3

[fat (W) = fat W) < D | far(0? (v) = far(o? (V'))] < md(uau') <CitD(u,u’)  (9:2)
=0
for some constant C; > 0. Similarly,
91" (v) — gi" (V)| < C1t D(u, o). (9.3)
Also notice that if D(u,u’) = diam(C’) for some cylinder ¢ = Clim41, .- ., ip),then v,v'(v) €
C" = Clig, i1, ... ,1p] for some cylinder C” with o™ (C") = C’, so
D /
D(v,v") < diam(C") < diam(C’) = M
coy™ coy™

Using the above, diam(U;) < 1, the definition of M., we get

Z elatWited" () g (y) — Z elat () Feaf" () F (o)

|(MGtH) (u) = (MG H) (W)

M H () = M H (W)

3 RO ) (F(v) - H()) 3 ‘ef;?(v)Jrch”(v) _ JaR@red )| gy
¥ L) e )

Z elatWted (V) B H(W') D(v,v')
¥ ANZACT)

3 ‘e[fﬂ(v)Jrcg{”(v)]—[ ) Fea () _ 1] oFI@)+ea () F(yf)
A Mg ()
Using (9.2) and (9.3) and assuming 7y < 1, one obtains
|fat (v) + g™ (v)] = [far (V) + g™ (v")| < 2C1t D(u,u') < 2C1t, (9.4)

and therefore ‘e[m(”)“g?n(”)]_[ at (V) +egi (V)] 1‘ < 2120t D(u,u'). However (9.4) is not good

enough to estimate the first term in the right-hand-side above. Instead we use (4.3) and (4.4) to



34

get
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| fat (v) + cgi” (v)] = [far (V) + cgi (V)]

1f7 () = )] + 1P —al [T (v) = 7™ ()] + [(hat(v) = hat(u)) — (hat(v') — hat(u')]
+aolg" (v) — g;" (V)]

2m| fe = follo + | f3" (v) — fg"(v")| + Const D(u, u’) + 4Co + 2mao||g: — gllo

Const D(u, u’) + Comag < Cy + Com ag (9.5)

for some constant Cy > 0. We will now assume that ag > 0 is chosen so small that 2% < ~/4.

Then

|(Matc )( ) (Matc )( )|
Matc ( )
Z elfat () +egi™ (V)] =31 (V) +egi™ (V)] o fai (V') +egi™ (v') H(v')
E D(u,u') ympey
coy™ m H(u')

atc

> 20yt el 0D H (v (v))

2C1t cMv=u

+e
Matc ( )

E D(u,u)

coy™

< 602 €C2ma0

E
+ 201te*1 D(u,u') < Ag [
Am

+ eAot ¢ } D(u,u),

for some constant Ay > 0 independent of a, ¢, t, m and E.

(b) Let m > 1 be an integer and u,u’ € U; for some i = 1, ..., k. Using the notation v/ = v/(v)
and the constant Co > 0 from part (a) above, where 0™v = u and ¢™v’ = v/, and some of the
estimates from the proof of part (a), we get

IN

|[’abtz ( )_ ZZL)tzh(u/)’

Z (ef(:'g(v)-i—cg{”(v)—ib‘rm(v)—‘riwg;"(v) h(U) o ef;'tl(v’)—i—cg{”(v’)—ib‘r’"(v’)—i—iwg{"(v’) h(’l},))

oMmv=u ‘

S ela@rrea @)= WG ) [y (p) — (o))
;mg ‘ v)tegt(v) _ ofat () Feg (v ()]
+0£u le—ibfm(v)ﬁwg%”(v) — eI (W) —iwg (V) | o fa (V) e () (o))
ivzjﬂ(mcyw) |h(v) = h(v")]
Ufu‘e[ 7 (0)+egi (0)]= (13 () +egy (”’)]_1’ FEE )|

Yo (bl @) = 7™ ()] + w] g7 () = gi"(2)]) /st HIH D n ()

ocMv=u
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Using the constants C7,C2 > 0 from the proof of part (a), (9 5) and e“29% < /4 we get

Z e m(v)+egit(v) |h(1}) . h(U/)| < ng eCQmaOED u, u Z ol v")+cgim( ) (U/)
oMy=u ocMy=u

Ca
ek
W( ateH) (1) D(u,u').

IN

This, (9.3) and (9.5) imply
| Lab=h(w) = Lapeh(u)]

Cy
i,ﬁ( wieH) (W) D(u, ') 4+ 21201 D(u, w') (M| h]) () + (Const [b] + [w|Cy ) D(u, ')
0

IN

Thus, taking the constant Ay > 0 sufficiently large we get

|(Labe2h) (1) = (Laheh) (u)] < Ao <5n( i) (u') + (1b] + €%t + tw]) (Mg |h) (u )> D(u,u),

which proves the assertion. B

As in [4] and [21] we need the following lemma whose proof is omitted here, since it is very
similar to the proof of Lemma 5 given above.

Lemma 17. Let 8 € (0,«). There exists a constants Ay > 0 such that for all a,b,c,t,w € R with
lal, |c|,1/|b],1/t < ag such that (5.1) hold, and all positive integers m and all h € CP(U) we have

% () — L2 h(u)] < 4) ‘h'ﬁ M) ()| ()P

for all u,u’ € Uj.

We will derive Theorem 5(b) from Theorem 5(a), proved in section 5, and Lemma 17 above.

Proof of Theorem 5(b). We essentially repeat the proofs of Corollaries 2 and 3 in [4] (cf. also section
3 in [20]).

Let € >0, B> 0and 8 € (0,«). Take p € (0,1), ap > 0, by > 0, Ag > 0 and N as in Theorem
2(a). We will assume that p > %0 Let a,b,c,w € R be such that |al,|c| < ap and |b] > by. Let
t > 0 be such that 1/t*# < ag. Assume that (5.1) hold and set z = ¢ + iw.

First, as in [4] (see also section 3 in [20]) one derives from Theorem 5(a) and Lemma 17 (ap-
proximating functions h € C?(U) by Lipschitz functions as in section 4) that there exist constants
C3 > 0 and p; € (0,1) such that

||£abtz

b < Cslb|py , n >0, 9.6
B, 1

for all h € CP(D).
Next, given h € C’B(U) we have £nbtz(h’/hat) T hat h — Ly, (Ptatib)rtzg. 1> 50 by (9.6) we get

||L P+a+1b)’r+zgth||,3b < |hat abtz(h/hat)Hﬁb
< Const( atp1)" [0 [/ R

5 [0 [1Plls.6

2Coag

where Agp1 < e p2 = po < 1, provided ag > 0 is small enough.
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We will now approximate Lj_(pyqtib)yrizg BY Lf,—(P+atib)r+g, 10 two steps. First, using the
above it follows that

(e<f"—fr>+c(gn—g?>h)

F—(P+a+ib)r+egring, By = ‘ Hﬂb

—(P+a+ib)T+2g:

< Const p} |b|¢ ||ef"—fi)+els" fgt)hH

Choosing the constant Cy > 0 appropriately, ||f — fillo < Ciap and |f — fi|g < Cy/t*8 < Cyay,
so || f" = fillo < n || f = filo £ Canag, and similarly |f™ — f{*|s < Cynag. Similar estimates hold for
g" — gP. Thus, ||eU"—fi)+eld"=9!)p||y < e“4ma0||p|y, and

R P P s R Y [
< MO hYg 4 eSO (7 = f) + e(g" — gP)s 1]l oo
< Cine®m 0 ||hllg.

Combining this with the previous estimate gives

[ AT =9 5, < CF m @10 B,

SO
1L

C.
(P+a+ib)T+cg+iwgt n e~ ||h||,3,b

Taking ag > 0 sufficiently small, we may assume that ps e“4% < 1. Now take an arbitrary ps with
02 eC1a0 < p3 < 1. Then we can take the constant Cs > 0 so large that n pg eCanao < Csps for all
integers n > 1. This gives

||L}L—(P+a+ib)7—+cg+iwgthHﬁvb < Cﬁ pg |b‘€ HhHB:b ’ n 2= 0.

Using the latter we can write

||L?—(P+a+ib)T+zg = HL?—(P-i-a-&-ib)T-&-cg-i-iwgt (elw(g o )h> H,B b

IN

Ce p3 |b|°

(g —g7) hH

However, ||e("=9)h|lg = ||Allo, |9 — gtls < Ca/t*P < Chap < 1 (assuming ag > 0 is sufficiently
small), and by (5.1), |w| < Bb|** < B|b|, so
Bl < [|et D o bl + (€1 g ]| oe
< |hlg + |wllg" = g¢'ls 1hlleo < l[Rllg + Brlbl[|A]|oo-
Thus,

1 - n n

mle’“’(g ~9)hg < 2Bn||hl|s,,
and therefore ||L7 P+a+1b)7+zgh||/37b < C7 p3 |b|°n||h||g,p- Now taking an arbitrary p with p3 < p <
1 and taking the constant Cg > C'7 sufficiently large, we get

| el (g =90 p|o 4

IL3 psasinrssghllse < Cs o™ bl [hllgs
for all integers n > 0. B
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