Modeling and numerical simulations of swimmers

Michel Bergmann

INRIA Bordeaux Sud-Ouest, project-team MC2 Institut de Mathématiques Appliquées de Bordeaux 33405 TALENCE cedex, France

Flow configuration

1_

Institut de Mathématiques de

Bordeaux

Plafrim, may 31, 2011 - p. 2

Flow modeling

► Classical model: Navier-Stokes equations (incompressible): $Re = \frac{\rho U_{ref} L}{\mu}$

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla p + \frac{1}{Re} \Delta \boldsymbol{u} + \boldsymbol{g} \quad \text{in} \quad \Omega_{\boldsymbol{f}}, \tag{1a}$$

$$\boldsymbol{\nabla}\cdot\boldsymbol{u}=0\quad \text{in}\quad \Omega_{f},$$
 (1b)

$$oldsymbol{u} = oldsymbol{u}_i$$
 On $\partial\Omega_i$ (1c)

$$oldsymbol{u} = oldsymbol{u}_f$$
 on $\partial\Omega$ (1d)

Numerical resolution

Need of meshes that fit the body geometries

 \hookrightarrow Costly remeshing for moving and deformable bodies!!

Institut de Mathématiques de Bordeaux

Flow modeling

► Penalization model: penalized Navier-Stokes equations (incompressible):

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\nabla p + \frac{1}{Re}\Delta \boldsymbol{u} + \boldsymbol{g} + \lambda \sum_{1=1}^{N_s} \chi_i(\boldsymbol{u}_i - \boldsymbol{u}) \quad \text{in} \quad \Omega,$$
(2a)

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \quad \text{in} \quad \Omega, \tag{2b}$$

$$\boldsymbol{u} = \boldsymbol{u}_f \quad \text{on} \quad \partial \Omega.$$
 (2c)

 $\hookrightarrow \lambda \gg 1$ penalization factor \rightarrow Solution eqs (2) tends to solution eqs (1) *w.r.t.* $\varepsilon = 1/\lambda \rightarrow 0$. $\hookrightarrow \chi_i = H(\phi_i)$ where H is Heaviside function and ϕ_i the signed distance function $(\phi_i(\boldsymbol{x}) > 0 \text{ if } \boldsymbol{x} \in \Omega_i, \phi_i(\boldsymbol{x}) = 0, \text{ if } \boldsymbol{x} \in \partial \Omega_i, \phi_i(\boldsymbol{x}) < 0 \text{ else if}).$

$$\frac{\partial \phi_i}{\partial t} + (\boldsymbol{u}_i \cdot \nabla) \phi_i = 0.$$

Numerical resolution

No need of meshes that fit the body geometries

 \hookrightarrow Cartesian meshes

► Space: Cartesian meshes,

Centered FD 2nd order and upwind 3rd order for convective terms 2^{nd} order penalization (immersed boundary like method)

► Time: 2^{nd} order Chorin scheme (Adams Bashforth/Crank Nicholson), Implicit penalization (larger λ)

$$\frac{\boldsymbol{u}^{(n+1)} - \boldsymbol{u}^{(n)}}{\Delta t} + \underbrace{(\boldsymbol{u}^{(n+\frac{1}{2})} \cdot \nabla)\boldsymbol{u}^{(n+\frac{1}{2})}}_{\text{Adams Bashforth}} = -\nabla p^{(n+\frac{1}{2}))} + \frac{1}{2Re} \underbrace{(\Delta \boldsymbol{u}^{(n+1)} + \Delta \boldsymbol{u}^{(n)})}_{\text{Crank Nicholson}} + g$$

$$+\lambda \sum_{1=1}^{N_s} \chi_i^{(n+1)} (\boldsymbol{u}_i^{(n+1)} - \boldsymbol{u}^{(n+1)}),$$

$$\nabla \cdot \boldsymbol{u}^{(n+1)} = 0$$

$$(\boldsymbol{u}^{(n+\frac{1}{2})} \cdot \nabla)\boldsymbol{u}^{(n+\frac{1}{2})} = \frac{3}{2} (\boldsymbol{u}^{(n)} \cdot \nabla)\boldsymbol{u}^{(n)} - \frac{1}{2} (\boldsymbol{u}^{(n-1)} \cdot \nabla)\boldsymbol{u}^{(n-1)}$$

► Chorin : prediction (2nd order)

$$\frac{\boldsymbol{u}^{(*)} - \boldsymbol{u}^{(n)}}{\Delta t} = -\left[(\boldsymbol{u} \cdot \nabla)\boldsymbol{u}\right]^{(n+\frac{1}{2})} - \nabla q + \frac{1}{2\,Re}(\Delta \boldsymbol{u}^{(*)} + \Delta \boldsymbol{u}^{(n)})$$

$$A\boldsymbol{u}^{(*)} = \boldsymbol{b}\left(\boldsymbol{u}^{(n)}, \, \boldsymbol{u}^{(n-1)}\right)$$

► Chorin : correction

$$\Delta \psi^{(n+1)} = \nabla \cdot \boldsymbol{u}^{(*)}$$

$$\widetilde{\boldsymbol{u}}^{(n+1)} = \boldsymbol{u}^{(*)} - \nabla \psi^{(n+1)}$$

$$\widetilde{p}^{(n+1)} = q + \frac{\psi^{(n+1)}}{\Delta t} - \frac{\Delta t}{2\,Re} \Delta \psi^{(n+1)}$$

► Compute body motion :

dea

$$\boldsymbol{u}_i^{(n+1)} = f(\widetilde{\boldsymbol{u}}^{(n+1)}, \, \widetilde{p}^{(n+1)}) \text{ and } \chi_i^{(n+1)} = \chi_i^{(n)} - \Delta t(\widetilde{\boldsymbol{u}}^{(n+1)} \cdot \nabla) \chi_i^{(n)}$$

► Penalization step : $\frac{\boldsymbol{u}^{(n+1)} - \widetilde{\boldsymbol{u}}^{(n+1)}}{\Delta t} = \lambda \sum_{i=1}^{N_s} \chi_i^{(n+1)} (\boldsymbol{u}_i^{(n+1)} - \boldsymbol{u}^{(n+1)})$

Compute body motion

$$oldsymbol{u}_i = \overline{oldsymbol{u}}_i + \widehat{oldsymbol{u}}_i + \widetilde{oldsymbol{u}}_i$$

with:

 \overline{u}_i translation velocity \widehat{u}_i rotation velocity \widetilde{u} deformation velocity (imposed for the swim)

 \hookrightarrow Compute forces F_i and torques \mathcal{M}_i

$$m \frac{\mathrm{d} \boldsymbol{u}_i}{\mathrm{d}t} = \boldsymbol{F}_i + m \boldsymbol{g}, \qquad \overline{\boldsymbol{u}}_i \quad \text{translation velocity}, \quad m \quad \text{mass}$$

 $\frac{\mathrm{d} J \boldsymbol{\Omega}_i}{\mathrm{d}t} = \boldsymbol{\mathcal{M}}_i, \qquad \boldsymbol{\Omega}_i \quad \text{angular velocity}, \quad J \quad \text{inertia matrix}$

Rotation velocity $\widehat{u}_i = \Omega_i \times r_G$ with $r_G = x - x_G$ (x_G center of mass).

► Classic way

Stress tensor $\mathbb{T}(\boldsymbol{u}, p) = -p\mathbb{I} + \frac{1}{Re}(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)$ and n outward normal unit vector at s_i :

$$F_i = -\int_{\partial\Omega_i} \mathbb{T}(\boldsymbol{u}, p) \boldsymbol{n} \, \mathrm{d}\boldsymbol{x},$$

$$\mathcal{M}_i = -\int_{\partial\Omega_i} \mathbb{T}(\boldsymbol{u}, p) \, \boldsymbol{n} \times \boldsymbol{r}_G \, \mathrm{d}\boldsymbol{x}.$$

► Other way : Arbitrarily domain $\Omega_{f_i}(t)$ surrounding body *i*.

Forces:

$$\mathbf{F}_{i} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{f_{i}}(t)} \mathbf{u} \,\mathrm{d}V + \int_{\partial\Omega_{f_{i}}(t)} \left(\mathbb{T} + (\mathbf{u} - \mathbf{u}_{i}) \otimes \mathbf{u}\right) \mathbf{n} \,\mathrm{d}S$$
$$- \int_{\partial\Omega_{i}(t)} \left(\left(\mathbf{u} - \mathbf{u}_{i}\right) \otimes \mathbf{u}\right) \mathbf{n} \,\mathrm{d}S.$$

Torques:

Mathématiques de

Bordeaux

$$\mathcal{M}_{i} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{f_{i}}(t)} \boldsymbol{u} \times \boldsymbol{r}_{G} \,\mathrm{d}V + \int_{\partial\Omega_{f_{i}}(t)} \left(\mathbb{T} + (\boldsymbol{u} - \boldsymbol{u}_{i}) \otimes \boldsymbol{u}\right) \boldsymbol{n} \times \boldsymbol{r}_{G} \,\mathrm{d}S$$
$$- \int_{\partial\Omega_{i}(t)} \left(\left(\boldsymbol{u} - \boldsymbol{u}_{i}\right) \otimes \boldsymbol{u}\right) \boldsymbol{n} \times \boldsymbol{r}_{G} \,\mathrm{d}S.$$

Evaluation of forces and torques

The term onto $\partial \Omega_i$ vanishes in our case (no transpiration)

 \hookrightarrow Easy evaluation!

NSTITUT NATIONA

DE RECHERCHE

EN INFORMATIQUE

EN AUTOMATIQUE

Ŕ

centre de recherche

BORDEAUX - SUD OUEST

INRIA

► Numerical resolution of Navier-Stokes equations (Cartesian mesh+Chorin)

Developments and Experiments using Plafrim cluster

- ► Large scale 3D problems: more than 100 millions dofs
 - $\hookrightarrow \mathsf{Required} \text{ parallel code}$
 - \Rightarrow One solution: Message Passing Interface (MPI)
 - \Rightarrow Other solution with higher abstraction level (more simple):

Portable, Extensible Toolkit for Scientific Computation (PETSc)

http://www.mcs.anl.gov/petsc/petsc-as/

- \hookrightarrow PETSc gives:
 - \Rightarrow structures for parallelism (DA *Distributed Arrays* to manage cartesian meshes)
 - \Rightarrow librairies to solve linear systems in parallel (KSP Krylov Subspace methods)

F-GMRES, preconditioner ASM with ILU on each subdomain

Plafrim, may 31, 2011 – p.

Fish like swimming | Fish motion

► Body velocity *i*:

$$u_i = \overline{u}_i + \widehat{u}_i + \widetilde{u}_i.$$

- Translation velocity $\overline{oldsymbol{u}}_i$ is computed using forces $oldsymbol{F}$
- Rotation velocity $\widehat{\boldsymbol{u}}_i$ is computed using torques $\boldsymbol{\mathcal{M}}$
- ullet Deformation velocity $\widetilde{oldsymbol{u}}_i$ is imposed for the swim
- Take care to not add artificial forces and torques!
 - 1. Impose any backbone deformation,
 - 2. Subtract body mass center motion due to deformation,
 - 3. Rotate the body by the opposite angle generate by deformation,
 - 4. Homothety for mass conservation

Fish like swimming | Steady fish shape

► 2D steady shape: airfoil like profile

Fig. : Sketch of the Karman-Trefftz transform. The *z* space is transformed to fit $0 \le x_s \le \ell$

$$z = n \frac{\left(1 + \frac{1}{\zeta}\right)^n + \left(1 - \frac{1}{\zeta}\right)^n}{\left(1 + \frac{1}{\zeta}\right)^n - \left(1 - \frac{1}{\zeta}\right)^n},$$

$$\Rightarrow \textbf{Only 3 parameters } b = (\eta_c, \alpha, \ell)^T$$

$$\triangleright \alpha = (2 - n)\pi \text{ : tail angle}$$

$$\triangleright \eta_c < 0 \text{ circle center}$$

$$\triangleright \ell > 0 \text{ fish length } (\ell = 1)$$

Fish like swimming | Steady fish shape

▶ 3D steady shape: ellipses centered on the backbone x_i , with axis $y(x_i)$ and $z(x_i)$.

dea

Fish like swimming | Swimming shape

 \hookrightarrow Backbone deformation in plan (x, y): $y(x, t) = (c_1 x + c_2 x^2) \sin(2\pi (x/\lambda + ft))$.

 \hookrightarrow 2D periodic, no artificial forces and torques,

 \hookrightarrow 3D each ellipse is orthogonal to the backbone \Rightarrow mass conservation

Fish like swimming | Swimming shape

 \hookrightarrow Backbone deformation in plan (x, y): $y(x, t) = (c_1 x + c_2 x^2) \sin(2\pi (x/\lambda + ft))$.

 \hookrightarrow 2D periodic, no artificial forces and torques,

 \hookrightarrow 3D each ellipse is orthogonal to the backbone \Rightarrow mass conservation

Fish like swimming | Convergence study

\triangleright Complex flow (deformable and moving body) \Rightarrow convergence study (2D)

Parameter: *u* velocity depends on the forces, the torques, the mesh, ...

 $\Rightarrow NX = 512$ and NY = 1024 seems good balance "precision vs.computation time". $\Rightarrow \Delta X = \Delta Y = 1/128$ are chosen in following simulations

Fish like swimming | Simulation

Fish like swimming | Simulation

3D fish Re = 1000. Mesh $1024 \times 128 \times 256 \approx 33 \cdot 10^6$ nodes $\Rightarrow 130 \cdot 10^6$ unknowns. \Rightarrow 3D and 2D wakes behavior are different

S.Kern and P. Koumoutsakos, J Exp. Biology 209, 2006.

Fish like swimming | Turbulence simulation

Turbulence modeling: smagorinsky LES $Re = 10^6$

 \hookrightarrow Regulation of frequency and tail amplitude to reach a target swimming velocity $u_{\tau} = 0.56$.

Fish like swimming | Turbulence simulation

Turbulence modeling: smagorinsky LES $Re = 10^6$

 \hookrightarrow Regulation of frequency and tail amplitude to reach a target swimming velocity $u_{\tau} = 0.56$.

The optimized frequency $f \approx 1.1$ and double amplitude $A \approx 0.14$. \Rightarrow The Strouhal number $St = \frac{fA}{u_{\tau}} \approx 0.275$

Fish like swimming | Gray paradox?

Gray's paradox [1] :

"the power required for a dolphin of length 1.82m to swim at a speed of 10.1m/s is about seven times the muscular power available for propulsion (swimming more efficient than rigid body towed at same velocity)

 \hookrightarrow Paradox contested (J. Lighthill [2]) : fish power 3X higher

 \hookrightarrow Paradox "confirmed" experimentally at MIT (robot bluefin tuna) by Barret *et al.* [3]

^[3] Barrett, D.S., Triantafyllou, M.S., Yue, D.K.P., Grosenbauch, M.A., Wolfgang, M.J. (1999) : Drag reduction in fish-like locomotion, *J. Fluid Mech.* **392** pp. 182-212.

^[1] Gray J. (1936) : Studies in animal locomotion. VI. The propulsive power of the dolphin, *J. Exp. Biol.* **13** pp. 192-199.

^[2] Lighthill, M.J. (1971) : Large amplitude elongated-body theory of fish locomotion, *Proc. R. Soc. Mech. B.* 179 pp. 125-138.

Fish like swimming | Gray paradox?

Power

$$P(t) = \frac{\partial}{\partial t} \int_{\Omega_f} \frac{u^2}{2} \,\mathrm{d}\Omega + \frac{1}{Re} \int_{\Omega_f} \sigma'_{ij} \frac{\partial u_i}{\partial x_j}, \mathrm{d}\Omega.$$

► Propulsive index

$$I_p = \frac{P_{tow}}{P_{swim}}$$

- ▶ In turbulent case $Re = 10^6$ with $St = 0.275 \Rightarrow I_p = 0.35$, *i.e.* $P_{tow} < P_{swim}$
- \hookrightarrow No numerical evidence of Gray's paradox
- $\hookrightarrow \text{Possible reasons:}$
 - is does no exist!
 - numerical errors: LES model, cartesian meshes (boundary layers?) \rightarrow error friction?,

Example: predator/prey \Rightarrow reach food

Method: add mean curvature r

Fig. : Sketch of swimming and maneuvering shape.

Question: adaptation of r(t)?

Idea: adapt *r* using "angle of vision" θ_f , i.e. $r = r(\theta_f)$:

Mathématiques de

Bordeaux

Fig. : Sketch of the oriented food angle of vision.

$$r(\theta_f) = \begin{cases} \infty & \text{if } \theta_f = 0, \\ \overline{r} & \text{if } \theta_f \geq \overline{\theta_f}, \\ -\overline{r} & \text{if } \theta_f \leq -\overline{\theta_f}, \\ \overline{r} \left(\frac{\overline{\theta}}{\theta_f}\right)^2 & \text{otherwise.} \end{cases}$$

centre de recherche

RINRIA

DE RECHERCHE

N INFORMATIQUE

2D fish Re = 1000

Plafrim, may 31, 2011 - p. 20

3D fish Re = 1000. Mesh $512 \times 128 \times 512 \approx 33 \cdot 10^6$ nodes $\Rightarrow 130 \cdot 10^6$ unknowns.

► Configuration: school limited to 3 fishes

 \hookrightarrow **Preliminary study** 2 fishes with parallel swim

Velocity *u* Phase

Velocity *u* Anti-phase

► **Observation:** existence of a zone in the wake where flow has same velocity sign than fishes velocities

► Idea: put a third fish in this zone with "potential benefits"

► **Observation:** existence of a zone in the wake where flow has same velocity sign than fishes velocities

► Idea: put a third fish in this zone with "potential benifits"

Anti-phase. \Rightarrow Quite efficient.

► **Observation:** existence of a zone in the wake where flow has same velocity sign than fishes velocities

► Idea: put a third fish in this zone with "potential benifits"

Phase. \Rightarrow Very efficient.

► Goal: save energy

 \hookrightarrow adapt velocity of the third fish

(regulation of tail amplitude A to reach same velocity than two other fishes)

	Phase				Anti-phase			
LD	0.4	0.5	0.6	0.7	0.4	0.5	0.6	0.7
1.5	15.0	16.3	11.1	7.1	6.8	6.9	9.8	7.1
2.0	10.1	14.5	9.8	6.0	6.8	6.1	9.8	6.0
2.5	8.4	13.6	9.0	5.1	6.7	5.3	9.0	5.1
3.0	15.0	15.1	6.9	$\overline{5.0}$	5.2	5.1	$\overline{7.0}$	3.2
3.5	5.2	13.2	6.2	2.2	4.9	5.0	6.2	0.5

Tab. : Percentage of energy saved for the three fishes school in comparison with three independent fishes. $Re = 10^3$.

The 3 fishes school can save an amount around 15% of total energy!!

3D fishes Re = 1000. Mesh $1024 \times 128 \times 256 \approx 33 \cdot 10^6$ nodes $\Rightarrow 130 \cdot 10^6$ unknowns. \Rightarrow No efficient effect for 3^{rd} fish. 3D wake \neq 2D wake (no inverted VK street)

Fish like swimming | First ray model

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Fish like swimming | First ray model

3D ray-like swimming with flapping wings at $Re = 10^4$.

Fish like swimming | Second ray model

Plafrim, may 31, 2011 - p. 26

Fish like swimming | Second ray model

3D ray-like swimming with flapping wings at $Re = 10^4$.

Fish like swimming | Simplified Jellyfish model

centre de recherche BORDEAUX - SUD OUEST

Fish like swimming | Simplified Jellyfish model

 $3D \text{ jellyfish } Re = 1000. \text{ Mesh } 256 \times 256 \times 512 \approx 33 \cdot 10^6 \text{ nodes} \Rightarrow 130 \cdot 10^6 \text{ unknowns.}$ $\Rightarrow \text{ Velocity very close to 2D case (quasi axisymmetric)}$

Bordeaux

SUD OUEST

centre de recherche

BORDEAUX -

RINRIA

DE RECHERCHE

N INFORMATIQUE

N AUTOMATION

Wind turbine: photo

Wind turbine: modeling (size 3m)

Wind turbine: rotation (20 rpm)

Wind turbine: numerical simulation (wind 3 m/s, $Re = 10^4$)

 $\textit{Mesh} \ 350 \times 350 \times 350 \approx 42 \cdot 10^6 \textit{ points} \Rightarrow 170 \cdot 10^6 \textit{ unknowns}.$

Wind turbine: numerical simulation (wind 3 m/s, $Re = 10^6$, Smagorinsky turbulence model)

Mesh $350 \times 350 \times 350 \approx 42 \cdot 10^6$ points $\Rightarrow 170 \cdot 10^6$ unknowns.

DE RECHERCHE

N INFORMATIQUE

Next

► Fluid-Structure interactions & elasticity (eulerian, post doc Thomas Milcent)

- $\hookrightarrow \text{Model the tail/fins}$
- ightarrow Example: cylinder motion imposed by penalization with free motion of the "tail"

