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v = −k∇Π,

τh.

Refractory thyroid carcinomas are a therapeutic 
challenge owing to some being fast-evolving - 
and consequently being good candidates for 
trials with molecular targeted therapies - whilst 
others evolve slowly. This variation makes it dif-
ficult to decide when to treat. We have develo-
ped a diagnostic tool to help physicians predict 
the evolution of thyroidal lung nodules.

OBJECTIVES
The evolution of lung metastases from thyroid ori-
gin may be difficult to evaluate. Furthermore, 
when unwell patients are concerned, physicians 
try to minimize the use of invasive techniques, 
restricting treatment (by radiofrequency ablation 
for example) to nodules that become progressive. 
Thus, an accurate prognosis of each nodule is cri-
tical. We propose a numerical method of predic-
ting the actual tumour growth for a specific pa-
tient.

Classically, accurate mathematical models descri-
bing tumoral growth involve a large number of pa-
rameters that cannot always be recovered from 
experimental data. The model proposed here is 
tuned for each patient thanks to two medical 
images following the evolution of a nodule. From 
this analysis, it is possible to obtain an estimate 
of the evolution of a targeted nodule using only 
non-invasive techniques.

Our model describes, not only the volume of the 
tumour, but also its localization and shape. It 
takes into account nutrient concentration, cell-cy-
cle regulation and evolution of populations of 
cells, as well as mechanical effects. Our prediction 
relies on parameters estimation using temporal 
series of MRI or scans. The approach uses opti-
mization techniques and Proper Orthogonal De-
composition (POD) to estimate the parameters of 
the chosen mathematical model (adapted to the 
type of cancer studied) that best fit with the real 
evolution of the tumour shown on the images.

METHOD
! ! !
Macroscopic description of cellular densities

We use a macroscopic model describing cellular 
densities (P=proliferating cancer cells, Q=quie-
scent cancer cells, N=dead cells, S=healthy tis-
sue). The cellular division is controlled by the 
oxygen concentration denoted by C.

The cellular densities evolve through :

∂tP +∇ · (Pv) = γP − (1− γ)P + γQ,
∂tQ +∇ · (Qv) = (1− γ)P − γQ− γ2Q,
∂tN +∇ · (Nv) = γ2Q,
∂tS +∇ · (Sv) = 0.

Where the growth function is a smoothed Heavi-
side function centered around the hypoxia 
threshold 

γ(C) =
1 + tanh(C − τh)

2
.

The velocity v is related to the movement created 
by the growth of volume du to the cellular division.  
This velocity is also to be determined.

First, we make the assumption that cells are in-
compressible which gives a condition on this ve-
locity, namely:

∇ · v = γP.

However, this condition is not sufficient to close 
the system and determine the velocity.
Description of the movement
In order to close the system and compute the ve-
locity, we have to make an additional assumption: 
the movement is considered as fluid or visco-elas-
tic. 

For the simulations presented here, we have used 
a Darcy-type law:

where the potential " can be computed thanks to 
the expression of the divergence of the velocity.

RESULTS
We recover the parameters of the mathematical 
model adapted for a particular patient. Here is the 
case of a male patient, 79 years old; a poorly dif-
ferentiated thyroid carcinoma was discovered in 
2005 with iodine refractory synchronous lung me-
tastases. From 2005 a continuous follow up with 
thoracic CT and serum thyroglobulin was done. 
Because of a synchronous prostatic cancer the 
patient could not be included in the Vandetanib or 
Sorafenib phase III trials.

From the two initial images, we obtain the para-
meters that fit the best the two images. The pa-
rametrized model can then be used for prognosis.

First test case
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Figure 1: Evolution of the an untreated
thyroidal nodule in the lung.

Figure 2:  results of a prediction of the
evolution of the nudule based on the
mathematical model.

Figure 3:  In addition to computing the
volume of the tumour, the model can be used
to predict the localization of the tumour
(plotted in red).

parametric model is sufficiently accu-
rate to take into account the main phys-
ical features of tumor growth but simple
enough to have its parameters recov-
ered.

Essentially, the technique may be sum-
marized as follows. Initially, the nodule
under investigation is marked by the
physicians on successive CT scans.
From these images we recover the
geometry of the lung and the shape of
the nodule at different times. From the
initial shape of the nodule, we run
numerous numerical simulations of our
mathematical model using a large set of
parameter values. A basis using a POD
approach is extracted from this large
collection of numerical results. This
time-consuming process can be effi-
ciently performed on a High
Performance Parallel Architecture since
the direct simulations can be run con-
currently and the POD extraction uses a
parallel algorithm to be as fast as pos-
sible. The last step of the procedure
consists in solving an inverse problem
based on a Newton method to recover
the parameters that best fit the available
medical images of the nodule. Once

these parameters are determined, a pre-
diction is simply obtained by running
the numerical code. 

We tested our technique on several test
cases, one of which is presented in
Figure 1. For a patient with an untreated
thyroidal nodule in the lung, four com-
puterised tomography (CT) scans were
available (we show three of them illus-
trating the evolution of the nodule
below). 

We used the first two scans to perform
the data assimilation and recover the
parameters of the mathematical model
adapted to the patient and to this nodule.
Once these parameters are determined,
the model is used in order to obtain pre-
dictions on the evolution of this nodule.
The results of this prediction are plotted
in Figure 2. The measured volume of
the nodule from the CT scan is plotted
using circles; the continuous line repre-
sents the volume computed using our
tuned mathematical model. 

Only the first two scans were used for
data assimilation; the others are shown
for the purpose of comparison. In addi-

tion to computing the volume of the
tumour,our model enables usto predict
its localization, as shown in the Figure 3
where the computed tumour is plotted
in red.

For oncologists the development of
such tools is of interest in therapy plan-
ning (and in the evaluation of an anti-
tumoral treatment). For example a
slowly evolving tumour prediction
could reinforce the decision to wait
without specific treatment. In the oppo-
site case the simulation can support the
decision to start a radiofrequency
thermal ablation (for example) or a
molecular targeted therapy.

Links:
INRIA Resarch Team MC2
http://www.math.u-
bordeaux1.fr/MAB/mc2/
Institut Bergonié
http://www.bergonie.org/.

Please contact:
Olivier Saut, 
INRIA, France
Tel +33 5 40002115
E-mail: Olivier.Saut@inria.fr

Fig 1. Evolution of an untreated lung metastatic 
nodule from thyroid carcinoma.

Fig 2. Results of a prediction of the evolution of 
the nodule based on the mathematical model.
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Fig 3. In addition to computing the volume of 
the tumour, the model can be used to predict 
the localization of the tumour (plotted in red).

Hence, given two images of the patient, we are 
able to recover the volume, shape and localization 
of the tumor at later times with a reasonnable ac-
curacy. 

In the next test case, two different lung nodules 
belonging to a 68 years old male patient with a 
kidney metastatic cancer are identified using the 
same procedure. While not concerning lung me-
tastases from thyroid cancer, it allows us to vali-
date the procedure on a quicker evolution.

Second test case

FIRST NODULE

(a) (b) (c)

Figure 11: Scan for the third inverse problem, first nodule: a) 06-2008, b)

04-2009, c) 07-2009

(a) (b) (c)

Figure 12: Scan for the third inverse problem, second nodule: a) 06-2008, b)

04-2009, c) 07-2009
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Fig 4. Evolution of an untreated lung metastatic 
nodule.

0 2 4 6 8 10 12 14 16 18
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

months

vo
lu
m
e

Figure 14: Volume curve as function of time

ing in the slope of this function. This phenomenon seems to be systematic,

and so, a good candidate as prognosis indicator. This is an intrinsic feature

of the model. For this first nodule the results is in accordance with what

found in the second problem. Furthermore the information about tumor

composition is reevant for a practical point of view.

8 Nodule 2:

The inverse problem associated to the second nodule was more difficult than

the first one. The same numerical ingredients injected in the previous cases

leaded to a bad behavior in terms of residual: a reparametrization was nec-

essary. Furthermore several initializations were done before finding a good

evolution.

The numerical experiments showed that there is a solution correspond-

ing to a local minimum that is an exponential type solution, whose basin

of attraction is quite large. Other combinations of parameters revealed the
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Fig 5. Results of a prediction of the evolution of 
the nodule based on the mathematical model.

SECOND NODULE

(a) (b) (c)

Figure 11: Scan for the third inverse problem, first nodule: a) 06-2008, b)

04-2009, c) 07-2009

(a) (b) (c)

Figure 12: Scan for the third inverse problem, second nodule: a) 06-2008, b)

04-2009, c) 07-2009
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Fig 6. Evolution of an untreated thyroidal nodule 
in the lung.
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Fig 7. Results of a prediction of the evolution of 
the nodule based on the mathematical model

CONCLUSIONS

For oncologists the development of such tools is 
of interest in therapy planning (and in the evalua-
tion of an antitumoral treatment). For example a 
slowly evolving tumour prediction could reinforce 
the decision to wait without specific treatment. In 
the opposite case the simulation can support the 
decision to start a radiofrequency thermal ablation 
(for example) or a molecular targeted therapy.

We plan to extend our numerical tool to other 
cancer types (brain, liver,...) and to take advantage 
of functional imaging (TEPscan, MRI) in order to 
increase the reliability of the procedure.
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