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Abstract. For a C2 Axiom A flow φt : M −→ M on a Riemannian manifold M and a basic
set Λ for φt we consider the Ruelle transfer operator Lf−sτ+zg, where f and g are real-valued
Hölder functions on Λ, τ is the roof function and s, z ∈ C are complex parameters. Under some
assumptions about φt we establish estimates for the iterations of this Ruelle operator in the spirit
of the estimates for operators with one complex parameter (see [4], [21], [22]). Two cases are
covered: (i) for arbitrary Hölder f, g when | Im z| ≤ B| Im s|µ for some constants B > 0, 0 < µ < 1
(µ = 1 for Lipschitz f, g), (ii) for Lipschitz f, g when | Im s| ≤ B1| Im z| for some constant B > 0 .
Applying these estimates, we obtain a non zero analytic extension of the zeta function ζ(s, z) for
Pf − ε < Re(s) < Pf and |z| small enough with simple pole at s = s(z). Two other applications
are considered as well: the first concerns the Hannay-Ozorio de Almeida sum formula, while the
second deals with the asymptotic of the counting function πF (T ) for weighted primitive periods of
the flow φt.

1. Introduction

Let M be a C2 complete (not necessarily compact) Riemannian manifold, φt : M −→M (t ∈ R)
a C2 flow on M and let ϕt : M −→ M be a C2 weak mixing Axiom A flow ([2], [11]). Let Λ be a
basic set for φt, i.e. Λ is a compact locally maximal invariant subset of M and φt is hyperbolic and
transitive on Λ.

Given a Hölder continuous function F : Λ −→ R and a primitive periodic orbit γ of φt, denote

by λ(γ) the least period of γ. The weighted period of γ is defined by λF (γ) =
∫ λ(γ)

0 F (φt(xγ))dt,
where xγ ∈ γ. The weighted version of the dynamical zeta function (see Sect. 9 in [11]) is given by

ζφ(s, F ) :=
∏
γ

(
1− eλF (γ)−sλ(γ)

)−1
.

For F = 0 we obtain the classical Ruelle dynamical zeta function.
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2 RUELLE OPERATORS WITH TWO PARAMETERS

It is well known (see for instance Chapter 6 in [11]) that the analysis of the dynamical zeta
function can be reduced to that of a Dirichlet series by using a symbolic coding of Λ given by
a fixed Markov family {Ri}ki=1. For our analysis it is convenient to consider a Markov family of
pseudo-rectangles Ri = [Ui, Si] = {[x, y] : x ∈ Ui, y ∈ Si} (see section 2 for the notation and more
details). Let P : R = ∪ki=1Ri −→ R be the related Poincaré map, let τ(x) > 0 be the first return

time function on R, and let σ : U = ∪ki=1Ui −→ U be the shift map given by σ = π(U) ◦ P, where

π(U) : R −→ U is the projection along stable leaves. The flow φt on Λ is naturally related to the
suspension flow στt on the suspension space Rτ (see section 2 for details). There exists a natural
semi-conjugacy projection π(x, t) : Rτ −→ Λ which is one-to-one on a residual set (see [2]). Then
following the results in [2], [3], a closed σ-orbit {x, σx, ..., σn−1x} is projected to a closed orbit γ in
Λ with a least period λ(γ) = τn(x) := τ(x) + τ(σ(x)) + ...+ τ(σn−1(x)).

Passing to the symbolic model (see [2], Chapter 6 in [11]), the analysis of ζϕ(s, F ) is reduced
to that of the Dirichlet series

η(s) =
∞∑
n=1

1

n

∑
σnx=x

ef
n(x)−sτn(x)

with a Hölder continuous function f(x) =
∫ τ(x)

0 F (π(x, t))dt : R −→ R. To deal with certain
problems (see Chapter 9 in [11] and [17]) it is necessary to study a more general series

ηg(s) =

∞∑
n=1

1

n

∑
σnx=x

gn(x)ef
n(x)−sτn(x)

with a Hölder continuous function G : Λ −→ R and g(x) =
∫ τ(x)

0 G(π(x, t))dt : R −→ R. For this
purpose it is convenient to examine the zeta function

ζ(s, z) :=
∏
γ

(
1− eλF (γ)−sλ(γ)+zλG(γ)

)−1
= exp

( ∞∑
n=1

1

n

∑
σnx=x

ef
n(x)−sτn(x)+zgn(x)

)
(1.1)

depending on two complex variables s, z ∈ C. Formally, we have

ηg(s) =
∂ log ζ(s, z)

∂z

∣∣∣
z=0

.

The analysis of the series in (1.1) is based on the investigation of the iterations of the Ruelle
operator

Lf−sτ+zgv(x) =
∑
σy=x

ef(y)−sτ(y)+zg(y)v(y), s, z ∈ C,

since

Lnf−sτ+zgv(x) =
∑
σny=x

ef
n(y)−sτn(y)+zgn(y)v(y), n ∈ N.

The precise definition of the Ruelle operator acting on spaces of Hölder functions is given in section
4. Thus, the strategy for the proof of the analytic continuation of the dynamical zeta function
comprises two majors steps:

(I) Prove that suitable ”contraction” estimates for the iterations of the Ruelle operator Lnf−sτ+zg

imply the convergence by packets of the Dirichlet series which yields an analytic continuation of the
corresponding zeta function.

(II) Establish suitable ”contraction” estimates for the iterations.
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This strategy has been used for zeta functions depending on one complex parameter and related
spectral estimates, called Dolgopyat estimates, have been proved in many cases ([4], [20], [21], [22])
under some conditions on φt. The most general case of such estimates known so far for Ruelle
operators with one complex parameter is that described by the Standing Assumptions in section 4
below (see [21], [22]).

In this paper we study both problems (I) and (II) for zeta functions and Ruelle operators
depending on two parameters s, z ∈ C. These problems are motivated by particular important
applications in mind, however we believe they are also of an independent interest.

1.1. Results. Under some hypothesis on the flow φt (see section 4 for our standing assumptions)
we prove spectral estimates for the iterations of Ruelle operator Lnf−sτ+zg with two complex

parameters s, z ∈ C. These estimates are in the spirit of those obtained in [4], [20], [21], [22]
for Ruelle operators with one complex parameter s ∈ C. It should be emphasized that the
transition from one to two complex parameters is highly non-trivial, and so far there have been no
results of this kind in the literature. In particular, in the treatment of this case completely new
difficulties appear when | Im s| → ∞ and | Im z| → ∞.

In what follows, first in Theorem 5 we prove spectral estimates in the case of arbitrary Hölder
continuous functions f, g when there exist constants B > 0 and 0 < µ < 1 such that | Im z| ≤
B| Im s|µ and | Im s| ≥ b0 > 0. When f, g are Lipschitz one can take µ = 1. This covers completely
the case when |z| is bounded and the estimates have the same form as those for operators with
one complex parameter. Moreover, these estimates are sufficient for the applications in [11] and
[18] when |z| runs in a small neighbourhood of 0 (see sections 7 and 8). Notice that in the special
case of a geodesic flow on a surface with negative curvature in the proof of Lemma 3.5 in [18] it
was mentioned that one can obtain a non-vanishing extension of ζ(s, z) for sufficiently small |z|.
However no proof of this result was given, and indeed one needs some of the results in this paper
to obtain this – in particular, the generalisation of Ruelle’s lemma to the case of two complex
parameters (see section 3) and the estimates of the corresponding Ruelle operator established in
sections 5 and 6 below. In fact, in section 6 we deal with the more difficult situation when f, g are
Lipschitz and there exists a constant B1 > 0 such that | Im s| ≤ B1| Im z| (see Theorem 6).

To study the analytic continuation of ζ(s, z) for Pf − η0 < Re s < Pf , we need a generalisation
of Ruelle’s lemma mentioned above which yields a link between the convergence by packets of a
Dirichlet series like (1.3) below and log ζ(s, z) and the estimates of the iterations of the correspond-
ing Ruelle operator. The reader may consult [24] for a precise result in this direction completing
some points the previous works ([19], [16], [9]), treating this question. For our needs in this paper
we prove in section 3 an analogue of this lemma for Dirichlet series with two complex parameters
following the approach in [24]. Combining Theorem 4 with the estimates in Theorem 5 (b), we
obtain the following

Theorem 1. Assume the standing assumptions in section 4 fulfilled for a basic set Λ. Then for
any Hölder continuous functions F,G : Λ −→ R there exists η0 > 0 such that the function ζ(s, z)
admits a non vanishing analytic continuation for

(s, z) ∈ {(s, z) ∈ C2 : Pf − η0 ≤ Re s, s 6= s(z), |z| ≤ η0}
with a simple pole at s(z). The pole s(z) is determined as the root of the equation Pr(f−sτ+zg) = 0
with respect to s for |z| ≤ η0.

Applying the results of sections 5 and 6, we study also the analytic continuation of ζ(s, iw) for
Pf − η0 < Re s and w ∈ R, |w| ≥ η0, in the case when F,G : Λ −→ R are Lipschitz functions
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(see Theorem 7). Here both complex parameters s, w may go to infinity, the analysis of this case
is more complicated and we study the situation when z = iw. Our investigation was motivated by
the necessity to have an analytic continuation of the zeta functions appearing in the arguments in
[23], [7]. This analytic continuation combined with the arguments in [23] opens some perspectives
for investigations on sharp large deviations for Anosov flows with exponentially shrinking intervals
in the spirit of [12]. Some other applications are also possible, in particular we expect to obtain
the result of Theorem 7 for arbitrary Hölder functions F,G : Λ −→ R, which for now is an open
problem.

Our first application concerns the so called Hannay-Ozorio de Almeida sum formula (see [5], [10],
[18]). Let φt : M −→M be the geodesic flow on the unit-tangent bundle over a compact negatively
curved surface M . In [18] it was proved that there exists ε > 0 such that if (δ(T ))−1 = O(eεT ),
then for every Hölder continuous function G : M −→ R, we have

lim
T→+∞

1

δ(T )

∑
T− δ(T )

2
≤λ(γ)≤T+

δ(T )
2

λG(γ)e−λ
u(γ) =

∫
M
Gdµ, (1.2)

where γ runs over the set of primitive periodic orbits of the flow in M , λu(γ) = λE(γ) with
E(x) = limt→0

1
t log |Jac (Dφt|Eu(x))|, while µ is the unique φt-invariant probability measure which

is absolutely continuous with respect to the volume measure on M . The measure µ is called SRB
(Sinai-Ruelle-Bowen) measure (see [3]). Notice that in the above case the Anosov flow φt is weak
mixing and M is an attractor. Applying Theorem 1 and the arguments in [18], we prove the
following

Theorem 2. Let Λ be an attractor, that is there exists an open neighborhood V of Λ such that
Λ = ∩t≥0φt(V ). Assume the standing assumptions of section 4 fulfilled for the basic set Λ. Then
there exists ε > 0 such that if (δ(T ))−1 = O(eεT ), then for every Hölder function G : Λ −→ R the
formula (1.2) holds with the SRB measure µ for φt.

Our second application concerns the counting function

πF (T ) =
∑

λ(γ)≤T

eλF (γ),

where γ is a primitive period orbit for φt : Λ −→ Λ, λ(γ) is the least period and λF (γ) =∫ λ(γ)
0 F (φt(xγ))dt, xγ ∈ γ. For F = 0 we obtain the counting function π0(T ) = #{γ : λ(γ) ≤ T}.

These counting functions have been studied in many works (see [16] for references concerning π0(T )
and [11], [15] for the function πF (T )). The study of πF (T ) is based on the analytic continuation of
the function

ζF (s) =
∏
γ

(
1− eλF (γ)−sλ(γ)

)−1
, s ∈ C,

which is just the function ζ(s, 0) defined above. We prove the following

Theorem 3. Let Λ be a basic set and let F : Λ −→ R be a Hölder function. Assume the standing
assumptions of section 4 fulfilled for Λ. Then there exists ε > 0 such that

πF (T ) = li(ePr(F )T )(1 +O(e−εT )), T →∞,

where li(x) :=
∫ x

2
1

log ydy ∼
x

log x , x→ +∞.
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In the case when φt : T 1(M) −→ T 1(M) is the geodesic flow on the unit tangent bundle T 1(M)
of a compact C2 manifold M with negative section curvatures which are 1

4 -pinching the above result
has been established in [15]. It follows from [21] and [22] that the special case of a geodesic flow in
[15] is covered by Theorem 3.

The proof of Theorem 5 for Hölder functions f and g ≡ 0 implies some new result even for the
Ruelle operator with one complex parameter under the standing assumptions. For example, we have
to study quite precisely the approximations of f by smooth functions and estimate the Lipschitz
constants of the corresponding eigenfunctions related to maximal eigenvalues. This particular result
is given in Lemma 4 and appears to be of an independent interest.

The results of our work for contact Anosov flows satisfying some pinching conditions, called in
section 4 simplifying assumptions, have been announced in [13]. Here we treat a more general case
and present detailed proofs of the results.

1.2. Examples. Here we describe several examples that provide specific applications of the results
in this paper.

Example 1. If G = 0 we obtain the classical Ruelle dynamical zeta function

ζφ(s) =
∏
γ

(
1− e−sλ(γ)

)−1
.

Then Pr(0) = h, where h > 0 is the topological entropy of φt and ζφ(s) is absolutely convergent
for Re s > h (see Chapter 6 in [11]).

Example 2. Consider the expansion function E : Λ −→ R defined by

E(x) := lim
t→0

1

t
log |Jac (Dφt|Eu(x))|.

Introduce the function λu(γ) = λE(γ) and we define f : R −→ R by

f(x) = −
∫ τ(x)

0
E(π(x, t))dt.

Then we have −λu(γ) = fn(x) , f is Hölder continuous and Pr(f) = 0 (see [3]). Consequently, the
series

∞∑
n=1

1

n

∑
σnx=x

ef
n(x)−sτn(x) (1.3)

is absolutely convergent for Re s > 0 and nowhere zero and analytic for Re s ≥ 0 except for a simple
pole at Re s = 0 (see Theorem 9.2 in [11]). The roof functions τ(x) is constant on stable leaves
of rectangles Ri of the Markov family, so we can assume that τ(x) depends only on x ∈ U. By a

standard argument (see [11]) we can replace f by a Hölder function f̂(x) which depends only on

x ∈ U so that f ∼ f̂ . Thus the series (1.3) can be written by functions f̂ , τ depending on only
x ∈ U . We keep the notation f below assuming that f depends only on x ∈ U. The analysis of the
analytic continuation of (1.3) is based on spectral estimates for the iterations of the Ruelle operator

Lf−sτv(x) =
∑
σy=x

ef(y)−sτ(y)v(y), v ∈ Cα(U), s ∈ C.

(see [4], [16], [21], [22], [24] for more details).
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Example 3. Let f, τ be real-valued Hölder functions and let Pf > 0 be the unique real number

such that Pr(f − Pfτ) = 0. Let g(x) =
∫ τ(x)

0 G(π(x, t))dt, where G : Λ −→ R is a Hölder function.
Then if the suspended flow στt is weak-mixing, the function (1.1) is nowhere zero analytic function
for Re s > Pf and z in a neighborhood of 0 (depending on s) with nowhere zero analytic extension
to Re s = Pf (s 6= Pf ) for small |z|. This statement is just Theorem 6.4 in [11]. To examine the
analytic continuation of ζ(s, z) for Pf−η0 ≤ Re s and small |z|, it is necessary to have some spectral
estimates for the iterations of the Ruelle operator

Lf−sτ+zgv(x) =
∑
σy=x

ef(y)−sτ(y)+zg(y)v(y), v ∈ Cα(U), s ∈ C, z ∈ C. (1.4)

The analytic continuation of ζ(s, z) for small |z| and that of ηg(s) play a crucial role in the argument
in [18] concerning the Hannay-Ozorio de Almeida sum formula for the geodesic flow on compact neg-
atively curved surfaces. We deal with the same question for Axiom A flows on basic sets in section 8.

Example 4. In [7] for Anosov flows the authors examine the spectral properties of the Ruelle
operator (1.4) with f = 0 and z = iw, w ∈ R and the analyticity of the corresponding L-function
L(s, z). The properties of the Ruelle operator

Lnf−(Pf+a+ib)τ+iw, w ∈ R, n ∈ N,

are also rather important in the paper [23] dealing with the large deviations for Anosov flows. Here
as above Pf ∈ R is such that Pr(f − Pfτ) = 0. However, it is important to note that in [7] and
[23] the analysis of the Ruelle operators covers mainly the domain Re s ≥ Pf and there are no
results treating the spectral properties for Pf − η0 ≤ Re s < Pf and z = iw, w ∈ R. To our best
knowledge the analytic continuation of the function ζ(s, z) for these values of s and z has not been
investigated in the literature so far which makes it quite difficult to obtain sharper results.

2. Preliminaries

As in section 1, let φt : M −→M be a C2 Axiom A flow on a Riemannian manifold M , and let
Λ be a basic set for φt. The restriction of the flow on Λ is a hyperbolic flow [11]. For any x ∈ M
let W s

ε (x),W u
ε (x) be the local stable and unstable manifolds through x, respectively (see [2], [6],

[11]). When M is compact and M itself is a basic set, φt is called an Anosov flow. It follows from
the hyperbolicity of Λ that if ε0 > 0 is sufficiently small, there exists ε1 > 0 such that if x, y ∈ Λ
and d(x, y) < ε1, then W s

ε0(x) and φ[−ε0,ε0](W
u
ε0(y)) intersect at exactly one point [x, y] ∈ Λ (cf.

[6]). That is, there exists a unique t ∈ [−ε0, ε0] such that φt([x, y]) ∈ W u
ε0(y). Setting ∆(x, y) = t,

defines the so called temporal distance function.
We will use the set-up and some arguments from [21]. As in [21], fix a (pseudo-) Markov family

R = {Ri}ki=1 of pseudo-rectangles Ri = [Ui, Si] = {[x, y] : x ∈ Ui, y ∈ Si}. Set R = ∪ki=1Ri, U =
∪ki=1Ui. Consider the Poincaré map P : R −→ R, defined by P(x) = φτ(x)(x) ∈ R, where τ(x) > 0
is the smallest positive time with φτ(x)(x) ∈ R. The function τ is the so called first return time

associated with R. Let σ : U −→ U be the shift map given by σ = π(U) ◦ P, where π(U) : R −→ U

is the projection along stable leaves. Let Û be the set of those points x ∈ U such that Pm(x) is not

a boundary point of a rectangle for any integer m. In a similar way define R̂. Clearly in general τ
is not continuous on U , however under the assumption that the holonomy maps are Lipschitz (see
section 4) τ is essentially Lipschitz on U in the sense that there exists a constant L > 0 such that if
x, y ∈ Ui ∩ σ−1(Uj) for some i, j, then |τ(x)− τ(y)| ≤ Ld(x, y). The same applies to σ : U −→ U .
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The hyperbolicity of the flow on Λ implies the existence of constants c0 ∈ (0, 1] and γ1 > γ0 > 1
such that

c0γ
m
0 d(u1, u2) ≤ d(σm(u1), σm(u2)) ≤ γm1

c0
d(u1, u2) (2.1)

whenever σj(u1) and σj(u2) belong to the same Uij for all j = 0, 1 . . . ,m.

Define a k × k matrix A = {A(i, j)}ki,j=1 by

A(i, j) =

{
1 if P(IntRi) ∩ IntRj 6= ∅,
0 otherwise.

It is possible to construct a Markov family R so that A is irreducible and aperiodic (see [2]).
Consider the suspension space Rτ = {(x, t) ∈ R×R : 0 ≤ t ≤ τ(x)}/ ∼, where by ∼ we identify

the points (x, τ(x)) and (σx, 0). The corresponding suspension flow is defined by στt (x, s) = (x, s+t)
on Rτ taking into account the identification ∼ . For a Hölder continuous function f on R, the
topological pressure Pr(f) with respect to σ is defined as

Pr(f) = sup
m∈Mσ

{
h(σ,m) +

∫
fdm

}
,

whereMσ denotes the space of all σ-invariant Borel probability measures and h(σ,m) is the entropy
of σ with respect to m. We say that f and g are cohomologous and we denote this by f ∼ g if there
exists a continuous function w such that f = g + w ◦ σ − w. For a function v on R one defines

vn(x) := v(x) + v(σ(x)) + ...+ v(σn−1(x)).

3. Ruelle’s lemma with two complex parameters

Let B(Û) be the space of bounded functions q : Û −→ C with its standard norm ‖q‖0 =

sup
x∈Û |g(x)|. Given a function q ∈ B(Û), the Ruelle transfer operator Lq : B(Û) −→ B(Û) is

defined by (Lqh)(u) =
∑

σ(v)=u

eq(v)h(v) . If q ∈ B(Û) is Lipschitz on Û with respect to the Riemann

metric, then Lq preserves the space CLip(Û) of Lipschitz functions q : Û −→ C. Similarly, if q is

ν-Hölder for some ν > 0, the operator Lq preserves the space Cν(Û) of ν-Hölder functions on Û . In

this section we assume that g, τ and f are real-valued ν−Hölder continuous functions on Û . Then
we can extend these functions as Hölder continuous on U .

We define the Ruelle operator Lg−sr+zf : Cν(Û) −→ Cν(Û) by

Lf−sτ+zgv(x) =
∑
σy=x

ef(y)−sτ(y)+zg(y)v(y), s, z ∈ C.

Next, for ν > 0 define the ν-norm on a set B ⊂ U by

|w|ν = sup
{ |w(x)− w(y)|

d(x, y)ν
: x, y ∈ B ∩ Ui, i = 1, ..., k, x 6= y

}
.

Let ‖w‖ν = ‖w‖∞ + |w|ν , and denote by ‖.‖ν be the corresponding norm for operators. Let χi(x)
be the characteristic function of Ui.

Introduce the sum

Zn(f − sr + zg) :=
∑
σnx=x

ef
n(x)−sτn(x)+zgn(x).
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Our purpose is to prove the following statement which can be considered as Ruelle’s lemma
with two complex parameters.

Theorem 4. For every Markov leaf Ui fix an arbitrary point xi ∈ Ui. Then for every ε > 0 and
sufficiently small a0 > 0, c0 > 0 there exists a constant Cε > 0 such that∣∣∣Zn(f − sτ + zg)−

k∑
i=1

Lnf−sτ+zgχi(xi)
∣∣∣

≤ Cε(1 + |s|)(1 + |z|)
n∑

m=2

‖Ln−mf−sτ+zg‖νγ
−mν
0 em(ε+Pr(f−aτ+cg)), ∀n ∈ N (3.1)

for s = a+ ib, z = c+ iw, |a| ≤ a0, |c| ≤ c0.

The proof of this theorem follows that of Theorem 3.1 in [24] with some modifications. We have
to take into account the presence of a second complex parameter z. Given a string α = (α0, ..., αn−1)
of symbols αj taking the values in {1, ..., k}, we say that α is an admissible word if A(αj , αj+1) = 1
for all 0 ≤ j ≤ n− 1. Set |α| = n and define the cylinder of length n in the leaf Uα0 by

Uα = Uα0 ∩ σ−1Uα1 ∩ ... ∩ σ−(n−1)Uαn−1 .

Each Ui is a cylinder of length 1. Next we introduce some other words (see [24]). Given a word
α = (α0, ..., αn−1) and i = 1, ..., k, if A(αn−1, i) = 1 and A(i, α0) = 1, we define

αi = (α0, ..., αn−1, i), iα = (i, α0, ..., αn−1), ᾱ = (α0, ..., αn−2).

We have the following

Lemma 1. Let w be a ν-Hölder real-valued function. Let x and y be on the same cylinder Uα with
|α| = m. Then there exists a constant B > 0 depending only on w, ν and the constants c0 and γ0

in (2.1) such that

|wm(x)− wm(y)| ≤ B(d(σm−1x, σm−1y))ν .

The proof is a repetition of that of Lemma 2.5 in [24] and we leave the details to the reader.

Proposition 1. Let m ≥ 1 and let w be a function which is ν-Hölder continuous on all cylinder
of length m+ 1. Then for the transfer operator Lf−sτ+zg we have

Lf−sτ+zg := ⊕|α|=m+1C
ν(Uα) 3 w −→ Lf−sτ+zgw ∈ ⊕|α|=mCν(Uα).

Proof. Let w be ν-Hölder on Uiα for all i such that A(i, α0) = 1. Let x, y ∈ Int Uα and let
|U | = maxi=1,,,k diam(Ui). Then

|Lf−sτ+zgw(x)− Lf−sτ+zgw(y)|

=
∣∣∣ ∑
A(i,α0)=1

ef(ix)−sτ(ix)+zg(ix)w(ix)−
∑

A(i,α0)=1

ef(iy)−sτ(iy)+zg(iy)w(iy)
∣∣∣

≤
∑

A(i,α0)=1

|e−sτ(iy)|
(
|esτ(iy)−sτ(ix) − 1||ef(iy)+zg(iy)w(ix)|+ |ef(iy)+zg(iy)w(iy)− ef(ix)+zg(ix)w(ix)|

)
≤ ea0|τ |∞

∑
A(i,α0)=1

(
|s||τ |βea0|τ |ν |U |

ν
e|f |∞+c0|g|∞ |w|∞ + |ef(iy)+zg(iy)w(iy)− ef(ix)+zg(ix)w(ix)|

)
.
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Repeating this argument, we get∑
A(i,α0)=1

|ef(iy)+zg(iy)w(iy)− ef(ix)+zg(ix)w(ix)|

≤ ec0|g|∞
∑

A(i,α0)=1

(
|z||g|νec0|g|ν |U |

ν
e|f |∞ |w|∞ + |ef(iy)w(iy)− ef(ix)w(ix)|

)
,

and we conclude that

|Lf−sτ+zgw(x)− Lf−sτ+zgw(y)| ≤ C|w|νd(x, y)ν . �

Now, as in [24], we will choose in every cylinder Uα a point xα ∈ Uα. For the reader’s conve-
nience we recall the choice of xα.
(1) If Uα has an n-periodic point, then we take xα ∈ Uα so that σnxα = xα.
(2) If Uα has no n-periodic point and n > 1 we choose xα ∈ Uα arbitrary so that xα /∈ σ(Uαn−1).
(3) if |α| = n = 1, then we take xα = xi, where i = α0 and xi ∈ Ui is one of the points fixed in
Theorem 4.

Let χα be the characteristic function of Uα. Then Lemma 3.4 and Lemma 3.5 in [24] are applied
without any change and we get

Zn(f − sτ + zg) =
∑
|α|=n

(Lnf−sτ+zgχα)(xα).

Proposition 2. We have

Zn(f − sτ + zg)−
k∑
i=1

Lnf−sτ+zgχi(xi)

=

n∑
m=2

( ∑
|α|=m

Lnf−sτ+zgχα(xα)−
∑

|β|=m−1

Lnf−sτ+zgχβ(xβ)
)
. (3.2)

The proof is elementary by using the fact that

k∑
i=1

(Lnf−sτ+zgχUi)(xi) =
∑
|α|=1

(Lnf−sτ+zgχα)(xα).

Now we repeat the argument in [24] without any change and conclude that∑
|β|=m−1

Lnf−sτ+zgχβ(xβ) =
∑
|α|=m

Lnf−sτ+zgχα(xᾱ).

Thus, the proof of (3.1) is reduced to an estimate of the difference

Lnf−sτ+zgχα(xα)− Lnf−sτ+zgχα(xᾱ).

Observe that xα and xᾱ are on the same cylinder Uᾱ. According to Proposition 1, the function
Lnf−sτ+zgχα is ν-Hölder continuous on Uᾱ. Consequently, for every n ≥ 2 we obtain

|Lnf−sτ+zgχα(xα)− Lnf−sτ+zgχα(xᾱ)| ≤ ‖Lnf−sτ+zgχα‖νd(xα, xᾱ)ν ,
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where ‖.‖µ denotes the operator norm derived from the ν-Hölder norm. Going back to (3.2), we
deduce ∣∣∣Zn(f − sτ + zg)−

k∑
i=1

Lnf−sτ+zgχi(xi)
∣∣∣

≤
n∑

m=2

∑
|α|=m

‖Ln−mf−sτ+zg‖ν‖L
m
f−sτ+zgχα‖νd(xα, xᾱ). (3.3)

This it makes possible to apply (2.1) and to conclude that

d(xα, xᾱ) ≤ Cνγ−ν(m−2)
0 d(σm−2xα, σ

m−2xᾱ)ν ≤ C2γ
−mν
0 .

To finish the proof we have to estimate the term ‖Lmg−sr+zfχβ‖ν . Given a word α of length n > 1

and x ∈ σ(Uαn−1)∩ IntUi for any i with A(αn−1, i) = 1, we define σ−1
α (x) to be the unique point y

such that σn(y) = x and y ∈ Uα. For a symbol i we define ix = σ−1
i (x).

First we have

Lemma 2.

(Lmf−sτ+zgχβ)(x) =

{
e(f−sτ+zg)m(σ−1

β x), if x ∈ σ(Uβm−1),

0, otherwise.

The proof is a repetition of that of Lemma 3.7 in [24] and it is based on the definition of σ−1
α

above and the fact that

(Lmf−sτ+zgχβ)(x) =
∑

σmy=x

ef
m−sτm+zgm(y)χβ(y).

For every admissible word β with |β| = m, we fix a point yβ ∈ σ(Uβm−1) which will be chosen

as in [24]. Define zβ = σ−1
β (yβ).

Lemma 3. There exist constants B0 > 0, B1 > 0, B2 > 0 such that we have the estimate

‖Lmf−sτ+zg(χβ)‖ν ≤ B0

(
ea0|U |

νB1 +B1|s|ea0|U |
ν(1+γ−ν0 )B1

)
×
(
ec0|U |

νB2 +B2|z|ec0|U |
ν(1+γ−ν0 )B2

)
e(fm−aτm+cgm)(zβ).

Proof. We will follow the proof of Lemma 3.8 in [24]. Let x and y be in the same Markov leaf.
If y /∈ σ(Uβm−1), then |Lmf−sτ+zg(χβ)(x)| = |Lmf−sτ+zg(χβ)(x) − Lmf−sτ+zg(χβ)(y)| = 0. In the case

when x /∈ σ(Uβm−1), we repeat the same argument. So we will consider the case when both x and
y are in σ(Uβm−1).

We have
|Lmf−sτ+zg(χβ)(x)| = |e(fm−(a+ib)τm+(c+id)gm)(σ−1

β x)|

≤ exp
(

(fm − aτm + cgm)(σ−1
β x)− (fm − aτm + cgm)(σ−1

β y)
)
e(fm−aτm+cgm)(zβ).

On the other hand, applying Lemma 1 with w = τ , we get

|τm(σ−1
β x)− τm(σ−1

β y)| ≤ B1(d(σm−1σ−1
β x, σm−1σ−1

β y))ν ≤ B1|U |ν .
The same argument works for the terms involving fm and gm, applying Lemma 1 with w = f, g,
respectively. Thus we obtain

|Lmf−sτ+zg(χβ)(x)| ≤ e(C0+a0B1+c0B2)|U |µe(fm−aτm+cgm)(zβ).
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and this implies an estimate for |Lmf−sτ+zg(χβ)|∞. Next,

|Lmf−sτ+zg(χβ)(x)− Lmf−sτ+zg(χβ)(y)|

≤ |ef
m(σ−1

β (x))−fm(σ−1
β (y)) − 1||ef

m(σ−1
β (y))||e−sτ

m(σ−1
β (x))+sτm(σ−1

β (y)) − 1||e−sτ
m(σ−1

β (y))|

×|ezg
m(σ−1

β (x))−zgm(σ−1
β (y)) − 1||ezg

m(σ−1
β (y))|.

As in [24], we have

|e−sr
m(σ−1

β (x))+srm(σ−1
β (y)) − 1||e−sr

m(σ−1
β (y))| ≤ B1γ

ν
0 |s|ea0B1(1+γ−ν0 )|U |νe−ar

m(zβ)d(x, y)ν .

For the product involving zgm we have the same estimate with B2, |z|, c0 and c in the place of
B1, |s|, a0 and a. A similar estimate holds for the term containing fm with a constant B3 in the
place of B1. Taking the product of these estimates we obtain a bound for |Lmf−sτ+zg(χβ)(x) −
Lmf−sτ+zg(χβ)(y)|, this implies the desired estimate for the µ-Hölder norm of Lf−msτ+zg(χβ). This
completes the proof. �

Now the proof of Theorem 4 is reduced to the estimate of
∑
|β|=m e

(fm−aτm+cgm)(zβ). Introduce

the real-valued function h = f−aτ+cg. Then we have to estimate
∑
|β|=m e

hm(zβ). For this purpose

we repeat the argument on pages 232-234 in [24] and deduce with some constant d0 > 0 depending
only on the matrix A and every ε > 0 the bound∑

|β|=m

eh
m(zβ) ≤ ed0|h|∞Bεe(m+d0)(ε+Pr(h)).

Combing this with the previous estimates, we get (3.1) which completes the proof of Theorem 4.
�

4. Ruelle operators – definitions and assumptions

For a contact Anosov flows φt with Lipschitz local stable holonomy maps it is proved in section
6 in [21] that the following local non-integrability condition holds:

(LNIC): There exist z0 ∈ Λ, ε0 > 0 and θ0 > 0 such that for any ε ∈ (0, ε0], any ẑ ∈ Λ∩W u
ε (z0) and

any tangent vector η ∈ Eu(ẑ) to Λ at ẑ with ‖η‖ = 1 there exist z̃ ∈ Λ∩W u
ε (ẑ), ỹ1, ỹ2 ∈ Λ∩W s

ε (z̃)
with ỹ1 6= ỹ2, δ = δ(z̃, ỹ1, ỹ2) > 0 and ε′ = ε′(z̃, ỹ1, ỹ2) ∈ (0, ε] such that

|∆(expuz (v), πỹ1(z))−∆(expuz (v), πỹ2(z))| ≥ δ ‖v‖

for all z ∈W u
ε′ (z̃)∩Λ and v ∈ Eu(z; ε′) with expuz (v) ∈ Λ and 〈 v

‖v‖ , ηz〉 ≥ θ0, where ηz is the parallel

translate of η along the geodesic in W u
ε0(z0) from ẑ to z.

For any x ∈ Λ, T > 0 and δ ∈ (0, ε] set

Bu
T (x, δ) = {y ∈W u

ε (x) : d(φt(x), φt(y)) ≤ δ , 0 ≤ t ≤ T}.

We will say that φt has a regular distortion along unstable manifolds over the basic set Λ if
there exists a constant ε0 > 0 with the following properties:

(a) For any 0 < δ ≤ ε ≤ ε0 there exists a constant R = R(δ, ε) > 0 such that

diam(Λ ∩Bu
T (z, ε)) ≤ R diam(Λ ∩Bu

T (z, δ))

for any z ∈ Λ and any T > 0.
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(b) For any ε ∈ (0, ε0] and any ρ ∈ (0, 1) there exists δ ∈ (0, ε] such that for any z ∈ Λ and any
T > 0 we have diam(Λ ∩Bu

T (z, δ)) ≤ ρ diam(Λ ∩Bu
T (z, ε)).

A large class of flows on basic sets having regular distortion along unstable manifolds is described
in [22].

In this paper we work under the following Standing Assumptions:

(A) φt has Lipschitz local holonomy maps over Λ,

(B) the local non-integrability condition (LNIC) holds for φt on Λ,

(C) φt has a regular distortion along unstable manifolds over the basic set Λ.

A rather large class of examples satisfying the above conditions is provided by imposing the
following pinching condition:

(P): There exist constants C > 0 and β ≥ α > 0 such that for every x ∈M we have

1

C
eαx t ‖u‖ ≤ ‖dφt(x) · u‖ ≤ C eβx t ‖u‖ , u ∈ Eu(x) , t > 0

for some constants αx, βx > 0 with α ≤ αx ≤ βx ≤ β and 2αx − βx ≥ α for all x ∈M .

We should note that (P) holds for geodesic flows on manifolds of strictly negative sectional
curvature satisfying the so called 1

4 -pinching condition. (P) always holds when dim(M) = 3.

Simplifying Assumptions: φt is a C2 contact Anosov flow satisfying the condition (P).

As shown in [22] the pinching condition (P) implies that φt has Lipschitz local holonomy maps
and regular distortion along unstable manifolds. Combining this with Proposition 6.1 in [21], shows
that the Simplifying Assumptions imply the Standing Assumptions.

As in section 2 consider a fixed Markov family R = {Ri}ki=1 for the flow φt on Λ consisting
of rectangles Ri = [Ui, Si] and let U = ∪ki=1Ui. The Standing Assumptions imply the existence of
constants c0 ∈ (0, 1] and γ1 > γ0 > 1 such that (2.1) hold.

In what follows we will assume that f and g are fixed real-valued functions in Cα(Û) for
some fixed α > 0. Let P = Pf be the unique real number so that Pr(f −P τ) = 0, where Pr(h) is
the topological pressure of h with respect to the shift map σ defined in Section 2. Given t ∈ R with
t ≥ 1, following [4], denote by ft the average of f over balls in U of radius 1/t. To be more precise,
first one has to fix an arbitrary extension f ∈ Cα(V ) (with the same Hölder constant), where V is
an open neighborhood of U in M , and then take the averages in question. Then ft ∈ C∞(V ), so
its restriction to U is Lipschitz (with respect to the Riemann metric) and:

(a) ‖f − ft‖∞ ≤ |f |α/tα ;
(b) Lip(ft) ≤ Const ‖f‖∞t ;
(c) For any β ∈ (0, α) we have |f − ft|β ≤ 2 |f |α/tα−β.

In the special case f ∈ CLip(U) we set ft = f for all t ≥ 1. Similarly for g. Let λ0 > 0
be the largest eigenvalue of Lf−Pτ , and let ν̂0 be the (unique) probability measure on U with

L∗f−Pτ ν̂0 = ν̂0. Fix a corresponding (positive) eigenfunction h0 ∈ Ĉα(U) such that
∫
U h0 dν̂0 = 1.

Then dν0 = h0 dν̂0 defines a σ-invariant probability measure ν0 on U . Setting

f0 = f − P τ + lnh0(u)− lnh0(σ(u)),

we have L∗
f (0)

ν0 = ν0, i.e.

∫
U
Lf (0)H dν0 =

∫
U
H dν0 for any H ∈ C(U), and Lf01 = 1.
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Given real numbers a and t (with |a| + 1
|t| small), denote by λat the largest eigenvalue of

Lft−(P+a)τ on CLip(U) and by hat the corresponding (positive) eigenfunction such that
∫
U hat dνat =

1, where νat is the unique probability measure on U with L∗ft−(P+a)τνat = νat.

As is well-known the shift map σ : Û −→ Û is naturally isomorphic to an one-sided subshift
of finite type. Given θ ∈ (0, 1), a natural metric associated by this isomorphism is defined (for
x 6= y) by dθ(x, y) = θm, where m is the largest integer such that x, y belong to the same cylinder
of length m. There exist θ = θ(α) ∈ (0, 1) and β ∈ (0, α) such that (d(x, y))α ≤ Const dθ(x, y)

and dθ(x, y) ≤ Const (d(x, y))β for all x, y ∈ Û . One can then apply the Ruelle-Perron-Frobenius

theorem to the sub-shift of fine type and deduce that hat ∈ Cβ(Û). However this is not enough for
our purposes – in Lemma 4 below we get a bit more.

Consider an arbitrary β ∈ (0, α). It follows from properties (a) and (c) above that there exists
a constant C0 > 0, depending on f and α but independent of β, such that

‖[ft − (P + a)τ ]− (f − Pτ)‖β ≤ C0 [|a|+ 1/tα−β] (4.1)

for all |a| ≤ 1 and t ≥ 1. Since Pr(f − Pτ) = 0, it follows from the analyticity of pressure and

the eigenfunction projection corresponding to the maximal eigenvalue λat = ePr(ft−(P+a)τ) of the
Ruelle operator Lft−(P+a)τ on Cβ(U) (cf. e.g. Ch. 3 in [11]) that there exists a constant a0 > 0
such that, taking C0 > 0 sufficiently large, we have

|Pr(ft − (P + a)τ)| ≤ C0

(
|a|+ 1

tα−β

)
, ‖hat − h0‖β ≤ C0

(
|a|+ 1

tα−β

)
(4.2)

for |a| ≤ a0 and 1/t ≤ a0. We may assume C0 > 0 and a0 > 0 are taken so that 1/C0 ≤ λat ≤ C0,
‖ft‖∞ ≤ C0 and 1/C0 ≤ hat(u) ≤ C0 for all u ∈ U and all |a|, 1/t ≤ a0.

Given real numbers a and t with |a|, 1/t ≤ a0 consider the functions

fat = ft − (P + a)τ + lnhat − ln(hat ◦ σ)− lnλat

and the operators

Labt = Lfat−i b τ : C(U) −→ C(U) , Mat = Lfat : C(U) −→ C(U).

One checks that Mat 1 = 1.
Taking the constant C0 > 0 sufficiently large, we may assume that

‖fat − f0‖β ≤ C0

[
|a|+ 1

tα−β

]
, |a|, 1/t ≤ a0. (4.3)

We will now prove a simple uniform estimate for Lip(hat). With respect to the usual metrics
on symbol spaces this a consequence of general facts (see e.g. Sect. 1.7 in [1] or Ch. 3 in [11]),
however here we need it with respect to the Riemann metric.

The proof of the following lemma is given in the Appendix.

Lemma 4. Taking the constant a0 > 0 sufficiently small, there exists a constant T ′ > 0 such that

for all a, t ∈ R with |a| ≤ a0 and t ≥ 1/a0 we have hat ∈ CLip(Û) and Lip(hat) ≤ T ′t.

It follows from the above that, assuming a0 > 0 is chosen sufficiently small, there exists a
constant T > 0 (depending on |f |α and a0) such that

‖fat‖∞ ≤ T , ‖gt‖∞ ≤ T , Lip(hat) ≤ T t , Lip(fat) ≤ T t (4.4)
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for |a|, 1/t ≤ a0. We will also assume that T ≥ max{ ‖τ‖0 , Lip(τ|Û ) }. From now on we will

assume that a0, C0, T , 1 < γ0 < γ1 are fixed constants with (2.1) and (4.1) – (4.4).

5. Ruelle operators depending on two parameters – the case when b is the leading
parameter

Throughout this section we work under the Standing Assumptions made in section 4 and with

fixed real-valued functions f, g ∈ Cα(Û) as in section 4. Throughout 0 < β < α are fixed numbers.
We will study Ruelle operators of the form Lf−(Pf+a+ib)τ+zg, where z = c + iw, a, b, c, w ∈ R,

and |a|, |c| ≤ a0 for some constant a0 > 0. Such operators will be approximates by operators of the
form

Labtz = Lfat−i bτ+zgt : Cα(Û) −→ Cα(Û).

In fact, since fat − ibτ + zgt is Lipschitz, the operators Labtz preserves each of the spaces Cα
′
(Û)

for 0 < α′ ≤ 1 including the space CLip(Û) of Lipschitz functions h : Û −→ C. For such h we will

denote by Lip(h) the Lipschitz constant of h. Let ‖h‖0 denote the standard sup norm of h on Û .

For |b| ≥ 1, as in [4], consider the norm ‖.‖Lip,b on CLip(Û) defined by ‖h‖Lip,b = ‖h‖0 + Lip(h)
|b| ,

and also the norm ‖h‖β,b = ‖h‖∞ +
|h|β
|b| on Cβ(U).

Our aim in this section is to prove the following

Theorem 5. Let φt : M −→ M satisfy the Standing Assumptions over the basic set Λ, and let
0 < β < α. Let R = {Ri}ki=1 be a Markov family for φt over Λ as in section 2. Then for any

real-valued functions f, g ∈ Cα(Û) we have:

(a) For any constants ε > 0, B > 0 and ν ∈ (0, 1) there exist constants 0 < ρ < 1, a0 > 0,
b0 ≥ 1, A0 > 0 and C = C(B, ε) > 0 such that if a, c ∈ R satisfy |a|, |c| ≤ a0, then

‖Lmfat−ibτ+(c+iw)gt
h‖Lip,b ≤ C ρm |b|ε ‖h‖Lip,b

for all h ∈ CLip(Û), all integers m ≥ 1 and all b, w, t ∈ R with |b| ≥ b0, 1 ≤ t ≤ 1
A0

log |b|ν and

|w| ≤ B |b|ν .

(b) For any constants ε > 0, B > 0, ν ∈ (0, 1) and β ∈ (0, α) there exist constants 0 < ρ < 1,
a0 > 0, b0 ≥ 1 and C = C(B, ε) > 0 such that if a, c ∈ R satisfy |a|, |c| ≤ a0, then

‖Lmf−(Pf+a+ib)τ+(c+iw)gh‖β,b ≤ C ρ
m |b|ε ‖h‖β,b

for all h ∈ Cβ(Û), all integers m ≥ 1 and all b, w ∈ R with |b| ≥ b0 and |w| ≤ B |b|ν .

(c) If f, g ∈ CLip(Û), then for any constants ε > 0, B > 0 and β ∈ (0, α) there exist constants
0 < ρ < 1, a0 > 0, b0 ≥ 1 and C = C(B, ε) > 0 such that if a, c ∈ R satisfy |a|, |c| ≤ a0, then

‖Lmf−(Pf+a+ib)τ+(c+iw)gh‖Lip,b ≤ C ρm |b|ε ‖h‖Lip,b

for all h ∈ Cβ(Û), all integers m ≥ 1 and all b, w ∈ R with |b| ≥ b0 and |w| ≤ B |b|.

We will first prove part (a) of the above theorem and then derive part (b) by a simple approxi-
mation procedure. To prove part (a) we will use the main steps in section 5 in [21] with necessary
modifications. The proof of part (c) is just a much simpler version of the proof of (b).

Define a new metric D on Û by

D(x, y) = min{diam(C) : x, y ∈ C , C a cylinder contained in Ui}
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if x, y ∈ Ui for some i = 1, . . . , k, and D(x, y) = 1 otherwise. Rescaling the metric on M if

necessary, we will assume that diam(Ui) < 1 for all i. As shown in [20], D is a metric on Û with

d(x, y) ≤ D(x, y) for x, y ∈ Ûi for some i, and for any cylinder C in U the characteristic function

χĈ of Ĉ on Û is Lipschitz with respect to D and LipD(χĈ) ≤ 1/diam(C).
We will denote by C

Lip
D (Û) the space of all Lipschitz functions h : Û −→ C with respect to the

metric D on Û and by LipD(h) the Lipschitz constant of h with respect to D.

Given A > 0, denote by KA(Û) the set of all functions h ∈ C
Lip
D (Û) such that h > 0 and

|h(u)−h(u′)|
h(u′) ≤ AD(u, u′) for all u, u′ ∈ Û that belong to the same Ûi for some i = 1, . . . , k. Notice

that h ∈ KA(Û) implies | lnh(u)− lnh(v)| ≤ A D(u, v) and therefore e−A D(u,v) ≤ h(u)
h(v) ≤ eA D(u,v)

for all u, v ∈ Ûi, i = 1, . . . , k.
We begin with a lemma of Lasota-Yorke type, which necessarily has a more complicated form

due to the more complex situation considered. It involves the operators Labtz, and also operators
of the form

Matc = Lfat+cgt : Cα(Û) −→ Cα(Û).

Fix arbitrary constants ν ∈ (0, 1) and γ̂ with 1 < γ̂ < γ0.

Lemma 5. Assuming a0 > 0 is chosen sufficiently small, there exists a constant A0 > 0 such that
for all a, c, t ∈ R with |a|, |c| ≤ a0 and t ≥ 1 the following hold:

(a) If H ∈ KE(Û) for some E > 0, then

|(Mm
atcH)(u)− (Mm

atcH)(u′)|
(Mm

atcH)(u′)
≤ A0

[
E

γ̂m
+ eA0t t

]
D(u, u′)

for all m ≥ 1 and all u, u′ ∈ Ui, i = 1, . . . , k.

(b) If the functions h and H on Û and E > 0 are such that H > 0 on Û and |h(v)− h(v′)| ≤
EH(v′)D(v, v′) for any v, v′ ∈ Ûi, i = 1, . . . , k, then for any integer m ≥ 1 and any b, w, t ∈ R
with |b|, t, |w| ≥ 1, for z = c+ iw we have

|Lmabtzh(u)− Lmabtzh(u′)| ≤ A0

(
E

γ̂m
(Mm

atcH)(u′) + (|b|+ eA0tt+ t|w|)(Mm
atc|h|)(u′)

)
D(u, u′)

whenever u, u′ ∈ Ûi for some i = 1, . . . , k. In particular, if

t ≤ log |b|ν

A0
, t ≤ B|b|1−ν , |w| ≤ B|b|ν (5.1)

for some constant B > 0, then

|Lmabtzh(u)− Lmabtzh(u′)| ≤ A1

(
E

γ̂m
(Mm

atcH)(u′) + |b|(Mm
atc|h|)(u′)

)
D(u, u′).

for some constant A1 > 0.

A proof of this lemma is given in the Appendix.
From now on we will assume that a0, η0 and A0 are fixed with the properties in

Lemma 5 above and a, b, c, w, t ∈ R are such that |a| ≤ a0, c ≤ η0, |b|, t, |w| ≥ 1 and (5.1)
hold. As before, set z = c+ id.

We will use the entire set-up and notation from section 4 in [21]. In what follows we recall the
main part of it.
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Following section 4 in [21], fix an arbitrary point z0 ∈ Λ and constants ε0 > 0 and θ0 ∈
(0, 1) with the properties described in (LNIC). Assume that z0 ∈ IntΛ(U1), U1 ⊂ Λ ∩W u

ε0(z0)
and S1 ⊂ Λ ∩W s

ε0(z0). Fix an arbitrary constant θ1 such that

0 < θ0 < θ1 < 1 .

Next, fix an arbitrary orthonormal basis e1, . . . , en in Eu(z0) and a C1 parametrization r(s) =
expuz0(s), s ∈ V ′0 , of a small neighborhood W0 of z0 in W u

ε0(z0) such that V ′0 is a convex compact

neighborhood of 0 in Rn ≈ span(e1, . . . , en) = Eu(z0). Then r(0) = z0 and ∂
∂si
r(s)|s=0 = ei for

all i = 1, . . . , n. Set U ′0 = W0 ∩ Λ. Shrinking W0 (and therefore V ′0 as well) if necessary, we may

assume that U ′0 ⊂ IntΛ(U1) and
∣∣∣〈 ∂r

∂si
(s), ∂r∂sj (s)

〉
− δij

∣∣∣ is uniformly small for all i, j = 1, . . . , n and

s ∈ V ′0 , so that

1

2
〈ξ, η〉 ≤ 〈 dr(s) · ξ , dr(s) · η 〉 ≤ 2 〈ξ, η〉 , ξ, η ∈ Eu(z0) , s ∈ V ′0 ,

and 1
2 ‖s− s

′‖ ≤ d(r(s), r(s′)) ≤ 2 ‖s− s′‖, s, s′ ∈ V ′0 .

Definitions ([21]): (a) For a cylinder C ⊂ U ′0 and a unit vector ξ ∈ Eu(z0) we will say that
a separation by a ξ-plane occurs in C if there exist u, v ∈ C with d(u, v) ≥ 1

2 diam(C) such that〈
r−1(v)−r−1(u)
‖r−1(v)−r−1(u)‖ , ξ

〉
≥ θ1 .

Let Sξ be the family of all cylinders C contained in U ′0 such that a separation by an ξ-plane
occurs in C.

(b) Given an open subset V of U ′0 which is a finite union of open cylinders and δ > 0, let
C1, . . . , Cp (p = p(δ) ≥ 1) be the family of maximal closed cylinders in V with diam(Cj) ≤ δ. For

any unit vector ξ ∈ Eu(z0) set M
(δ)
ξ (V ) = ∪{Cj : Cj ∈ Sξ , 1 ≤ j ≤ p} .

In what follows we will construct, amongst other things, a sequence of unit vectors ξ1, ξ2, . . . , ξj0 ∈
Eu(z0). For each ` = 1, . . . , j0 set B` = {η ∈ Sn−1 : 〈η, ξ`〉 ≥ θ0} . For t ∈ R and s ∈ Eu(z0) set

Iη,tg(s) = g(s+t η)−g(s)
t , t 6= 0 (increment of g in the direction of η).

Lemma 6. ([21]) There exist integers 1 ≤ n1 ≤ N0 and `0 ≥ 1, a sequence of unit vectors
η1, η2, . . . , η`0 ∈ Eu(z0) and a non-empty open subset U0 of U ′0 which is a finite union of open
cylinders of length n1 such that setting U = σn1(U0) we have:

(a) For any integer N ≥ N0 there exist Lipschitz maps v
(`)
1 , v

(`)
2 : U −→ U (` = 1, . . . , `0) such

that σN (v
(`)
i (x)) = x for all x ∈ U and v

(`)
i (U) is a finite union of open cylinders of length N

(i = 1, 2; ` = 1, 2, . . . , `0).

(b) There exists a constant δ̂ > 0 such that for all ` = 1, . . . , `0, s ∈ r−1(U0), 0 < |h| ≤ δ̂ and
η ∈ B` with s+ h η ∈ r−1(U0 ∩ Λ) we have[

Iη,h

(
τN (v

(`)
2 (r̃(·)))− τN (v

(`)
1 (r̃(·)))

)]
(s) ≥ δ̂

2
.

(c) We have v
(`)
i (U)

⋂
v

(`′)
i′ (U) = ∅ whenever (i, `) 6= (i′, `′).

(d) For any open cylinder V in U0 there exists a constant δ′ = δ′(V ) > 0 such that

V ⊂M (δ)
η1 (V ) ∪M (δ)

η2 (V ) ∪ . . . ∪M (δ)
η`0

(V )

for all δ ∈ (0, δ′].
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Fix U0 and U with the properties described in Lemma 1; then U = U .

Set δ̂ = min
1≤`≤`0

δ̂j , n0 = max
1≤`≤`0

m`, and fix an arbitrary point ẑ0 ∈ U (`0)
0 ∩ Û .

Fix integers 1 ≤ n1 ≤ N0 and `0 ≥ 1, unit vectors η1, η2, . . . , η`0 ∈ Eu(z0) and a non-empty open
subset U0 of W0 with the properties described in Lemma 6. By the choice of U0, σn1 : U0 −→ U is
one-to-one and has an inverse map ψ : U −→ U0, which is Lipschitz.

Set E = max
{

4A0 ,
2A0 T
γ−1

}
, where A0 ≥ 1 is the constant from Lemma 5.4, and fix an

integer N ≥ N0 such that

γN ≥ max

{
6A0 ,

200 γn1
1 A0

c2
0

,
512 γn1 E

c0 δ̂ ρ

}
.

Then fix maps v
(`)
i : U −→ U (` = 1, . . . , `0, i = 1, 2) with the properties (a), (b), (c) and (d) in

Lemma 6. In particular, (c) gives

v
(`)
i (U) ∩ v(`′)

i′ (U) = ∅ , (i, `) 6= (i′, `′).

Since U0 is a finite union of open cylinders, it follows from Lemma 6(d) that there exist a
constant δ′ = δ′(U0) > 0 such that

M (δ)
η1 (U0) ∪ . . . ∪M (δ)

η`0
(U0) ⊃ U0 , δ ∈ (0, δ′].

Fix δ′ with this property. Set

ε1 = min

{
1

32C0
, c1 ,

1

4E
,

1

δ̂ ρp0+2
,
c0r0

γn1
1

,
c2

0(γ − 1)

16Tγn1
1

}
,

and let b ∈ R be such that |b| ≥ 1 and
ε1
|b|
≤ δ′.

Let Cm (1 ≤ m ≤ p) be the family of maximal closed cylinders contained in U0 with diam(Cm) ≤
ε1
|b| such that U0 ⊂ ∪pj=mCm and U0 = ∪pm=1Cm. As in [21],

ρ
ε1
|b|
≤ diam(Cm) ≤ ε1

|b|
, 1 ≤ m ≤ p . (5.2)

Fix an integer q0 ≥ 1 such that

θ0 < θ1 − 32 ρq0−1.

Next, let D1, . . . ,Dq be the list of all closed cylinders contained in U0 that are subcylinders of

co-length p0 q0 of some Cm (1 ≤ m ≤ p). Then U0 = C1 ∪ . . . ∪ Cp = D1 ∪ . . . ∪ Dq. Moreover,

ρp0 q0+1 · ε1
|b|
≤ diam(Dj) ≤ ρq0 ·

ε1
|b|

, 1 ≤ j ≤ q.

Given j = 1, . . . , q, ` = 1, . . . , `0 and i = 1, 2, set D̂j = Dj ∩ Û , Zj = σn1(D̂j), Ẑj = Zj ∩ Û ,

X
(`)
i,j = v

(`)
i (Ẑj), and X̂

(`)
i,j = X

(`)
i,j ∩ Û . It then follows that Dj = ψ(Zj), and U = ∪qj=1Zj . Moreover,

σN−n1(v
(`)
i (x)) = ψ(x) for all x ∈ U , and all X

(`)
i,j are cylinders such that X

(`)
i,j ∩X

(`′)
i′,j′ = ∅ whenever

(i, j, `) 6= (i′, j′, `′), and

diam(X
(`)
i,j ) ≥ c0 ρ

p0 q0+1

γN1
· ε1
|b|
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for all i = 1, 2, j = 1, . . . , q and ` = 1, . . . , `0. The characteristic function ω
(`)
i,j = χ

X̂
(`)
i,j

: Û −→ [0, 1]

of X̂
(`)
i,j belongs to C

Lip
D (Û) and LipD(X

(`)
i,j ) ≤ 1/diam(X

(`)
i,j ).

Let J be a subset of the set Ξ = { (i, j, `) : 1 ≤ i ≤ 2 , 1 ≤ j ≤ q , 1 ≤ ` ≤ `0 }. Set

µ0 = µ0(N) = min

{
1

4
,
c0 ρ

p0q0+2 ε1

4 γN1
,

1

4 e2TN
sin2

(
δ̂ ρ ε1
256

) }
,

and define the function ω = ωJ : Û −→ [0, 1] by ω = 1− µ0

∑
(i,j,`)∈J

ω
(`)
i,j . Clearly ω ∈ CLip

D (Û) and

1− µ ≤ ω(u) ≤ 1 for any u ∈ Û . Moreover,

LipD(ω) ≤ Γ =
2µγN1

c0 ρp0q0+2
· |b|
ε1
.

Next, define the contraction operator N = NJ(a, b, t, c) : C
Lip
D (Û) −→ C

Lip
D (Û) by

(Nh) =MN
atc(ωJ · h).

Using Lemma 5 above, the proof of the following lemma is the same as that of Lemma 5.6 in
[21].

Lemma 7. Under the above conditions for N and µ the following hold :

(a) Nh ∈ KE|b|(Û) for any h ∈ KE|b|(Û);

(b) If h ∈ C
Lip
D (Û) and H ∈ KE|b|(Û) are such that |h| ≤ H in Û and |h(v) − h(v′)| ≤

E|b|H(v′)D(v, v′) for any v, v′ ∈ Uj, j = 1, . . . , k, then for any i = 1, . . . , k and any u, u′ ∈ Ûi we
have

|(LNabtzh)(u)− (LNabtzh)(u′)| ≤ E|b|(NH)(u′)D(u, u′).

Definition. A subset J of Ξ will be called dense if for any m = 1, . . . , p there exists (i, j, `) ∈ J
such that Dj ⊂ Cm.

Denote by J = J(a, b) the set of all dense subsets J of Ξ.
Although the operator N here is different, the proof of the following lemma is very similar to

that of Lemma 5.8 in [21].

Lemma 8. Given the number N , there exist ρ2 = ρ2(N) ∈ (0, 1) and a0 = a0(N) > 0 such that∫
Û

(NJH)2dν ≤ ρ2

∫
Û
H2dν whenever |a|, |c| ≤ a0, t ≥ 1/a0, J is dense and H ∈ KE|b|(Û).

In what follows we assume that h,H ∈ CLip
D (Û) are such that

H ∈ KE|b|(Û) , |h(u)| ≤ H(u) , u ∈ Û , (5.3)

and
|h(u)− h(u′)| ≤ E|b|H(u′)D(u, u′) whenever u, u′ ∈ Ûi , i = 1, . . . , k . (5.4)

Let again z = c+ iw. Define the functions χ
(i)
` : Û −→ C (` = 1, . . . , j0, i = 1, 2) by

χ
(1)
` (u) =

∣∣∣e(fNat−ibτN+zgNt )(v
(`)
1 (u))h(v

(`)
1 (u)) + e(fNat−ibτN+zgNt )(v

(`)
2 (u))h(v

(`)
2 (u))

∣∣∣
(1− µ)ef

N
at(v

(`)
1 (u))+cgNt (v

(`)
1 (u))H(v

(`)
1 (u)) + ef

N
at(v

(`)
2 (u))+cgNt (v

(`)
2 (u))H(v

(`)
2 (u))

,
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χ
(2)
` (u) =

∣∣∣e(fNat−ibτN+zgNt )(v
(`)
1 (u))h(v

(`)
1 (u)) + e(fNat−ibτN+zgNt )(v

(`)
2 (u))h(v

(`)
2 (u))

∣∣∣
ef

N
at(v

(`)
1 (u))+cgNt (v

(`)
1 (u))H(v

(`)
1 (u)) + (1− µ)ef

N
at(v

(`)
2 (u))+cgNt (v

(`)
2 (u))H(v

(`)
2 (u))

,

and set γ`(u) = b [τN (v
(`)
2 (u))− τN (v

(`)
1 (u))], u ∈ Û .

Definitions. We will say that the cylinders Dj and Dj′ are adjacent if they are subcylinders of
the same Cm for some m. If Dj and Dj′ are contained in Cm for some m and for some ` = 1, . . . , `0

there exist u ∈ Dj and v ∈ Dj′ such that d(u, v) ≥ 1
2 diam(Cm) and

〈
r−1(v)−r−1(u)
‖r−1(v)−r−1(u)‖ , η`

〉
≥ θ1, we

will say that Dj and Dj′ are η`-separable in Cm.
As a consequence of Lemma 6(b) one gets the following.

Lemma 9. (Lemma 5.9 in [21]) Let j, j′ ∈ {1, 2, . . . , q} be such that Dj and Dj′ are contained in Cm
and are η`-separable in Cm for some m = 1, . . . , p and ` = 1, . . . , `0 . Then |γ`(u) − γ`(u′)| ≥ c2ε1

for all u ∈ Ẑj and u′ ∈ Ẑj′, where c2 =
δ̂ ρ

16
.

The following lemma is the analogue of Lemma 5.10 in [21] and represents the main step in
proving Theorem 1.

Lemma 10. Assume |b| ≥ b0 for some sufficiently large b0 > 0, |a|, |c| ≤ a0, and let (5.1) hold.
Then for any j = 1, . . . , q there exist i ∈ {1, 2}, j′ ∈ {1, . . . , q} and ` ∈ {1, . . . , `0} such that Dj
and Dj′ are adjacent and χ

(i)
` (u) ≤ 1 for all u ∈ Ẑj′.

To prove this we need the following lemma which coincides with Lemma 14 in [4] and its proof
is almost the same.

Lemma 11. If h and H satisfy (5.3)-(5.4), then for any j = 1, . . . , q, i = 1, 2 and ` = 1, . . . , `0 we
have:

(a)
1

2
≤
H(v

(`)
i (u′))

H(v
(`)
i (u′′))

≤ 2 for all u′, u′′ ∈ Ẑj;

(b) Either for all u ∈ Ẑj we have |h(v
(`)
i (u))| ≤ 3

4H(v
(`)
i (u)), or |h(v

(`)
i (u))| ≥ 1

4H(v
(`)
i (u)) for

all u ∈ Ẑj.

Sketch of proof of Lemma 10. We use a modification of the proof of Lemma 5.10 in [21].
Given j = 1, . . . , q, let m = 1, . . . , p be such that Dj ⊂ Cm. As in [21] we find j′, j′′ = 1, . . . , q

such that Dj′ ,Dj′′ ⊂ Cm and Dj′ and Dj′′ are η`-separable in Cm.

Fix `, j′ and j′′ with the above properties, and set Ẑ = Ẑj∪Ẑj′∪Ẑj′′ . If there exist t ∈ {j, j′, j′′}
and i = 1, 2 such that the first alternative in Lemma 11(b) holds for Ẑt, ` and i, then µ ≤ 1/4

implies χ
(i)
` (u) ≤ 1 for any u ∈ Ẑt.

Assume that for every t ∈ {j, j′, j′′} and every i = 1, 2 the second alternative in Lemma 11(b)

holds for Ẑt, ` and i, i.e. |h(v
(`)
i (u))| ≥ 1

4 H(v
(`)
i (u)), u ∈ Ẑ.

Since ψ(Ẑ) = D̂j∪D̂j′∪D̂j′′ ⊂ Cm, given u, u′ ∈ Ẑ we have σN−n1(v
(`)
i (u)), σN−n1(v

(`)
i (u′)) ∈ Cm.

Moreover, C′ = v
(`)
i (σn1(Cm)) is a cylinder with diam(C′) ≤ ε1

c0 γN−n1 |b|
. Thus, the estimate (9.3) in

the Appendix below implies

|gNt (v
(`)
i (u))− gNt (v

(`)
i (u′))| ≤ C1tε1

c0 γN−n1 |b|
.
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Using the above assumption, (5.1), (5.2) and (4.4), and assuming e.g.

ecg
N
t (v

(`)
i (u))|h(v

(`)
i (u))| ≥ ecgNt (v

(`)
i (u))|h(v

(`)
i (u′))|,

we get1

|ezgNt (v
(`)
i (u))h(v

(`)
i (u))− ezgNt (v

(`)
i (u′))h(v

(`)
i (u′))|

min{|ezgNt (v
(`)
i (u))h(v

(`)
i (u))|, |ezgNt (v

(`)
i (u′))h(v

(`)
i (u′))|}

=
|ezgNt (v

(`)
i (u))h(v

(`)
i (u))− ezgNt (v

(`)
i (u′))h(v

(`)
i (u′))|

ecg
N
t (v

(`)
i (u′))|h(v

(`)
i (u′))|

≤ |ezgNt (v
(`)
i (u)) − ezgNt (v

(`)
i (u′))|

ecg
N
t (v

(`)
i (u′))

+
ecg

N
t (v

(`)
i (u))|h(v

(`)
i (u))− h(v

(`)
i (u′))|

ecg
N
t (v

(`)
i (u′))|h(v

(`)
i (u′))|

≤ |ezgNt (v
(`)
i (u)) − ezgNt (v

(`)
i (u′))|

ecg
N
t (v

(`)
i (u′))

+
ec(g

N
t (v

(`)
i (u′))−gNt (v

(`)
i (u′)))E|b|H(v

(`)
i (u′))

|h(v
(`)
i (u′))|

D(v
(`)
i (u), v

(`)
i (u′))

≤ |ecgNt (v
(`)
i (u)) − ecgNt (v

(`)
i (u′))|

ecg
N
t (v

(`)
i (u′))

+ |eiwgNt (v
(`)
i (u)) − eiwgNt (v

(`)
i (u′))|+ 4E|b|e2a0NT diam(C′)

≤ (eC1tC1t+ |w|C1t)D(v
(`)
i (u), v

(`)
i (u′)) + 4E|b|e2Na0T γ

n1ε1
c0γN

≤ (B +A0)γn1ε1
c0γN

+
4Eγn1ε1

c0(e−2a0Tγ)N
<

π

12

assuming a0 > 0 is chosen sufficiently small and N sufficiently large. So, the angle between the
complex numbers

ezg
N
t (v

(`)
i (u)h(v

(`)
i (u)) and ezg

N
t (v

(`)
i (u′)h(v

(`)
i (u′))

(regarded as vectors in R2) is < π/6. In particular, for each i = 1, 2 we can choose a real continuous

function θi(u), u ∈ Ẑ, with values in [0, π/6] and a constant λi such that

ezg
N
t (v

(`)
i (u))h(v

(`)
i (u)) = ei(λi+θi(u))ecg

N
t (v

(`)
i (u))|h(v

(`)
i (u))|

for all u ∈ Ẑ. Fix an arbitrary u0 ∈ Ẑ and set λ = γ`(u0). Replacing e.g λ2 by λ2 + 2mπ for some
integer m, we may assume that |λ2− λ1 + λ| ≤ π. Using the above, θ ≤ 2 sin θ for θ ∈ [0, π/6], and
some elementary geometry yields |θi(u)− θi(u′)| ≤ 2 sin |θi(u)− θi(u′)| < c2ε1

8 .
The difference between the arguments of the complex numbers

ei b τ
N (v

(`)
1 (u))ezg

N
t (v

(`)
1 (u)h(v

(`)
1 (u)) and ei b τ

N (v
(`)
2 (u))ezg

N
t (v

(`)
2 (u)h(v

(`)
2 (u))

is given by the function

Γ(`)(u) = [b τN (v
(`)
2 (u))+θ2(u)+λ2]−[b τN (v

(`)
1 (u))+θ1(u)+λ1] = (λ2−λ1)+γ`(u)+(θ2(u)−θ1(u)) .

Given u′ ∈ Ẑj′ and u′′ ∈ Ẑj′′ , since D̂j′ and D̂j′′ are contained in Cm and are η`-separable in Cm, it
follows from Lemma 9 and the above that

|Γ(`)(u′)− Γ(`)(u′′)| ≥ |γ`(u′)− γ`(u′′)| − |θ1(u′)− θ1(u′′)| − |θ2(u′)− θ2(u′′)| ≥ c2ε1
2

.

1Using some estimates as in the proof of Lemma 5(b) in the Appendix below and ‖cgNt ‖0 ≤ a0NT by (4.4).
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Thus, |Γ(`)(u′) − Γ(`)(u′′)| ≥ c2
2 ε1 for all u′ ∈ Ẑj′ and u′′ ∈ Ẑj′′ . Hence either |Γ(`)(u′)| ≥ c2

4 ε1 for

all u′ ∈ Ẑj′ or |Γ(`)(u′′)| ≥ c2
4 ε1 for all u′′ ∈ Ẑj′′ .

Assume for example that |Γ(`)(u)| ≥ c2
4 ε1 for all u ∈ Ẑj′ . Since Ẑ ⊂ σn1(Cm), as in [21] we have

for any u ∈ Ẑ we get |Γ`(u)| < 3π
2 . Thus, c2

4 ε1 ≤ |Γ
(`)(u)| < 3π

2 for all u ∈ Ẑj′ . Now as in [4] (see

also [21]) one shows that χ
(1)
` (u) ≤ 1 and χ

(2)
` (u) ≤ 1 for all u ∈ Ẑj′ . �

Parts (a) and (b) of the following lemma can be proved in the same way as the corresponding
parts of Lemma 5.3 in [21], while part (c) follows from Lemma 5(b).

Lemma 12. There exist a positive integer N and constants ρ̂ = ρ̂(N) ∈ (0, 1), a0 = a0(N) > 0,
b0 = b0(N) > 0 and E ≥ 1 such that for every a, b, c, t, w ∈ R with |a|, |c| ≤ a0, |b| ≥ b0 such that
(5.1) hold, there exists a finite family {NJ}J∈J of operators

NJ = NJ(a, b, t, c) : C
Lip
D (Û) −→ C

Lip
D (Û),

where J = J(a, b, t, c), with the following properties:

(a) The operators NJ preserve the cone KE|b|(Û) ;

(b) For all H ∈ KE|b|(Û) and J ∈ J we have

∫
Û

(NJH)2 dν0 ≤ ρ̂
∫
Û
H2 dν0.

(c) If h,H ∈ CLip
D (Û) are such that H ∈ KE|b|(Û), |h(u)| ≤ H(u) for all u ∈ Û and

|h(u) − h(u′)| ≤ E|b|H(u′)D(u, u′) whenever u, u′ ∈ Ûi for some i = 1, . . . , k, then there exists

J ∈ J such that |LNabwh(u)| ≤ (NJH)(u) for all u ∈ Û and for z = c+ iw we have

|(LNabtzh)(u)− (LNabtzh)(u′)| ≤ E|b|(NJH)(u′)D(u, u′)

whenever u, u′ ∈ Ûi for some i = 1, . . . , k.

Proof of Theorem 5(a). Using an argument from [4] one derives from Lemma 12 that there exist
a positive integer N and constants ρ̂ ∈ (0, 1) and a0 > 0, b0 ≥ 1, A0 > 0 such that for any

a, b, c, t, w ∈ R with |a|, |c| ≤ a0, |b| ≥ b0 for which (5.1) hold, and for any h ∈ CLip(Û) with
‖h‖Lip,b ≤ 1 we have ∫

U
|LNmabtzh|2 dν0 ≤ ρ̂m , m ≥ 0. (5.5)

Then the estimate claimed in Theorem 5(a) follows as in [4] (see also the proof of Corollary
3.3(a) in [20]). �

The proof of Theorem 5(b) can be derived using an approximation procedure as in [4] – see the
Appendix below for some details.

6. Spectral estimates when w is the leading parameter

Here we try to repeat the arguments from the previous section however changing the roles of
the parameters b and w. We continue to use the assumptions made at the beginning of section 5,

however now we suppose that f ∈ CLip(Û). We will consider the case

|b| ≤ B |w| (6.1)

for an arbitrarily large (but fixed) constant B > 0.
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Assume that G : Λ −→ R is a Lipschitz functions which is constant on stable leaves of Bi =
{φt(x) : x ∈ Ri, 0 ≤ t ≤ τ(x)} for each rectangle Ri of the Markov family and A = minx∈ΛG(x) > 0.
Set

L = Lip(G) , D = diam(Λ) ,

where without loss of generality we may assume that D ≥ 1. We will also assume that

L ≤ µ̂ A ,where µ̂ =
c0 δ̂

128C0C1D
. (6.2)

The function

g(x) =

∫ τ(x)

0
G(φt(x)) dt , x ∈ R,

is constant on stable leaves of R, so it can be regarded as a function on U . Clearly g ∈ CLip(Û).

Remark. Notice that if we replace G by G+ d for some constant d > 0, then

g′(x) =

∫ τ(x)

0
(G(φt(x)) + d) dt = g(x) + d τ(x),

so

Lfa−i bτ+iwg = Lfa−i bτ+iw(g′−dτ) = Lfa−i (b+dw)τ−iwg′ .

Choose and fix d > 0 so that Lip(G)
G0+d ≤ µ̂. Then for G′ = G+d and g′ = g+dτ we have Lip(G′)

minG′ ≤ µ̂,

and the operator Lfa−i bτ+iwg = Lfa−i b′τ+iwg′ , where b′ = b+ dw. Thus, without loss of generality

we may assume that
Lip(G)
minG ≤ µ̂, which is equivalent to (6.2). As in [12], this will imply a non-

integrability property for g (see Lemma 10 below). In other words, dealing with an initial function
G one has to first change it to arrange (6.2), and then with the new parameters b and w that appear
in front of iτ and ig consider the cases |w| ≤ B|b| (as in Theorem 5(c)) and |b| ≤ B|w|, which is
considered in this section.

As in section 5, we will use the set-up and some arguments from [21]. Let R = {Ri}ki=1 be a
Markov family for φt over Λ as in section 2.

Here we prove the following analogue of Theorem 5(c).

Theorem 6. Let φt : M −→ M be a C2 flow satisfying the Standing Assumptions over the basic

set Λ. Assume in addition that (6.2) holds. Then for any real-valued functions f, g ∈ CLip(Û), any
constants ε > 0 and B > 0 there exist constants 0 < ρ < 1, a0 > 0, w0 ≥ 1 and C = C(B, ε) > 0
such that if a, c ∈ R satisfy |a|, |c| ≤ a0, then

‖Lmf−(Pf+a+ib)τ+(c+iw)gh‖Lip,b ≤ C ρm |b|ε ‖h‖Lip,b (6.3)

for all integers m ≥ 1 and all b, w ∈ R with |w| ≥ w0 and |b| ≤ B |w|.

Recall the definitions of λ0 > 0, ν̂0, h0, f0 from section 4; now we have h0, f0 ∈ CLip(Û). Fix a
small a0 > 0. Given a real number a with |a| ≤ a0, denote by λa the largest eigenvalue of Lf−(P+a)τ

on CLip(U) and by ha the corresponding (positive) eigenfunction such that
∫
U ha dνa = 1, where

νa is the unique probability measure on U with L∗f−(P+a)τνa = νa. Given real numbers a, b, c, w

with |a|, |c| ≤ a0 consider the function

f̃a = f − (P + a)τ + lnha − ln(ha ◦ σ)− lnλa



RUELLE OPERATORS WITH TWO PARAMETERS 23

and the operators

Labz = Lf̃a−i b τ+zg : C(U) −→ C(U) , M̃ac = Lf̃a+cg : C(U) −→ C(U),

where z = c+ iw. Notice that Lf̃a1 = 1.

Taking the constant C0 > 0 sufficiently large, we may assume that

Lip(f̃a − f0) ≤ C0|a| , , ‖f̃a − f0‖0 ≤ C0 |a| , |a| ≤ a0. (6.4)

Thus, ssuming a0 > 0 is chosen sufficiently small, there exists a constant T > 0 (depending on f
and a0) such that

‖f̃a‖∞ ≤ T , Lip(ha) ≤ T , Lip(f̃a) ≤ T (6.5)

for |a| ≤ a0. As before, we will assume that T ≥ max{ ‖τ‖0 , Lip(τ|Û ) }, and also that Lip(g) ≤ T

and ‖g‖0 ≤ T .

Essentially in what follows we will repeat (a simplified version of) the proof of Theorem 5, so
we will use the set-up in section 5 – see the text after Lemma 6, up to and including the definition
of ε1.

Let a, b, c, w ∈ R be so that |a|, |c| ≤ a0, |w| ≥ w0, where w0 is a sufficiently large constant
defined as b0 in section 5, and |b| ≤ B|w|. Set z = c+ iw.

Let Cm (1 ≤ m ≤ p) be the family of maximal closed cylinders contained in U0 with diam(Cm) ≤
ε1
|w| such that U0 ⊂ ∪pj=mCm and U0 = ∪pm=1Cm. As before we have

ρ
ε1
|w|
≤ diam(Cm) ≤ ε1

|w|
, 1 ≤ m ≤ p.

Fix an integer q0 ≥ 1 as in Sect. 5, and let D1, . . . ,Dq be the list of all closed cylinders contained

in U0 that are subcylinders of co-length p0 q0 of some Cm (1 ≤ m ≤ p). Then U0 = C1 ∪ . . . ∪ Cp =
D1 ∪ . . . ∪ Dq and

ρp0 q0+1 · ε1
|w|
≤ diam(Dj) ≤ ρq0 ·

ε1
|w|

, 1 ≤ j ≤ q.

Next, define the cylinders Zj = σn1(D̂j) and X
(`)
i,j = v

(`)
i (Ẑj) as in section 5, and consider the

characteristic functions ω
(`)
i,j = χ

X̂
(`)
i,j

: Û −→ [0, 1]. Let J be a subset of the set Ξ = Ξ(a,w) =

{ (i, j, `) : 1 ≤ i ≤ 2 , 1 ≤ j ≤ q , 1 ≤ ` ≤ `0 }. Define µ0 > 0 as in section 4 and ω = ωJ :

Û −→ [0, 1] by ω = 1 − µ0

∑
(i,j,`)∈J

ω
(`)
i,j . Finally define N = NJ(a, b, c) : C

Lip
D (Û) −→ C

Lip
D (Û) by

(Nh) = M̃N
ac(ωJ · h).

Then we have the following analogue of Lemma 5.

Lemma 13. Assuming a0 > 0 is chosen sufficiently small, there exists a constant A0 > 0 such that
for all a, c ∈ R with |a|, |c| ≤ a0 the following hold:

(a) If H ∈ KE(Û) for some E > 0, then

|(M̃m
acH)(u)− (M̃m

acH)(u′)|
(M̃m

acH)(u′)
≤ A0

[
E

γm0
+ 1

]
D(u, u′)

for all m ≥ 1 and all u, u′ ∈ Ui, i = 1, . . . , k.
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(b) If the functions h and H on Û and E > 0 are such that H > 0 on Û and |h(v)− h(v′)| ≤
EH(v′)D(v, v′) for any v, v′ ∈ Ûi, i = 1, . . . , k, then for any integer m ≥ 1 and any b, w ∈ R with
|b|, |w| ≥ 1, for z = c+ iw we have

|(LNabwh)(u)− (LNabwh)(u′)| ≤ E|w|(NH)(u′)D(u, u′).

whenever u, u′ ∈ Ûi for some i = 1, . . . , k.

The proof is a simplified version of that of Lemma 5 and we omit it.

Next, changing appropriately the definition of a dense subset J of Ξ, Lemma 8 holds again

replacing KE|b|(Û) by KE|w|(Û).

Assume that h,H ∈ CLip
D (Û) are such that

H ∈ KE|w|(Û) , |h(u)| ≤ H(u) , u ∈ Û , (6.6)

and
|h(u)− h(u′)| ≤ E|w|H(u′)D(u, u′) whenever u, u′ ∈ Ûi , i = 1, . . . , k. (6.7)

Define the functions χ
(i)
` : Û −→ C by

χ
(1)
` (u) =

∣∣∣e(f̃Na −ibτN+zgN )(v
(`)
1 (u))h(v

(`)
1 (u)) + e(f̃Na −ibτN+zgN )(v

(`)
2 (u))h(v

(`)
2 (u))

∣∣∣
(1− µ)ef̃

N
a (v

(`)
1 (u))+cgN (v

(`)
1 (u))H(v

(`)
1 (u)) + ef̃

N
a (v

(`)
2 (u))+cgN (v

(`)
2 (u))H(v

(`)
2 (u))

,

χ
(2)
` (u) =

∣∣∣e(f̃Na −ibτN+zgN )(v
(`)
1 (u))h(v

(`)
1 (u)) + e(f̃Na −ibτN+zgN )(v

(`)
2 (u))h(v

(`)
2 (u))

∣∣∣
ef̃

N
a (v

(`)
1 (u))+cgN (v

(`)
1 (u))H(v

(`)
1 (u)) + (1− µ)ef̃

N
a (v

(`)
2 (u))+cgN (v

(`)
2 (u))H(v

(`)
2 (u))

,

and set γ`(u) = w [τN (v
(`)
2 (u))− τN (v

(`)
1 (u))], u ∈ Û . The crucial step in this section is to prove the

following analogue of Lemma 9:

Lemma 14. Let j, j′ ∈ {1, 2, . . . , q} be such that Dj and Dj′ are contained in Cm and are η`-
separable in Cm for some m = 1, . . . , p and ` = 1, . . . , `0 . Then |γ`(u) − γ`(u′)| ≥ c3ε1 for all

u ∈ Ẑj and u′ ∈ Ẑj′, where c3 =
Aδ̂ ρ

32
.

To prove the above we need the following.

Lemma 15. (Lemma 6 in [12]) Assume that (6.2) holds. Under the assumptions and notation in

Lemma 1, for all ` = 1, . . . , `0, s ∈ r−1(U0), 0 < |h| ≤ δ̂ and η ∈ B` so that s+ h η ∈ r−1(U0 ∩ Λ)
we have [

Iη,h

(
gN (v

(`)
2 (r̃(·)))− gN (v

(`)
1 (r̃(·)))

)]
(s) ≥ Aδ̂

4
.

Proof of Lemma 14. This just a repetition of the proof of Lemma 5.9 in [21], where instead of using
Lemma 6(b) we use the above Lemma 14. We omit the details. �

Next, we need to prove the analogue of Lemma 10.

Lemma 16. Assume |w| ≥ w0 for some sufficiently large w0 > 0 and let |b| ≤ B|w|. Then for
any j = 1, . . . , q there exist i ∈ {1, 2}, j′ ∈ {1, . . . , q} and ` ∈ {1, . . . , `0} such that Dj and Dj′ are

adjacent and χ
(i)
` (u) ≤ 1 for all u ∈ Ẑj′.
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Sketch of proof of Lemma 16. We will use Lemma 11 which holds again with (5.3)-(5.4) replaced
by (6.6)-(6.7).

Given j = 1, . . . , q, let m = 1, . . . , p be such that Dj ⊂ Cm. As in [21] we find j′, j′′ = 1, . . . , q
such that Dj′ ,Dj′′ ⊂ Cm and Dj′ and Dj′′ are η`-separable in Cm.

Fix `, j′ and j′′ with the above properties, and set Ẑ = Ẑj∪Ẑj′∪Ẑj′′ . If there exist t ∈ {j, j′, j′′}
and i = 1, 2 such that the first alternative in Lemma 11(b) holds for Ẑt, ` and i, then µ ≤ 1/4

implies χ
(i)
` (u) ≤ 1 for any u ∈ Ẑt.

Assume that for every t ∈ {j, j′, j′′} and every i = 1, 2 the second alternative in Lemma 11(b)

holds for Ẑt, ` and i, i.e. |h(v
(`)
i (u))| ≥ 1

4 H(v
(`)
i (u)), u ∈ Ẑ.

Again we have ψ(Ẑ) = D̂j ∪ D̂j′ ∪ D̂j′′ ⊂ Cm, and C′ = v
(`)
i (σn1(Cm)) is a cylinder with

diam(C′) ≤ ε1
c0 γN−n1 |w|

. Thus, assuming e.g. |h(v
(`)
i (u))| ≥ |h(v

(`)
i (u′))|, we get

|eibτN (v
(`)
i (u)h(v

(`)
i (u))− eibτN (v

(`)
i (u′)h(v

(`)
i (u′))|

min{|h(v
(`)
i (u))|, |h(v

(`)
i (u′))|}

≤ |eibτN (v
(`)
i (u) − eibτN (v

(`)
i (u′)|+

E|w|H(v
(`)
i (u′))

|h(v
(`)
i (u′))|

D(v
(`)
i (u), v

(`)
i (u′))

≤ |b|C1D(v
(`)
i (u), v

(`)
i (u′)) + 4E|w|D(v

(`)
i (u), v

(`)
i (u′))

≤ (B|w|C1 + 4E|w|) diam(C′) ≤ (BC1 + 4E)ε1

γN−n1
1

<
π

12

assuming N is chosen sufficiently large. So, the angle between the complex numbers

eibτN (v
(`)
i (u)h(v

(`)
i (u)) and eibτN (v

(`)
i (u′)h(v

(`)
i (u′))

(regarded as vectors in R2) is < π/6. In particular, for each i = 1, 2 we can choose a real con-

tinuous function θi(u), u ∈ Ẑ, with values in [0, π/6] and a constant λi such that h(v
(`)
i (u)) =

ei(λi+θi(u))|h(v
(`)
i (u))| for all u ∈ Ẑ. Fix an arbitrary u0 ∈ Ẑ and set λ = γ`(u0). Replacing e.g λ2

by λ2 +2mπ for some integer m, we may assume that |λ2−λ1 +λ| ≤ π. Using the above, θ ≤ 2 sin θ
for θ ∈ [0, π/6], and some elementary geometry yields |θi(u)− θi(u′)| ≤ 2 sin |θi(u)− θi(u′)| < c2ε1

8 .
The difference between the arguments of the complex numbers

ei b τN (v
(`)
1 (u))eiwgN (v

(`)
1 (u)h(v

(`)
1 (u)) and ei b τN (v

(`)
2 (u))eiwgN (v

(`)
2 (u)h(v

(`)
2 (u))

is given by the function

Γ(`)(u) = [w gN (v
(`)
2 (u))+θ2(u)+λ2]−[w gN (v

(`)
1 (u))+θ1(u)+λ1] = (λ2−λ1)+γ`(u)+(θ2(u)−θ1(u)) .

Given u′ ∈ Ẑj′ and u′′ ∈ Ẑj′′ , since D̂j′ and D̂j′′ are contained in Cm and are η`-separable in Cm, it
follows from Lemma 9 and the above that

|Γ(`)(u′)− Γ(`)(u′′)| ≥ |γ`(u′)− γ`(u′′)| − |θ1(u′)− θ1(u′′)| − |θ2(u′)− θ2(u′′)| ≥ c3ε1
2

.

Thus, |Γ(`)(u′) − Γ(`)(u′′)| ≥ c3
2 ε1 for all u′ ∈ Ẑj′ and u′′ ∈ Ẑj′′ . Hence either |Γ(`)(u′)| ≥ c3

4 ε1 for

all u′ ∈ Ẑj′ or |Γ(`)(u′′)| ≥ c3
4 ε1 for all u′′ ∈ Ẑj′′ .
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Assume for example that |Γ(`)(u)| ≥ c2
4 ε1 for all u ∈ Ẑj′ . Since Ẑ ⊂ σn1(Cm), as in [21] we have

for any u ∈ Ẑ we get |Γ`(u)| < 3π
2 . Thus, c2

4 ε1 ≤ |Γ
(`)(u)| < 3π

2 for all u ∈ Ẑj′ . Now as in [4] (see

also [21]) one shows that χ
(1)
` (u) ≤ 1 and χ

(2)
` (u) ≤ 1 for all u ∈ Ẑj′ . �

Proof of Theorem 6. This is now the same as the proof of Theorem 5(a). �

7. Analytic continuation of the function ζ(s, z)

Consider the function ζ(s, z) introduced in section 1. Recall that s = a+ ib, z = c+ iw with real
a, b, c, w ∈ R. First, we assume that f and g are functions in Cα(Λ) with some 0 < α < 1. Passing to
the symbolic model defined by the Markov family R we obtain functions2 in Cα(R) which we denote
again by f and g. We assume that Pr(f −Pfτ) = 0 and we set s = Pf + a+ ib. The functions f , g

depend on x ∈ R. A second reduction is to replace f and g by functions f̂ , ĝ ∈ Cα/2(U) depending

only on x ∈ U so that f = f̂ +h1−h1 ◦σ, g = ĝ+h2−h2 ◦σ (see Proposition 1.2 in [11]). Since for

periodic points with σnx = x we have fn(x) = f̂n(x), gn(x) = ĝn(x), we obtain the representation

ζ(s, z) = exp
( ∞∑
n=1

1

n

∑
σnx=x

ef̂
n(x)−(Pf+a+ib)τn(x)+(c+iw)ĝn(x)

)
.

In this section we will prove under the standing assumptions that there exists ε > 0 and ε0 > 0
such that the function ζ(s, z) has a non-vanishing zero analytic continuation for −ε ≤ a ≤ 0 and
|z| ≤ ε0 with a simple pole at s = s(z), s(0) = Pf . Here s(z) is determined from the equation

Pr(f − sτ + zg) = 0. For simplicity of the notation we denote below f̂ and ĝ again by f , g.
First consider the case 0 < δ ≤ |b| ≤ b0. Since our standing assumptions imply that the flow

φt is weak mixing, Theorem 6.4 in [11] says that for every fixed b lying in the compact interval
[δ, b0] there exists ε(b) > 0 so that the function ζ(s, z) is analytic for |s−Pf + ib| ≤ ε(b), |z| ≤ ε(b).
This implies that there exists η0 = η0(δ, b0) > 0 such that ζ(s, z) is analytic for Pf − η0 ≤ Re s ≤
Pf + η0, δ ≤ | Im s| ≤ b0, |z| ≤ η0. Decreasing δ > 0 and η0, if it is necessary, we apply once more

Theorem 6.4 in [11], to conclude that ζ(s, z)(1− ePr(f−sτ+zg)) is analytic for

s ∈ {s ∈ C : |Re s− Pf | ≤ η, | Im s| ≤ δ}

and |z| ≤ η0. Consequently, the singularities of ζ(s, z) are given by (s, z) for which we have Pr(f −
sτ + zg) = 0 and, solving this equation, we get s = s(z) with s(0) = Pf . It is clear that we have a

simple pole at s(z) since d
dsPr(f − sτ + zg) 6= 0 for |z| small enough.

Now we pass to the case when | Im s| = |b| ≥ b0 > 0, |z| ≤ η0. Then we fix a β ∈ (0, α/2) and

we get with 0 < µ < 1 the inequality | Im b| ≥ B0|z|µ with B0 = b0
ηµ0

. Thus we are in position to

apply the estimates of Theorem 5(b) saying that for every ε > 0 there exist 0 < ρ < 1 and Cε > 0
so that

‖Lmf−(Pf+a+ib)τ+zg‖β,b ≤ Cερ
m|b|ε, ∀m ∈ N (7.1)

2In fact, one has to define first f and g as functions in Cα(R̂) and then extend them as α-Hölder functions on R.
In the same way one should proceed with Hölder functions on U .
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for |a| ≤ a0, |b| ≥ b0, |z| ≤ η0. Next we apply Theorem 4 with functions f, g ∈ Cβ(U). For
|Re s− Pf | ≤ η0, | Im s| ≥ b0 and |z| ≤ η0 we deduce

|Zn(f − (Pf + a+ ib)τ + zg)| ≤
k∑
i=1

|Lnf−(Pf+ia+b)τ+zg(χi)(xi)|

+C(1 + |b|)
n∑

m=2

‖Lmf−(Pf+a+ib)τ+zg‖βγ
−mβ
0 emPr(f−(Pf+a)τ+(Re z)g)

≤ k‖Lnf−(Pf+a+ib)τ+zg‖β + Cε(1 + |b)|b|ε
n∑

m=2

ρn−mγ−mβ0 em(ε+Pr(f−(Pf+a)τ+cg)).

Taking η0 and ε small, we arrange

γ−β0 eε+Pr(f−(Pf+a)τ+cg) ≤ γ2 < 1

for |a| ≤ η0, |c| ≤ η0, since Pr(f − Pfτ) = 0 and γ−ν0 < 1. Next increasing 0 < ρ < 1, if it is
necessary, we get γ2

ρ < 1. Thus the sum above will be bounded by

Cε(1 + |b|)|b|ερn
∞∑
m=2

(γ2

ρ

)m
≤ C ′ε|b|1+ερn

for |a| ≤ η0, |z| ≤ η0. The analysis of the term ‖Lnf−(Pf+a+ib)+zg‖β follows the same argument and

it is simpler. Finally, we get

|Zn(f − (Pf + a+ ib)τ + zg)| ≤ Bε|b|1+ερn, ∀n ∈ N

and the series
∞∑
n=1

1

n
Zn(f − (Pf + a+ ib)τ + zg)

is absolutely convergent for |a| ≤ η0, |b| ≥ b0, |z| ≤ η0. This implies the analytic continuation of
ζ(s, z) for |Re s− Pf | ≤ η0, | Im s| ≥ b0, |z| ≤ η0, thus completing the proof of Theorem 1.

To obtain a representation of the function ηg(s) = ∂ log ζ(s,z)
∂z

∣∣
z=0

for s sufficiently close to Pf ,
notice that for such values of s we have

ηg(s) = −∂ log(1− ePr(f−sτ+zg))

∂z

∣∣
z=0

+A0(s) =
1

s− Pf

∫
gdm∫
τdm

+A1(s) =

∫
GdµF
s− Pf

+A1(s),

where m is the equilibrium state of f −Pfτ , µF is the equilibrium state of F and A0(s) and A1(s)
are analytic in a neighborhood of Pf (see Chapter 6 in [11]). More precisely, µF is a στt invariant
probability measure on Rτ such that

Pr(F ) = h(στ1 , µF ) +

∫
F (π(x, t))dµF ,

where h(στ1 , µF ) is the metric entropy of στ1 with respect to µF (see Chapter 6 in [11]).
Taking η0 small enough, for |z| ≤ η0, |Re s − Pf | ≤ η0 and | Im s| ≥ η0 from the estimates for

Zn(f − (Pf + a+ ib)τ + zg) above, we deduce

| log ζ(s, z)| ≤ Cε max
(

1, | Im s|1+ε
)
.
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To estimate ηg(s), as in [17], we apply the Cauchy theorem for the derivative

∂

∂z
log ζ(s, z)

∣∣
z=0

=
1

2πiδ

∫
|ξ|=δ

log ζ(s, ξ)

ξ2
dξ = O(| Im s|1+ε), | Im s| ≥ 1.

with δ > 0 sufficiently small. Thus we obtain a O
(

max
(

1, | Im s|1+ε
))

bound for the function

A(s) = ηg(s)−
1

s− Pf

∫
GdµF

which is analytic for |Re s−Pf | ≤ η0. Decreasing η0 and applying Phragmén-Lindelöf theorem, by

a standard argument we obtain a bound O
(

max
(

1, | Im s|α
))

with 0 < α < 1. Consequently, we

have the following

Proposition 3. Under the assumptions of Theorem 1 there exist η0 > 0 and 0 < α < 1 such that
for Re s > Pf − η0 we have

ηg(s) =
1

s− Pf

∫
GdµF +A(s) (7.2)

with an analytic function A(s) satisfying the estimate

|A(s)| ≤ C max
(

1, | Im s|α
)
. (7.3)

Next define Fτ (C) := {F : Rτ −→ C} and Fτ (R) := {F : Rτ −→ R} the spaces of complex-
valued (real-valued) functions which are continuous. If G ∈ Fτ (C) is Lipschitz continuous and if
the standing assumptions for Λ are satisfied, the function

g(x) =

∫ τ(x)

0
G(π(x, t))dt

is Lipschitz continuous on R. Moreover, if the representative of G in the suspension space Rτ

is constant on stable leaves, the function g(x) depends only on x ∈ U. Now we introduce two
definitions of independence.

Definition 1. Two functions f1, f2 : U → R are called σ− independent if whenever there are
constants t1, t2 ∈ R such that t1f1 + t2f2 is co homologous to a function in C(U : 2πZ), we have
t1 = t2 = 0.

For a function G ∈ Fτ (R) consider the skew product flow SGt on S1 ×Rτ by

SGt (e2πiα, y) =
(
e2πi(α+Gt(y)), στt (y)

)
.

Definition 2 ([8]). Let G ∈ Fτ (R). Then G and στt are flow independent if the following condition
is satisfied. If t0, t1 ∈ R are constants such that the skew product flow SHt with H = t0 + t1G is not
topologically mixing, then t0 = t1 = 0.

Notice that if G and στt are flow independent, then the flow στt is topologically weak mixing
and the function G is not co homologous to a constant function. On the other hand, if G and στt
are flow independent, then g(x) =

∫ τ(x)
0 G(π(x, t))dt and τ are σ− independent.

Below we assume that g and τ are σ− independent and we suppose that F,G is a Lipschitz functions
Λ having representative in Rτ which are constant on stable leaves. Thus we obtain functions f , g

which are in CLip(Û). We will now obtain an analytic continuation of ζ(s, z) for Pf−η0 < Re s < Pf
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and z = iw. Set r(s, w) = f − (Pf + a+ ib)τ + iwg. We choose M > 0 large enough so that we can
apply Theorem 6 for |w| ≥M. We consider two cases.

Case 1. η0 ≤ |w| ≤ M. We consider two sub cases: 1a) | Im s| ≤ M1, 1b) | Im s| ≥ M1. Here
M1 > 0 is chosen large enough so that Theorem 5 (b) holds with | Im s| ≥M1.

Let | Im s| ≤ M1. Assume first that Im r(s0, w0) is cohomologous to c + 2πQ with an integer-
valued function Q ∈ C(U ;Z) and a constant c ∈ [0, 2π). If c = 0, since g and τ are σ− independent,
from the fact that bτ+wg is co homologous to a function in C(U ; 2πZ), we deduce b = w = 0 which
is impossible because b = Im s 6= 0. Thus we have c 6= 0. Consequently, the operator Lf−s0τ+iwg has

an eigenvalue eic. Then there exists a neighborhood U1 ⊂ C×R of (s0, w0) such that for (s, w) ∈ U1

we have Pr(r(s, w)) 6= 0 and for (s, w) ∈ U2 we have an analytic extension of log ζ(s, w) given by

log ζ(s, w) =
K1(s, w)

1− ePr(r(s,w))
+ J1(s, w)

with functions K1(s, w), J1(s, w) analytic with respect to s for (s, w) ∈ U1. Second, let Im r(s0, w0)
be not cohomologous to c+ 2πQ. Then the spectral radius of Lf−s0τ+iwg is strictly less than 1 and
this will be the case for (s, w) is a small neighborhood U2 ⊂ C× R of (s0, w0). Applying Theorem
4, this implies easily that log ζ(s, iw) has an analytic continuation with respect to s.

Passing to the case 1b), we observe that | Im s| ≥ M1
η0
|w|. Then, we apply Theorem 5(c) com-

bined with Theorem 4 to obtain an analytic continuation of log ζ(s, iw). Moreover, our argument
works for z = c + iw with |c| ≤ η0 and η0 ≤ |w| ≤ M and we obtain an analytic continuation of
log ζ(s, z) for Pf − η0 ≤ Re s < Pf , |c| ≤ η0, η0 ≤ |w| ≤M.

Case 2. |w| ≥M . We consider two-sub cases: 2a) | Im s| ≥ B|w|, 2b) | Im s| ≤ B|w|, B = M1
M .

If we have 2a), we apply Theorem 5(c). In the case 2b) we use the argument of section 6 replacing
g(x) by g′(x) = g(x)+dτ(x), where the constant d > 0 is chosen so that for the function G′ = G+d

we have LipG′

minG′ ≤ µ̂, where µ̂ > 0 is the constant introduced in section 5. Next we write

Lf−(Pf+a+ib)τ+iwg = Lf−(Pf+a+i(b+dw)τ+iwg′ .

For the Ruelle operator involving g′ we can apply Theorem 6 since |b+ dw| ≤ (B + d)|w|, |w| ≥M
and g is a Lipschitz function. An application of Theorem 4 implies the analytic continuation of
log ζ(s, iw) for Pf − η0 ≤ Re s ≤ Pf and |w| ≥M. From the above analysis we deduce the following

Theorem 7. Assume the standing assumptions fulfilled for the basic set Λ. Let F,G : Λ −→ R be
Lipschitz functions having representatives in Rτ which are constant on stable leaves. Assume that
g and τ are σ-independent. Then there exists η0 > 0 such that ζ(s, iw) admits a non zero analytic
continuation with respect to s for Pf − η0 ≤ Re s, w ∈ R and |w| ≥ η0.

8. Applications

8.1. Hannay-Ozorio de Almeida sum formula. The proof of (1.2) in [18] is based on the
analytic continuation of the Dirichlet series

η(s) =
∑
γ

∞∑
m=1

λG(γ)em(−λu(γ)−(s−1)λ(γ)), s ∈ C
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for 1 − η0 ≤ Re s < 1. For this purpose the authors examine the analytic continuation of the

symbolic function ηg(s) with g(x) =
∫ τ(x)

0 G(π(x, t))dt defined in section 1 and they use the fact
that the difference η(s) − ηg(s) is analytic in a region Re s > 1 − ε′, ε′ > 0. Next for the geodesic
flow on surfaces with negative curvature they establish Proposition 3 with Pf = 1. Since M is an
attractor, the equilibrium state of the function −E(x) is just the SRB measure µ of φt (see [3]) and
the residuum in (7.2) becomes

∫
Gdµ.

For the proof of Proposition 3 in [18] the authors exploit the link between the analytic con-
tinuation of ζ(s, z) and the spectral estimates of the Ruelle operator obtained by Dolgopyat [4].
However, in [18] Ruelle’s lemma in [16] was used whose proof is rather sketchy and contains some
steps which are not done in detail (see [24] for more information and comments concerning these
steps and the gaps in their proofs). On the other hand, the estimates of Dolgopyat [4] are estab-
lished only for Ruelle operators with one complex parameter, and to take into account the second
parameter z some complementary analysis is necessary.

We should mention that [24] contains a correct and complete proof of Ruelle’s lemma in the
case of one complex parameter and a Hölder function τ(x). A version of this lemma with two
complex parameters is given in section 3 above. Next, in Theorem 5 the spectral estimates for the
Ruelle operator with two complex parameters are established for Axiom A flows on a basic set Λ
of arbitrary dimension under the standing assumptions. If Λ is an attractor, according to [3], the
equilibrium state of −E(x) coincides with the SRB measure µ of φt. Thus we can apply Proposition
3 to obtain a representation of ηg(s) with residue

∫
Gdµ. Using (7.2) and repeating the argument

of section 4 in [18], we obtain Theorem 2.

8.2. Asymptotic of the counting function for period orbits. As we mentioned in section 1,
the analysis of πF (T ) is based on the analytic continuation of the function ζ(s, 0) defined in section
1. From the arguments in section 7 with z = 0 and the proof of Proposition 3 we get the following

Proposition 4. Under the standing assumptions in section 4 there exists η0 > 0 such that
ζ′F (s)

ζF (s)

admits an analytic continuation for Pr(F )−η0 ≤ Re s with a simple pole at s = Pr(F ) with residue
1. Moreover, there exists 0 < α < 1 such that for | Im s| ≥ 1 we have∣∣ζ ′F (s)

ζF (s)

∣∣ ≤ C| Im s|α. (8.1)

To obtain an asymptotic of πF (T ), we examine the functions

Ψ(T ) =
∑

enPr(F )λ(γ)≤T

λ(γ)ePr(F )λ(γ), Ψ1(T ) =

∫ T

0
Ψ(y)dy.

By a standard argument (see [16] and [15]) we obtain the representation

ψ1(T ) =
T 2

2
+

∫
Re s=(1−η0)Pr(F )

(
−
ζ ′F (s)

ζF (s)

) T s

s(s+ 1)
ds =

T 2

2
+O(T 1+α),

where in the second equality the estimate (8.1) is used. This implies an asymptotic for Ψ(T ) and
repeating the argument in [16], [15], one obtains Theorem 3.
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9. Appendix: Proofs of some lemmas

Proof of Lemma 4. Denote by Fθ(Û) the space of all functions h : Û −→ R that are Lipschitz

with respect to dθ. Let g ∈ CLip(Û), and let θ = θα ∈ (0, 1) be as in section 4. Then g ∈ Fθ(Û).

Let λ > 0 be the maximal positive eigenvalue of Lg on Fθ(Û) and let h > 0 be a corresponding
normalized eigenfunction. By the Ruelle-Perron-Frobenius theorem, we have that 1

λmL
m
g 1 converges

uniformly to h. We will show that there exists a constant C > 0 such that 1
λmLip(Lmg 1) ≤ C for

all m; this would then imply immediately that h ∈ CLip(Û) and Lip(h) ≤ C.

Take an arbitrary constant K > 0 such that 1/K ≤ h(x) ≤ K for all x ∈ Û . Given u, u′ ∈ Ûi
for some i = 1, . . . , k and an integer m ≥ 1 for any v ∈ Û with σm(v) = u, denote by v′ = v′(v) the

unique v′ ∈ Û in the cylinder of length m containing v such that σm(v′) = u′. By (2.1) we have

|gm(v)− gm(v′)| ≤
m−1∑
j=0

|g(σj(v))− g(σj(v′))| ≤ Lip(g)
m−1∑
j=0

d(u, u′)

c0γm
≤ C ′ Lip(g) d(u, u′)

for some constant C ′ > 0. Thus,

|(Lmg 1)(u)− (Lmg 1)(u′)| ≤
∑

σm(v)=u

∣∣∣egm(v) − egm(v′)
∣∣∣ =

∑
σm(v)=u

egm(v)
∣∣∣egm(v)−gm(v′) − 1

∣∣∣
≤ eC

′ Lip(g)
∑

σm(v)=u

egm(v)
∣∣gm(v)− gm(v′)

∣∣
≤ eC

′ Lip(g)C ′Lip(g) d(u, u′)
∑

σm(v)=u

egm(v)

≤ eC
′ Lip(g)C ′Lip(g) d(u, u′)

∑
σm(v)=u

egm(v)Kh(v)

= eC
′ Lip(g)C ′KLip(g) d(u, u′) (Lmg h)(u)

= eC
′ Lip(g)C ′KLip(g) d(u, u′)λmh(u)

≤ λmC ′K2eC
′ Lip(g) Lip(g) d(u, u′).

Thus, for every integer m the function 1
λmL

m
g 1 ∈ CLip(Û) and 1

λmLip(Lmg 1) ≤ C ′K2eC
′ Lip(g) Lip(g).

As mentioned above this proves that the eigenfunction h ∈ CLip(Û).

Using this with g = ft proves that hat ∈ CLip(Û) for all |a| ≤ a0 and t ≥ 1/a0. However the
above estimate for Lip(hat) would be of the form ≤ C eC t t for some constant C > 0, which is not
good enough.

We will now show that, taking a0 > 0 sufficiently small, we have Lip(hat) ≤ Ct for some
constant C > 0 independent of a and t.

Using (4.2) and choosing a0 > 0 sufficiently small, we have λatγ > γ̂ for all |a| ≤ a0 and

t > 1/a0. Fix an integer m0 ≥ 1 so large that
C2

0
c0γ̂m

< 1
2 for m ≥ m0. There exists a constant d0 > 0

depending on m0 such that for any u, u′ belonging to the same Ui but not to the same cylinder of
length m0 we have d(u, u′) ≥ d0. For such u, u′ we have

|hat(u)− hat(u′)|
d(u, u′)

≤ 2‖hat‖0
d0

≤ 2C0

d0
.



32 RUELLE OPERATORS WITH TWO PARAMETERS

So, to estimate Lip(hat) it is enough to consider pairs u, u′ that belong to the same cylinder of
length m0.

Fix for a moment a, t with |a| ≤ a0 and t ≥ 1/a0. Set L = supu6=u′
|hat(u)−hat(u′)|

d(u,u′) , where

the supremum is taken over all pairs u 6= u′ that belong to the same cylinder of length m0. If
L < Lip(hat), then the above implies Lip(hat) ≤ 2C0

d0
≤ 2C0

d0
t.

Assume that L = Lip(hat). Then there exist u, u′ belonging to the same cylinder of length m0

such that
3L

4
<
|hat(u)− hat(u′)|

d(u, u′)
. (9.1)

Fix such a pair u, u′. Let m ≥ m0 be an integer. For any v ∈ Û with σm(v) = u, denote by

v′ = v′(v) the unique v′ ∈ Û in the cylinder of length m containing v such that σm(v′) = u′. By
(2.1), d(σj(v), σj(v′)) ≤ 1

c0 γm−j
d(u, u′) for all j = 0, 1, . . . ,m− 1, so

|fmt (v)− fmt (v′)| ≤
m−1∑
j=0

|ft(σj(v))− ft(σj(v′))| ≤ ConstLip(ft) d(u, u′) ≤ Const t d(u, u′).

At the same time, by property (i), ‖ft‖0 ≤ T ′′ for some constant T ′′ > 0, so

|fmt (v)− fmt (v′(v))| ≤ 2m‖ft‖0 ≤ 2mT ′′.

Similarly,

|(P + a)τm(v)− (P + a)τm(v′)| ≤ Const d(u, u′) ≤ T ′′,
assuming T ′′ > 0 is chosen sufficiently large. Thus,∣∣∣e(ft−(P+a)τ)m(v′)−(ft−(P+a)τ)m(v) − 1

∣∣∣
≤ e3mT ′′

∣∣(ft − (P + a)τ)m(v)− (ft − (P + a)τ)m(v′)
∣∣ ≤ e3mT ′′ Const t d(u, u′).

Using Lmft−(P+a)τhat = λmathat, we obtain

λmat |hat(u)− hat(u′)| =

∣∣∣∣∣ ∑
σmv=u

e(ft−(P+a)τ)m(v) hat(v)−
∑

σmv=u

e(ft−(P+a)τ)m(v′(v)) hat(v
′)

∣∣∣∣∣
≤

∑
σmv=u

e(ft−(P+a)τ)m(v) |hat(v)− hat(v′)|+ ‖hat‖0
∑

σmv=u

∣∣∣e(ft−(P+a)τ)m(v) − e(ft−(P+a)τ)m(v′)
∣∣∣

≤ Lip(hat) d(u, u′)

c0γm

∑
σmv=u

e(ft−(P+a)τ)m(v)

+C0

∑
σmv=u

e(ft−(P+a)τ)m(v)
∣∣∣1− e(ft−(P+a)τ)m(v′)−(ft−(P+a)τ)m(v)

∣∣∣
≤ Ld(u, u′)

c0γm

∑
σmv=u

e(ft−(P+a)τ)m(v) + C0e
3mT ′′ Const t d(u, u′)

∑
σmv=u

e(ft−(P+a)τ)m(v)

≤
(

L

c0γm
+ C0e

3mT ′′ Const t

)
d(u, u′)

∑
σmv=u

e(ft−(P+a)τ)m(v)C0hat(v)

=

(
L

c0γm
+ C0e

3mT ′′ Const t

)
d(u, u′)C0λ

m
athat(u) ≤

(
L

c0γm
+ C0e

3mT ′′ Const t

)
d(u, u′)C2

0λ
m
at.
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This, (9.1) and the choice of m0 imply 3L
4 <

LC2
0

c0γm
+ C3

0e
3mT ′′ Const t ≤ L

2 + C3
0e

3mT ′′ Const t.

This is true for all m ≥ m0. In particular for m = m0 we get L
4 < C3

0e
3m0T ′′ Const t, and so

Lip(hat) = L ≤ Const t.

Proof of Lemma 5. (a) Let u, u′ ∈ Ûi for some i = 1, . . . , k and let m ≥ 1 be an integer. For

any v ∈ Û with σm(v) = u, denote by v′ = v′(v) the unique v′ ∈ Û in the cylinder of length m
containing v such that σm(v′) = u′. Then

|fmat (v)− fmat (v′)| ≤
m−1∑
j=0

|fat(σj(v))− fat(σj(v′))| ≤
Tt

c0 (γ − 1)
d(u, u′) ≤ C1 tD(u, u′) (9.2)

for some constant C1 > 0. Similarly,

|gmt (v)− gmt (v′)| ≤ C1 tD(u, u′). (9.3)

Also notice that if D(u, u′) = diam(C′) for some cylinder C′ = C[im+1, . . . , ip],then v, v′(v) ∈
C′′ = C[i0, i1, . . . , ip] for some cylinder C′′ with σm(C′′) = C′, so

D(v, v′) ≤ diam(C′′) ≤ 1

c0 γm
diam(C′) =

D(u, u′)

c0 γm
.

Using the above, diam(Ui) ≤ 1, the definition of Matc, we get

|(Mm
atcH)(u)− (Mm

atcH)(u′)|
Mm

atcH(u′)
=

∣∣∣∣∣ ∑
σmv=u

ef
m
at (v)+cgmt (v)H(v)−

∑
σmv=u

ef
m
at (v

′)+cgmt (v′)H(v′)

∣∣∣∣∣
Mm

atcH(u′)

≤

∣∣∣∣∣ ∑
σmv=u

ef
m
at (v)+cgmt (v) (H(v)−H(v′))

∣∣∣∣∣
Mm

atcH(u′)
+

∑
σmv=u

∣∣∣efmat (v)+cgmt (v) − efmat (v′)+cgmt (v′)
∣∣∣ H(v′)

Mm
atcH(u′)

≤

∑
σmv=u

ef
m
at (v)+cgmt (v)EH(v′)D(v, v′)

Mm
atcH(u′)

+

∑
σmv=u

∣∣∣e[fmat (v)+cgmt (v)]−[fmat (v
′)+cgmt (v′)] − 1

∣∣∣ efmat (v′)+cgmt (v′)H(v′)

Mm
atcH(u′)

.

Using (9.2) and (9.3) and assuming η0 ≤ 1, one obtains

|fmat (v) + cgmt (v)]− [fmat (v
′) + cgmt (v′)| ≤ 2C1tD(u, u′) ≤ 2C1t, (9.4)

and therefore
∣∣∣e[fmat (v)+cgmt (v)]−[fmat (v

′)+cgmt (v′)] − 1
∣∣∣ ≤ e2C1t2C1tD(u, u′). However (9.4) is not good

enough to estimate the first term in the right-hand-side above. Instead we use (4.3) and (4.4) to
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get

|fmat (v) + cgmt (v)]− [fmat (v
′) + cgmt (v′)|

≤ |fmt (v)− fmt (v)|+ |P − a| |τm(v)− τm(v′)|+ |(hat(v)− hat(u))− (hat(v
′)− hat(u′)|

+a0|gmt (v)− gmt (v′)|
≤ 2m‖ft − f0‖0 + |fm0 (v)− fm0 (v′)|+ ConstD(u, u′) + 4C0 + 2ma0‖gt − g‖0
≤ ConstD(u, u′) + C2ma0 ≤ C2 + C2ma0 (9.5)

for some constant C2 > 0. We will now assume that a0 > 0 is chosen so small that eC2a0 < γ/γ̂.
Then

|(Mm
atcH)(u)− (Mm

atcH)(u′)|
Mm

atcH(u′)

≤ ED(u, u′)

c0γm

∑
σmv=u

e[fmat (v)+cgmt (v)]−[fmat (v
′)+cgmt (v′)]ef

m
at (v

′)+cgmt (v′)H(v′)

Mm
atcH(u′)

+e2C1t

∑
σmv=u

2C1t e
fmat (v

′(v))H(v′(v))

Mm
atcH(u′)

≤ eC2 eC2ma0ED(u, u′)

c0γm
+ 2C1te

2C1tD(u, u′) ≤ A0

[
E

γ̂m
+ eA0t t

]
D(u, u′),

for some constant A0 > 0 independent of a, c, t, m and E.

(b) Let m ≥ 1 be an integer and u, u′ ∈ Ûi for some i = 1, . . . , k. Using the notation v′ = v′(v)
and the constant C2 > 0 from part (a) above, where σmv = u and σmv′ = u′, and some of the
estimates from the proof of part (a), we get

|Lmabtzh(u)− Lmabtzh(u′)|

=

∣∣∣∣∣ ∑
σmv=u

(
ef

m
at (v)+cgmt (v)−ibτm(v)+iwgmt (v) h(v)− efmat (v′)+cgmt (v′)−ibτm(v′)+iwgmt (v′) h(v′)

)∣∣∣∣∣
≤

∣∣∣∣∣ ∑
σmv=u

ef
m
at (v)+cgmt (v)−ibτm(v)+iwgmt (v) [h(v)− h(v′)]

∣∣∣∣∣
+
∑

σmv=u

∣∣∣efmat (v)+cgmt (v) − efmat (v′)+cgmt (v′)
∣∣∣ |h(v′)|

+
∑

σmv=u

∣∣∣e−ibτm(v)+iwgmt (v) − e−ibτm(v′)−iwgmt (v′)
∣∣∣ efmat (v′)+cgmt (v′)|h(v′)|

≤
∑

σmv=u

ef
m
at (v)+cgmt (v) |h(v)− h(v′)|

+
∑

σmv=u

∣∣∣e[fmat (v)+cgmt (v)]−[fmat (v
′)+cgmt (v′)] − 1

∣∣∣ efmat (v′)+cgmt (v′) |h(v′)|∑
σmv=u

(
|b| |τm(v)− τm(v′)|+ |w| |gmt (v)− gmt (v′)|

)
ef

m
at (v

′)+cgmt (v′)|h(v′)|
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Using the constants C1, C2 > 0 from the proof of part (a), (9.5) and eC2a0 < γ/γ̂ we get∑
σmv=u

ef
m
at (v)+cgmt (v) |h(v)− h(v′)| ≤ eC2 eC2ma0ED(u, u′)

c0γm

∑
σmv=u

ef
m
at (v

′)+cgmt (v′)H(v′)

≤ eC2E

c0γ̂m
(Mm

atcH)(u′)D(u, u′).

This, (9.3) and (9.5) imply

|Lmabtzh(u)− Lmabtzh(u′)|

≤ eC2E

c0γ̂m
(Mm

atcH)(u′)D(u, u′) + e2C1t2C1tD(u, u′) (Mm
atc|h|)(u′) + (Const |b|+ |w|C1 t)D(u, u′)

Thus, taking the constant A0 > 0 sufficiently large we get

|(LNabtzh)(u)− (LNabtzh)(u′)| ≤ A0

(
E

γ̂m
(Mm

atcH)(u′) + (|b|+ eA0tt+ t|w|)(Mm
atc|h|)(u′)

)
D(u, u′),

which proves the assertion.

As in [4] and [21] we need the following lemma whose proof is omitted here, since it is very
similar to the proof of Lemma 5 given above.

Lemma 17. Let β ∈ (0, α). There exists a constants A′0 > 0 such that for all a, b, c, t, w ∈ R with
|a|, |c|, 1/|b|, 1/t ≤ a0 such that (5.1) hold, and all positive integers m and all h ∈ Cβ(U) we have

|Lmabtzh(u)− Lmabtzh(u′)| ≤ A′0
[
|h|β
γ̂mβ

+ |b| (Mm
atc|h|)(u′)

]
(d(u, u′))β

for all u, u′ ∈ Ui.

We will derive Theorem 5(b) from Theorem 5(a), proved in section 5, and Lemma 17 above.

Proof of Theorem 5(b). We essentially repeat the proofs of Corollaries 2 and 3 in [4] (cf. also section
3 in [20]).

Let ε > 0, B > 0 and β ∈ (0, α). Take ρ̂ ∈ (0, 1), a0 > 0, b0 > 0, A0 > 0 and N as in Theorem
2(a). We will assume that ρ̂ ≥ 1

γ0
. Let a, b, c, w ∈ R be such that |a|, |c| ≤ a0 and |b| ≥ b0. Let

t > 0 be such that 1/tα−β ≤ a0. Assume that (5.1) hold and set z = c+ iw.
First, as in [4] (see also section 3 in [20]) one derives from Theorem 5(a) and Lemma 17 (ap-

proximating functions h ∈ Cβ(Û) by Lipschitz functions as in section 4) that there exist constants
C3 > 0 and ρ1 ∈ (0, 1) such that

‖Lnabtzh‖β,b ≤ C3|b|ερn1 , n ≥ 0, (9.6)

for all h ∈ Cβ(Û).

Next, given h ∈ Cβ(Û), we have Lnabtz(h/hat) = 1
λnat hat

Lft−(P+a+ib)τ+zgth, so by (9.6) we get

‖Lnft−(P+a+ib)τ+zgt
h‖β,b ≤ λnat‖hat Lnabtz(h/hat)‖β,b

≤ Const(λatρ1)n|b|ε ‖h/hat‖β,b ≤ Const ρn2 |b|ε ‖h‖β,b ,

where λatρ1 ≤ e2C0a0ρ2 = ρ2 < 1, provided a0 > 0 is small enough.
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We will now approximate Lf−(P+a+ib)τ+zg by Lft−(P+a+ib)τ+gt in two steps. First, using the
above it follows that

‖Lnf−(P+a+ib)τ+cg+iwgt
h‖β,b =

∥∥∥Lnft−(P+a+ib)τ+zgt

(
e(fn−fnt )+c(gn−gnt )h

)∥∥∥
β,b

≤ Const ρn2 |b|ε
∥∥∥e(fn−fnt )+c(gn−gnt )h

∥∥∥
β,b
.

Choosing the constant C4 > 0 appropriately, ‖f − ft‖0 ≤ C4 a0 and |f − ft|β ≤ C4/t
α−β ≤ C4a0,

so ‖fn− fnt ‖0 ≤ n ‖f − ft|0 ≤ C4na0, and similarly |fn− fnt |β ≤ C4na0. Similar estimates hold for

gn − gnt . Thus, ‖e(fn−fnt )+c(gn−gnt )h‖0 ≤ eC4na0‖h‖0, and

|e(fn−fnt )+c(gn−gnt )h|β ≤ ‖e(fn−fnt )+c(gn−gnt )‖0 |h|β + |e(fn−fnt )+c(gn−gnt )|β ‖h‖∞
≤ eC4na0 |h|β + eC4na0 |(fn − fnt ) + c(gn − gnt )|β ‖h‖∞
≤ C ′5 n e

C4na0 ‖h‖β.

Combining this with the previous estimate gives

‖e(fn−fnt )+c(gn−gnt )h‖β,b ≤ C ′′5 n eC4na0 ‖h‖β,

so

‖Lnf−(P+a+ib)τ+cg+iwgt
h‖β,b ≤ C5 ρ

n
2 |b|ε n eC4na0 ‖h‖β,b.

Taking a0 > 0 sufficiently small, we may assume that ρ2 e
C4a0 < 1. Now take an arbitrary ρ3 with

ρ2 e
C4a0 < ρ3 < 1. Then we can take the constant C6 > 0 so large that nρn2 e

C4na0 ≤ C6ρ
n
3 for all

integers n ≥ 1. This gives

‖Lnf−(P+a+ib)τ+cg+iwgt
h‖β,b ≤ C6 ρ

n
3 |b|ε ‖h‖β,b , n ≥ 0.

Using the latter we can write

‖Lnf−(P+a+ib)τ+zgh‖β,b =
∥∥∥Lnf−(P+a+ib)τ+cg+iwgt

(
eiw(gn−gnt )h

)∥∥∥
β,b

≤ C6 ρ
n
3 |b|ε

∥∥∥eiw(gn−gnt )h
∥∥∥
β,b
.

However, ‖eiw(gn−gnt )h‖0 = ‖h‖0, |g − gt|β ≤ C4/t
α−β ≤ C4a0 ≤ 1 (assuming a0 > 0 is sufficiently

small), and by (5.1), |w| ≤ B|b|µ ≤ B|b|, so

|eiw(gn−gnt )h|β ≤ ‖eiw(gn−gnt )‖0 |h|β + |eiw(gn−gnt )|β ‖h‖∞
≤ |h|β + |w| |gn − gnt |β ‖h‖∞ ≤ ‖h‖β +Bn|b|‖h‖∞.

Thus,

‖eiw(gn−gnt )h‖β,b = ‖eiw(gn−gnt )h‖0 +
1

|b|
|eiw(gn−gnt )h|β ≤ 2Bn‖h‖β,b,

and therefore ‖Lnf−(P+a+ib)τ+zgh‖β,b ≤ C7 ρ
n
3 |b|ε n ‖h‖β,b. Now taking an arbitrary ρ with ρ3 < ρ <

1 and taking the constant C8 > C7 sufficiently large, we get

‖Lnf−(P+a+ib)τ+zgh‖β,b ≤ C8 ρ
n |b|ε ‖h‖β,b

for all integers n ≥ 0.
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