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2) In order to be useful for therapeutic innovation, one needs some data that
can be obtained either from in vitro or in vivo experiments or from medical
imaging.

3) Finally, some low order (simple) models are needed for the clinical trials.

The key point of this project is to establish some links between the
micro and the macroscopic levels. More precisely we aim at building a
macroscopic model that can be parameterized using in vitro and in vivo
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System identification in tumor growth modeling Towards electrochemotherapy modeling

experimental data and medical imaging. Macroscopic description of cellular densities Recovery of the parameters We have also coupled a generic non-linear model of tissue electroporation with our
Parameter estimation is a critical issue in mathematical biology. Usually, We recover the parameters of the mathematical model adapted for a particular tumor growth model, in order to model the treatment effect on the tumor growth.
ESRAIENELS [ 1E Dloreiismeles] Somimiies, eRveley sl We use a macroscopic model describing cellular densities. The cellular division is patient. We use an algorithm based on Proper Orthogonal Decomposition (POD).

complex models without paying much attention to parameter estimation. Clinical data are needed to parameterize and validate the models.

. . _ _ _ - controlled by the oxygen concentration denoted by C. From the two initial images, we obtain the parameters that fit the best the two
We want to validate our mathematical models using biological and clinical

Images. The parametrized model can then be used for prognosis.

SEIEL e e . The cellular densities evolve through : Initial tumor Growth
Principles of the electropermeabilization modeling . .
Based on the experimental data of the vectorology team, we first aim at atP + V- (PV) — ”YP — (1 — V)P + WQ, Medical IMageES
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henomenon for in vitro experimental conditions.
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The second task consists in modeling the phenomenon at the S +V-(Sv) = 0.

macroscopic scale, using once again the experimental data of the
vectorology team of the CNRS at the IGR. Since biological tissues are
very complex materials, we chose to model the electroporation W(C)
separately and simultaneously at the microscopic and at the macroscopic
scales, instead of providing the macroscopic models by an
homogenization of the microscopic models. However we eventually will
try to link both scales once the models of each level will be developed
using homogenization process.

where
1+ tanh(C — Th)
5 :
The velocity v is related to the movement created by the growth of volume due to the

cellular division.
We make the assumption that cells are incompressible which gives

V-v=+P.

Principles of the tumor growth modeling
The model proposed here is tuned for each patient thanks to two medical
images from the Institut Bergonié following the evolution of a nodule.
From this analysis, it is possible to obtain an estimate of the evolution of
a targeted nodule using only non-invasive techniques.

Description of the movement
In order to close the system and compute the velocity, we have to make an additional
assumption: the movement is considered as fluid or visco-elastic. For the simulations

presented here, we have used a Darcy-type law: ARy FedRECns Refe renNces

Our model describes, not only the volume of the tumour, but also its V — — kVH, 0.07
localization and shape. It takes into account nutrient concentration, cell-
cycle regulation and evolution of populations of cells, as well as
mechanical effects. Our prediction relies on parameters estimation using
temporal series of MRI or scans. The approach uses optimization
techniques and Proper Orthogonal Decomposition (POD) to estimate the
parameters of the chosen mathematical model (adapted to the type of 0.03
cancer studied) that best fit with the real evolution of the tumour shown
on the images.
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