Modélisation, simulations numériques et contrôle de la nage de poissons

Michel Bergmann, Angelo Iollo

INRIA Bordeaux Sud-Ouest Institut de Mathématiques Appliquées de Bordeaux 33405 TALENCE cedex, France

Contexte ANR

***** ANR CARPEINETER *****

Cartesian grids, penalization and level set for the simulation and optimisation of complex flows

► Outils :

- → Grilles cartésiennes
 Pour éviter de coûteux remaillages
- → Penalisation des équations
 Pour prendre en compte des obstacles
- → Level Set
 Pour capturer et suivre les interfaces
 (fluide/fluide, fluide/solide)

► Pourquoi ? :

- \hookrightarrow Modéliser et simuler des obstacles mouvants S (translation, rotation, déformation, ..)
- → Méthode de couplage

 $"Fluide \leftrightarrow Obstacles"$

DE RECHERCHE

N INFORMATIQUE

Objectifs ANR

- ► Task 1 : Compressible flows (penalisation and level set)
- ► Task 2 : Ice accretion
- ► Task 3 : Shape optimization and flow control ← MB
- **Task 4 :** Biomedical application : Vessel Reconstruction
- ► Task 5 : Soil erosion (moving interfaces with erosion)
- ► Task 6 : Code "Multiphysique Multiéchelle"

Plan de l'exposé

Modélisation de l'écoulement

Résolution numérique

Méthode : discretisation / déplacement Validation

Application : Nage de poissons

Paramétrisation Classification : BFC Sur la puissance dépensée Les manoeuvres Nage en petit groupe

Quelques autres applications

Conclusions et perspectives

 $\partial \Omega_f$ $\partial \Omega_s^{(1)}$ $\Omega_s^{(1)}$ $oldsymbol{u}_{s}^{(1)}$ = $oldsymbol{u}_{s}^{(2)}$ $\partial \Omega_s^{(2)}$ Ω_f $\Omega_s^{(2)}$ $\Omega_s^{(i)}$: Domaine obtacles s_i Ω_f : Domaine fluide $\Omega = \Omega_f \oplus \Omega_s^{(i)}$: Domaine entier

► Modèle classique : équations de Navier-Stokes (incompressible) :

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u}\cdot\nabla)\boldsymbol{u}\right) = -\nabla p + \mu\Delta\boldsymbol{u} + \rho\boldsymbol{g} \quad \text{dans} \quad \Omega_{\boldsymbol{f}}, \tag{1a}$$

$$\boldsymbol{\nabla}\cdot\boldsymbol{u}=0$$
 dans $\Omega_{f},$ (1b)

$$oldsymbol{u} = oldsymbol{u}_s^{(i)}$$
 sur $\partial \Omega_s^{(i)}$ (1c)

$$oldsymbol{u} = oldsymbol{u}_f$$
 Sur $\partial \Omega_f$ (1d)

Résolution numérique

Besoin maillage adaptée à la géométrie des osbtacles

 $\hookrightarrow \mathsf{Adaptation} \ \mathsf{de} \ \mathsf{maillage} \ \mathsf{coûteux} \, ! \, !$

► Modèle avec pénalisation : équations de Navier-Stokes pénalisées (incompressible) :

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u}\right) = -\nabla p + \mu \Delta \boldsymbol{u} + \rho \boldsymbol{g} + \lambda \rho \sum_{1=1}^{N_s} \chi_s^{(i)}(\boldsymbol{u}_s^{(i)} - \boldsymbol{u}) \quad \text{dans} \quad \Omega, \quad \text{(2a)}$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \quad \text{dans} \quad \Omega,$$
 (2b)

$$\boldsymbol{u} = \boldsymbol{u}_F \quad \text{sur} \quad \partial \Omega_f.$$
 (2c)

 $\lambda \gg 1$ facteur de pénalisation, $\chi_s^{(i)}$ fonction indicatrice, telle que :

$$\chi_s^{(i)}(\boldsymbol{x}) = 1 \quad \text{si} \quad \boldsymbol{x} \in \Omega_s^{(i)},$$
 (3a)

$$\chi_s^{(i)}(\boldsymbol{x}) = 0$$
 sinon. (3b)

Résolution numérique

Pas besoin maillage adaptée à la géométrie des osbtacles

 \hookrightarrow Grilles cartésiennes

► Transport de la fonction indicatrice pour obstacles mouvants

$$\frac{\partial \chi_s^{(i)}}{\partial t} + (\boldsymbol{u}_{s^{(i)}} \cdot \nabla) \chi_s^{(i)} = 0.$$
(4)

On peut aussi choisir $\chi_s^{(i)} = H(\phi_s^{(i)})$ où H est la fonction Heaviside et $\phi_s^{(i)}$ la fonction distance signée ($\phi_s(\boldsymbol{x}) > 0$ si $\boldsymbol{x} \in \Omega_s^{(i)}$, $\phi_s(\boldsymbol{x}) = 0$ si $\boldsymbol{x} \in \partial \Omega_s^{(i)}$, $\phi_s(\boldsymbol{x}) < 0$ sinon).

$$\frac{\partial \phi_s^{(i)}}{\partial t} + (\boldsymbol{u}_{s^{(i)}} \cdot \nabla) \phi_s^{(i)} = 0.$$
(5)

► Masse volumique pour obstacles portants

$$\widetilde{\rho} = \rho_f \left(1 - \sum_{i=1}^{N_s} \chi_s^{(i)} \right) + \sum_{i=1}^{N_s} \rho_s^{(i)} \chi_s^{(i)}.$$
(6)

NR CARPEINETER, 5 novembre 200

► Equations sans dimensions : avec U_{∞} , D, ρ_f , $\widetilde{Re} = \frac{\widetilde{\rho}U_{\infty}D}{\mu}$:

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\frac{\rho_f}{\widetilde{\rho}} \nabla p + \frac{1}{\widetilde{Re}} \Delta \boldsymbol{u} + \boldsymbol{g} + \lambda \sum_{1=1}^{N_s} \chi_s^{(i)} (\boldsymbol{u}_s^{(i)} - \boldsymbol{u}) \quad \text{dans} \quad \Omega, \qquad \text{(7a)}$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \quad \text{dans} \quad \Omega,$$
 (7b)

$$oldsymbol{u} = oldsymbol{u}_f$$
 SUF $\partial \Omega_f$ (7c)

▶ Définition de la vitesse $u_s^{(i)}$:

$$m{u}_{s}^{(i)} = m{u}_{t}^{(i)} + m{u}_{r}^{(i)} + m{u}_{d}^{(i)}$$
 (8)

avec : $u_t^{(i)}$ vitesse de Translation $u_r^{(i)}$ vitesse de Rotation $u_d^{(i)}$ vitesse de Déformation (imposée pour la nage)

ANR CARPEINETER, 5 novembre 200

► En espace : DF centrées ordre 2 et décentrées ordre 3 pour convection

► En temps : Euler explite convection/ implicite reste

$$\frac{\boldsymbol{u}^{(n+1)} - \boldsymbol{u}^{(n)}}{\Delta t} + (\boldsymbol{u}^{(n)} \cdot \nabla) \boldsymbol{u}^{(n)} = -\frac{\rho_F}{\tilde{\rho}} \nabla p^{(n+1)} + \frac{1}{\tilde{Re}} \Delta \boldsymbol{u}^{(n+1)} + \boldsymbol{g}$$
$$+ \lambda \sum_{1=1}^{N_s} \chi_s^{(i)}{}^{(n+1)} (\boldsymbol{u}_s^{(i)}{}^{(n+1)} - \boldsymbol{u}^{(n+1)}),$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u}^{(n+1)} = 0$$

\Rightarrow Problèmes :

 $\label{eq:Lapression} \hookrightarrow \text{La pression est "découplée"} \\ \hookrightarrow \text{La fonction } \chi_s^{(i)}{}^{(n+1)} \text{ et la vitesse } \boldsymbol{u}_s^{(i)}{}^{(n+1)} \text{ ne sont pas connues}$

 \Rightarrow Solutions :

- → Schéma de Chorin (prédicteur/correcteur)
- \hookrightarrow Méthode fractionnaire à 2 pas

► Schéma à pas fractionnaires :

 $u^{()}$

$$\begin{split} \frac{a^{(n+1)} - \boldsymbol{u}^{(n)}}{\Delta t} + (\boldsymbol{u}^{(n)} \cdot \nabla) \boldsymbol{u}^{(n)} &= -\frac{\rho_f}{\widetilde{\rho}} \nabla p^{(*)} + \frac{1}{\widetilde{Re}} \Delta \boldsymbol{u}^{(n+1)} + \boldsymbol{g} \\ &+ \left(\frac{\rho_F}{\widetilde{\rho}} \nabla p^{(*)} - \frac{\rho_f}{\widetilde{\rho}} \nabla p^{(n+1)} \right) \\ &+ \lambda \sum_{1=1}^{N_s} \chi_s^{(i)}{}^{(n+1)} (\boldsymbol{u}_s^{(i)}{}^{(n+1)} - \boldsymbol{u}^{(n+1)}), \end{split}$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u}^{(n+1)} = 0 \\ \boldsymbol{u}_s^{(n+1)} = f(\boldsymbol{u}^{(n+1)}, p^{(n+1)}) \end{split}$$

Etape 1 : \Rightarrow $\boldsymbol{u}^{(*)}$, $p^{(*)}$ Etape 2 : $\Rightarrow \widetilde{\boldsymbol{u}}^{(n+1)}, \, \widetilde{p}^{(n+1)}$ Etape 3 : $\Rightarrow \boldsymbol{u}_s^{(n+1)} = \widetilde{f}(\widetilde{\boldsymbol{u}}^{(n+1)}, \widetilde{p}^{(n+1)})$ Etape 4 : $\Rightarrow u^{(n+1)}, p^{(n+1)}$

RINRIA centre de recherche BORDEAUX - SUD OUEST

► Etape 1 : prédiction

$$\frac{\boldsymbol{u}^{(*)} - \boldsymbol{u}^{(n)}}{\Delta t} + (\boldsymbol{u}^{(n)} \cdot \nabla)\boldsymbol{u}^{(n)} = -\frac{\rho_f}{\widetilde{\rho}}\nabla p^{(*)} + \frac{1}{\widetilde{Re}}\Delta \boldsymbol{u}^{(*)} + \boldsymbol{g}$$

► Etape 2 : correction

$$\frac{\widetilde{\boldsymbol{u}}^{(n+1)} - \boldsymbol{u}^{(*)}}{\Delta t} = \left(\frac{\rho_f}{\widetilde{\rho}} \nabla p^{(*)} - \frac{\rho_f}{\widetilde{\rho}} \nabla p^{(n+1)}\right)$$
$$\boldsymbol{\nabla} \cdot \widetilde{\boldsymbol{u}}^{(n+1)} = 0$$

avec
$$\psi = \frac{\rho_f}{\widetilde{\rho}} \nabla p^{(*)} - \frac{\rho_F}{\widetilde{\rho}} \nabla p^{(n+1)}$$
, on a $\Delta \psi = \nabla \cdot \boldsymbol{u}^{(*)}$

$$\widetilde{\boldsymbol{u}}^{n+1} = \widetilde{\boldsymbol{u}}^* + \Delta \nabla \psi$$
$$\widetilde{p}^{n+1} = \widetilde{p}^* + \frac{\widetilde{\rho}}{\rho_f} \psi$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Etape 3 : déplacement calcul des forces F_{s_i} et des moments \mathcal{M}_{s_i}

$$m \frac{\mathrm{d} \overline{\boldsymbol{u}}_{s_i}}{\mathrm{d}t} = \boldsymbol{F}_{s_i} + m\boldsymbol{g}, \qquad \overline{\boldsymbol{u}}_{s_i} \quad \text{vitesse translation}, \quad m \quad \text{masse}$$
(14a)
$$\frac{\mathrm{d} J \boldsymbol{\Omega}_{s_i}}{\mathrm{d}t} = \boldsymbol{\mathcal{M}}_{s_i}, \qquad \boldsymbol{\Omega}_{s_i} \quad \text{vitesse angulaire}, \quad J \quad \text{matrice inertie}$$
(14b)

Vitesse rotation $\boldsymbol{u}_{s_i}^{\theta} = \boldsymbol{\Omega}_{s_i} \times \boldsymbol{r}_G$ avec $\boldsymbol{r}_G = \boldsymbol{x} - \boldsymbol{x}_G$ (\boldsymbol{x}_G centre de masse). Tenseur contraintes $\mathbb{T}(\boldsymbol{u}, p) = -\frac{\rho_f}{\rho}p + \frac{1}{Re}(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)$ et n normale extérieure à s_i :

$$\boldsymbol{F}_{s_i} = -\int_{\partial\Omega_{s_i}} \mathbb{T}(\boldsymbol{u}, p) \, \boldsymbol{n} \, \mathrm{d}\boldsymbol{x}, \tag{15a}$$

$$\mathcal{M}_{s_i} = -\int_{\partial\Omega_{s_i}} \mathbb{T}(\boldsymbol{u}, p) \times \boldsymbol{r}_G \, \mathrm{d}\boldsymbol{x}. \tag{15b}$$

Evaluation forces et moments

Maillage cartesien : pas accès direct à $\partial \Omega_{s_i}$

 $\hookrightarrow \textbf{Calcul difficile } \dots$

Déf : Domaine arbitraire $\Omega_{f_i}(t)$ qui entoure l'obstacle *i*.

Forces :

$$\begin{aligned} \boldsymbol{F}_{s_{i}} &= -\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{f_{i}}(t)} \boldsymbol{u} \,\mathrm{d}V + \int_{\partial\Omega_{f_{i}}(t)} \left(\mathbb{T} + (\boldsymbol{u} - \boldsymbol{u}_{s_{i}}) \otimes \boldsymbol{u}\right) \boldsymbol{n} \,\mathrm{d}S \\ &+ \int_{\partial\Omega_{s_{i}}(t)} \left(\left(\boldsymbol{u} - \boldsymbol{u}_{s_{i}}\right) \otimes \boldsymbol{u}\right) \boldsymbol{n} \,\mathrm{d}S. \end{aligned}$$
(16a)

Moments :

$$\mathcal{M}_{s_{i}} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{f_{i}}(t)} \boldsymbol{u} \times \boldsymbol{r}_{G} \,\mathrm{d}V + \int_{\partial\Omega_{f_{i}}(t)} \left(\mathbb{T} + (\boldsymbol{u} - \boldsymbol{u}_{s_{i}}) \otimes \boldsymbol{u}\right) \boldsymbol{n} \times \boldsymbol{r}_{G} \,\mathrm{d}S + \int_{\partial\Omega_{s_{i}}(t)} \left(\left(\boldsymbol{u} - \boldsymbol{u}_{s_{i}}\right) \otimes \boldsymbol{u}\right) \boldsymbol{n} \times \boldsymbol{r}_{G} \,\mathrm{d}S.$$
(16b)

Evaluation forces et moments

Le terme sur $\partial \Omega_{s_i}$ disparait dans notre cas

 $\hookrightarrow \textbf{Calcul facile}$

centre de recherche BORDEAUX - SUD OUEST

Etape 3 : déplacement mises à jour

1. Mise à jour du déplacement $\boldsymbol{u}_t^{(n+1)}$ avec Newton

$$M \boldsymbol{a} = \boldsymbol{F}(\widetilde{\boldsymbol{u}}^{(n+1)}, \widetilde{p}^{(n+1)}) + M \boldsymbol{g}.$$

$$\frac{\boldsymbol{u}_{s}^{(n+1)} - \boldsymbol{u}_{s}^{(n)}}{\Delta t} = \frac{\boldsymbol{F}(\widetilde{\boldsymbol{u}}^{(n+1)}, \widetilde{p}^{(n+1)})}{\rho_{s}S} + \boldsymbol{g}$$

Mise à jour du déplacement $oldsymbol{u}_T^{(n+1)}$ avec déplacement fluide 1

$$\boldsymbol{u}_{s}^{(n+1)} = \frac{1}{|S|} \int_{\Omega_{s}} \widetilde{\boldsymbol{u}}^{(n+1)} \mathrm{d}\boldsymbol{x} \quad (+\boldsymbol{u}_{r}^{(n+1)} + \boldsymbol{u}_{d}^{(n+1)})$$

2. Mise à jour "level set"

$$\frac{\chi_s^{(n+1)} - \chi_s^{(n)}}{\Delta t} + (\boldsymbol{u}_s^{(n+1)} \cdot \nabla)\chi_s^{(n+1)} = 0.$$

^[1] M. Coquerelle, G.-H. Cottet (2008) : A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. *Journal of Computational Physics* **227** pp. 9121-9137.

ANR CARPEINETER, 5 novembre 2009

Etape 4 : mise à jour vitesse avec pénalisation implicite

$$\frac{\boldsymbol{u}^{(n+1)} - \widetilde{\boldsymbol{u}}^{(n+1)}}{\Delta t} = \lambda \sum_{1=1}^{N_s} \chi_s^{(i)} (n+1) (\boldsymbol{u}_s^{(i)} (n+1) - \boldsymbol{u}^{(n+1)})$$

► Récapitualation :

- \triangleright Résolution NSE sans pénalisation $\Rightarrow \widetilde{u}^{(n+1)}$, $\widetilde{p}^{(n+1)}$
- \triangleright Calcul du déplacement \Rightarrow $oldsymbol{u}_{s}^{(n+1)}$, $\chi_{s}^{(n+1)}$
- $\triangleright~$ Calcul solution NSE avec pénalisation $\Rightarrow~ \pmb{u}^{(n+1)}$, $p^{(n+1)}$

► Remarque :

▷ L'étape 4 peut être traitée directement dans l'étape 1 avec vitesse obstacle explicite.

Résolution numérique | Validation

► Validation 1 : cylindre circulaire fixe à Re = 200 :

Fig. : Temporal evolution of the lift (dashed line) and the drag (solid line) at Re = 200.

Fig. : Spectrum (DFT) of the lift (dashed line) and the drag (solid line) at Re = 200.

INSTITUT NATIONAL

DE RECHERCHE

EN INFORMATIQUE

ET EN AUTOMATIQUE

Authors	S_t	C_D
Braza 1986	0,2000	1,4000
Henderson 1997	0,1971	1,3412
He <i>et al.</i> 2000	0,1978	1,3560
Bergmann 2006	0,1999	1,3900
Présente étude	0,1980	1,3500

SUD OUEST

Résolution numérique | Validation

► Validation 2 : cylindre mis en mouvement à Re = 550 :

- u_{∞} est la vitesse à l'infini
- \overline{u}_s est la vitesse du cylindre

Fig. : Drag coefficient for an impulsively started cylinder at Re = 550. Medium time.

→ Résultats concordants avec ceux de Ploumhans *et al.* JCP **165** (2000)

ANR CARPEINETER, 5 novembre 2009

Résolution numérique | Validation

► Validation 3 : Sédimentation d'un cylindre (2D + gravité + mouvement rigide) :

NSTITUT NATIONA

Nage de poissons | Paramétrisation

Vitesse de l'obstacle :

$$u_s^{(i)} = u_t^{(i)} + u_r^{(i)} + u_d^{(i)}$$
 (18)

- La vitesse de translation $oldsymbol{u}_t^{(i)}$ est calculée avec forces $oldsymbol{F}$
- La vitesse de rotation $oldsymbol{u}_r^{(i)}$ est calculée avec moment $oldsymbol{\mathcal{M}}$
- La vitesse de déformation $\boldsymbol{u}_d^{(i)}$ est imposée pour la nage
 - Ne pas ajouter de forces et moments artificiels !
 - 1. Générer une déformation choisie,
 - 2. Soustraire le déplacement du centre de masse,
 - 3. Effectuer une rotation de l'opposé de l'angle induit par la déformation",
 - 4. Effectuer une homothétie pour conserver la masse

Nage de poissons | Paramétrisation

Fig. : Sketch of the Karman-Trefftz transform. The *z* space is transformed to fit $0 \le x_s \le \ell$

$$z = n \frac{\left(1 + \frac{1}{\zeta}\right)^n + \left(1 - \frac{1}{\zeta}\right)^n}{\left(1 + \frac{1}{\zeta}\right)^n - \left(1 - \frac{1}{\zeta}\right)^n},$$

 \Rightarrow Uniquement 3 paramètres $\boldsymbol{b} = (\eta_c, \, \alpha, \, \ell)^T$

 $\triangleright \, \alpha = (2-n) \pi$: angle d'ouverture queue

 $\triangleright \eta_c < 0$ centre du cercle

 $\triangleright \, \ell > 0$ longueur du poisson

Nage de poissons | Paramétrisation

► Déformation du poisson : nage

$$\hookrightarrow \text{Déformation colonne vertébrale} : s = \int_{x_0}^x \left(1 + \left(\frac{\partial y(x', t)}{\partial x'} \right) \right) \, \mathrm{d}x'.$$
$$y(x, t) = a(x) \sin(2\pi (x/\lambda + ft)),$$
(19a)

$$a(x) = c_1 x + c_2 x^2. (19b)$$

NSTITUT NATIONA

DE RECHERCHE

EN INFORMATIQUE

RINRI

Fig. : Sketch of swimming and maneuvering shape.

\Rightarrow Uniquement 4 paramètres $\boldsymbol{s} = (c_1, c_2, \lambda, f)^T$

 \triangleright 2 paramètres enveloppe c_1 et c_2 + Fréquence f + Longueur d'onde λ .

$$\Rightarrow \textbf{Forme } \boldsymbol{b} = (\eta_c, \, \alpha, \, \ell)^T \textbf{+} \textbf{loi de nage } \boldsymbol{s} = (c_1, \, c_2, \, \lambda, \, f)^T \textbf{=} \textbf{7} \textbf{ paramètres}$$

(on peut aussi ajouter $r(t)$ pour les manoeuvres)

centre de recherche BORDEAUX -

SUD OUEST

Nage de poissons | Organisation du sillage

Nage de poissons | Classification des poissons

- ▶ Poissons classifiés en 2 catégories :
- Median and Paired Fins (MPF) : "les plus rares"
- ▷ Body and Caudal Fin (BCF) : "les plus courants"
 - 4 sous catégories
 - \hookrightarrow Thunniform (approx. par F_1)
 - \hookrightarrow Carangiform (approx. par F_2)
 - \hookrightarrow Subcarangiform (approx. par F_3)
 - \hookrightarrow Anguiliform (approx. par F_4)

Poisson	Forme			Poisson Forme Loi de nage			
Fi	η_c	α	ℓ	c_1	c_2	λ	f
F_1	-0.04	5	1	0.1	0.9	1.25	2
F_2	-0.03	5	1	0.4	0.6	1.00	2
F_3	-0.02	5	1	0.7	0.3	0.75	2
F_4	-0.01	5	1	1.0	0.0	0.50	2

Tab. : Paramètres utilisés. L'amplitude maximale du battement de la queue est $A(c_1, c_2, \ell) = 0.4$.

ANR CARPEINETER, 5 novembre 2009

Nage de poissons | BCF modes

Nage de poissons | BCF modes

ANR CARPEINETER, 5 novembre 2009 – p. 25

Nage de poissons | BCF modes

Nage de poissons | BCF modes

 \blacktriangleright Tous les poissons nagent sur une distance D=9

- $\hookrightarrow |U_{max}|$: vitesse maximale atteinte
- $\hookrightarrow |\overline{U}|$: vitesse moyenne
- $\hookrightarrow |\gamma_{max}|$: acceleration maximale
- $\hookrightarrow T_9$: temps mis pour parcourir une distance D = 9

	$Re = 10^3$			$Re = 10^4$				
fish	$ U_{max} $	$ \overline{U} $	$ \gamma_{max} $	T_9	$ U_{max} $	$ \overline{U} $	$ \gamma_{max} $	T_9
F_1	0.91	0.83	3.3	10.81	1.42	1.22	3.4	7.37
F_2	0.97	0.93	4.6	9.70	1.39	1.27	4.9	7.06
F_3	0.92	0.89	7.5	10.13	1.18	1.14	8.0	7.88
F_4	0.65	0.63	9.5	14.2	0.81	0.79	10.4	11.4

Tab. : Maximal velocity $|U_{max}|$, maximal acceleration $|\gamma_{max}|$ and average velocity $|\overline{U}|$ at $Re = 10^3$ and $Re = 10^4$.

ANR CARPEINETER, 5 novembre 2009

► La puissance dépensée pour la nage est :

$$P(t) = -\int_{\partial \Omega_s} p \, \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}S + \int_{\partial \Omega_s} (\sigma' \cdot \boldsymbol{n}) \cdot \boldsymbol{u} \, \mathrm{d}S, \tag{20}$$

avec

$$\sigma_{ij}' = \frac{1}{Re} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)$$

► Transformation par conservation énergie (enlever dépendance à $\partial \Omega_s$)

$$P(t) = \frac{\partial}{\partial t} \int_{\Omega_f} \frac{u^2}{2} \,\mathrm{d}\Omega + \frac{1}{Re} \int_{\Omega_f} \sigma'_{ij} \frac{\partial u_i}{\partial x_j}, \mathrm{d}\Omega.$$
(21)

 \hookrightarrow la puissance = variation énergy cinétique + puissance dissipation visqueuse

► Energie moyenne :

 \hookrightarrow Energie pour poisson F_k pour nager sur distance D est $E^{(k)} = \int_{T_k} P^{(k)} dt$.

Poisson	$Re = 10^3$	$Re = 10^{4}$
F_1	0.98	0.60
F_2	0.99	0.54
F_3	0.90	0.45
F_4	0.77	0.30

Tab. Comparison of the energy $E^{(k)}$ required to travel the distance D = 9 at $Re = 10^3$ and $Re = 10^4$. All fishes F_1 , F_2 , F_3 and F_4 present the same tail amplitude A = 0.4.

► **Observations :** le poisson F_4 dépense le moins d'énergie

 $\hookrightarrow \text{C'est aussi le plus lent} \Rightarrow \text{intuitif}$

► Comparaison "sensée" : poissons à même vitesse

► Même vitesse \Rightarrow régulateur r amplitude de la queue $A(c_1, c_2, \ell)$

- \hookrightarrow Vitesse cible : vitesse moyenne du poisson le plus lent (U_4 pour F_4)
- \hookrightarrow Si $U_i > U_4$ on augmente A, sinon, on diminue

fish	$Re = 10^3$	$Re = 10^{4}$
F_1^r	0.64	0.24
F_2^r	0.66	0.26
F_3^r	0.77	0.28
F_4	0.77	0.30

Tab. Comparison of the energy $E^{(k)}$ required to travel the distance d = 9 at $Re = 10^3$ and $Re = 10^4$. Fishes F_1^r , F_2^r , F_3^r regulated the maximal tail amplitude to swim at the velocity of F_4 .

► Observations : le poisson F_1 dépense le moins d'énergie, le poisson F_4 dépense le plus d'énergie.

 \hookrightarrow mouvements verticaux créent résistance \Rightarrow moins efficace énergétiquement

Paradoxe de Gray [1] :

"La puissance dépensée par un dauphin pour nager à une vitesse u peut être sept fois inférieure à celle utilisée par des moteurs pour propulser de façon rigide le même corps à la vitesse u" (exple : une torpille)

→ Paradoxe largement contesté (J. Lighthill [2]) : puissance poisson 3X supérieure

→ Paradoxe confirmé expérimentalement au MIT (robot bluefin tuna) par Barret *et al.* [3]

ANR CARPEINETER, 5 novembre 2009

^[1] Gray J. (1936) : Studies in animal locomotion. VI. The propulsive power of the dolphin, *J. Exp. Biol.* **13** pp. 192-199.

^[2] Lighthill, M.J. (1971) : Large amplitude elongated-body theory of fish locomotion, *Proc. R. Soc. Mech. B.* 179 pp. 125-138.

^[3] Barrett, D.S., Triantafyllou, M.S., Yue, D.K.P., Grosenbauch, M.A., Wolfgang, M.J. (1999) : Drag reduction in fish-like locomotion, *J. Fluid Mech.* **392** pp. 182-212.

► Propulsive index

$$T_p = \frac{P_{moteur}}{P_{np}}, \quad np:$$
 nage périodique. (22)

fish	$Re = 10^{3}$	$Re = 10^4$
F1	0.26	0.31
F2	0.26	0.21
F3	0.24	0.17
F4	0.17	0.14

Tab. : Propulsive indexes I_p evaluated for fishes F_1 , F_2 , F_3 and F_4 at $Re = 10^3$ and $Re = 10^4$.

▶ **Observations :** $I_p < 1 \Rightarrow$ puissance moteur < puissance nage

ANR CARPEINETER, 5 novembre 2009

- ► Constat : nage relativement coûteuse
- ► Idée : nage intermittente ("burst and coast swimming")

Le poisson peut-il bénéficier de périodes où il se laisser glisser?

- \hookrightarrow Définition Burst and coast : plusieurs cylcles où
 - le poisson nage de la vitesse min U_i jusqu'à la vitesse max U_f
 - le poisson glisse (sans nager) de la vitesse max U_f jusqu'à la vitesse min U_i
 - \triangleright On choisit $U_f = \alpha_f U_{max}$ et $U_i = \alpha_i U_{max}$
- > Objectif : Comparer nage intermittente avec nage périodique (même vitesse moyenne)

Exemple de nage intermittente "burst and coast" avec $\alpha_i = 0.2$ et $\alpha_f = 0.8$.

Cas test : poisson F_1 à $Re = 10^3$ et $Re = 10^4$

Efficacité nage intermittente R:

$$R = \frac{P_{ni}}{P_{np}}, \quad ni: \text{nage intermittente.}$$
(23)

$(lpha_i,lpha_f)$	$Re = 10^{3}$	$Re = 10^{4}$
(0.2,0.8)	0.77	0.85
(0.6, 0.8)	1.02	1.00
(0.4,0.6)	0.85	0.81
(0.2, 0.4)	0.63	0.71

Tab. : Efficiency R of burst and coast swimming for fish F_1 at $Re = 10^3$ and $Re = 10^4$ using different couples of $U_f = \alpha_f U_{max}$ and $U_i = \alpha_i U_{max}$.

 \hookrightarrow Nage intermittente efficace à faible vitesse!

Nage de poissons | Manoeuvres

Exemple : aller chercher de la nourriture localisée

Méthode : utiliser une courbure moyenne avec r

Fig. : Sketch of swimming and maneuvering shape.

Question : comment adapter r à la configuration étudiée ?

Nage de poissons | Manoeuvres

Idée : adapter r à l'angle de vision θ_f , soit $r = r(\theta_f)$:

On impose $|r| \ge \overline{r}$ et $|\theta_f| \ge \overline{\theta_f}$. On choisit arbitrairement $\overline{r} = 0.5$ et $\overline{\theta} = \pi/4$.

ANR CARPEINETER, 5 novembre 2009 – p.

Nage de poissons | Manoeuvres

$$Re = 10^{3}$$

 $Re=10^4$

ANR CARPEINETER, 5 novembre 2009 - p. 37

Nage de poissons | Nage en groupe

► Configuration : petits groupes de 3 poissons F_1

 \hookrightarrow **Etude préliminaire :** 2 poissons F_1 qui nagent parallèlement

Vitesse *u* Phase

Vitesse *u* Anti-phase

Nage de poissons | Nage en groupe

► Observation : dans le sillage des 2 poissons, existence d'un zone de vitesse de même sens que nage

► Idée : placer un 3ème poisson dans cette zone potentiellement efficace

videos/3sym.avi

Nage de poissons | Nage en groupe

► But économiser énergie :

 \hookrightarrow Ajuster vitesse 3ème poisson (réguler amplitude queue A)

	Phase				Anti-phase			
LD	0.4	0.5	0.6	0.7	0.4	0.5	0.6	0.7
1.5	15.0	16.3	11.1	7.1	6.8	6.9	9.8	7.1
2.0	10.1	14.5	9.8	6.0	6.8	6.1	9.8	6.0
2.5	8.4	13.6	9.0	5.1	6.7	5.3	9.0	5.1
3.0	15.0	15.1	6.9	5.0	5.2	5.1	7.0	3.2
3.5	5.2	13.2	6.2	2.2	4.9	5.0	6.2	0.5

Tab. : Percentage of energy saved for the three fishes school in comparison with three independent fishes. $Re = 10^3$.

Le groupe de 3 poissons peut économiser plus de 15% d'énergie!!

Autres applications | Nage d'une méduse

videos/jelly.avi

 \Rightarrow Utilisation des vortex générés (début lent car pas de vortex)

NSTITUT NATIONAL

EN INFORMATIQUE ET EN AUTOMATIQUE

DE RECHERCHE

EXAMPLE A CENTRE DE CENTR

ANR CARPEINETER, 5 novembre 2009 - p. 41

Autres applications | Eolienne

Pas fixe angle d'attaque constant

Pas variable (régulation vitesse) angle d'attaque variable

 \hookrightarrow "Elasticité" modélisée par ressorts sur vitesse et angle

DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE

Autres applicationss | Aile d'avion avec volets

videos/aile.avi

Airfoil with 2 flaps Re = 1000.

Répondre plusieurs problèmes : turbulence, interface (precision), ...

Conclusions et perspectives

----- Travail récent \Rightarrow beaucoup de choses à faire !! -----

Travaux réalisés :

- ← Code 2D Navier-Stokes + pénalisation équations + level set
- \hookrightarrow Applications : Auto propulsion, ailes ...

Perspectives :

- ← Elasticité
- \hookrightarrow Turbulence

Post doc Thomas Milcent

- \hookrightarrow 3D parallele
- \hookrightarrow Contrôle par l'adjoint

Thèse Jessica Hovnanian

