Acknowledgements

I would like to thank Professor Christine Bachoc, my Advisor for providing guidance and all the support. I am also grateful to her for encouraging me to pursue this thesis topic. I would also like to thank my family for their constant support.
Contents

1 Introduction 3

2 Preliminaries 4
 2.0.1 Measure theory ... 4
 2.0.2 Algebraic Geometry ... 5
 2.0.3 Linear Functionals .. 6

3 Polynomial Optimization 8
 3.1 Semidefinite Optimization 8
 3.1.1 Semidefinite Program ... 8
 3.1.2 Applications of Semidefinite Programs to Combinatorial Problems 9
 3.1.3 Lovász sandwich inequalities 10
 3.2 Sum of squares .. 13
 3.2.1 Relation between sum of squares and being positive 13
 3.2.2 Lasserre Hierarchy ... 15
 3.3 Moments .. 17

4 Kissing Number 21
 4.1 Spherical Harmonics .. 21
 4.2 Gegenbauer Polynomials 25
 4.3 Kissing Number .. 26

5 Triangle Packing 29
 5.1 Appendix .. 36
Chapter 1

Introduction

Problem Statement: How many non overlapping regular tetrahedra, having a common vertex can be arranged in \mathbb{R}^3?

Solution to this problem (say $T(3)$) is known to satisfy $20 \leq T(3) \leq 22$). Thesis aims at trying to solve the above problem with the help of polynomial optimization.

Thesis is divided into 4 parts. The first part explains basic concepts required further. Second part deals with the theory of polynomial optimization. In part 3 we study spherical harmonics and apply polynomial optimization to the kissing number problem. Eventually in part 4 we try to bound $T(3)$ with tools developed so far.
Chapter 2

Preliminaries

Some concepts have been introduced, which will be used later in the thesis.

Definition 2.0.0.1. A polynomial optimization problem is to optimize value of \(f \in \mathbb{R}[x_1, ..., x_n] \) over a set \(K \) described by some \(g_1, ..., g_m \in \mathbb{R}[x_1, ..., x_n] \). Let us consider computing infimum of a polynomial \(f \in \mathbb{R}[x_1, ..., x_n] \) over \(K = \{ x \in \mathbb{R}^n \mid g_1(x) \geq 0, ..., g_m(x) \geq 0 \} \).

\[
 f_{\text{min}} := \inf \{ f(x) \mid g_1(x) \geq 0, ..., g_m(x) \geq 0 \} \quad (2.1)
\]

Notations: Let \(N = \mathbb{N} \cup \{0\}, t \geq 0 \); \(N^n_t := \{ (\alpha_1, ..., \alpha_n) \in N^n \mid \sum_{i=1}^n \alpha_i \leq t \} \); \(\mathbb{R}[x] := \mathbb{R}[x_1, ..., x_n] \). Let \(\alpha \in N^n \) (say \(\alpha = (\alpha_1, ..., \alpha_n) \)) ; \(|\alpha| := \sum \alpha_i \). Then \(x^\alpha = x_1^{\alpha_1} ... x_n^{\alpha_n} \); \(\mathbb{R}[x]_t := \{ f \in \mathbb{R}[x] \mid \deg f \leq t \} \); \([x]_t := (x^\alpha)_{|\alpha| \leq t} \) (In some fixed order) Now if \(f \in \mathbb{R}[x]_t \). Then \(\deg f \leq t \). Therefore coefficient of \(f \) can be expressed in a vector form \([f] = [f_\alpha]_{\alpha \in N^n_t} : f_\alpha \) coefficient of \(x^\alpha \) (in same order as above) So \(f = [f][x]_t \). Let \(I \) be an ideal in \(\mathbb{R}[x] \), then \(I_t = \{ f \in I \mid \deg f \leq t \} \)

2.0.1 Measure theory

Let \(X \) be a set. If \(2^X \) is collection of subsets of \(X \).

Definition 2.0.1.1. \(\sigma \) - algebra \(\Sigma \) : Let \(\Sigma \subseteq 2^X \) then \(\Sigma \) is a \(\sigma \) - algebra if

1. \(X \in \Sigma \)
2. if \(A \in \Sigma \), then \(X \setminus A \) in \(\Sigma \)
3. \(\Sigma \) is closed under countable union. i.e If \(A_1, A_2, ... \in \Sigma \) then \(\bigcup_{i \in \mathbb{N}} A_i \in \Sigma \)

Definition 2.0.1.2. Measure \(\mu \) : Measure \(\mu \) on a set \(X \) (with \(\sigma \) - algebra \(\Sigma \)) is a function from \(\Sigma \) to \(\mathbb{R} \cup \{\infty\} \) satisfying

1. \(\mu(A) \geq 0 \ \forall \ A \in \Sigma \)
2. \(\mu(\emptyset) = 0 \)
3. Let \(A_1, A_2, ... \) be countable pairwise disjoint subsets of \(X \) in \(\Sigma \), then \(\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) \)
Definition 2.0.1.3. Borel measure on a set X : X is locally compact and Hausdorff space. Let Σ be the smallest σ–algebra containing all open sets in X. And a measure μ defined on this σ–algebra is a borel measure.

Definition 2.0.1.4. Dirac measure : (let X be set with given σ–algebra Σ). Then dirac measure w.r.t. a fixed point $x \in X$ is

$$
\mu(A) = \begin{cases}
0 & \text{if } x \notin A \\
1 & \text{if } x \in A
\end{cases}
$$

where $A \in \Sigma$.

Definition 2.0.1.5. Probability measure : μ measure on X with σ–algebra Σ is a probability measure if μ takes values in $[0,1]$ and $\mu(X) = 1$.

2.0.2 Algebraic Geometry

Let I be an ideal in $\mathbb{R}[x]$.

Definition 2.0.2.1. Radical of $I : \sqrt{I} := \{f \in \mathbb{R}[x] \mid f^m \in I \text{ for some } m \geq 1\}$. I is said to a radical ideal if $I = \sqrt{I}$.

Definition 2.0.2.2. Real radical of $I : \sqrt[\mathbb{R}]{I} := \{f \in \mathbb{R}[x] \mid f^{2m} + p_1^2 + \ldots + p_k^2 \in I \text{ for some } m \geq 1 \text{ and } p_1, \ldots, p_k \in \mathbb{R}[x]\}$. I is said to be a real radical ideal if $I = \sqrt[\mathbb{R}]{I}$.

Definition 2.0.2.3. $V_\mathbb{C}(I) : \{(a_1, \ldots, a_n) \in \mathbb{C}^n \mid f(a_1, \ldots, a_n) = 0 \forall f \in I\}$. It is called a complex variety.

Definition 2.0.2.4. $V_\mathbb{R}(I) : \{(a_1, \ldots, a_n) \in \mathbb{R}^n \mid f(a_1, \ldots, a_n) = 0 \forall f \in I\} = V_\mathbb{C}(I) \cap \mathbb{R}^n$. It is a called a real variety.

Definition 2.0.2.5. $I(V_\mathbb{C}(I)) := \{f \in \mathbb{R}[x] \mid f(a_1, \ldots, a_n) = 0 \forall (a_1, \ldots, a_n) \in V_\mathbb{C}(I)\}$.

Definition 2.0.2.6. $I(V_\mathbb{R}(I)) := \{f \in \mathbb{R}[x] \mid f(a_1, \ldots, a_n) = 0 \forall (a_1, \ldots, a_n) \in V_\mathbb{R}(I)\}$.

Lemma 2.0.2.7. $I \subseteq \sqrt{I} \subseteq I(V_\mathbb{C}(I))$

Proof. $f \in I \Rightarrow f^1 \in I$, Therefore $f \in I \Rightarrow f \in \sqrt{I}$. $f \in \sqrt{I} \Rightarrow f^m \in I$ for some $m \geq 1$. Therefore $f^m(a_1, \ldots, a_n) = 0 \forall (a_1, \ldots, a_n) \in V_\mathbb{C}(I) \Rightarrow f(a_1, \ldots, a_n) = 0 \forall (a_1, \ldots, a_n) \in V_\mathbb{C}(I) \Rightarrow f \in I(V_\mathbb{C}(I))$ \hfill \square

Lemma 2.0.2.8. $I \subseteq \sqrt[\mathbb{R}]{I} \subseteq I(V_\mathbb{R}(I))$

Proof. $f \in I \Rightarrow f^2 \in I$, Therefore $f \in I \Rightarrow f \in \sqrt[\mathbb{R}]{I}$. $f \in \sqrt[\mathbb{R}]{I} \Rightarrow f^{2m} + p_1^2 + \ldots + p_k^2 \in I$. Let $(a_1, \ldots, a_n) \in V_\mathbb{R}(I)$ then $(f^{2m} + p_1^2 + \ldots + p_k^2)(a_1, \ldots, a_n) = 0$ but $(a_1, \ldots, a_n) \in \mathbb{R}^n \Rightarrow p_i(a_1, \ldots, a_n) \in \mathbb{R} \forall i$ and $f^{2m}(a_1, \ldots, a_n) \in \mathbb{R} \Rightarrow f^{2m}(a_1, \ldots, a_n) = 0 \Rightarrow f(a_1, \ldots, a_n) = 0 \Rightarrow f \in I(V_\mathbb{R}(I))$ \hfill \square

Theorem 2.0.2.9. Hilbert’s Nullstellensatz and Real Nullstellensatz thm: I ideal in $\mathbb{R}[x]$. Then $\sqrt{I} = I(V_\mathbb{C}(I))$ and $\sqrt[\mathbb{R}]{I} = I(V_\mathbb{R}(I))$. (For Hilbert’s Nullstellensatz refer to Serre Lang’s and for real Nullstellensatz refer [3])

Lemma 2.0.2.10. $I \subseteq I(V_\mathbb{C}(I)) \subseteq I(V_\mathbb{R}(I))$.

Proof. $V_\mathbb{R}(I) : V_\mathbb{C}(I) \cap \mathbb{R}^n$ Therefore $f \in I(V_\mathbb{C}(I)) \Rightarrow f(a_1, \ldots, a_n) = 0 \forall (a_1, \ldots, a_n) \in V_\mathbb{C}(I)$ which implies $f(a_1, \ldots, a_n) = 0 \forall (a_1, \ldots, a_n) \in V_\mathbb{R}(I) \Rightarrow f \in I(V_\mathbb{R}(I))$. Therefore, $I \subseteq I(V_\mathbb{C}(I)) \subseteq I(V_\mathbb{R}(I))$. \hfill \square
Theorem 2.0.2.11. If I is a real radical ideal and |V_\mathbb{R}(I)| < \infty, then V_\mathbb{C}(I) = V_\mathbb{R}(I).

Proof. If I is a real radical ideal then I \subseteq I(V_\mathbb{C}(I)) \subseteq \sqrt{I} = I. It implies I(V_\mathbb{C}(I)) = \sqrt{I} = I = I(V_\mathbb{R}(I)) \implies I is radical and I(V_\mathbb{C}(I)) = I(V_\mathbb{R}(I)). Now if I is a real radical and |V_\mathbb{R}(I)| < \infty, then V_\mathbb{R}(I) = V_\mathbb{C}(J)$ for some ideal J. If $|V_\mathbb{R}(I)| = 1$ say $a = (a_1, ..., a_n) = V_\mathbb{R}(I)$, then $x_i - a_i \in \mathbb{R}[x_1, ..., x_n] \forall 1 \leq i \leq n$ and $V_\mathbb{C}((x_1 - a_1, ..., x_n - a_n)) = V_\mathbb{R}(I)$. Now if $|V_\mathbb{R}(I)| = m < \infty$ then we get ideals $J_1, ..., J_m$ such that each point in $V_\mathbb{R}(I) = V_\mathbb{C}(J_i)$ for some $1 \leq j \leq m$ and therefore $V_\mathbb{R}(I) = V_\mathbb{C}(J_1)$. Then $I(V_\mathbb{C}(I)) = I(V_\mathbb{R}(I)) = I(V_\mathbb{C}(J))$. $V_\mathbb{C}(I(V_\mathbb{C}(J))) = V_\mathbb{C}(J)$ and if $a \in V_\mathbb{C}(I(V_\mathbb{C}(J)))$ then $f(a) = 0$. But by Hilbert Nullstellensatz $I(V_\mathbb{C}(J)) = \sqrt{J} J \subseteq \sqrt{J}$. Therefore $f (J) J = 0$. So $a \in V_\mathbb{C}(J))$. Similarly $V_\mathbb{C}(I(V_\mathbb{C}(I))) = V_\mathbb{C}(I)$. So $V_\mathbb{C}(I) = V_\mathbb{C}(J) = V_\mathbb{R}(I)$.

\[\square \]

Proposition 2.0.2.12. Let I be an ideal in $\mathbb{R}[x_1, ..., x_n]$ Then $|V_\mathbb{C}(I)| < \infty$ iff $\mathbb{R}[x_1, ..., x_n]/I$ is finite dimensional as a vector space. (For proof refer to [1])

Interpolation Polynomials :

Theorem 2.0.2.13. Let $V \subseteq \mathbb{R}^n$ be finite set. Then there exist polynomials $p_v \in \mathbb{R}[x_1, ..., x_n] \forall v \in V$ satisfying $p_v(u) = \delta_{u,v} \forall u, v \in V$. Then we have that for any polynomial $f \in \mathbb{R}[x_1, ..., x_n]$

\[f - \sum_{v \in V_\mathbb{C}(I)} f(v)p_v \in I(V_\mathbb{C}(I)) \] \hspace{1cm} (2.2)

Proof. Fix $v \forall u \neq v \exists$ component i_u such that $v(i_u) \neq u(i_u)$. Define

\[p_v := \prod_{u \in V_\mathbb{C}(I) \backslash v} (x(i_u) - u(i_u))/(p(i_u) - u(i_u)) \] \hspace{1cm} (2.3)

According to this definition $p_v(v) = 1$ and $p_v(u) = 0 \forall u \neq v \in V_\mathbb{C}(I)$. Let $f \in \mathbb{R}[x_1, ..., x_n]$. For any $u \in V_\mathbb{C}(I)$ we have $(f - \sum_{v \in V_\mathbb{C}(I)} f(v)p_v(u)) = f(u) - \sum_{v \in V_\mathbb{C}(I)} f(v)p_v(u) = f(u) - f(u) = 0$. So by definition of $I(V_\mathbb{C}(I))$, $f - \sum_{v \in V_\mathbb{C}(I)} f(v)p_v \in I(V_\mathbb{C}(I))$.

\[\square \]

2.0.3 Linear Functionals

Definition 2.0.3.1. Linear Functional : Let $y = (y_\alpha)_{\alpha} \in \mathbb{N}^n$ be a sequence of real numbers. Corresponding linear functional L on $\mathbb{R}[x_1, ..., x_n]$ is given by

\[L : \mathbb{R}[x_1, ..., x_n] \rightarrow \mathbb{R} \]

\[x^\alpha \mapsto L(x^\alpha) = y_\alpha \]

\[f = \sum_{\alpha} f_\alpha x^\alpha \mapsto L(f) = \sum_{\alpha} f_\alpha y_\alpha \]

Definition 2.0.3.2. Moment Matrix : Let $y = (y_\alpha)_{\alpha} \in \mathbb{N}^n$ be a sequence of real numbers then

\[M(y) := (y_{\alpha+\beta})_{\alpha,\beta} \in \mathbb{N}^n \ldots \text{(It is an infinite matrix)} \] \hspace{1cm} (2.4)

If g is a polynomial define

\[(g * y)_\alpha = \sum_{\delta \leq \text{deg}(g)} g_\delta y_{\alpha+\delta} \] \hspace{1cm} (2.5)

Lemma 2.0.3.3. Let p be any polynomial in $\mathbb{R}[x_1, ..., x_n]$. Let $y = (y_\alpha)_{\alpha} \in \mathbb{N}^n$ be a sequence of real numbers. Let L be the corresponding linear functional. Then $M(y) \geq 0$ iff $L(p^2) \geq 0 \forall p \in \mathbb{R}[x_1, ..., x_n]$ and $M(g * y) \geq 0$ iff $L(gp^2) \geq 0 \forall p \in \mathbb{R}[x_1, ..., x_n]$.

Proof.

\[L(p^2) = \sum_{\alpha} (p^2)^\alpha y_\alpha \]
\[= \sum_{\alpha} \left(\sum_{\beta+\gamma=\alpha} (p)^\beta (p)^\gamma \right) y_\alpha \]
\[= \sum_{\alpha} \sum_{\beta+\gamma=\alpha} (p)^\beta (p)^\gamma y_{\beta+\gamma} \]
\[= \sum_{\beta,\gamma} (p)^\beta (p)^\gamma y_{\beta+\gamma} \]
\[= pM(y)p^t \]

So \(L(p^2) = pM(y)p^t \) \(\forall p \in \mathbb{R}[x_1, ..., x_n] \). So \(L(p^2) \geq 0 \) \(\forall p \in \mathbb{R}[x_1, ..., x_n] \) iff \(M(y) \geq 0 \).

\[L(gp^2) = \sum_{\alpha} (gp^2)^\alpha y_\alpha \]
\[= \sum_{\alpha} \left(\sum_{\delta} g_\delta (p^2)^{\alpha-\delta} \right) y_\alpha \]
\[= \sum_{\alpha} \sum_{\delta} g_\delta \sum_{\beta+\gamma=\alpha-\delta} (p)^\beta (p)^\gamma y_\alpha \]
\[= \sum_{\delta,\beta,\gamma} g_\delta (p)^\beta (p)^\gamma y_{\delta+\beta+\gamma} \]
\[= pM(g \ast y)p^t \]

So \(L(gp^2) = pM(g \ast y)p^t \) \(\forall p \in \mathbb{R}[x_1, ..., x_n] \). So \(L(gp^2) \geq 0 \) \(\forall p \in \mathbb{R}[x_1, ..., x_n] \) iff \(M(g \ast y) \geq 0 \). \(\Box \)
Chapter 3

Polynomial Optimization

3.1 Semidefinite Optimization

In this section we see what is a semidefinite program and its dual. Its application to the max cut problem is summarized.

3.1.1 Semidefinite Program

Definition 3.1.1.1. Convex Cone: Let $K \neq \emptyset$ be a subset of \mathbb{R}^n. K is a convex cone if $\forall \alpha, \beta \in \mathbb{R} \geq 0$ and $\forall x, y \in K$, $\alpha x + \beta y \in K$.

Definition 3.1.1.2. Dual Cone of K: $K^* := \{ y \in \mathbb{R}^n | \langle y, x \rangle \geq 0 \ \forall x \in K \}$ where $\langle \cdot, \cdot \rangle$ is inner product defined on \mathbb{R}^n.

Consider $S^n = \{ A \in M_n(\mathbb{R}) | A = A^T \}$. It is a set of $n \times n$ symmetric matrices so $\text{dim } S^n = \frac{n(n+1)}{2}$.

Definition 3.1.1.3. Inner Product on S^n:

$$\langle A, B \rangle = Tr(A^T B) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij}$$ (3.1)

where $A = (a_{ij})$, $B = (b_{ij})$. $A \in S^n$ is positive semidefinite if $\forall v \in \mathbb{R}^n \ v^t A v \geq 0$.

Proposition 3.1.1.4. Equivalent conditions for being positive semidefinite:

(i) $\forall v \in \mathbb{R}^n \ v^t A v \geq 0$

(ii) All eigenvalues of A are non negative. $A = \lambda_1 e_1 e_1^t + ... + \lambda_n e_n e_n^t$, where λ_i are eigenvalues.

(iii) $A = LL^T$

Proof. (i) \Rightarrow (ii) let λ be an eigenvalue of A and v corresponding eigenvector. $Av = \lambda v$. So $v^t Av = \lambda v^t v$. $v^t v > 0$ and $v^t Av \geq 0 \Rightarrow \lambda \geq 0$. By Spectral theorem \exists an orthogonal matrix U s.t. $A = UDU^T$ where D is diagonal matrix $(\lambda_1, ..., \lambda_n)$ with λ_i being eigenvalues of A. Let $U = (e_1, ..., e_n)$ where e_i are column vectors. So $A = \lambda_1 e_1 e_1^t + ... + \lambda_n e_n e_n^t$.

(ii) \Rightarrow (iii) $A = \sum_{i=1}^{n} \lambda_i e_i e_i^t$ where e_i are orthogonal vectors forming U. All λ_i non negative $\Rightarrow \delta_i = \sqrt{\lambda_i} \in \mathbb{R}$. Let $C =$diagonal matrix $(\delta_1, ..., \delta_n)$ and let $L = UC$ then $A = LL^T$.

(iii) \Rightarrow (i) Let $v \in \mathbb{R}$. $v^t Av = v^t LL^T v = (v^t L)(v^t L)^t \geq 0$.

\[\square\]
Definition 3.1.1.5. Cone of positive semidefinite matrices:

\[S^n_+ := \{ A \in S^n \mid A \text{ is positive semidefinite} \}. \]

It is a convex cone (can easily be proved from definition).

Proposition 3.1.1.6. \(S^n_+ \) is self dual i.e \(S^{n*}_+ = S^n_+ \)

Proof. Let \(B \in S^n_+ \) s.t. \(\langle A, B \rangle \geq 0 \forall A \in S^n_+ \). Let \(v \in \mathbb{R}^n \). \(v^tBv = \sum_{i=1}^n \sum_{j=1}^n v_iv_jb_{ij} \). Let \(V = vv^t \). Then \((i, j)th\) entry of \(V \) is \(v_iv_j \). By Proposition 3.1.1.4 (iii) above \(V = vv^t \Rightarrow V \in S^n_+ \). Therefore, \(\langle V, B \rangle \geq 0 \). So \(\langle V, B \rangle = Tr(V^TB) = \sum_{i=1}^n \sum_{j=1}^n v_iv_jb_{ij} = v^tBv \geq 0 \). \(v \) was arbitrary vector in \(\mathbb{R}^n \). Therefore, \(B \in S^n_+ \). Therefore, by definition of dual cone \(S^{n*}_+ \subseteq S^n_+ \). Let \(A, A' \in S^n_+ \). Then from proof of (ii) \(\Rightarrow (iii) \) of Proposition 3.1.1.4 we know that \(A = \sum_{i=1}^n \lambda_iu_iu_i^t \) with \(\lambda_i \) non negative. So \(\langle A, A' \rangle = \langle A', A \rangle = Tr(A^TA) = Tr(A'^T(\sum_{i=1}^n \lambda_iu_iu_i^t)) = \sum_{i=1}^n \lambda_iTr(A'^Tu_iu_i^t) \). But from the first part of this proof we know that \(Tr(A^Tu_iu_i^t) = u_i^TAu_i \). So \(\langle A, A' \rangle = \sum_{i=1}^n \lambda_iu_i^tA'u_i \) with \(\lambda_i \) non negative and \(A' \) positive semidefinite. So \(\langle A, A' \rangle \geq 0 \). Therefore, by definition of dual cone if \(A \in S^n_+ \) then \(A \in S^{n*}_+ \). So \(S^n_+ \subseteq S^{n*}_+ \). So \(S^{n*}_+ = S^n_+ \). \(\Box \)

Definition 3.1.1.7. Semidefinite program:

Let \(C, A_1, \ldots, A_r \in S^n \) and \(b = (b_1, \ldots, b_r) \in \mathbb{R}^n \)

Standard Primal form:

\[p^* = \sup \{ \langle C, X \rangle \mid \langle A_i, X \rangle = b_i \forall i = 1, \ldots, r \text{ and } X \succeq 0 \} \tag{3.2} \]

Standard Dual form:

\[d^* = \inf \{ b^ty \mid \sum_{i=1}^r y_iA_i - C \succeq 0 \} \tag{3.3} \]

Proposition 3.1.1.8. \(p^* \leq d^* \). i.e Weak duality always holds

Proof. Let \(X \) be feasible for (3.2) and \(y \) be feasible for (3.3). So \(X \succeq 0 \) and \(\sum_{i=1}^r y_iA_i - C \succeq 0 \). So by Proposition 3.1.1.6 and definition of dual cone \(\langle X, \sum_{i=1}^r y_iA_i - C \rangle \succeq 0 \). So \(\langle X, \sum_{i=1}^r y_iA_i - C \rangle = \sum_{i=1}^r y_i\langle X, A_i \rangle - \langle X, C \rangle \succeq 0 \). Therefore, \(\sum_{i=1}^r y_ib_i \geq \langle C, X \rangle \). So \(b^ty \geq \langle C, X \rangle \). So \(p^* \leq d^* \). \(\Box \)

If \(p^* \) is bounded above and \(\exists X \in S^n \) which is strictly feasible for (3.2) (i.e \(X \) feasible s.t \(X \succ 0 \)) then \(p^* = d^* \). Similarly if \(d^* \) is bounded from below and \(\exists y \in \mathbb{R}^r \) which is strictly feasible for (3.3)(i.e \(\sum_{i=1}^r y_iA_i - C \succ 0 \)) then \(p^* = d^* \). With the help of convexity theory it can be shown that in the latter case \(\exists X_0 \) feasible for (3.2) such that \(d^* \leq \langle C, X \rangle \) (see [1] for proof). So then weak duality implies \(p^* = d^* \). With Ellipsoid method we can solve SDP in polynomial time. Interior point methods provide efficient algorithms to solve semidefinite programs (upto any precision).

3.1.2 Applications of Semidefinite Programs to Combinatorial Problems

Max Cut Problem: Given a graph \(G = (V, E) \) where \(V = v_i; i \in I \) with I index set of vertices. \(E \) is set of edges of \(G \). Let denote weight assigned to edge between \(v_i, v_j \) (if exists) by \(w_{ij} \). Max cut problem asks us to partition the set of vertices \(V \) in 2 sets such that the total weight of edges crossing the partition is maximum.
We can reformulate it in terms of a polynomial optimization problem. To each vertex \(v_i \in \mathbb{R}^I \) we assign a variable \(x_i \) such that it satisfies \(x_i^2 = 1 \). Any solution \(\overline{x} = (x_i)_{i \in I} \in \mathbb{R}^I \) satisfying \(x_i^2 = 1 \forall i \in I \) gives us a partition of vertices (say \(I_1 = \{i \in I \mid x_i = 1\} \) and \(I_2 = \{i \in I \mid x_i = -1\} \)). And for any partition we have a solution \(\overline{x} = (x_i)_{i \in I} \) satisfying \(x_i^2 = 1 \forall i \in I \). Now say we have a partition corresponding to \(x \). Then the total weight of edges crossing the partition is \(\sum_{(i,j) \in E} (1 - x_i x_j)w_{(i,j)}/2 \). \(\therefore \) If \(v_i, v_j \) are same side of partition then \(x_i = x_j \ldots \therefore x_i x_j = 1 \). So weight of edge between \(v_i, v_j \) (if exists) is not counted in the sum. And if \(v_i, v_j \) belong to different sides then \(x_i = -x_j \ldots \therefore 1 - x_i x_j = 2 \) and so \(1/2 \) appears in the sum. So Max cut problem can be reformulated as

\[
\text{mxcut}(G, w) = \max_{x \in \mathbb{R}^I} \left\{ \sum_{(i,j) \in E} (1 - x_i x_j)w_{(i,j)}/2 \mid x_i^2 = 1 \forall i \in I \right\} \tag{3.4}
\]

we have an SDP relaxation to this problem. Consider the following SDP problem

\[
\text{mxcutsdp}(G, w) = \max_{X \succeq 0} \left\{ \sum_{(i,j) \in E} (1 - X_{ij})w_{(i,j)}/2 \mid X_{ii} = 1 \forall i \in I \text{ and } X \succeq 0 \right\} \tag{3.5}
\]

Now observe the feasible region for (2.4). Let \(x \in \mathbb{R}^I \) such that \(x_i^2 = 1 \forall i \in I \). Let \(X = x x^T \) (positive semidefinite by Proposition 3.1.1.4). \(X_{ii} = x_i^2 = 1 \). So \(X \) is feasible for (2.5). And in this case \(\sum_{(i,j) \in E} (1 - X_{ij})w_{(i,j)}/2 = \sum_{(i,j) \in E} (1 - x_i x_j)w_{(i,j)}/2 \). Therefore set on which max is calculated for (2.4) \(\subseteq \) set on which max is calculated for (2.5). Therefore, \(\text{mxcut}(G, w) \leq \text{mxcutsdp}(G, w) \). So using semidefinite programming we get a bound on max cut.

3.1.3 Lovász sandwich inequalities

Let \(G = (V, E) \) be a graph.

Definition 3.1.3.1. Stable Set: \(S \subseteq V \) is a stable set with respect to \(G \) if \(\forall v_i, v_j \in S, \{i, j\} \notin E \). (i.e there are no edges in the subgraph induced by \(S \) in \(G \)).

Definition 3.1.3.2. Stability number of \(G \) \(\alpha(G) \): Stability number is the maximum cardinality of a stable set in \(G \).

Definition 3.1.3.3. Characteristic vector of \(S \subseteq V \): \(\chi_S \):

\[
\chi_S(i) = 1 \text{ if } v_i \in S
\]

\[
= 0 \text{ if } v_i \notin S
\]

Now we reformulate \(\alpha(G) \) in terms of a polynomial optimization problem. To each vertex \(v_i \) we assign a variable \(x_i \). Now consider \(\overline{x} = (x_i) \in \mathbb{R}^I \) satisfying \(x_i^2 = x_i \forall i \in I \) and \(x_i x_j = 0 \ \forall \{i, j\} \in E \). (So \(x_i = 1 \) or \(0 \ \forall i \in I \)). Consider the set \(S = \{v_i \in V \mid x_i = 1\} \). If \(v_i, v_j \in S \) \(i \neq j \), then \(\{i, j\} \notin E \), because if it did it would imply \(x_i x_j = 0 \Rightarrow 1 = 0 \) giving contradiction. So \(S \) is a stable set. \(\sum_{i \in I} x_i = \sum_{i \in S} x_i + \sum_{i \in I-S} x_i = \sum_{i \in S} x_i = |S| \). So \(\chi_S \in \mathbb{R}^I \) satisfying \(x_i^2 = x_i \forall i \in I \) and \(x_i x_j = 0 \ \forall \{i, j\} \in E \). \(\sum_{i \in I} x_i \) gives cardinality of a stable set in \(G \). And given any stable set \(S \) in \(G \), \(\chi_S \) satisfies the above conditions with \(\sum_{i \in I} x_i = |S| \).

\[
\alpha(G) = \max_{\overline{x} \in \mathbb{R}^I} \left\{ \sum_{i \in I} x_i \mid x_i x_j = 0 \ \forall \{i, j\} \in E \text{ and } x_i^2 = x_i \ \forall i \in I \right\} \tag{3.6}
\]
Definition 3.1.3.4. Theta number of \(G \) \(\vartheta(G) \): is defined by
\[
\vartheta(G) = \max_{X \in \mathbb{S}^n} \left\{ \sum_{i,j} X_{ij} \mid X_{ij} = 0 \forall \{i,j\} \in E, Tr(X) = 1 \text{ and } X \succeq 0 \right\} \quad (3.7)
\]

Definition 3.1.3.5. Chromatic number of \(G \) \(\chi(G) \): Minimum number of colours required to colour vertices of \(G \) such that no 2 adjacent (vertices with an edge between them) vertices have same colour.

\(\bar{G} \) is complement graph of \(G \).

Theorem 3.1.3.6. Lovasz Inequality :
\[
\alpha(G) \leq \vartheta(G) \leq \chi(\bar{G}) \quad (3.8)
\]
\[
\alpha(\bar{G}) \leq \vartheta(\bar{G}) \leq \chi(G) \quad (3.9)
\]

Proof. (3.9) follows from (3.8). So its enough to prove (3.8).

\(\alpha(G) \leq \vartheta(G) \):

Let \(x \in \) feasible region for \(\alpha(G) \). Therefore from above we know it corresponds to a stable set \(S \) with \(\sum_{i \in I} x_i = |S| \). Consider \(X = x \cdot \frac{x^t}{|S|} \). So \(X \succeq 0 \) by Proposition 3.1.1.4
\[
Tr(X) = \sum_{i \in I} x_i^2 / |S| = \sum_{i \in I} x_i / |S| = 1
\]
because \(x_i^2 = x_i \forall i \in I \). \(X_{ij} = x_i x_j = 0 \) if \(\{i,j\} \in E \). Therefore \(X \in \) feasible region for \(\vartheta(G) \). And
\[
\sum_{i \in I} X_{ij} = \sum_{i \in I} X_{ii} + \sum_{i \neq j} X_{ij}
\]
\[
= \sum_{i \in I} x_i^2 / |S| + \sum_{i \neq j \in E} x_i x_j / |S| + \sum_{i \neq j \in \bar{E}} x_i x_j / |S| (\because x_i = 0 \text{ if } x_i \notin S)
\]
\[
= \sum_{i \in S} x_i^2 / |S| + \sum_{i \neq j \in E} x_i x_j / |S| = (\sum_{i \in S} x_i)^2 / |S| = |S|
\]

Therefore \(\alpha(G) \leq \vartheta(G) \)(because set on which max is \(\leq \) set on which max calculated for \(\alpha(G) \) is calculated for \(\vartheta(G) \))

\(\vartheta(G) \leq \chi(\bar{G}) \):

Lets say vertices of \(\bar{G} \) can be colored with \(r \) colors s.t no 2 adjacent vertices in \(\bar{G} \) have same color. Let \(C_i \) be the set of vertices colored with \(i^{th} \) color. Let \(y_i \) be the characteristic vector of \(C_i \). \(C_i \cap C_j = \phi \) for \(i \neq j \) and \(\bigcup_{i=1}^r C_i \) is all vertices in \(G \). Therefore \(e = \sum_{i=1}^r y_i \) where \(e = \)
[1,...,1] ∈ ℝ[^n]. Now consider a matrix X feasible for (3.7).

\[\langle X, \sum_{i=1}^{r} y_i y_i^t \rangle = \sum_{i=1}^{r} \langle X, y_i y_i^t \rangle \]

\[= \sum_{i=1}^{r} \sum_{i_1, i_2, t_1, t_2} X_{i_1, t_1} y_{i_1} y_{i_2} \]

\[= \sum_{i=1}^{r} \sum_{v_{i_1}, v_{i_2} \in C_i} X_{i_1, i_2} \quad (\because v_j \notin C_i \Rightarrow y_{i_j} = 0) \]

\[= \sum_{i=1}^{n} \sum_{v \in C_i} X_{i,j} \]

Because if \(i_1 \neq i_2\) and \(v_{i_1}, v_{i_2} \in C_i \Rightarrow\) there is no edge between \(v_{i_1}, v_{i_2}\) in \(\overline{G}\) \(\Rightarrow\) there is an edge between \(v_{i_1}, v_{i_2}\) in \(G\). \(\therefore X\) is feasible for \(\Rightarrow X_{i_1, i_2} = 0\). Therefore \(\langle X, \sum_{i=1}^{r} y_i y_i^t \rangle = T_r(X) = 1\).

Now consider, \(Y = \sum_{i=1}^{r} (r y_i - e)(r y_i - e)^t\)

\[= \sum_{i=1}^{r} r^2 y_i y_i^t - (\sum_{i=1}^{r} r y_i) e^t - e \sum_{i=1}^{r} r y_i^t + \sum_{i=1}^{r} e e^t \]

\[= \sum_{i=1}^{r} r^2 y_i y_i^t - r e e^t \]

So \(Y \succeq 0\) (by prop (1.1)) and we have \(X \succeq 0\).

Therefore \(\langle X, Y \rangle \succeq 0\). Therefore \(r^2 \langle X, \sum_{i=1}^{r} y_i y_i^t \rangle - r \langle X, e e^t \rangle \succeq 0\). So \(r^2 \geq r(\sum X_{i,j})\). So \(r \geq \sum X_{i,j}\). Therefore \(\vartheta(G) \leq \chi(\overline{G})\).

Definition 3.1.3.7. Clique number: \(w(G)\): Let \(G=(V,E)\) be a graph. A clique is a graph in which every two distinct vertices are joint by an edge. \(w(G)\) is the maximum cardinality of a clique contained in \(G\).

Definition 3.1.3.8. Perfect Graph: \(G=(V,E)\) is a perfect graph if \(\forall\) induced subgraph \(H\) of \(G\) \(w(H) = \chi(H)\)

Theorem 3.1.3.9. The Strong Perfect Graph Theorem: A Graph \(G=(V,E)\) is perfect iff \(G\) neither contains an odd cycle of length at least 5 nor complement of such a cycle as an induced subgraph.

Berge conjectured this theorem in 1961 and in 2004 this theorem was proved by Maria Chudnovsky, Neil Robertson, Paul Seymour and Robin Thomas. Ref [2]

Theorem 3.1.3.10. Weak Perfect Graph Theorem: If \(G = (V,E)\) is a perfect graph then \(\overline{G}\) is also a perfect graph.

Remark 3.1. Strong implies weak perfect theorem (just from def of \(\overline{G}\)). Therefore for a perfect graph \(G\) \(\overline{G}\) is perfect. So \(\chi(\overline{G}) = w(\overline{G})\). A clique in \(\overline{G}\) corresponds to a stable set in \(G\). So \(\alpha(G) \geq w(\overline{G}) = \chi(\overline{G})\). We already know \(\alpha(G) \leq \chi(\overline{G})\). \(\therefore\) \(\alpha(G) = \chi(\overline{G})\) for perfect graphs. \(\therefore\) in case of perfect graphs sandwich inequality \(\Rightarrow\) \(\alpha(G) = \vartheta(G) = \chi(\overline{G})\). So by using semidefinite program we can calculate \(\vartheta(G)\) and so \(\alpha(G)\).
CHAPTER 3. POLYNOMIAL OPTIMIZATION

3.2 Sum of squares

3.2.1 Relation between sum of squares and being positive

We see how to reformulate "a polynomial being a sum of squares" in terms of a semidefinite program. In this section we study the relation between positivity of a polynomial and it being a sum of squares with the help of Putinar’s result. Lasserre’s Hierarchy is summarized as well.

For any \(f \in \mathbb{R}[x], f \in \mathbb{R}[x]_t \) for some \(t \geq 0 \). So \(f = [f]^T[x]_t \) where \([f] = (f_\alpha)_{|\alpha| \leq 2t} \) coefficient vector.

Theorem 3.2.1.1. Let \(f \in \mathbb{R}[x]_t \). Then \(f \) is a sum of squares iff \(S \neq \emptyset \), where

\[
S = \{ X \in S^{N^n} | \sum_{\beta,\gamma \in N^m} X_{\beta,\gamma} = f_\alpha \forall \alpha \in N^m_2 \text{ and } X \succeq 0 \} \tag{3.10}
\]

Proof. \(\Rightarrow \): Let \(f \) be a sum of squares. So \(f = p_1^2 + \ldots + p_m^2 \) for some \(m \geq 1 \) and \(p_i \in \mathbb{R}[X]_t \forall 1 \leq i \leq m \). \(P_i = [x]^T[p_i][p_i]^T[x] \ \forall 1 \leq i \leq m \). So

\[
[f]^T[u]_t = [x]^T(\sum_{i=1}^m [p_i][p_i]^T)[u]_t
\]

We have \([p_i][p_i]^T \succeq 0 \ \forall 1 \leq i \leq m \). Let \([y]_t \) be any vector (compatible with \(p_i \)), then

\[
[y]^T(\sum_{i=1}^m [p_i][p_i]^T)[y] = \sum_{i=1}^m [y]^T([p_i][p_i]^T)[y] \geq 0
\]

So \(\sum_{i=1}^m [p_i][p_i]^T \succeq 0 \). Let \(P = \sum_{i=1}^m [p_i][p_i]^T \). Then,

\[
[f]^T[u]_t = [x]^T P [x]_t = \sum_{|\beta|,|\gamma| \leq t} P_{\beta,\gamma} x^\beta y^\gamma \tag{3.11}
\]

Equating coefficient of \(\alpha \) where \(|\alpha| \leq 2t \) we get

\[
f_\alpha = \sum_{s.t. \beta + \gamma = \alpha \text{ and } |\beta|,|\gamma| \leq t} P_{\beta,\gamma} \tag{3.12}
\]

\(\forall \alpha \) with \(|\alpha| \leq 2t \). Therefore \(P \in S \). So \(f \) is a sum of squares \(\implies S \neq \emptyset \).

\(\Leftarrow \) :

If \(S \neq \emptyset \), then \(\exists X \succeq 0 \in S^{N^n} \) such that

\[
\sum_{\beta,\gamma \in N^m} X_{\beta,\gamma} = f_\alpha \forall \alpha \in N^m_2 \tag{3.13}
\]

From this we get, \([f]^T[x]_t = [x]^T X [x]_t \). From proof of proposition 3.1.3, we get that \(X = \lambda_1 e_1 e_1^T + \ldots + \lambda_m e_m e_m^T \) where \(m = |N^n| \) with \(\lambda_i \geq 0 \). Therefore \(\sqrt{\lambda_i} \in \mathbb{R} \). So

\[
[f]^T[x]_t = \sum_{i=1}^m [x]^T[\sqrt{\lambda_i} e_i][\sqrt{\lambda_i} e_i^T][x]_t.
\]

Therefore \(f = \sum p_i^2 \) where \(p_i^2 = [x]^T[\sqrt{\lambda_i} e_i][\sqrt{\lambda_i} e_i^T][x]_t \). So \(S \neq \emptyset \) implies \(f \) is a sum of squares. \(\square \)
Theorem 3.2.1.2. Let \(g_1, \ldots, g_m \in \mathbb{R}[x_1, \ldots, x_n] \). Let \(\deg(g_i) = d_i \ \forall 1 \leq i \leq m \). Then \(f = (p^2_0 + \ldots + p^2_{0k_0}) + g_1(p^2_{11} + \ldots + p^2_{1k_1}) + \ldots + g_m(p^2_{m1} + \ldots + p^2_{mk_m}) \) for some \(p_{ij} \in \mathbb{R}[x_1, \ldots, x_n] \) iff \(S(g_1, \ldots, g_m) \neq \emptyset \) where

\[
S(g_1, \ldots, g_m) := \{(X_0, X_1, \ldots, X_m) | X_0 \in S^{N_0}_\alpha, X_i \in S^{N_i}_{\alpha - d_i/2} \ \forall 1 \leq i \leq m, X_i \geq 0 \ \forall 0 \leq i \leq m \text{ and } f_\alpha = \sum_{\beta + \gamma = \alpha} X_0_{\beta, \gamma} + \sum_{i=1}^{m} \sum_{\delta \leq d_i} g_{i\delta} \sum_{\beta + \gamma = \alpha - \delta} X_{i\beta, \gamma} \ \forall \alpha \in N^m_2\}.
\]

Proof. \(\Rightarrow \):

Let \(f = (p^2_0 + \ldots + p^2_{0k_0}) + g_1(p^2_{11} + \ldots + p^2_{1k_1}) + \ldots + g_m(p^2_{m1} + \ldots + p^2_{mk_m}) \). Similarly as before we can write

\[
[f]^T[x]_{2i} = [x]^T P_0[x]_i + [g_1]^T[x]_i X_1[x]_i + \ldots + [g_m]^T[x]_i X_m[x]_i
\]

where \(P_i \geq 0 \ \forall 0 \leq i \leq m \). Equating the coefficients we get,

\[
f_\alpha = \sum_{\beta + \gamma = \alpha} P_0_{\beta, \gamma} + \sum_{i=1}^{m} \sum_{\delta \leq d_i} g_{i\delta} \sum_{\beta + \gamma = \alpha - \delta} P_{i\beta, \gamma}
\]

\(\forall \alpha \). Therefore \(S(g_1, \ldots, g_m) \neq \emptyset \).

\(\Leftarrow \):

If \(S(g_1, \ldots, g_m) \neq \emptyset \), we get \((X_0, \ldots, X_m) \) such that

\[
f_\alpha = \sum_{\beta + \gamma = \alpha} X_{0\beta, \gamma} + \sum_{i=1}^{m} \sum_{\delta \leq d_i} g_{i\delta} \sum_{\beta + \gamma = \alpha - \delta} X_{i\beta, \gamma} \ \forall \alpha
\]

So we have

\[
[f]^T[x] = [x]^T X_0[x]_i + [g_1]^T[x]_i X_1[x]_i + \ldots + [g_m]^T[x]_i X_m[x]_i
\]

As we saw before if \(X_i \geq 0 \), we can write \([x]^T X_i[x] = p^2_{i1} + \ldots + p^2_{ik_i} \) for some \(k_i \geq 0 \). Therefore,

\[
f = (p^2_0 + \ldots + p^2_{0k_0}) + g_1(p^2_{11} + \ldots + p^2_{1k_1}) + \ldots + g_m(p^2_{m1} + \ldots + p^2_{mk_m})
\]

Remark 3.2. \(g(x_1, \ldots, x_n) \) is a sum of squares implies \(g(x_1, \ldots, x_n) \geq 0 \). But \(g(x_1, \ldots, x_n) \geq 0 \) need not imply that \(g(x_1, \ldots, x_n) \) is a sum of squares.

If \(K \) is of the form described in preliminaries and if \(K \) is compact then we can use results of Schmudgen and Putinar to characterize positivity of \(f \) over \(K \). Let \(g = (g_1, \ldots, g_m) \) be used to describe \(K \).

Definition 3.2.1.3. \(Q(g) \):

\[
Q(g) := \{\sigma_0 + \sigma_1 g_1 + \ldots + \sigma_m g_m | \sigma_i \text{ is sum of squares } \forall 0 \leq i \leq m\}
\]

Definition 3.2.1.4. \(Q_t(g) \):

\[
Q_t(g) := \{\sigma_0 + \sigma_1 g_1 + \ldots + \sigma_m g_m | \sigma_i \text{ is sum of squares } \forall 0 \leq i \leq m \text{ and } \deg(\sigma_i g_i) \leq 2t \text{ and } \deg(\sigma_0) \leq 2t\}
\]
Definition 3.2.1.5. \(\Gamma(g) \): \(\Gamma(g) \) is defined as a quadratic module generated by \(g^e := g_1^{e_1} \cdots g_m^{e_m} \) where \(e \in \{0,1\}^m \)

Archimedeian Condition: \(\exists R > 0 \) such that \(R - x_1^2 - \ldots - x_n^2 \in Q(g) \)

Lemma 3.2.1.6. Archimedeian condition holds implies \(K \) is compact.

Proof. \(K = \{ x \in \mathbb{R}^n | g_1(x) \geq 0, \ldots, g_m(x) \geq 0 \} \). So \(K \) is closed. And if Archimedeian condition holds, then \(K \) is bounded (because \(\mu \in K \) Archimedeian condition holds \(\implies \exists R > 0 \) such that \(R - x_1^2 - \ldots - x_n^2 = \sigma_0 + \sigma_1 g_1 + \ldots + \sigma_m g_m \) for some \(\sigma_i \) sum of squares. Therefore \(R - a_1^2 - \ldots - a_n^2 = \sigma_0(a) + \sigma_1(a) g_1(a) + \ldots + \sigma_m(a) g_m(a) \). So on \(K, R - (a_1^2 + \ldots + a_n^2) \geq 0 \). Therefore \(|a| \leq R \)). So \(K \) is closed and bounded. Therefore \(K \) is compact. \(\square \)

Theorem 3.2.1.7. (Schmüdgen) : Let \(K \) be compact, \(f(x) > 0 \ \forall \ x \in K \implies f \in \Gamma(g) \).

Theorem 3.2.1.8. (Putinar) : Let's assume archimedeian condition holds. Then \(f(x) > 0 \ \forall \ x \in K \implies f \in Q(g) \).

3.2.2 Lasserre Hierarchy

Let \(t \geq \lfloor \text{deg}(f)/2 \rfloor \). Lasserre introduced relaxations to the polynomial optimization problem based on Putinar’s result.

Consider

\[
 f_{t} \text{sos} = \sup_{\lambda} \{ \lambda : f - \lambda \in Q_t(g) \} \tag{3.18}
\]

Lemma 3.2.2.1. \(f_{t} \text{sos} \leq f_{min} \)

Proof. Let \(\lambda \) be such that \(f - \lambda \in Q_t(g) \subseteq Q(g) \). So \(f - \lambda > 0 \) on \(K, f_{min} = \inf_{K} f(x) \). So \(f_{min} \geq f_{t} \text{sos} \).

Theorem 3.2.2.2. Lasserre Hierarchy :

\[
 f_t \text{sos} \leq f_{t+1} \text{sos} \leq \ldots \leq f_{min} \tag{3.19}
\]

Proof. Now \(Q_{t+i}(g) \subseteq Q_{t+i+1}(g) \ \forall \ i \in \mathbb{N} \). Therefore

\[
 \{ \lambda \in \mathbb{R} | f - \lambda \in Q_{t+i}(g) \} \subseteq \{ \lambda \in \mathbb{R} | f - \lambda \in Q_{t+i+1}(g) \} \ \forall \ i \in \mathbb{N}.
\]

So \(f_{t+i} \text{sos} \leq f_{t+i+1} \text{sos} \ \forall \ i \in \mathbb{N} \). Therefore we get \(f_{t} \text{sos} \leq f_{t+1} \text{sos} \leq \ldots \leq f_{min} = \inf_{K} f(x) \) by using lemma 3.2.2.1.

We know that \(f - \lambda \in Q_t(g) \iff S(g_1, \ldots, g_m)^{f - \lambda} \neq \phi \), where

\[
 S(g_1, \ldots, g_m)^{f - \lambda} = \{ (X_0, X_1, \ldots, X_m) | X_0 \in S^{N_t}, X_i \in S^{N_{(2t-d_i)/2}} \ \forall \ 1 \leq i \leq m, X_i \succeq 0 \ \forall \ 0 \leq i \leq m \}
\]

and \((f - \lambda)_\alpha = \sum_{\beta+\gamma = \alpha} X_{0, \beta, \gamma} + \sum_{i=1}^{m} \sum_{d_i} g_i \sum_{\beta+\gamma = \alpha - \delta} X_{i, \beta, \gamma} \)

\(\forall \ \alpha \in N_2^{m} \)
\[S(g_1, \ldots, g_m)^{f_\lambda} = \{(X_0, X_1, \ldots, X_m) \mid X_0 \in S^{N_n}, X_i \in S^{N_n(2t-d_i)/2} \quad \forall 1 \leq i \leq m, X_i \geq 0 \} \]

\[\forall 0 \leq i \leq m \text{ and } f_\alpha = \sum_{\beta+\gamma=\alpha} X_{0,\beta,\gamma} + \sum_{\beta+\gamma=\alpha-\delta} \sum_{\delta \leq d_i} g_{\delta} X_{i,\beta,\gamma} \]

\[\forall \alpha \in N_{2t}^n - (0, \ldots, 0) \text{ and } f(0, \ldots, 0) - \lambda = X_{0,0,0} + \sum_{i=1}^{m} g_{i0} X_{i,0,0} \}

Therefore,

\[\{ \lambda : f - \lambda \in Q_t(g) \} = \{ f(0, \ldots, 0) - X_{0,0,0} - \sum_{i=1}^{m} g_{i0} X_{i,0,0} \mid X_0 \in S^{N_n}, X_i \in S^{N_n(2t-d_i)/2} \quad \forall 1 \leq i \leq m, X_i \geq 0 \}

\[\forall 0 \leq i \leq m \]

\[\text{and } f_\alpha = \sum_{\beta+\gamma=\alpha} X_{0,\beta,\gamma} + \sum_{\beta+\gamma=\alpha-\delta} \sum_{\delta \leq d_i} g_{\delta} X_{i,\beta,\gamma} \]

\[\forall \alpha \in N_{2t}^n - (0, \ldots, 0) \}

Therefore,

\[f_{t,sos} = f(0, \ldots, 0) + \sup \{-X_{0,0,0} - \sum_{i=1}^{m} g_{i0} X_{i,0,0} \mid X_0 \in S^{N_n}, X_i \in S^{N_n(2t-d_i)/2} \}

\[\forall 1 \leq i \leq m, X_i \geq 0 \quad \forall 0 \leq i \leq m \]

\[\text{and } f_\alpha = \sum_{\beta+\gamma=\alpha} X_{0,\beta,\gamma} + \sum_{\beta+\gamma=\alpha-\delta} \sum_{\delta \leq d_i} g_{\delta} X_{i,\beta,\gamma} \]

\[\forall \alpha \in N_{2t}^n - (0, \ldots, 0) \}

Let

\[X = \begin{bmatrix} X_0 & 0 & 0 & \ldots \\ 0 & X_1 & 0 & \ldots \\ \vdots & \vdots & \ddots \\ 0 & 0 & 0 & X_m \end{bmatrix}. \]

Define \(C_0 = (C_{0,\beta,\gamma})_{\beta,\gamma} \in N_t^n \) where \(C_{0,0,0} = -1 \) and everywhere else 0. Define \(C_i = (C_{i,\beta,\gamma})_{\beta,\gamma} \in N_t^n(2t-d_i)/2 \) where \(C_{i,0,0} = -g_{i0} \) and everywhere else 0 \(\forall 1 \leq i \leq m \). Define

\[C = \begin{bmatrix} C_0 & 0 & 0 & \ldots \\ 0 & C_1 & 0 & \ldots \\ \vdots & \vdots & \ddots \\ 0 & 0 & 0 & C_m \end{bmatrix}. \]

\[\forall \alpha \in N_t^n \setminus (0, \ldots, 0) \text{ define } A_{00} = (A_{00,0,\beta,\gamma})_{\beta,\gamma} \in N_t^n \text{ where } A_{00,0,\beta,\gamma} = 1 \text{ if } \beta + \gamma = \alpha \text{ and otherwise 0. Define } A_{ii} = (A_{ii,0,\beta,\gamma})_{\beta,\gamma} \in N_t^n(2t-d_i)/2 \text{ where } A_{ii,0,\beta,\gamma} = g_{i0} \text{ where } \beta + \gamma = \alpha - \delta \text{ and otherwise 0. Define } \]

\[A_\alpha = \begin{bmatrix} A_{00} & 0 & 0 & \ldots \\ 0 & A_{a1} & 0 & \ldots \\ \vdots & \vdots & \ddots \\ 0 & 0 & 0 & A_{am} \end{bmatrix}. \]
Now one can check that
\[
 f_{t}^{sos} = f_{(0,\ldots,0)} + \sup\{\langle C, X \rangle | X \geq 0 \text{ and } \langle A_{\alpha}, X \rangle = f_{\alpha} \forall \alpha \in N_{t}^{n} \setminus (0,\ldots,0)\} \tag{3.20}
\]

The dual program can be expressed as
\[
 f_{t}^{mom} = f_{(0,\ldots,0)} + \inf \left\{ \sum_{\alpha \in N_{t}^{n} \setminus (0,\ldots,0)} f_{\alpha}y_{\alpha} | \sum_{\alpha \in N_{t}^{n} \setminus (0,\ldots,0)} y_{\alpha}A_{\alpha} - C \geq 0 \right\} \tag{3.21}
\]

Therefore, \(f_{t}^{mom} = f_{(0,\ldots,0)} + \inf \{ \sum_{\alpha \in N_{t}^{n}} f_{\alpha}y_{\alpha} | \sum_{\alpha \in N_{t}^{n} \setminus (0,\ldots,0)} y_{\alpha}A_{\alpha} - C \geq 0 \text{ and } y_{(0,\ldots,0)} = 1 \} \)
\[
\sum_{\alpha \in N_{t}^{n} \setminus (0,\ldots,0)} y_{\alpha}A_{\alpha} - C = \begin{bmatrix} M(y) & 0 & 0 & \cdots \\ 0 & M(g_{1} * y) & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & M(g_{m} * y) \end{bmatrix}
\]

when \(y_{(0,\ldots,0)} = 1, M(y) \) and \(M(g_{i} * y) \) are moment matrices described in preliminaries.

Therefore, \(\sum_{\alpha \in N_{t}^{n} \setminus (0,\ldots,0)} y_{\alpha}A_{\alpha} - C \geq 0 \iff M(y) \geq 0 \text{ and } M(g_{i} * y) \geq 0 \forall 1 \leq i \leq m \text{ and } y_{(0,\ldots,0)} = 1 \). By result from preliminaries, \(M(y) \geq 0 \iff L(p) \geq 0 \forall p \): a sum of squares and \(M(g_{i} * y) \geq 0 \iff L(p) \geq 0 \forall p \in g_{i}(\text{a sum of squares}) \) where \(L \) corresponds to linear functional associated to \(y_{\alpha} \). And \(y_{(0,\ldots,0)} = 1 \iff L(1) = 1 \). Therefore,
\[
 f_{t}^{mom} = \inf_{L \in \mathbb{R}[x]_{2t}} \{ L(f) | L(1) = 1 \text{ and } L(p) \geq 0 \forall Q_{t}(g) \} \tag{MOMt} \tag{3.22}
\]

where \(\mathbb{R}[x]_{2t}^{*} \) is a set of linear functionals on \(\mathbb{R}[x]_{2t} \), \(f_{\min} = \inf_{K} f(x) := f_{\min} \).

Theorem 3.2.2.3. Lasserre: Assume that the Archimedean condition holds. Then \(f_{\min} = \lim_{t \rightarrow \infty} f_{t}^{sos} \).

Proof. So we have to prove that given any \(\epsilon > 0 \exists t_{0} \) such that \(f_{t_{0}}^{sos} \geq f_{\min} - \epsilon \). (Because \(f_{t}^{sos} \) is a non-decreasing sequence such that \(f_{t}^{sos} \leq f_{\min} \forall t \). \(f_{\min} = \inf_{K} f(x) \). So \(f - f_{\min} \geq 0 \) on \(K \). Therefore for any \(\epsilon > 0, f - f_{\min} + \epsilon > 0 \) on \(K \). So by Putinar’s result \(f - f_{\min} + \epsilon \in Q(g) \). Therefore \(f - f_{\min} + \epsilon \in Q_{t_{0}}(g) \) for some \(t_{0} \). So \(f_{t}^{sos} \geq f_{\min} - \epsilon \). (By definition of \(f_{t}^{sos} \)) So \(f_{\min} = \lim_{t \rightarrow \infty} f_{t}^{sos} \).

\[\square \]

3.3 Moments

Let \(\mu \) be a measure on \(K \). Define linear functional \(L_{\mu} \) by
\[
 L_{\mu}(f) = \int_{K} f(x) d\mu = \sum_{\alpha} f_{\alpha} \int_{K} x^{\alpha} d\mu \tag{3.23}
\]

From calculations in the previous section we see that \(f_{t}^{sos} \leq f_{t}^{mom} \) (by weak duality).

Lemma 3.3.0.4. \(f_{\min} = \inf \{ L_{\mu}(f) | \mu \text{ is a probability measure } \} \).
Proof. Consider $\inf \{ L_\mu(f)|\mu \text{ is a probability measure} \}$. We have that $f_{min} = \inf \{ f(x)|g_1(x) \geq 0, \ldots, g_m(x) \geq 0 \}$. If we fix any x in K and consider Dirac measure associated to x, then

$$L_\mu(f) = \int_y f(y) d\mu = \int_y f(y) d\delta_x(y) = f(x).$$

(3.24)

And Dirac measure is a probability measure. So $\inf \{ L_\mu(f)|\mu \text{ is a probability measure} \} \leq f_{min}$ and

$$L_\mu(f) = \int_y f(y) d\mu. L_\mu(f) = \int_y f(y) d\mu = f_{min}$$

(3.25)

whenever μ is a probability measure.

Definition 3.3.0.5. $f_{t_{mom}}^\prime$:

$$f_{t_{mom}}^\prime = \inf \{ L(f)|L(1) = 1 \text{ and } L(p) \geq 0 \forall p \in Q_t(g) \}$$

(3.26)

Theorem 3.3.0.6. Haviland: $L = L_\mu$ for some measure μ on K iff L is nonnegative on $P(K)$ where $P(K) = \{ p \in \mathbb{R}[x_1, \ldots, x_n]|p \geq 0 \text{ on } K \}$

$$Q_t(g) \subseteq P(K)$$

and μ is a probability measure implies $L_\mu(1) = 1$. Therefore

$$\{ L_\mu(f)|\mu \text{ is a probability measure} \} \subseteq \{ L(f)|L(1) = 1 \text{ and } L(p) \geq 0 \forall p \in Q_t(g) \}$$

So $f_{t_{mom}}^\prime \leq f_{min}$. So we have

$$f_{t_{sos}} \leq f_{t_{mom}}^\prime \leq f_{min}$$

(3.27)

So [Lasserre thm] implies that if archimedean condition holds then

$$\lim_{t \to \infty} f_{t_{sos}} = \lim_{t \to \infty} f_{t_{mom}}^\prime = f_{min}$$

(3.28)

If for some t optimal value of $f_{t_{mom}}^\prime$ is $L_\mu(f)$ (where μ is a probability measure), then $f_{min} = \inf_{\mu} \{ L_\mu(f)|\mu \text{ is a probability measure on } K \} \geq f_{t_{mom}}^\prime$. Therefore $f_{min} = f_{t_{mom}}^\prime$ for that t.

Let L be a linear functional. Then $M(L) := (L(x_\alpha x_\beta))_{\alpha,\beta}$. Ker $M(L) = \{ p \in \mathbb{R}[x_1, \ldots, x_n]|p^T M(L) = 0 \}$. Ker $M(L)$ is an ideal in $\mathbb{R}[x_1, \ldots, x_n]$. If $M(L) \geq 0$, then $L(p^2) = 0 \implies p \in \text{Ker}(L). (\therefore L(p^2) = 0 \implies p^T M(L)p = 0 \implies p^T N N^T p = 0 \implies (N^T p)^T N^T p = 0 \implies N^T p = 0 \implies p^T N N^T = 0 \implies p \in \text{Ker}(M(L)))$.

Theorem 3.3.0.7. (Curto and Fialkow): Let L be a linear functional. If $M(L) \geq 0$ and rank $M(L) = r < \infty$, then L has a unique representing measure μ.

Proof. Let $J = \text{Ker} M(L)$. $p \in \sqrt{J} \implies \exists k p_1, \ldots, p_s$ such that $p^2 + \sum_{i=1}^s p_i^2 \in J$. Therefore $L(p^2 + \sum_{i=1}^s p_i^2) = 0$. As $M(L) \geq 0$, $L(p_i^2) \geq 0 \forall 1 \leq i \leq s$ and $L(p^2k) \geq 0$. Therefore, $L(p^2k) = 0$. So $M(L) \geq 0$ implies $p^k \in J$. If k is even we can again derive $p^{k+1} \in J$ for $k_1 = k/2$. If k is odd $p^{k+1} \in J$ then again we get $p^{(k+1)/2} \in J$. Continuing in this way we get $p \in J$. Therefore $\sqrt{J} = J$. So J is real radical ideal. M(L) has finite rank r. Let columns indexed by $x_\alpha^1, \ldots, x_\alpha^s$ be maximal linearly independent set of columns. Then $\lambda_1 x_\alpha^1 + \ldots + \lambda_s x_\alpha^s \in J$ implies $\lambda_1 x_\alpha^1 + \ldots + \lambda_s x_\alpha^s \in J$. Therefore $L((\lambda_1 x_\alpha^1 + \ldots + \lambda_s x_\alpha^s)x_\gamma) = 0 \forall \gamma \in N^n$. Therefore $\lambda_1 L(x_\alpha^1 x_\gamma) + \ldots + \lambda_s L(x_\alpha^s x_\gamma) = 0 \forall \gamma \in N^n$. This implies $\lambda_1 = 0 \forall 1 \leq i \leq r$. Columns corresponding to $x_\alpha^i \in M(L)$ are linearly independent. Therefore $\dim \mathbb{R}[x_1, \ldots, x_n]/J \geq r$. And...
if \(\exists \) any \(\beta \) such that \(x^{\alpha_1}, \ldots, x^{\alpha_r}, x^\beta \) are linearly independent, then columns in \(M(L) \) corresponding to \((x^{\alpha_1}, \ldots, x^{\alpha_r}, x^\beta)\) are also linearly independent. \(\vdash \) if \(\not\exists \lambda_1, \ldots, \lambda_{r+1} \) such that \(\lambda_1 \) (column corrs to \(x^{\alpha_1} \)) + \cdots + \lambda_{r+1} \) (column corrs to \(x^{\alpha_r} \)) = 0 \(\implies \) \(L(\lambda_1 x^{\alpha_1} + \cdots + \lambda_r x^{\alpha_r} + \lambda_{r+1} x^\beta) = 0 \implies \lambda_1 x^{\alpha_1} + \cdots + \lambda_r x^{\alpha_r} + \lambda_{r+1} x^\beta \in J \) contradicting \(x^{\alpha_1}, \ldots, x^{\alpha_r}, x^\beta \) linearly independent in \(\mathbb{R}[x_1, \ldots, x_n]/J \) over \(\mathbb{R} \). Therefore \(\dim \mathbb{R}[x_1, \ldots, x_n]/J \geq r \). Therefore \(\dim \mathbb{R}[x_1, \ldots, x_n]/J = r \). J is a real radical ideal. Therefore a radical ideal. So by proposition in preliminaries \(V_C(J) = V_{\mathbb{R}}(J) \) and \(|V_C(J)| = |V_{\mathbb{R}}(J)| = r \). Let \(V_C(J) = \{ v_1, \ldots, v_r \} \subset \mathbb{R}^n \). Let \(p_{v_i} \in \mathbb{R}[x_1, \ldots, x_n] \) be interpolation polynomials at points of \(V_{\mathbb{R}}(J) \). (Interpolation polynomials are described explicitly in preliminaries) \(p_{v_i}(v_j) = \delta_{ij}(p_{v_i}^2 - p_{v_i})(v_j) = p_{v_i}^2(v_j) - p_{v_i}(v_j) = 0 \). Therefore \(\forall 1 \leq j \leq r, 1 \leq i \leq r \). So \(p_{v_i}^2 - p_{v_i} \) \(\in \) \(I(V_C(J)) \) \(\forall 1 \leq i \leq r \). But \(I(V_C(J)) = J \) \(\vdash \) \(J \) is radical. Therefore \(p_{v_i}^2 - p_{v_i} \in J \) \(\forall 1 \leq i \leq r \). Therefore \(L(p_{v_i}^2 - p_{v_i}) = 0 \) \(\forall 1 \leq i \leq r \). Therefore \(L(p_{v_i}^2) = 0 \implies p_{v_i} \in J \) (as \(M(L) \geq 0 \)) giving contradiction as \(p_{v_i}(v_i) \neq 0 \). Consider \(\mu = \sum_{i=1}^r L(p_{v_i}) \delta v_i(\text{dirac measure with respect to } v_i) \). Then for any \(f \in \mathbb{R}[x_1, \ldots, x_n], \mu(f) = \int_K f(x) \mu dx = \sum_{i=1}^r L(p_{v_i}) \int_K f(x) \delta v_i = \sum_{i=1}^r L(p_{v_i}) f(v_i) \). By lemma \(f - \sum_{i=1}^r v_i(v_j) f(v_i) p_{v_i} \in I(V_C(J)) = J \). Therefore \(L(f) = \sum_{i=1}^r v_i(v_j) f(v_i) L(p_{v_i}) \). So \(\mu(L) = L(f) \forall f \in \mathbb{R}[x_1, \ldots, x_n] \). So \(L = L_{\mu} \).

Definition 3.3.0.8. Truncated moment matrix of \(L : L \in \mathbb{R}[x_1, \ldots, x_n]_{2t}^* \)

\[
M_t(L) := (L(x^{\alpha \beta}))_{\alpha, \beta} \in N_t^t.
\]

Definition 3.3.0.9. Flat Extension : \(M_t(L) \) is a flat extension of \(M_{t-1}(L) \) if rank \(M_t(L) = \text{rank } M_{t-1}(L) \).

Theorem 3.3.0.10. Let \(L \in \mathbb{R}[x_1, \ldots, x_n]_{2t}^* \). If \(M_t(L) \) is a flat extension of \(M_{t-1}(L) \) then \(\exists \tilde{L} \in \mathbb{R}[x_1, \ldots, x_n]_{2t}^* \) such that \(\tilde{L} = L \) on \(\mathbb{R}[x_1, \ldots, x_n]_{2t} \) and such that rank \(M(\tilde{L}) = \text{rank } M_t(L) \).

Proof. Consider I ideal generated by Ker \(M_t(L) \) \(\in \mathbb{R}[x_1, \ldots, x_n], M_t(L) \) is a flat extension of \(M_{t-1}(L) \). Therefore rank \(M_t(L) = \text{rank } M_{t-1}(L) \). So columns corresponding to \(x^\alpha \) where \(|\alpha| = t \) can be expressed in terms of columns corresponding to \(x^\beta \) with \(|\beta| \leq t - 1 \). Therefore \(x^\alpha \) with \(|\alpha| = t \) can be expressed in terms of \(x^\beta \) with \(|\beta| \leq t - 1 \). So any \(f \in \mathbb{R}[x_1, \ldots, x_n] \) can be expressed in terms of \(x^\alpha \) with \(|\alpha| \leq t \). Then define \(\tilde{L}(f) \) such that if \(\tilde{f} = \tilde{g} \) for some \(g \in \mathbb{R}[x_1, \ldots, x_n]_{2t} \), then \(\tilde{L}(f) = \tilde{L}(g) \). (well defined because if \(\tilde{g} = \tilde{h} \), then \(\tilde{g} = \tilde{h} \)). Then \(\tilde{L}(g) = \tilde{L}(h) \). And rank \(M(\tilde{L}) = \text{rank } M_t(L) \). (because \(f \in \mathbb{R}[x_1, \ldots, x_n]_{2t} \) can be expressed in terms of \(x^\alpha ; |\alpha| \leq t \).

Theorem 3.3.0.11. Let \(L \in \mathbb{R}[x_1, \ldots, x_n]_{2t} \), such that \(M_t(L) \geq 0, M_{t-d_K/2}(g_L) \geq 0 \) \(\forall 1 \leq j \leq m \) and rank \(M_t(L) = \text{rank } M_{t-d_K}(L) \) where \(d_K = \max \{ [d_j/2 : 1 \leq j \leq \text{mcrcell}] \) Then \(L \) has a representing measure \(\mu \) such that \(\text{supp}(\mu) \subseteq K \).

Proof. Similarly as in previous theorem, rank \(M_t(L) = \text{rank } M_{t-d_K}(L) \) \(\implies \exists \tilde{L} \in \mathbb{R}[x_1, \ldots, x_n]^* \) such that \(\tilde{L} = L \) on \(\mathbb{R}[x_1, \ldots, x_n]_{2t} \) and such that rank \(M(\tilde{L}) = \text{rank } M_t(L) \). By proposition in preliminaries \(M(\tilde{L}) \geq 0 \) iff \(L(\sigma) \geq 0 \) \(\forall \sigma \) sum of squares, \(L(\sigma) = L(\sigma') \) for some \(\sigma' \) sum of squares and \(M(\tilde{L}) \geq 0 \). Therefore \(L(\sigma') \geq 0 \). So \(M(\tilde{L}) \geq 0 \). So by theorem of Curto and Fialkow \(\tilde{L} \) and \(L \) has a representing measure \(\mu \) such that \(L = \sum_{i=1}^r L(p_{v_i}) \mu v_i \) where \(\text{supp}(\mu) = \{ v_1, \ldots, v_r \} \subseteq \mathbb{R}^n \) with \(\text{rank } M(\tilde{L}) = \text{rank } M_t(L) \). Now to show that \(v_i \in K \forall 1 \leq i \leq r \). Rank \(M_t(L) = \text{rank } M_{t-d_K}(L) \). Therefore every \(p_{v_i} \) can be written in terms of polynomials of deg atmost \(t - d_K \) (modulo I = ideal generated by Ker \(M_t(L) \)). Say \(p_{v_i} = h_i(\text{modulo I}) \forall 1 \leq i \leq r \). Therefore \(p_{v_i} - h_i \in I \) \(\forall 1 \leq i \leq r \). For any \(1 \leq j \leq m, M_{t-d_K/2}(g_L) \geq 0 \). and deg \(h_i \leq t - d_K \leq t - [d_j/2] \). Therefore \((g_j)(L)(h_i) \geq 0 \). So \(L(g_j h_i^2) \geq 0 \) \(\forall 1 \leq i \leq r \). Therefore \(L(g_j h_i^2) = L(g_j p_{v_i}^2) \geq 0 \) \(\forall 1 \leq i \leq r \) and \(\forall 1 \leq j \leq m \). Therefore \((g_j p_{v_i}^2) = \sum_{i=1}^r L(p_{v_i}) L(v_i(g_j p_{v_i}^2)) = g_j(v_i) \geq 0 \) \(\forall 1 \leq i \leq r \) and \(\forall 1 \leq j \leq m \). So \(v_i \in K \forall 1 \leq i \leq r \). Therefore \(\text{supp}(\mu) \subseteq K \).
Theorem 3.3.0.12. Let \(L \in \mathbb{R}[x_1, ..., x_n]_{2t}^+ \) be an optimal solution of (MOMt). Assume \(L \) satisfies \(\text{rank } M_t(L) = \text{rank } M_{t-d_k} \). Then \(f_{t}^{\text{mom}} = f_{\text{min}} \).

Proof. \(L \) is optimal solution of (MOMt). Therefore \(L(p) \geq 0 \forall p \in Q_t(g) \). So \(M_t(L) \succeq 0 \) and \(M_{t-[d/2]} \succeq 0 \forall 1 \leq j \leq m. \text{rank } M_t(L) = \text{rank } M_{t-d_k} \). So by previous theorem \(L \) has a representing measure \(\mu \) with \(\text{supp}(\mu) \subseteq K \). Let \(\text{supp}(\mu) = \{v_1, ..., v_r\} \subseteq \mathbb{R}^n \). Then \(L = \sum_{i=1}^{r} L(p_{v_i})L_{v_i} \). Therefore \(f_{t}^{\text{mom}} = L(f) = \sum_{i=1}^{r} L(p_{v_i})f(v_i) \in \text{supp}(\mu) \subseteq K \forall 1 \leq i \leq r \) and \(L(p_{v_i}) = L(p_{v_i}^2) \geq 0 \implies f(v_i) \geq f_{\text{min}} \forall 1 \leq i \leq r \). So \(f_{t}^{\text{mom}} \geq (\sum_{i=1}^{r} L(p_{v_i}))f_{\text{min}} \). \(L(1) = 1 \). So \(\sum_{i=1}^{r} L(p_{v_i}) = 1 \). \(f_{t}^{\text{mom}} \geq f_{\text{min}} \). Therefore \(f_{t}^{\text{mom}} = f_{\text{min}} \). \(\square \)
Chapter 4
Kissing Number

4.1 Spherical Harmonics

Here we go through concepts of spherical harmonics, needed to derive the addition theorem. This chapter contains description of gegenbauer polynomials. It discusses the ‘kissing number problem’ and how to give a bound for it.

Laplace equation in n variables.

\[
\sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} = 0 \tag{4.1}
\]

Definition 4.1.0.13. Harmonic polynomial: Homogeneous polynomials which satisfy Laplace equation are called harmonic.

Definition 4.1.0.14. Spherical harmonic: Spherical harmonic in n variables is restriction of homogeneous polynomial (say \(u\)) in n variables satisfying the Laplace equation to unit sphere \(S^{n-1}\) in \(\mathbb{R}^n\).

Definition 4.1.0.15. \(V_{k,n}\): Homogeneous polynomials of deg k in n variables form a vector space over \(\mathbb{R}\). We denote this space by \(V_{k,n}\).

Now to calculate the dimension of \(V_{k,n}\).

Lemma 4.1.0.16. \(\dim V_{k,n} = \binom{n-1+k}{n-1} = \binom{n-1+k}{k}\)

Proof. Let \(x = (x_1, \ldots, x_n)\). \((x^\alpha)_{|\alpha|=k}\)span\(V_{k,n}\). And they are linearly independent. \(\dim V_{k,n} = |S|\) where \(S = \{\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n \mid |\alpha| = \alpha_1 + \ldots + \alpha_n = k\}\). Now consider any arrangement of n-1 lines and k dots. Each arrangement gives rise to a distinct \(\alpha\). And each \(\alpha\) gives us a unique arrangement. Therefore \(|S|\) is the number of arrangements of n-1 lines and k dots i.e \(\binom{n-1+k}{n-1} = \binom{n-1+k}{k}\) \(\square\)

Denote \(\dim V_{k,n}\) by \(d_{k,n}\). So \(d_{k,n} = \binom{n-1+k}{n-1}\). All homogeneous polynomials are not harmonic. Let \(\Delta = \sum \partial^2 / \partial x_i^2\) be Laplace operator. \(\Delta\) is a linear operator. Harmonic polynomials of deg k in n-variables also form a vector space over \(\mathbb{R}\) Let us denote it by \(W_{k,n}\). Let \(p(x)\) be a homogeneous polynomial of deg k in n variables. We can write \(p(x)\) as

\[
p(x) = \sum_{j=0}^{k} A_{k-j}(x_1, \ldots, x_{n-1})x_j^n \tag{4.2}
\]
where $A_m(x_1, ..., x_{n-1})$ is homogeneous polynomial of degree m in n-1 variables.
p(x) harmonic implies $\Delta p(x) = 0$. So,

$$\Delta p(x) = \sum_{j=0}^{k} \Delta (A_{k-j}(x_1, ..., x_{n-1})x_j^p)$$

$$= \sum_{j=0}^{k} \left(\sum_{i=1}^{n-1} (\partial^2(A_{k-j}(x_1, ..., x_{n-1})x_i^j)/\partial x_i^2) + (\partial^2(A_{k-j}(x_1, ..., x_{n-1})x_j^p)/\partial x_j^2) \right)$$

$$= \sum_{j=0}^{k-2} (A_{k-j}(x_1, ..., x_{n-1}))x_j^p + \sum_{j=2}^{k} j(j-1)(A_{k-j}(x_1, ..., x_{n-1}))x_j^{j-2}$$

Therefore, $0 = \sum_{j=0}^{k-2} (A_{k-j}(x_1, ..., x_{n-1}) + (j+2)(j+1)A_{k-j-2}(x_1, ..., x_{n-1}))x_j^p$.

So

$$\Delta A_{k-j}(x_1, ..., x_n) = -(j+2)(j+1)A_{k-j-2}(x_1, ..., x_n) \forall 0 \leq j \leq k-2$$ (4.3)

If we have A_k and A_{k-1} then we can compute $A_j \forall 0 \leq j \leq k-2$. So we have p. We can define $\phi : V_{k,n-1} \times V_{k-1,n-1} \rightarrow W_{k,n}$ by $\phi(A_k, A_{k-1}) = $ the corresponding harmonic polynomial computed using (3.3). ϕ is linear and bijective. So by null rank theorem $\dim W_{k,n} = \dim (V_{k,n-1} \times V_{k-1,n-1}) = d_{k,n-1} + d_{k-1,n-1}$. Therefore $\dim W_{k,n} = \binom{n-2+k}{k} + \binom{n+k-3}{k-1}$.

Polar coordinates in n-dimensions $(r, \theta_1, ..., \theta_{n-2}, \phi)$

$$x_1 = r\cos(\theta_1)$$

$$x_2 = r\sin(\theta_1)\cos(\theta_2)$$

$$\vdots$$

$$x_{n-1} = r\sin(\theta_1)\sin(\theta_2) ... \sin(\theta_{n-2})\cos(\phi)$$

$$x_n = r\sin(\theta_1)\sin(\theta_2) ... \sin(\theta_{n-2})\sin(\phi)$$

with $0 \leq \theta_j \leq \pi$ and $0 \leq \phi \leq 2\pi$.

We can define inner product on the space of real continuous functions on S^{n-1} by

Definition 4.1.0.17. (f, g):

$$\langle f, g \rangle = \int_{S^{n-1}} f(\xi)g(\xi)dw(\xi)$$ (4.9)

Let $H_k(x_1, ..., x_n)$ be harmonic homogeneous polynomial of degree k and $H_j(x_1, ..., x_n)$ be harmonic homogeneous polynomial of degree j.

Theorem 4.1.0.18. Harmonic homogeneous polynomials of different degrees are orthogonal.

Proof. H_k, H_j harmonic implies $\Delta H_k = 0 = \Delta H_j$. So

$$\int_{x_1^2 + ... + x_n^2 \leq 1} (H_j(x_1, ..., x_n)\Delta H_k(x_1, ..., x_n) - H_k(x_1, ..., x_n)\Delta H_j(x_1, ..., x_n))dx_1dx_2...dx_n = 0$$
By Gauss-Green’s theorem, we get
\[\text{LHS} = \int_{|\xi|=1} (H_j(\xi) \partial/\partial r H_k(r\xi)|_{r=1} - H_k(\xi) \partial/\partial r H_j(r\xi)|_{r=1})dw(\xi) \]

\[H_k, H_j \text{ are homogeneous of deg } k, \text{deg } j \text{ respectively. Therefore} \]
\[\partial/\partial r H_k(r\xi)|_{r=1} = \partial/\partial r (r^k H_k(\xi))|_{r=1} = kr^{k-1} H_k(\xi) = k H_k(\xi) \]
\[\partial/\partial r H_j(r\xi)|_{r=1} = \partial/\partial r (r^j H_j(\xi))|_{r=1} = jr^{j-1} H_j(\xi) = j H_j(\xi) \]

So LHS \[\int_{S^{n-1}} (k - j) H_j(\xi) H_k(\xi) dw(\xi) = 0. \]
dw(\xi) is invariant measure on surface of \(S^{n-1} \).
So if \(k \neq j \) then \(\langle H_j(\xi), H_k(\xi) \rangle = 0 \). Therefore homogeneous harmonic polynomials of different degrees are orthogonal.

Denote dim \(W_{k,n} \) by \(c_{k,n} = \binom{n+k-2}{k} + \binom{n+k-3}{k-1} \).

With respect to the above inner product we can use Grahm-Schmidt orthogonalization to obtain an orthonormal basis of \(W_{k,n} \).
Let \(S_{k,j} \) for \(j = 1, ..., c_{k,n} \) be the orthonormal basis thus obtained.

Let \(O \) be an orthogonal \(n \times n \) matrix i.e
\[O^T O = Id = OO^T. \]

Then we have a map from \(\mathbb{R}^n \) to \(\mathbb{R}^n \) given by \(x \mapsto Ox \). Then scalar product
\[(Ox, Oy) = (Ox)^T (Oy) = x^T O^T O y = x^T y = (x, y) \]

Lemma 4.1.0.19. \(S_{k,j}(Ox) \in W_{k,n} \)

Proof. Consider \(\Delta(S_{k,j}(Ox)) \),
\[\Delta(S_{k,j}(Ox)) = (\partial/\partial x_1, ..., \partial/\partial x_n) \begin{bmatrix} \partial/\partial x_1 \\ \vdots \\ \partial/\partial x_n \end{bmatrix} S_{k,j}(Ox) \]

Let \(y = Ox \) then \((\partial/\partial x_1, ..., \partial/\partial x_n) = (\partial/\partial y_1, ..., \partial/\partial y_n)O \). Therefore
\[\Delta \text{ with respect to } x_1, ..., x_n(S_{k,j}(Ox)) = \Delta \text{ with respect to } O(x_1, ..., x_n)(S_{k,j}(Ox)) = 0 \]

So each \(S_{k,j}(Ox) \) can be written in terms of \(S_{k,j}(x) \); \(j = 1, ..., c_{k,n} \) uniquely. Let \(S_{k,j}(Ox) = \sum_{i=1}^{c_{k,n}} A_{ij}^k S_{k,j}(x) \) for \(j = 1, ..., c_{k,n} \). Let \(A^k = (A^k_{ij})_{jl} \) be a \(c_{k,n} \times c_{k,n} \) matrix. Then
\[((A^k)^T A^k)_{jl} = \sum_{i=1}^{c_{k,n}} A_{ij}^k A_{il}^k \]
\[= \int_{S^{n-1}} S_{k,j}(Ox) S_{k,l}(Ox) dw(x) \]
\[= \int_{S^{n-1}} S_{k,j}(x) S_{k,l}(x) dw(x) = \delta_{jl} \text{ (asdwis invariant.).} \]
Therefore A^k is orthogonal.

Let $\eta \in S^{n-1}$. Then η can be expressed in such form: $\eta = t(1,0,...,0) + \sqrt{1-t^2} \eta'$ where $|\eta'| = 1$ and η' is of the form $(0,*,...,*). (\eta,(1,0,...,0)) = t = \cos \theta_1$ where $\eta = (1,\theta_1,...,\theta_{n-2},\phi)$ in polar coordinates. By relations given by (*) we get
\[dx_1...dx_n = r^{n-1} \sin^{n-2} \theta_1 \ldots \sin^2 \theta_{n-3} \sin \theta_{n-2} dr \theta_1 ... d \theta_{n-2} d \phi \]
So $dw_n = r \sin^{n-2} \theta_1 d \theta_1 dw_{n-1}$. Therefore on S^{n-1} i.e when $r = 1$ we have
\[dw_n = \sin^{n-2} \theta_1 d \theta_1 dw_{n-1} = (\sqrt{1-t^2}^{n-2}/\sqrt{1-t^2}) dt dw_{n-1} = \sqrt{1-t^2}^{n-3} dt dw_{n-1} \quad (4.10) \]
Consider
\[F_k(x,\tilde{\eta}) = \left[S_{k,1}(x),...,S_{k,c_{k,n}}(x) \right] \begin{bmatrix} S_{k,1}(\tilde{\eta}) \\ \vdots \\ S_{k,c_{k,n}}(\tilde{\eta}) \end{bmatrix}. \quad (4.11) \]
If we consider F_k as a function of x then it is a homogeneous polynomial of degree k. And it will be harmonic as each $S_{k,j}(x)$ is harmonic for $j = 1,..,c_{k,n}$. Let O be an orthogonal matrix which fixes η. Then
\[F_k(Ox,\tilde{\eta}) = \left[S_{k,1}(Ox),...,S_{k,c_{k,n}}(Ox) \right] \begin{bmatrix} S_{k,1}(\tilde{\eta}) \\ \vdots \\ S_{k,c_{k,n}}(\tilde{\eta}) \end{bmatrix} = F_k(x,\tilde{\eta}) \]
So $F_k(Ox,\eta) = F_k(x,\eta)$(Because A^k is orthogonal)

Therefore F_k as a function of x is invariant under all orthogonal transformations that fix η. F_k only depends on scalar product $(x,\tilde{\eta})$. So we can write $F_k(x,\tilde{\eta}) = b_k P_k((x,\tilde{\eta}))$ for some constant b_k. We can normalize it by taking $P_k((\eta,\eta)) = P_k(1) = 1$.
So $\sum_{j=1}^{c_{k,n}} (S_{k,j}(\eta))^2 = F_k(\eta,\eta) = b_k$. Therefore $\int_{S^{n-1}} b_k dw(\eta) = \sum_{j=1}^{c_{k,n}} \int_{S^{n-1}} (S_{k,j}(\eta))^2 dw(\eta)$.
\[b_k w_n = \int_{S^{n-1}} b_k dw(\eta) = c_{k,n} \ldots \cdot \quad (\because S_{k,j} : j = 1,...,c_{k,n} \text{ is an orthonormal basis for } W_{k,n} \text{ with respect to (3.4) (II) where } w_n \text{ is surface area of } S^{n-1}. \text{ So } b_k = c_{k,n}/w_n. \]
\[F_k(x,\eta) = \sum_{j=1}^{c_{k,n}} S_{k,j}(x) S_{k,j}(\eta) = c_{k,n}/w_n P_k((x,\eta)). \]
\[c_{k,n}^2/w_n^2 P_k^2((x,\eta)) = \sum_{j=1}^{c_{k,n}} \sum_{i=1}^{c_{k,n}} S_{k,j}(x) S_{k,j}(\eta) S_{k,i}(x) S_{k,i}(\eta). \]
\[c_{k,n}^2/w_n^2 \int_{S^{n-1}} P_k^2((x,\eta)) dw(\eta) = \sum_{j=1}^{c_{k,n}} \sum_{i=1}^{c_{k,n}} S_{k,j}(x) S_{k,i}(x) \int_{S^{n-1}} S_{k,j}(\eta) S_{k,i}(\eta) dw(\eta) \]
\[= \sum_{j=1}^{c_{k,n}} (S_{k,j}(x))^2 \ldots \cdot \text{(by (II))} \]
\[= F_k(x,x) = b_k P_k((x,x)) \]
\[= c_{k,n}/w_n P_k(1) = c_{k,n}/w_n \]
Ultraspherical polynomials are defined in terms of their generating function. For a given

Therefore

\[P_{k}(x, η) = b_k P_k((x, η)) = \sum_{j=1}^{C_{k,n}} S_{k,j}(x)S_{k,j}(η) \]

F_k(x, η) = b_k P_k((x, η)) = \sum_{j=1}^{C_{k,n}} S_{k,j}(x)S_{k,j}(η)

Therefore \(b_k b_k' \int_{S_{n-1}} P_k((x, η))P_k'(x, η)dw(η) = \sum_{j=1}^{C_{k,n}} \sum_{i=1}^{C_{k,n'}} S_{k,j}(x)S_{k',i}(x) \int_{S_{n-1}} S_{k,j}(η)S_{k',i}(η)dw(η) \)

0 (if \(k \neq k' \)(by (3.5))

\[
\int_{S_{n-1}} P_k((x, η))P_k'(x, η)dw(η) = (w_n/c_{k,n})\delta_{k,k'} \tag{4.12}
\]

Now let \(x = (1, 0, .., 0) \). Let \(t = (x, η) \). Therefore using (3.6) we get

\[
\int_{-1}^{1} P_k(t)P_k'(t)(\sqrt{1-t^2})^{n-3}dt \int dw_{n-1}, \ldots \text{(because as η varies on } S^{n-1}, t \text{ varies from } -1 \text{ to } 1)
\]

\[= w_n - 1 \int_{-1}^{1} P_k(t)P_k'(t)(\sqrt{1-t^2})^{n-3}dt \tag{4.13} \]

\[
(w_n/(w_n-c_{k,n}))\delta_{k,k'} = \int_{-1}^{1} P_k(t)P_k'(t)(\sqrt{1-t^2})^{n-3}dt \]

4.2 Gegenbauer Polynomials

Ultraspherical polynomials are defined in terms of their generating function. For a given \(α, C_n^α \) are coefficients of \(t^n \) in \(1/(1 - 2xt + t^2)^α \). i.e

\[
\sum_{n=0}^{∞} C_n^α (x)t^n = 1/(1 - 2xt + t^2)^α
\]

The above equation (3.8) implies \(P_k(t) = C.C_k^{n-2/2}(t) \) for some constant \(C \). (For this implication refer to [4] or [5]). But we have normalized so that \(P_k(1) = 1 \). Therefore \(C = 1/C_k^{n-2/2} \). Therefore \(P_k(t) = C_k^{n-2/2}(t)/C_k^{n-2/2}(1) \)

Definition 4.2.0.20. Gegenbauer Polynomial (of deg \(k \) in \(n \) variables):

\[
G_k^n(t) := C_k^{n-2/2}(t)/C_k^{n-2/2}(1)
\]

So \(P_k(t) = G_k^n(t)G_0^n(t) = P_0(t) \). But \(P_0(t) \) is constant as it is homogeneous polynomial of deg 0. But \(P_0(t) = 1 \). So \(G_0^n(t) = 1 \ ∀ n \).

By (***) we see that \(F_k(x, ˜η) = b_k P_k((x, ˜η)) \)

We know \(b_k = C_{k,n}/w_n \)

Therefore \(F_k(x, ˜η) = \sum_{j=1}^{C_{k,n}} S_{k,j}(x)S_{k,j}(η) = C_{k,n}/w_n G_k^n((x, ˜η)) \).

So we have proved the addition theorem.

Theorem 4.2.0.21. Addition Theorem:

\[
G_k^n((x, ˜η)) = w_n/C_{k,n} \sum_{j=1}^{C_{k,n}} S_{k,j}(x)S_{k,j}(η) \tag{4.14}
\]

Theorem 4.2.0.22. (Scholzenberg): If \(X = (X_{ij})_{i,j} \) is a \(N \times N \) matrix on \(\mathbb{R} \) s.t \(X \geq 0 \) with rank atmost \(n \), then \(G_k^n(X) \geq 0 \).
CHAPTER 4. KISSING NUMBER

Proof. $X \succeq 0$ implies $X = LL^t$. $\text{rank}(X) = \text{rank}(L) \leq n$. Therefore we can choose L s.t L is an $N \times n$ matrix. Therefore each row is a vector in \mathbb{R}^n. Let i^{th} row be r_i

Then

$$X = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{pmatrix} \begin{pmatrix} r_1 & r_2 & \ldots & r_N \end{pmatrix}$$

Therefore $X_{ij} = (r_i, r_j)\forall 1 \leq i, j \leq N$. So $G_k^n(X_{ij}) = G_k^n((r_i, r_j)) \ldots (As r_i, r_j \in \mathbb{R}^n well defined)$

Addition theorem implies

$$G_k^n(X_{ij}) = \frac{w_n}{C_{k,n}} \sum_{l=1}^{C_{k,n}} S_{k,l}(r_i)S_{k,l}(r_j) \forall 1 \leq i, j \leq N$$

Therefore matrix $G_k^n(X) = \frac{w_n}{C_{k,n}}MM^T$ where $M = (S_{k,j}(r_i))_{i,j}$ So $G_k^n(X) \succeq 0$.

4.3 Kissing Number

Given a sphere A in dim n. Kissing number $k(n)$ is the maximum number of spheres of same size as A that can touch A simultaneously without overlapping each other.

For the case $n = 2$, it is easy to show that $k(2) = 6$ using the diagram below.

There is no space for a 7^{th} circle can be shown using contradiction. Kissing numbers are known for $n=1,2,3,4,8$ and 24. For $n=3$ regular icosahedron gives us a configuration where 12 spheres touch given sphere without overlapping. (Icosahedron has 20 faces and 12 vertices such that five faces meet at each vertex. If we consider spheres touching the sphere at these 12 vertices we get the desired configuration.) But a lot of space is left even after placing 12 spheres touching the center one. Therefore its hard to know if the above is the unique configuration.

For $n=4$ 24-cell provides a configuration. Therefore $k(4) \geq 24$. Musin proved in 2003 that $k(4) = 24$. For $n=8$ root lattice E_8 provides a configuration. It is known that $k(8) = 240$. Leech lattice gives a configuration for $n=24$. $k(24)$ is known to be 196560.

Delsarte, Goethals and Seidel method can be used to find good bounds on the kissing numbers.
Theorem 4.3.0.23. Delsarte, Goethals and Seidel: If \(f(t) = \sum_{k=0}^{d} c_k G^n_k(t) \) where \(G^n_k(t) \) are GegenBauer Polynomial with \(c_0 > 0 \) and \(c_k \geq 0 \) \(\forall k = 1 \ldots d \) and \(f(t) \leq 0 \) \(\forall t \in [-1, 1/2] \) then \(k(n) \leq f(1)/c_0 \)

Consider the following: Let \(A \) be unit sphere centered at origin in \(\mathbb{R}^n \). Let’s say it’s possible that \(N \) unit spheres touch \(A \) without overlapping. Let \(x_1, \ldots, x_N \) denote the points where they touch \(A \). No two spheres overlap. Therefore \(\langle x_i, x_i \rangle = 1 \) \(\forall 1 \leq i \leq N \). So \(\langle x_i, x_j \rangle \leq 1/2 \) \(\forall i \neq j \) (Because \(\theta \) between lines joining centers should be \(\geq 60 \) if they don’t overlap. Therefore \(\cos \theta \leq \cos 60 = 1/2 \). So \(\langle x_i, x_j \rangle \leq 1/2 \))

Consider the matrix \(X \) such that

\[
X_{ij} = \langle x_i, x_j \rangle \quad \Rightarrow \quad X = \begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_N
\end{pmatrix}
\begin{pmatrix}
x_1 & x_2 & \ldots & x_N
\end{pmatrix}
\]

Therefore \(X \) is positive semidefinite. And as \(x_i \in \mathbb{R}^n \ \forall \ 1 \leq i \leq n \) rank \(x \leq n \).
Consider the set

\[
S = \{ X \in S^N | X \succeq 0, x_{ii} = 1 \ \forall 1 \leq i \leq N, x_{ij} \leq 1/2 \ \forall i \neq j \ \text{rank} \ x \ \leq n \} \tag{4.15}
\]
If \(S \neq \phi \) then \(\exists \ x \in S^N \ s.t. \ X \succeq 0, x_{ii} = 1 \ \& \ x_{ij} \leq 1/2 \ \text{and rank} \ x \leq n \).
So \(X = LL^T \) for some \(L \ a \ N \times n \ matrix \).
So we can consider rows of \(L \) as points on \(A \) and so we get a configuration for \(N \) points.

Returning to the proof

Proof. According to the explanation above \(k(n) \) corresponds to a matrix \(X \succeq 0 \) with \(x_{ii} = 1 \forall 1 \leq i \leq k(n) \) and \(x_{ij} \leq 1/2 \ \forall i \neq j \) and rank \(x \leq n \).So applying Schoenberg’s theorem we get \(G_k^n(X) \succeq 0 \).Therefore sum of all entries of \(G_k^n(X) \geq 0 \).

\[
\sum_{j=1}^{k(n)} \sum_{i=1}^{k(n)} G_k^n(X_{ij}) \geq 0 \tag{4.16}
\]
$k(n) \sum_{i=1}^{k(n)} f(X_{ij}) = \sum_{i=1}^{k(n)} f(X_{ij})$

$= k(n)f(1) + \sum_{i\neq j} f(X_{ij})$

$X_{ij} \leq 1/2$ if $i \neq j$ and $f \leq 0$ on $[-1, 1/2]$. Therefore $\sum_{i\neq j} f(X_{ij}) \leq 0$. So,

$\sum_{j=1}^{k(n)} \sum_{i=1}^{k(n)} f(X_{ij}) \leq k(n)f(1)$ \hspace{1cm} (4.17)

Now calculating again we get

$\sum_{j=1}^{k(n)} \sum_{i=1}^{k(n)} f(X_{ij}) = \sum_{j=1}^{k(n)} \sum_{i=1}^{k(n)} \sum_{k=0}^{d} c_k G_k^n(X_{ij})$

$\geq c_0 \sum_{j=1}^{k(n)} \sum_{i=1}^{k(n)} G_0^n(X_{ij})...(because we have (1.2) and $c_k \geq 0$)

We have $G_0^n(X_{ij}) = 1$ if i, j. Therefore

$\sum_{i=1}^{k(n)} \sum_{j=1}^{k(n)} f(X_{ij}) \geq c_0(k(n))^2$ \hspace{1cm} (4.18)

So $k(n)f(1) \geq c_0(k(n))^2$. So

$k(n) \leq f(1)/c_0$ \hspace{1cm} (4.19)

Now lets try to find bound on $k(n)$ using Delsarte’s method and semidefinite optimization. Consider the following program for some fixed D.

$\min_n = \min_F \{ F(1)|F = \sum_{k=0}^{D} \lambda_k G_k^n, \lambda_k \geq 0, \lambda_0 = 1 \ and \ F(t) \leq 0 \ \forall \ t \in [-1, 1/2] \}$ \hspace{1cm} (4.20)

Then by Delsarte’s theorem $F(1)/\lambda_0 = F(1) \geq k(n) \ \forall \ F$ satisfying the condition. Therefore $\min_n \geq k(n)$

As we increase D we will get better bounds. Now we have to convert this problem to a semidefinite optimization problem.

$F(t) \leq 0 \ \forall \ t \in [-1, 1/2] \iff -F(t) \geq 0$ on $[-1, 1/2].$-$\lbrack -1, 1/2 \rbrack$ can be reformulated as $K = \{ t \in \mathbb{R} | g_1(t) := (1/2 - t)(t + 1) \geq 0 \}$. If we can show that archimedean condition holds for $Q(g)$ where $g = (g_1)$. Then by Putinar’s theorem we get that $-F(t) > 0$ on $[-1, 1/2] \iff -F \in Q(g)$. Then we can replace the program by

$\min_n = \min_F \{ F(1)|F = \sum_{k=0}^{D} \lambda_k G_k^n, \lambda_k \geq 0, \lambda_0 = 1 \ and \ -F \in Q(g) \}$ \hspace{1cm} (4.21)

In chapter 2 section 2 we saw that the condition $-F \in Q_r(g)$ for some r can be replaced by a semidefinite program. By varying r and D and using semidefinite optimization we can get bounds on $k(n)$. Refer appendix for the program.
Chapter 5

Triangle Packing

Problem Statement: What is the maximum number of regular tetrahedron that we can pack in unit sphere S^2 having a common vertex origin so that none of them overlap?

This problem corresponds to finding the maximum number of equilateral spherical triangles with edge length $\pi/3$ that cover the sphere without overlapping. It is known that this number $T(3)$ satisfies $20 \leq T(3) \leq 22$. The upperbound can be found by dividing the surface area of sphere by area of a spherical equilateral triangle of edge $\pi/3$. Surface area of sphere is 4π and area of spherical triangle can be calculated using Girard's theorem. Icosahedron gives us a configuration for packing 20 tetrahedrons in a sphere. (∴ $T(3) \geq 20$)

As we reformulated 'kissing number problem' in terms of points on the sphere, we try to reformulate this problem. We can denote vertices of spherical triangle as (x_1, x_2, x_3) with certain conditions so that they form equilateral spherical triangle. So we have to find maximum number of triples (x_1, x_2, x_3) on sphere such that they form equilateral triangle and no two overlap. So we need to find condition in terms of (x_1, x_2, x_3) and (y_1, y_2, y_3) that will imply that the 2 triangles donot overlap. So we need to find conditions depending on scalar products (x_i, y_j) such that the 2 triangles donot overlap.

Definition 5.0.0.24. Let Ω be the set of nine tuples $(a_{11}, a_{12}, a_{13}, ..., a_{33})$ such that if $a_{ij} = (x_i, y_j) \forall i, j$ for 2 triangles (x_1, x_2, x_3) and (y_1, y_2, y_3) then (x_1, x_2, x_3) and (y_1, y_2, y_3) donot overlap.

Let us say we can arrange N non overlapping tetrahedrons with common vertex in \mathbb{R}^3. Let origin be the common vertex. Let $T_1, ..., T_N$ be the corresponding spherical equilateral triangles on S^2, where $T_i = \{x_{i_1}, x_{i_2}, x_{i_3}\}$ $\forall 1 \leq i \leq N$. So

\[
(x_{i_j}, x_{i_j'}) = 1 \forall 1 \leq i \leq N \text{ and } \forall 1 \leq j \leq 3 \quad (5.1)
\]

\[
(x_{i_j}, x_{i_j'}) = 1/2 \forall 1 \leq i \leq N \text{ and } j \neq j' \quad (5.2)
\]

Definition 5.0.0.25. Denote

\[
X^{k,l}_{i,j} = (x_i^k, x_j^l)
\]

\[
X = (A_{kl})_{k,l}
\]

where A_{kl} is itself a matrix given by

\[
A_{kl} = (X^{k,l}_{i,j})_{i,j}.
\]
One can check that \(\forall 1 \leq k \leq N \)

\[
A_{kk} = \begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1
\end{bmatrix}
\]

By definition of matrix \(X \) it is evident that \(X \preceq 0 \). As each \(x_{ij} \in \mathbb{R}^3 \), \(\text{rank } X \leq 3 \). For any \(A_{kl} \), let \(a_{kl} \) be point \((X_{kl}^{i1}, X_{kl}^{i2}, ..., X_{kl}^{i3})\) in \(\mathbb{R}^9 \).

Definition 5.0.0.26.

\[
P_n^k(z) = P_n^k(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, z_9) := \sum_{i=1}^{9} G_n^k(z_i) \quad (5.3)
\]

where \(z = (z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, z_9) \)

Theorem 5.0.0.27. If \(P = \sum_{s=0}^{D} f_s P_s^3 \) with \(f_0 = 1 \) and \(f_s \geq 0 \ \forall 1 \leq s \leq D \) and if \(P(z) \leq 0 \ \forall z \in \Omega \), then

\[
N \leq \frac{P(a_{ll})}{9} \quad (5.4)
\]

\((N \text{ and } A_{ll} \text{ are as mentioned above})\)

Proof. \(X \succeq 0 \) implies \(G_s^3(X) \succeq 0 \) by Schoenberg’s theorem for all \(s = 0, ..., D \). So sum of entries is greater than or equal to 0. So

\[
\sum_{i,j,k,l} G_s^3(X_{i,j}^{k,l}) \geq 0 \quad (5.5)
\]

Consider

\[
\sum_{k,l} P(a_{kl}) = \sum_{k,l} \sum_{s=0}^{D} f_s P_s^3(a_{kl})
\]

\[
= \sum_{k,l} \sum_{s=0}^{D} f_s \sum_{i,j} G_s^3(X_{i,j}^{k,l})
\]

\[
= \sum_{s=0}^{D} f_s \sum_{i,j,k,l} G_s^3(X_{i,j}^{k,l})
\]

\[
\geq \sum_{i,j,k,l} G_0^3(X_{i,j}^{k,l})
\]

Because \(f_k \geq 0 \) and (5.12). Therefore

\[
\sum_{k,l} P(a_{kl}) \geq 9N^2 \quad (5.6)
\]

Again calculating \(\sum_{k,l} P(a_{kl}) \) we get,

\[
\sum_{k,l} P(a_{kl}) = NP(a_{ll}) + \sum_{k \neq l} P(a_{kl})
\]

\[
\leq NP(a_{ll})
\]
Because P is less than or equal to 0 on Ω. So we get
\[\sum_{k,l} P(a_{kl}) \leq NP(a_{ll}) \quad (5.7) \]
So (5.13) and (5.14) imply
\[N \leq \frac{P(a_{ll})}{9} \quad (5.8) \]
Now to express Ω in terms of algebraic inequalities.

Let $\{x, y, z\}$ be a spherical equilateral triangle of edge length $\pi/3$ on S^2. These 3 points lie on a plane. Centre of this planar triangle is given by $(x+y+z)/3$. Centre of the spherical triangle $\{x, y, z\}$ lies on the line through origin and $(x+y+z)/3$ and on S^2. So spherical centre is given by
\[C_{x,y,z} = k(x + y + z)/3 \]
For some scalar k. But $C_{x,y,z}$ lies on S^2 so
\[k^2((x + y + z), (x + y + z))/9 = 1 \]
\[k^2(\frac{2}{3}) = 1 \]
Because $(x, x) = 1 = (y, y) = (z, z)$ and $(x, y) = (y, z) = (x, z)$. So $k = \sqrt{\frac{3}{2}}$. So
\[C_{x,y,z} = \frac{(x + y + z)}{\sqrt{6}} \quad (5.9) \]
Let $X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3\}$ be 2 spherical equilateral triangles of edge length $\pi/3$ on S^2. Let r be the angular distance between C_{x_1,x_2,x_3}, x_1. Denote it by $\theta(C_{x_1,x_2,x_3}, x_1)$

Proposition 5.0.0.28. If $\theta(C_{x_1,x_2,x_3}, C_{y_1,y_2,y_3}) \geq 2r$, then spherical triangles X and Y donot overlap. (Note that $\theta(C_{y_1,y_2,y_3}, y_1) = \theta(C_{x_1,x_2,x_3}, x_1) = \theta(C_{x_1,x_2,x_3}, x_2) = \theta(C_{x_1,x_2,x_3}, x_1)$. Same for Y.)

![Figure 5.1: spherical caps](image)

Lemma 5.0.0.29. The condition that $\theta(C_{x_1,x_2,x_3}, C_{y_1,y_2,y_3}) \geq 2r$ can be rewritten in terms of scalar product, which is given by
\[\sum_{i,j \in \{1,2,3\}} (x_i, y_j) \leq 2 \quad (5.10) \]
Proof. $\theta(C_{x_1,x_2,x_3}, C_{y_1,y_2,y_3}) \geq 2r$ implies
\[\theta(C_{x_1,x_2,x_3}, C_{y_1,y_2,y_3}) \geq 2\theta(C_{x_1,x_2,x_3}, x_1) \] (5.11)
So
\[\cos(\theta(C_{x_1,x_2,x_3}, C_{y_1,y_2,y_3})) \leq \cos(2\theta(C_{x_1,x_2,x_3}, x_1)) \]
\[\cos(\theta(C_{x_1,x_2,x_3}, C_{y_1,y_2,y_3})) \leq 2\cos(\theta(C_{x_1,x_2,x_3}, x_1))^2 - 1 \]
As $C_{x_1,x_2,x_3}, C_{y_1,y_2,y_3}, C_{x_1,x_2,x_3}, x_1$ lie on S^2, we have
\[(C_{x_1,x_2,x_3}, C_{y_1,y_2,y_3}) \leq 2(C_{x_1,x_2,x_3}, x_1)^2 - 1 \]
But by (5.9)
\[(C_{x_1,x_2,x_3}, C_{y_1,y_2,y_3}) = \frac{\sum_{i,j} x_i y_j}{6} \]
\[(C_{x_1,x_2,x_3}, x_1) = \frac{2}{\sqrt{6}} \]
So,
\[\sum_{i,j} (x_i, y_j) \leq 2 \]
So we know that X and Y donot overlap if (5.6) is satisfied.

Now we have to consider the case when $\sum_{i,j} (x_i, y_j) > 2$.

For any $u \neq v$ points on S^2 forming an edge of a spherical equilateral triangle with edge $\pi/3$, $\{u, v, u \wedge v\}$ form a basis for \mathbb{R}^3. $((u \wedge v)$ is point on S^2 such that that vector is normal to plane spanned by u and v). So for any point h in \mathbb{R}^3 we can write
\[h = au + bv + c(u \wedge v) \] (5.12)
So as $(u, u) = 1 = (v, v)$ and $((u \wedge v), u) = 0 = ((u \wedge v), v)$
\[(h, u) = a(u, u) + b(v, u) + c((u \wedge v), u) = a + \frac{b}{2} \]
\[(h, v) = a(u, v) + b(v, v) + c((u \wedge v), v) = \frac{a}{2} + b \]
Solving these equations we get
\[a = \frac{4}{3}(h, u) - \frac{2}{3}(h, v) \] (5.13)
\[b = \frac{4}{3}(h, v) - \frac{2}{3}(h, u) \] (5.14)
Now let h_1, h_2 be 2 points in \mathbb{R}^3. So again we can write
\[h_1 = a_1 u + b_1 v + c_1(u \wedge v) \]
\[h_2 = a_2 u + b_2 v + c_2(u \wedge v) \]
So
\[
(h_1, h_2) = ((h_1 = a_1 u + b_1 v + c_1 (u \wedge v)), (h_2 = a_2 u + b_2 v + c_2 (u \wedge v)))
\]
\[
= ((a_1 u + b_1 v), (a_2 u + b_2 v)) + c_1 c_2
\]
\[
= (a_1 a_2 + b_1 b_2 + \frac{a_1 b_2 + a_2 b_1}{2}) + c_1 c_2
\]

\((h_1, u \wedge v) = c_1\) and \((h_2, u \wedge v) = c_2\). So \(h_1, h_2\) belong to different halfspaces created by plane spanned by \(u, v\) iff \(c_1 c_2 \leq 0\). i.e iff
\[
(h_1, h_2) - (a_1 a_2 + b_1 b_2 + \frac{a_1 b_2 + a_2 b_1}{2}) \leq 0
\]
(5.15)

Definition 5.0.0.30. \(\bar{H}(x, y; z)\): Vector \(x\) and vector \(y\) span a plane. This plane creates 2 halfspaces. \(\bar{H}(x, y; z)\) is the halfspace different from halfspace containing \(z\).

\[
X \subset \bar{H}(y_1, y_2; y_3) \iff \{x, y_3\} satisfy (5.15) \forall i \in \{1, 2, 3\}
\]
(5.16)

(5.17)

Let \(h_1 = x_i\) and \(h_2 = y_3\). So by (5.13) and (5.14) we have
\[
a_1 = \frac{4}{3}(h_1, y_1) - \frac{2}{3}(h_1, y_2) = \frac{4}{3}(x_i, y_1) - \frac{2}{3}(x_i, y_2)
\]
\[
b_1 = \frac{4}{3}(h_1, y_2) - \frac{2}{3}(h_1, y_1) = \frac{4}{3}(x_i, y_2) - \frac{2}{3}(x_i, y_1)
\]
\[
a_2 = \frac{4}{3}(h_2, y_1) - \frac{2}{3}(h_2, y_2) = \frac{4}{3}(y_3, y_1) - \frac{2}{3}(y_3, y_2) = \frac{1}{3}
\]
\[
b_2 = \frac{4}{3}(h_2, y_2) - \frac{2}{3}(h_2, y_1) = \frac{4}{3}(y_3, y_2) - \frac{2}{3}(y_3, y_1) = \frac{1}{3}
\]

So by (5.15)
\[
X \subset \bar{H}(y_1, y_2; y_3) \iff \]
\[
(x_i, y_3) - \left(\frac{4}{9}(x_i, y_1) - \frac{2}{9}(x_i, y_2) + \frac{4}{9}(x_i, y_2) - \frac{2}{9}(x_i, y_1) + \frac{4}{9}(x_i, y_1) - \frac{2}{9}(x_i, y_2) + \frac{4}{9}(x_i, y_2) - \frac{2}{9}(x_i, y_1)\right) \leq 0
\]

So
\[
X \subset \bar{H}(y_1, y_2; y_3) \iff \]
\[
(x_i, y_3) - \left(\frac{(x_i, y_1) + (x_i, y_2)}{3}\right) \leq 0
\]
\forall i \in \{1, 2, 3\}. Similarly
\[
Y \subset \bar{H}(x_1, x_2; x_3) \iff \]
Claim 5.0.0.31. If $\sum_{i,j \in \{1,2,3\}} (x_i, y_j) > 2$ then X and Y do not overlap iff at least one of the following is true.

\[
(y_i, x_3) - \frac{(y_i, x_1) + (y_i, x_2)}{3} \leq 0
\]

Proof. \Leftarrow is clear.

\Rightarrow:

Consider this diagram. Let the spherical triangle in the diagram be X.

Figure 5.2: spherical caps

Let Y be any other spherical equilateral triangle. If $Y \subset \bar{H}(x_1, x_3; x_2)$ then we are done. If not there are 3 cases. If we consider each case we get at least one of the above conditions.

Figure 5.3: Kissing Number for $n = 2$

1. 2 points in $\bar{H}(x_1, x_3; x_2)$ and 1 in other halfspace. wlg call those 2 points y_1 and y_2

 (a) y_1, y_2 in H_2: At least one edge y_3, y_1 or y_3, y_2 of spherical equilateral triangle passes through interior of X so X and Y overlap.

 (b) y_1 in H_{12} and y_2 in H_{23} not possible because we want equilateral triangle.

 (c) y_1 in H_{12} and y_2 in H_2. Then we can have

 from figure we can see that $X \subset \bar{H}(y_2, y_3; y_2)$.

2. 1 point in $\bar{H}(x_1, x_3; x_2)$ and 2 in other.

3. All 3 in halfspace different from $\bar{H}(x_1, x_3; x_2)$.

Now as we did in kissing number problem we can express Ω in a semidefinite program with the help of polynomial optimization.
5.1 Appendix

Here I am adding the code for kissing number problem.

\begin{verbatim}
load("/Applications/sage/build/pkgs/SDP/SDP.py")
load("/Users/satishjoshi/Desktop/documents/Gegenbauerpoly.sage")
load("/Applications/sage/gcoeff.sage")
load("/Applications/sage/sos.sage")
load("/Applications/sage/soskiss.sage")

c = matrix(RR, 2*D + 1, 1, lambda i,j : G_coeff(n, j, i))
G = matrix(RR, 2*D + 1, 2*D, lambda i,j : G_coeff(n, j + 1, i))
G0 = transpose(G)
G1 = transpose(matrix(RR, 2*D + 1, (D + 1)^2, lambda i,j : sos(D, i, j)))
G2 = transpose(matrix(RR, 2*D + 1, D^2, lambda i,j : soskiss(D, i, j)))
h0 = transpose(matrix([1 for i in [0..(2*D - 1)]]))
h1 = matrix(RR, D + 1, D + 1, lambda i,j : 0)
h2 = matrix(RR, D, D, lambda i,j : 0)
c = matrix_converter(c, 'cvxopt')
G0 = matrix_converter(G0, 'cvxopt')
G1 = matrix_converter(G1, 'cvxopt')
G2 = matrix_converter(G2, 'cvxopt')
h0 = matrix_converter(h0, 'cvxopt')
h1 = matrix_converter(h1, 'cvxopt')
h2 = matrix_converter(h2, 'cvxopt')

h_s = [h1, h2]
G_s = [G1, G2]

import cvxopt from cvxopt import matrix, solvers

sol = solvers.sdp(c, G0, h0, Gs = G_s, hs = h_s)
print sol['x']
\end{verbatim}

```python
def G(n, k):
R.<x> = CC[
\]
a = (n-2)/2
c = sage.functions.orthogonal_polys.gegenbauer(k, a, 1)
b = sage.functions.orthogonal_polys.gegenbauer(k, a, x)
if k>0:
    return b/c
else:
```
return 0*x + b/c

gcoeff.sage

def G_coeff(n, k, d):
 if d<k+1:
 R.<x>=CC[]
 load("/Users/satishjoshi/Desktop/documents/Gegenbauerpoly.sage")
 p=G(n,k)
 v=p.coefficients(sparse=False)
 return v[d]
 else:
 return 0

sos.sage

def sos(D, i, j):
a=j%(D+1)
b=int(j/(D+1))
if a+b==i:
 return 1
else:
 return 0

soskiss.sage

def soskiss(D, i, j):
v=[1/2, -1/2, -1]
a=j%D
b=int(j/D)
c=i-(a+b)
if 0 ≤ c ≤ 2:
 return v[c]
else:
 return 0
Bibliography

[3] Henri Lombardi ; Effective real Nullstellensatz and variants

Bibliography

[3] Henri Lombardi; *Effective real Nullstellensatz and variants*
