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General Team presentation

The aim of the project is to develop modelling tools for problems arising 
from fluid mechanics and electromagnetism in order to explain, 
control, simulate and predict some phenomena coming from physics, 
chemistry, biology or engineering. 
The complexity can be in the model itself, in the coupled phenomena, in 
the geometry or in non-standard applications. The challenges consists in 
developing stable models and adapted numerical methods that enable us 
to recover the main physical features and that can be used in realistic 
situations. 
With these modeling tools we develop numerical codes that can be 
used for practical and industrial applications. 
Our approach is the following: we first determine some reliable models 
and then we perform a mathematical analysis (including stability). We 
develop the numerical methods that are adapted to the specific situations 
and we implement them on some applications

Cancer modelling coupled with Electrochemotherapy
We aim at proposing a comprehensive study of the tumor growth modeling, 
including microscopic (cell level) and macroscopic (tissues and organ level) 
elements and to apply these modeling tools to therapeutic innovation in 
oncology. The long-term goal is to improve electrochemothera-peutic  protocols 
for clinical trial. 
This crucial aim requires as a first step the mathematical analysis and control of 
complex models of tumor growth. The main points that we want to address are 
the following:
1) This problem is clearly a multiscale problem and each level has to be tackled 
separately before beeing integrated into a complete model. 
2) In order to be useful for therapeutic innovation, one needs some data that 
can be obtained either from in vitro or in vivo experiments or from medical 
imaging.
3) Finally, some low order (simple) models are needed for the clinical trials. 
The key point of this project is to establish some links between the 
micro and the macroscopic levels. More precisely we aim at building a 
macroscopic model that can be parameterized using in vitro and in vivo 
experimental data and medical imaging.
Parameter estimation is a critical issue in mathematical biology. Usually, 
researchers in the biomathematical communities, develop mechanistic 
complex models without paying much attention to parameter estimation. 
We want to validate our mathematical models using biological and clinical 
data.

Principles of the electropermeabilization modeling
Based on the experimental data of the vectorology team, we first aim at 
providing  microscopic models that describes precisely the 
phenomenon for in vitro experimental conditions. 

The second task consists in modeling the phenomenon at the 
macroscopic scale, using once again the  experimental data of the 
vectorology team of the CNRS at the IGR. Since biological tissues are 
very complex materials, we chose to model the electroporation 
separately and simultaneously at the microscopic and at the macroscopic 
scales, instead of providing the macroscopic models by an 
homogenization of the microscopic models. However we eventually will 
try to link both scales once the models of each level will be developed 
using homogenization process.

Principles of the tumor growth modeling
The model proposed here is tuned for each patient thanks to two medical 
images from the Institut Bergonié following the evolution of a nodule. 
From this analysis, it is possible to obtain an estimate of the evolution of 
a targeted nodule using only non-invasive techniques. 

Our model describes, not only the volume of the tumour, but also its 
localization and shape. It takes into account nutrient concentration, cell-
cycle regulation and evolution of populations of cells, as well as 
mechanical effects. Our prediction relies on parameters estimation using 
temporal series of MRI or scans. The approach uses optimization 
techniques and Proper Orthogonal Decomposition (POD) to estimate the 
parameters of the chosen mathematical model (adapted to the type of 
cancer studied) that best fit with the real evolution of the tumour shown 
on the images.

Electroporation modelling at the cell scale
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Electric fields in egg-shaped cells with nucleus.

2.1.2. Time-harmonic voltage potential
Suppose that sinusoidal pulses are imposed to the cell, hence at steady state Vimp equals

∀(x, t) ∈ ∂ΩD × (0, +∞), Vimp(x, t) = %(uimp(x)eiωt),

where ω denotes the pulses frequency. Since the considered model is linear, then V equals

V (x, t) = %(u(x)eiωt),

where u satisfies the following partial differential equation
{
−∇. ((iωε0εr + σ)∇u) = 0, in Ω

u|∂ΩD = uimp and ∂nu|∂ΩN
= 0.

(3)

2.2. Particularities of the cell model: a high contrast medium with thin layers

From the electrical engineering point of view, biological cells are non standard materials
composed of high contrast media with thin layers (see Fig. 1). More precisely, the nucleus,
the cytoplasm and the extracellular conductivities are of order 1S/m, while the conductivity
of the phospholipidic membranes surrounding the cytoplasm and the nucleus is small. In the
S.I units, its value is about 10−9S/m, which is similar to the value of the membrane thickness,
that is about 10−9m. The geometrical and electrical parameters of the cell considered in this
work — coming from the relevant literature6 — are given in Fig. 1.
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Figure 1: 1/4 of the geometry of the cell considered in this work (z-axis is an axis of revolution) and its
electrical parameters.

On account of such properties, straightforward naive simulations of equations (2) or (3)
are time and memory consuming, and sometimes inaccurate since the matrices involved by
numerical simulations are ill-conditioned especially for complex cell shapes. We emphasize
that a numerical widening of the membrane is not relevant to study the transmembrane
potential, since it is not a linear function of the membrane thickness, therefore accurate
computations of the transmembrane potential for large membranes do not predict any results
for the real thin membranes. To avoid such drawbacks, an alternative rigorous approach
consists in replacing the thin resistive membranes by appropriate transmission conditions
across the boundary of the domain they surround7,8,9. This approximation is accurate since
the error is of the order of the membrane thickness, and it avoids meshing the thin membrane,
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The thin membranes are replaced by appropriate equations

leading to more precise and less costly results than naive simulations. Denote by Ωe and Ωc

the following domains:
Ωe = Oe ∪Om

c , Ωc = Oc ∪Om
n ,

let Γn be the boundary of On and denote by and Γc the boundary of Ωc deprived of Γn.
According to Fig. 1, we suppose that both cytoplasmic and nuclear membranes have the
same dielectric properties and thickness. We denote by Cm and Sm the respective membrane
capacitance and surface conductance that are defined by

Cm =
ε0εm

δ
, Sm =

σm

δ
.

To simplify notations, we still denote by (σ, εr) the following piecewise constant functions

(σ, εr) =






(σe, εe) , in Ωe,

(σc, εc) , in Ωc,

(σn, εn) , in On.

(4)

The electric potential is rigorously approximated by the solution to the following problem

∆V = 0, in Ωe ∪ Ωc ∪On, V |∂ΩD = Vimp, ∂nV |∂ΩN = 0.

with the following transmission conditions

on Γc

{
ε0∂t [εr∂nV ]Γc

+ [σ∂nV ]Γc
= 0,

Cm∂t [V ]Γc
+ Sm [V ]Γc

=
(
ε0εc∂t∂nV |Γ−c + σc∂nV |Γ−c

)
,

(5a)

on Γn

{
ε0∂t [εr∂nV ]Γn

+ [σ∂nV ]Γn
= 0,

Cm∂t [V ]Γn
+ Sm [V ]Γn

=
(
ε0εn∂t∂nV |Γ−n + σn∂nV |Γ−n

)
.

(5b)

In time-harmonic regime the amplitude of the potential is approximated by the solution to

∆u = 0, in Ωe ∪ Ωc ∪On, u|∂ΩD = uimp, ∂nu|∂ΩN = 0,

with the conditions on Γc

{
[(iωε0εr + σ) ∂nu]Γc

= 0,

(iωCm + Sm) [u]Γc
= (iωε0εc + σc) ∂nu|Γ−c ,

(6a)

and similarly on Γn

{
[(iωε0εr + σ) ∂nu]Γc

= 0,

(iωCm + Sm) [u]Γn
= (iωε0εn + σn) ∂nu|Γ−n .

(6b)

2.3. Variational method for simulations

Approximate transmissions (5a)–(5b) or (6a)–(6b) show that the potential is discontinu-
ous across the membranes, which is consistent with resistive thin layer properties. However
these discontinuities have to be taken into account properly to obtain accurate numerical
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with the transmission conditions across the membranes:

Hence discontinuous finite elements are needed. The rigidity matrix writes:

of a cell is about few micrometers, and since the pulse duration is between few nanoseconds
to few microseconds, such a CFL condition is constraining. To avoid this condition it is more
advisable to use implicit schemes. For instance consider the Euler implicit scheme

(
Cm

∆t
+ Sm

)
[V n]Γc

−
(ε0εc

∆t
+ σc

)
∂nV

n|Γ−c =
Cm

∆t

[
V n−1

]
Γc

+
ε0εc

∆t
∂nV

n−1|Γ−c ,

and similarly on Γn. Then, the rigidity matrix of the time-discretized problem is:

Mkl =

∫

Ω

(ε0εc

∆t
+ σc

)
∇ψk.∇ψl dx +

∫

Γc∪Γn

(
Cm

∆t
+ Sm

)
[ψk][ψl]dσ.

3. Numerical simulations by F.E.M

The above P.D.E. are discretized by using the finite element method. The space dis-
cretization have been performed by the mesh generator Gmsh12 and the implementation is
written in C++ and it is based on the getfem++ finite element library13. P2-Lagrange finite
elements are considered for the spatial discretization and a Crank-Nicolson scheme is used
for the time-discretization.

3.1. Complements on the axisymmetric formulation

We impose an electric field to the cell — linked to the location of the electrodes — whose
relative orientation with the cell is not necessarily following the cell axis of revolution. For
the sake of simplicity, we consider a 3D-axisymmetric geometry, hence the electric field is
split up into two components as described Fig. 2: a component along the axis of revolution
Ez and a component along the orthogonal axis Er.

Figure 2: Field decomposition in (r, z)–coordinates: E is splitted up into Er and Ez.

This geometric configuration allows to divide the computation of the potential into two
disjoint bidimensional problems:
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• the first problem with solution Vz uses the classical boundary conditions on Fig. 3(a)
and the sesquilinear form (expressed in the time-harmonic case here):

∫

Ω

(iωε + σ)

(
∂Vz

∂r

∂vz

∂r
+

∂Vz

∂z

∂vz

∂z

)
rdrdz +

∫

Γc∪Γn

(iωCm + Sm)[Vz][vz] rds. (7)

• the second problem with a solution Vr uses the boundary conditions on Fig. 3(b) and
the sesquilinear form:

∫

Ω

(iωε + σ)

(
∂Vr

∂r

∂vr

∂r
+

∂Vr

∂z

∂vr

∂z

)
rdrdz +

∫

Ω

(iωε + σ)

r
Vrvr drdz

+

∫

Γc∪Γn

(iωCm + Sm)[Vr]Σk
[v]Σk

rds
(8)

The electric potential is then equal to V (r, z, θ) = Vz(r, z) + Vr(r, z) cos(θ) where θ is the
angular coordinate around the axis of revolution.

∂V
∂n = 0 ∂V

∂n = 0

V = 0

V = |Ez|/d

Σ1

Σ2

Ω

(a) Ez.

V = 0 V = |Er|
d

∂V/∂n = 0

∂V/∂n = 0

Σ1

Σ2

Ω

(b) Er.

Figure 3: Boundary conditions for the two components of the electric field. Distance d is the side length of
the domain.

3.2. How to reach the nucleus? Study of the spectrum of the pulse

We first study the time-harmonic potential, for a large spectrum pulse. Since the model
is linear, it is relevant to study the time-harmonic potential, since the time-transient electric
voltage can be recovered by using a Fast Fourier Transform (F.F.T.) algorithm.

The frequency responses of the TMPs of the cell and of the nucleus are extracted and
shown in the top of Fig. 4 when submitted to an electric field along the axis of revolution.
The dashed lines describe the behavior of both nuclear and cell TMP, the solid line is the
ratio of the two TMPs. The bottom of Fig. 4 shows the spectrum of pulses of respectively
10 ns and 10 µs duration: by superposing the top and bottom figures, it appears that only
the ns pulse contains the frequency components to influence the nucleus.
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Axi-symmetric configuration:
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Figure 4: Time-harmonic response of the cell and normalized spectrum of ns and µs pulses. Source E-field:
2 · 105 V/m, along z-axis.

Fig. 5 shows the scalar potential cartography and the associated electric field lines for
four frequencies: 10 kHz, 1 MHz, 3 MHz and 1 GHz. For frequencies under 10 kHz the
electric field does not penetrate the cell. Due to the shielding effect of the cell membrane
it is therefore impossible to reach the nucleus. Around 2 MHz, the field penetrates the
cytoplasm but still vanishes inside the nucleus. This configuration could be the most adapted
to obtain the electropermeabilization of the nucleus membrane. For higher frequencies the
field penetrates in the entire cell. These results show the sensitivity of the nucleus to a ns
pulse and the feasibility of the permeabilization of the membrane of the nucleus with adapted
pulse amplitude and frequency.

The qualitative analysis introduced above, based on the frequency response of the TMPs
and on the spectrum of the considered pulse, can be extended with a reduced computational
cost to the analysis of other pulse shapes. It should give us ideas to propose alternative pulse
shapes more relevant for reaching the nucleus (or other internal contents in the cytoplasm).

Observe that according to Fig. 4, both cell and nucleus time-harmonic TMP are very
smooth functions of the frequency. Therefore time-harmonic computations for few (well
chosen) frequencies lead to a precise description of the TMP in the whole frequency range.
Therefore the time-transient TMP can be recovered accurately by using discrete inverse
F.F.T. Fig. 6 gives the value of both cellular and nuclear TMP for two types of time-transient
pulses, using inverse F.F.T.
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Electropermeabilization modelling
The membrane permeabilization is a time-dependent and non-linear phenomenon.

Any membrane widening for numerical simulations is not relevant.

The modelling consisting in a description of the membrane conductivity. 
We consider electropermeabilization as a membrane wetting, without any pore creation

Lemma 3.3. There exists u ∈ H such that the sequence (un)n∈N converges weakly in H.

Proof. Let n ∈ N∗, then un satisfies

〈ΣΛun;un〉+
∫

Γ
Sm(

[
un−1

]
) [un]2 ds = −

∫

Γ
σeΛ0g un

e ds.

Since for all s ∈ R, S0
m ≤ Sm(s) ≤ Sep, we infer that there exists a constant C such that

∀n ∈ N, ‖un‖H ≤ C|g|H1/2(Γ),

hence the lemma.

According to the above lemma, (un
e − un

i ) converges to ue − ui strongly in L2(Γ), from which
we infer the strong convergence of Sm(un

e − un
i ) to Sm(ue − ui) in Lp(Γ) for all p < +∞. Writing

{
σeΛeun

e = −Sm(un−1
e − un−1

i )(un
e − un

i )− Λ0g,

σiΛiun
i = Sm(un−1

e − un−1
i )(un

e − un
i ),

we infer the following proposition.

Proposition 3.4. Let g ∈ H1/2(Γ). Then the sequence (un)n∈N ∈ H defined by (8) converges
strongly to u in H. The limit u is the unique solution of Problem (3).

3.2 The dynamic equation

We consider now the dynamic case: the potential U satisfies the following equations:

∆U0 = 0, ∀x ∈ (Oe ∪Oi), (9a)

[σ∂nU0]Γ = 0, (9b)

β̃([U0]Γ)[U0]Γ = σi∂nU0|Γ− , (9c)

U0|∂Ω = g(0), (9d)

and for t > 0

∆U = 0, ∀(t, x) ∈ (0 +∞)× (Oe ∪Oi), (10a)
[σ∂nU ]Γ = 0, (10b)
Cm∂t[U ]Γ + Sm(t, [U ]Γ)[U ]Γ = σi∂nU |Γ− , (10c)
U |∂Ω = g, (10d)

where Sm is defined by equality (2):

∀(t, s) ∈ (0,∞)× R, Sm(t, s) = SLip + x(t, s)Sep,

where x denotes the proportion of the electropermeabilized membrane area that satisfies the fol-
lowing O.D.E:

∀s > 0, ∀t > 0,






dx

dt
(t, s) =

1
τep

max
(
β(s)− x(t, s);

τep

τreseal
(β(s)− x(t, s))

)
,

x (t = 0, s) = x0,
(11)
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denote respectively the lipid and the pore conductivity.
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and

represents the (time-dependent) local electropermeabilized membrane area that satisfies:
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3.2 The dynamic equation

We consider now the dynamic case: the potential U satisfies the following equations:

∆U0 = 0, ∀x ∈ (Oe ∪Oi), (9a)

[σ∂nU0]Γ = 0, (9b)

β̃([U0]Γ)[U0]Γ = σi∂nU0|Γ− , (9c)
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


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τreseal
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(11)
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Preliminary results for circular cells submitted to an electric field of 400V/cm
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Macroscopic description  of cellular densities

We use a macroscopic model describing cellular densities. The cellular division is 
controlled by the oxygen concentration denoted by C.

The cellular densities evolve through :

where

The velocity v is related to the movement created by the growth of volume due to the 
cellular division. 
We make the assumption that cells are incompressible which gives 

Description of the movement
In order to close the system and compute the velocity, we have to make an additional 
assumption: the movement is considered as fluid or visco-elastic. For the simulations 
presented here, we have used a Darcy-type law:

where the potential ∏ can be computed thanks to the expression of the divergence of 
the velocity.

System identification in tumor growth modeling

∂tP +∇ · (Pv) = γP − (1− γ)P + γQ,
∂tQ +∇ · (Qv) = (1− γ)P − γQ− γ2Q,
∂tN +∇ · (Nv) = γ2Q,
∂tS +∇ · (Sv) = 0.

γ(C) =
1 + tanh(C − τh)

2
.

∇ · v = γP.

Recovery of the parameters
We recover the parameters of the mathematical model adapted for a particular 
patient. We use an algorithm based on Proper Orthogonal Decomposition (POD).
From the two initial images, we obtain the parameters that fit the best the two 
images. The parametrized model can then be used for prognosis.

Medical images

Volume growth

Simulations Prediction

Towards electrochemotherapy modeling

We have also coupled a generic non-linear model of tissue electroporation with our 
tumor growth model, in order to model the treatment effect on the tumor growth. 

Clinical data are needed to parameterize and validate the models.

Initial tumor Growth

ECT After treatment
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