Massey products in Galois cohomology via rational points

Abstract: the Milnor conjecture identifies the cohomology ring $H^*(\operatorname{Gal}(\bar{k}/k), \mathbb{Z}/2)$ with the tensor algebra of k^* mod the ideal generated by $x \otimes (1 - x)$ for $x \in k - \{0, 1\}$ mod 2. In particular, $x \cup (1 - x)$ vanishes, where $x \in k^*$ is identified with an element of H^1 . We show that order *n* Massey products of n - 1 factors of *x* and one factor of 1 - x vanish by embedding $\mathbb{P}^1 - \{0, 1, \infty\}$ into its Picard variety and constructing $\operatorname{Gal}(\bar{k}/k)$ equivariant maps from π_1^{et} applied to this embedding to unipotent matrix groups. This also identifies Massey products of the form $\langle 1 - x, x, \ldots, x, 1 - x \rangle$ with $f \cup (1 - x)$, where *f* is a certain cohomology class which arises in the description of the action of $\operatorname{Gal}(\bar{k}/k)$ on $\pi_1^{\text{et}}(\mathbb{P}^1 - \{0, 1, \infty\})$.