Overholonomicity of overconvergent *F*-isocrystals over smooth varieties (work in common with Nobuo Tsuzuki)

> Log Conf 2010 Bordeaux, June 22-25

> > Overholonomicity of overconvergent F-isocrystals

Let \mathcal{V} be a complete discrete valuation ring of characteristic 0 with perfect residue field k of characteristic p > 0 and field of fractions K.

<u>Problem from the 60'</u>: construction of a p-adic cohomology over k-varieties stable under Grothendieck's six cohomological operations.

This means:

• a category $\operatorname{Coeff}(Y/K)$ of K-objects, for any k-variety Y.

Grothendieck's operations: the direct image
 f₊ : Coeff(Y'/K) → Coeff(Y/K) for any morphism
 f : Y' → Y of k-varieties, inverse image f⁺, extraordinary
 direct image f₁, extraordinary inverse image f⁺, tensor product and dual.

Berthelot's Arithmetic \mathcal{D} -modules

- Idea: the derived categories of bounded, holonomic complexes of (left by default) D-modules over C-varieties Y are stable under Grothendieck's six operations.
- \rightsquigarrow Berthelot's theory of arithmetic \mathcal{D} -modules over k-varieties.

Let \mathcal{E} be a coherent arithmetic F- \mathcal{D} -module over Y (i.e. endowed with a Frobenius structure).

- Berthelot defined the characteristic variety $Char(\mathcal{E})$ of \mathcal{E} .
- Berthelot-Bernstein's inequality: dim Char(E) ≥ dim Y if E ≠ 0. By definition, E is holonomic if dim Char(E) ≤ dim Y on each irreducible components of Y.
- Holonomicity is stable under external tensor product (Berthelot) and dual functor (Virrion).
- Berthelot's conjectures: the holonomicity is stable under proper direct image and under inverse image.

・ 同 ト ・ ヨ ト ・ ヨ ト

Contents

- Definition: arithmetic log-D-modules, overconvergent log-isocrystals and overholonomicity.
- Comparison theorem between relative log-rigid cohomology and relative rigid cohomology.
- Overholonomicity of some log-extendable isocrystals.
- Overholonomicity of overconvergent *F*-isocrystals on smooth *k*-varieties (consequence of Kedlaya's semistable theorem and section 2).
- Onsequences:
 - *F*-overholonomicity equals devissability in overconvergent *F*-isocrystals,
 - *F*-overholonomicity is stable under Grothendieck's six operations.

・ 同 ト ・ ヨ ト ・ ヨ ト

Notation

- Let g : X → T be a smooth morphism of smooth formal schemes over S = Spf V of pure relative dimension d (e.g. T = S).
- Let Z be a relatively strict normal crossing divisor of X over T,
 𝔅 := 𝔅 \ 𝔅 and 𝔅[#] = (𝔅, 𝔅) be the logarithmic formal
 𝔅-scheme with the logarithmic structure associated to 𝔅.
- Locally will mean: X and T are affine and there exist relatively local coordinates of X over T, say z₁, z₂, · · · , z_d, such that the irreducible component Z_i of Z = ∪^s_{i=1} Z_i is defined by z_i = 0.
- For any multi-index $\underline{n}=(n_1,\cdots,n_d)\in\mathbb{N}^d$, we pose:

$$\underline{\partial}_{\#}^{[\underline{n}]} = \frac{1}{n_1! \cdots n_d!} \left(\prod_{i=1}^s \prod_{j=0}^{n_i-1} (\partial_{\#i} - j) \right) \partial_{s+1}^{n_{s+1}} \cdots \partial_d^{n_d},$$

where $\partial_{\#i} = z_i \frac{\partial}{\partial z_i}$ for $1 \le i \le s$, $\partial_i = \frac{\partial}{\partial z_i}$ for $s + 1 \le i \le d$.

Logarithmic arithmetic \mathcal{D} -modules

- We denote by $\mathcal{D}_{\mathfrak{X}^{\#}}$ the *usual* ring of differential operators on $\mathfrak{X}^{\#}$. This is a locally free $\mathcal{O}_{\mathfrak{X}}$ -module and $\underline{\partial}_{\#}^{[\underline{n}]}$ with $\underline{n} \in \mathbb{N}^{d}$ form a basis as such an $\mathcal{O}_{\mathfrak{X}}$ -module.
- Berthelot, and Montagnon for the logarithmic situation, constructed the sheaf of differential operators of finite level on $\mathfrak{X}^{\#}$ denoted by $\mathfrak{D}^{\dagger}_{\mathfrak{X}^{\#}}$.
- Locally, $P \in \Gamma(\mathfrak{X}^{\#}, \mathfrak{D}_{\mathfrak{X}^{\#}}^{\dagger})$ iff $\exists c, \eta \in \mathbb{R}$ with $\eta < 1$ such that

$$P = \sum_{\underline{n} \in \mathbb{N}^d} a_{\underline{n}} \underline{\partial}_{\#}^{[\underline{n}]} | a_{\underline{n}} \in \mathfrak{O}_{\mathfrak{X}}, \text{ and } \parallel a_{\underline{n}} \parallel \leq c \eta^{n_1 + \dots + n_d}.$$

Noot-Huyghe's interpretation: D[†]_{χ#} is the weak *p*-adic completion as O_x-algebra of D_{x#}.

Overconvergent singularities along D

Let D (e.g. D = Z) be a divisor of X (the special fiber of \mathfrak{X}), $\mathfrak{U} := \mathfrak{X} \setminus D$, and $\mathfrak{U}^{\#}$ the restriction of $\mathfrak{X}^{\#}$ on \mathfrak{U} .

• We denote by $\mathfrak{O}_{\mathfrak{X}}(^{\dagger}D)$ Berthelot's sheaf of section on \mathfrak{X} with overconvergent singularities along D.

Local description: if D is defined by f = 0 in X for $f \in \Gamma(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$, then $\mathfrak{O}_{\mathfrak{X}}(^{\dagger}D)_{\mathbb{Q}} = \mathfrak{O}_{\mathfrak{X}}[\frac{1}{f}]^{\dagger} \otimes_{\mathcal{V}} K$ (where $\mathfrak{O}_{\mathfrak{X}}[\frac{1}{f}]^{\dagger}$ is the weak completion as $\mathfrak{O}_{\mathfrak{X}}$ -algebra of $\mathfrak{O}_{\mathfrak{X}}[\frac{1}{f}]$).

We denote by D[†]_{𝔅#}([†]D) the ring of differential operators on 𝔅[#] with overconvergent singularities along D. Noot-Huyghe's interpretation: D[†]_{𝔅#}([†]D)_ℚ = (O_𝔅([†]D) ⊗_{O_𝔅} D_{𝔅#})[†] ⊗_𝔅 K, where " †" means the weak completion as O_𝔅-algebra.
When D = Ø, we note D[†]_{𝔅#} instead of D[†]_{𝔅#}([†]Ø). When D = Z,

$$\mathcal{D}_{\mathfrak{X}^{\#}}^{\dagger}(^{\dagger}Z) = \mathcal{D}_{\mathfrak{X}}^{\dagger}(^{\dagger}Z).$$

• We get the functor $(^{\dagger}D) := \mathcal{D}_{\mathfrak{X}^{\#}}^{\dagger}(^{\dagger}D)_{\mathbb{Q}} \otimes_{\mathcal{D}_{\mathfrak{X}^{\#},\mathbb{Q}}^{\dagger}} -.$

Link with rigid analytic K-spaces

- Let X_K be the Raynaud generic fiber of X which is a rigid analytic K-space and g_K : X_K → T_K the induced morphism.
- For any sheaf \mathcal{H} on $\mathfrak{X}_{\mathcal{K}}$, the sheaf of sections of \mathcal{H} overconvergent along D is

$$j_U^{\dagger} \mathcal{H} := \lim_{\stackrel{\longrightarrow}{V}} \alpha_{V*}(\mathcal{H}|_V),$$

where V runs over all strict neighborhoods of \mathfrak{U}_{K} in \mathfrak{X}_{K} (i.e., admissible open subsets $\mathfrak{U}_{K} \subset V \subset \mathfrak{X}_{K}$ such that $V \cup (\mathfrak{X}_{K} \setminus \mathfrak{U}_{K})$ is an admissible cover of \mathfrak{X}_{K}) and where $\alpha_{V} : V \to \mathfrak{X}_{K}$ is the canonical inclusion.

• We have $\operatorname{sp}_*(j_U^{\dagger} \mathcal{O}_{\mathfrak{X}_K}) \xrightarrow{\sim} \mathcal{O}_{\mathfrak{X}}({}^{\dagger}D)_{\mathbb{Q}}$, where $\operatorname{sp} : \mathfrak{X}_K \to \mathfrak{X}$ is the specialization morphism.

Overconvergent log-isocrystals

Let $\mathfrak{X}_{K}^{\#} = (\mathfrak{X}_{K}, \mathfrak{Z}_{K})$ be the rigid analytic space endowed with the logarithmic structure associated to \mathfrak{Z}_{K} . Let *E* be a locally free $j_{U}^{\dagger}\mathcal{O}_{\mathfrak{X}_{K}}$ -modules of finite type with an integrable logarithmic connection $\nabla : E \to j_{U}^{\dagger}\Omega_{\mathfrak{X}_{K}^{\#}/\mathfrak{T}_{K}}^{1} \otimes_{j_{U}^{\dagger}}\mathfrak{O}_{\mathfrak{X}_{K}}^{1} E$. The pair (E, ∇) (or simply *E*) is called a log-isocrystal on $U^{\#}/\mathfrak{T}_{K}$ overconvergent along *D* if *locally*:

- there exist a strict neighborhood V of \mathfrak{U}_{K} in \mathfrak{X}_{K} and a locally free \mathfrak{O}_{V} -module \mathcal{E} and an integrable $\nabla : \mathcal{E} \to (\Omega^{1}_{\mathfrak{X}_{K}^{\#}/\mathfrak{I}_{K}}|_{V}) \otimes_{\mathfrak{O}_{V}} \mathcal{E}$ such that $j_{U}^{\dagger}(\mathcal{E}, \nabla) = (\mathcal{E}, \nabla)$
- and the overconvergent condition holds: $\forall \xi \in]0, 1[, \exists \text{ an affinoid strict neighborhood } W \subset V \text{ of } \mathfrak{U}_{K} \text{ in } \mathfrak{X}_{K} \text{ such that, } \forall e \in \Gamma(W, \mathcal{E}),$

$$||\underline{\partial}_{\#}^{[\underline{n}]}(e)||\xi^{|\underline{n}|} \to 0 \text{ (as } |\underline{n}| \to \infty).$$

イロト イポト イヨト イヨト

• A convergent log-isocrystal on $X^{\#}/\mathcal{T}_{K}$ is by definition a log-isocrystal on $X^{\#}/\mathcal{T}_{K}$ overconvergent along \emptyset . When $\mathcal{T} = S$, we say *log-isocrystal on* $U^{\#}$ overconvergent along D or convergent log-isocrystal on $X^{\#}$.

Theorem

The functors sp^* and sp_* induce quasi-inverse equivalences between the category of coherent $\mathcal{D}_{\mathfrak{X}^\#}^{\dagger}({}^{\dagger}D)_{\mathbb{Q}}$ -modules, locally projective of finite type over $\mathcal{O}_{\mathfrak{X}}({}^{\dagger}D)_{\mathbb{Q}}$ and the category of log-isocrystals on $U^{\#}$ overconvergent along D.

• Remark: Shiho's category of convergent log-isocrystals on $X^{\#}$ over S is equivalent to that of coherent $\mathcal{D}_{\mathfrak{X}^{\#},\mathbb{Q}}^{\dagger}$ -modules, locally projective of finite type over $\mathcal{O}_{\mathfrak{X},\mathbb{Q}}$.

Overholonomicity

Definition

Let $r \geq -1$ be an integer and $\mathcal{E} \in (F-)D^{\mathrm{b}}(\mathfrak{D}^{\dagger}_{\mathfrak{X},\mathbb{Q}}).$

- The complex \mathcal{E} is (-1)-overholonomic if $\mathcal{E} \in (F-)D^{\mathrm{b}}_{\mathrm{coh}}(\mathcal{D}^{\dagger}_{\mathfrak{X},\mathbb{O}}).$
- The complex & is 0-overholonomic if ∀ smooth morphism f : *P*' → *P*, ∀ divisor *T*' of *P*', ([†]*T*') ∘ f*(&) is (-1)-overholonomic.
- If r ≥ 1, E is r-overholonomic if E is r − 1-overholonomic and if ∀ smooth morphism f : P' → P, ∀ divisor T' of P', D ∘ ([†]T') ∘ f*(E) is (r − 1)-overholonomic, where D is the dual functor: D(−) = RHom_{D[†]_{X,Q}} (−, D[†]_{X,Q} ⊗_{O_X} ω⁻¹_X)[dim X].
- The (*F*-)complex *E* is overholonomic if it is *r*-overholonomic for every *r*. We denote by (*F*-)D^b_{ovhol}(D[†]_{𝔅,ℚ}) the derived category of overholonomic (*F*-)complexes of D[†]_{𝔅,ℚ}-modules.

Theorem

- Let $f : \mathfrak{X}' \to \mathfrak{X}$ be a morphism, $\mathcal{E} \in (F-)D^{\mathrm{b}}_{\mathrm{ovhol}}(\mathcal{D}^{\dagger}_{\mathfrak{X},\mathbb{Q}})$, $\mathcal{E}' \in (F-)D^{\mathrm{b}}_{\mathrm{ovhol}}(\mathcal{D}^{\dagger}_{\mathfrak{X}',\mathbb{Q}})$. Then:
 - If E has a Frobenius structure, then E is holonomic.
 - The complex $f^!(\mathcal{E}) \in (F-)D^{\mathrm{b}}_{\mathrm{ovhol}}(\mathcal{D}^{\dagger}_{\mathfrak{X}',\mathbb{Q}}).$
 - If f is proper, $f_+(\mathcal{E}') \in (F-)D^{\mathrm{b}}_{\mathrm{ovhol}}(\mathcal{D}^{\dagger}_{\mathfrak{X},\mathbb{Q}}).$
 - For any closed subscheme Z of X, D(E) ∈ (F-)D^b_{ovhol}(D[†]_{𝔅,Q}) and ℝ<u>Γ</u>[†]_Z(E) ∈ (F-)D^b_{ovhol}(D[†]_{𝔅,Q}).
 - The stability under ⊗ of the overholonomicity with Frobenius structure is obtained at the end of this work.

Until the end and unless otherwise specified, E will be a convergent log-isocrystal on $X^{\#}/\mathcal{T}_{\mathcal{K}}$. Also, $\mathcal{E} := \operatorname{sp}_{*}(E)$ will be the corresponding coherent $\mathcal{D}_{\mathfrak{X}^{\#},\mathbb{Q}}^{\dagger}$ -module which is locally projective of finite type as $\mathcal{O}_{\mathfrak{X},\mathbb{Q}}$ -module.

Definition

- An exponent of E along Z_i (an irreducible component of Z) is a eigenvalue of the residue of ∇ along Z_{iK}.
- A p-adic integer α is a p-adic Liouville number if the radius of convergence of formal power series, either
 ∑<sub>n∈ℤ_{≥0},n≠α xⁿ/(n − α) or ∑<sub>n∈ℤ_{≥0},n≠−α xⁿ/(n + α), is less
 than 1.

 </sub></sub>

 For any integer *m*, let J_Z be the sheaf of ideals corresponding to Z → X and pose:

$$\mathcal{E}(m\mathcal{Z}) := \mathcal{E} \otimes_{\mathcal{O}_{\mathfrak{X}}} \mathfrak{I}_{\mathcal{Z}}^{\otimes -m}$$

• Let $u : \mathfrak{X}^{\#} \to \mathfrak{X}$ be the canonical morphism. We compute the isomorphism:

$$u_+(\mathcal{E}) \xrightarrow{\sim} \left(\mathcal{D}^{\dagger}_{\mathfrak{X},\mathbb{Q}} \otimes_{\mathfrak{O}_{\mathfrak{X}}} \mathfrak{O}_{\mathfrak{X}}(\mathfrak{Z}) \right) \otimes_{\mathcal{D}^{\dagger}_{\mathfrak{X}^{\#},\mathbb{Q}}} \mathcal{E}.$$

• The canonical inclusion $\mathcal{D}_{\mathfrak{X},\mathbb{Q}}^{\dagger} \otimes_{\mathfrak{O}_{\mathfrak{X}}} \mathfrak{O}_{\mathfrak{X}}(\mathfrak{Z}) \subset \mathcal{D}_{\mathfrak{X}}^{\dagger}(^{\dagger}Z)_{\mathbb{Q}}$ induces the morphism

$$\rho : u_{+}(\mathcal{E}) \to \mathcal{D}^{\dagger}_{\mathfrak{X}}(^{\dagger}Z)_{\mathbb{Q}} \otimes_{\mathcal{D}^{\dagger}_{\mathfrak{X}^{\#},\mathbb{Q}}} \mathcal{E} =: \mathcal{E}(^{\dagger}Z) = \operatorname{sp}_{*}(j_{Y}^{\dagger}E).$$

• The *exact triangle of localization* of $u_+(\mathcal{E})$ with respect to Z is:

$$\mathbb{R}\underline{\Gamma}_{Z}^{\dagger} \circ u_{+}(\mathcal{E}) \to u_{+}(\mathcal{E}) \xrightarrow{\rho} \mathcal{E}(^{\dagger}Z) \to +1.$$

Overholonomicity of overconvergent F-isocrystals

Theorem (Comparison theorem between relative log-rigid cohomology and relative rigid cohomology)

Suppose that, along each irreducible component of \mathcal{Z} , E satisfies the following (a), (b) and (c) conditions:

- (a) none of differences of exponents is a p-adic Liouville number,
- (b) none of exponents is a p-adic Liouville number,
- $\left(c\right)$ none of exponents is a positive integer.

Then the canonical morphism

$$\mathbb{R}g_{\mathcal{K}*}(\Omega^{\bullet}_{\mathfrak{X}^{\#}_{\mathcal{K}}/\mathfrak{T}_{\mathcal{K}}}\otimes_{\mathfrak{O}_{\mathfrak{X}_{\mathcal{K}}}}E)\to\mathbb{R}g_{\mathcal{K}*}(\Omega^{\bullet}_{\mathfrak{X}_{\mathcal{K}}/\mathfrak{T}_{\mathcal{K}}}\otimes_{\mathfrak{O}_{\mathfrak{X}_{\mathcal{K}}}}j_{Y}^{\dagger}E)$$

is an isomorphism.

Remark

- In the heart of the proof, we need the so called Christol's transfert theorem.
- The comparison theorem is not any more true if we remove the condition (c).
 Counter-example: The convergent log isocrystal sp*O_𝔅(-𝔅)_𝔅 satisfies the conditions (a) and (b) but not the comparison theorem.

In fact, we have the strongest fact (consequence of the above comparison theorem):

Theorem

If \mathcal{E} satisfies conditions (a), (b) and (c), then the canonical morphism $u_+(\mathcal{E}) \to \mathcal{E}(^{\dagger}Z)$ is an isomorphim.

Theorem

Suppose that \mathcal{E} satisfies the following condition:

(NL) none of elements of $Exp(\mathcal{E})^{gr}$, the group generated by the exponents of \mathcal{E} , is a p-adic Liouville number.

Then $u_+(\mathcal{E})$ is overholonomic. In particular, since $u_+(\mathcal{E})(^{\dagger}Z) \xrightarrow{\sim} \mathcal{E}(^{\dagger}Z)$, so is the overconvergent isocrystal $\mathcal{E}(^{\dagger}Z)$ on U associated to \mathcal{E} .

Let $r \ge -1$, $n \ge 0$ be two integers. When the dimension of smooth formal schemes are $\le n$, let us consider the next properties

 $(P_{n,r})$ The module $u_+(\mathcal{E})$ is *r*-overholonomic ;

$$(Q_{n,r})$$
 The complex $\mathbb{R} \underline{\Gamma}_{Z}^{\dagger} u_{+}(\mathcal{E})$ is *r*-overholonomic ;

 $(R_{n,r})$ The module $\mathcal{E}(^{\dagger}Z)$ is *r*-overholonomic.

Step (I): $\forall n \geq 1, r \geq -1, (P_{n-1,r}) \Rightarrow (Q_{n,r}).$

I.1) Reduction to the affine case.

Since $(Q_{n,r})$ is local in \mathfrak{X} , from Kedlaya's theorem, we can suppose that there exist a finite étale morphism $h : \mathfrak{X} \to \operatorname{Spf} \mathcal{V}\{t_1, \ldots, t_n\}$. Denote by $\mathfrak{H}_1, \ldots, \mathfrak{H}_n$ the coordinate hyperplanes of $\operatorname{Spf} \mathcal{V}\{t_1, \ldots, t_n\}, \ \mathfrak{H} := \mathfrak{H}_1 \cup \cdots \cup \mathfrak{H}_r, \ \mathfrak{Z}' := h^{-1}(\mathfrak{H})$. More precisely, we get from Kedlaya's theorem the canonical commutative diagram:

$$\mathfrak{X} = \mathfrak{X} \xrightarrow{h} \mathfrak{A} = \operatorname{Spf} \mathcal{V}\{t_1, \dots, t_n\}$$

$$\stackrel{u}{\downarrow} \stackrel{v}{\downarrow} \stackrel{v}{\downarrow} \stackrel{w}{\downarrow}$$

$$\mathfrak{X}, \mathcal{Z}) \longleftarrow (\mathfrak{X}, \mathcal{Z}') \xrightarrow{h^{\#}} \mathfrak{A}^{\#} = (\operatorname{Spf} \mathcal{V}\{t_1, \dots, t_n\}, \mathfrak{H}),$$

where the right square is cartesian. We reduce to the case where u = v (technical) and then u = w (easier). We get the following canonical diagram

where $\mathfrak{H}'_1 = \cup_{i=2}^{s} \mathfrak{H}_1 \cap \mathfrak{H}_i$ and $\mathfrak{H}''_1 := (\mathfrak{H}_1, \mathfrak{H}'_1)$.

Theorem (Description of the cone of the comparison morphism)

Suppose furthermore that ${\mathcal E}$ satisfies the (NL) conditions. Then the complex

$$\operatorname{Cone}\left(g_{1+}^{\#}(\mathcal{E}) \to g_{1+}(\mathcal{E}(^{\dagger}H_{1}))\right)$$

is isomorphic to a complex of coherent $\mathcal{D}_{\mathfrak{H}_{1}^{\#}}^{\dagger}({}^{\dagger}H_{1}')_{\mathbb{Q}}$ -modules, locally projective of finite type as $\mathfrak{O}_{\mathfrak{H}_{1}}({}^{\dagger}H_{1}')_{\mathbb{Q}}$ -modules and satisfying the (NL) conditions.

Sketch of the proof:

- For *m* large enough, $\mathcal{E}(m\mathfrak{H}_1)$ satisfies conditions (*a*), (*b*), (*c*). Then: $g_{1+}^{\#} \mathbb{R} \underline{\Gamma}_{H_1}^{\dagger}(\mathcal{E}(m\mathfrak{H}_1)) = 0.$
- We notice $\mathbb{R}\underline{\Gamma}_{H_1}^{\dagger}(\mathcal{E}(\mathfrak{H}_1)/\mathcal{E}) = \mathcal{E}(\mathfrak{H}_1)/\mathcal{E}$. Then: $g_{1+}^{\#}\mathbb{R}\underline{\Gamma}_{H_1}^{\dagger}(\mathcal{E}(\mathfrak{H}_1)/\mathcal{E}) = g_{1+}^{\#}(\mathcal{E}(\mathfrak{H}_1)/\mathcal{E}).$
- We apply the functor $g_{1+}^{\#} \mathbb{R}\underline{\Gamma}_{H_1}^{\dagger}$ to the exact sequence $0 \to \mathcal{E} \to \mathcal{E}(\mathfrak{H}_1) \to \mathcal{E}(\mathfrak{H}_1)/\mathcal{E} \to 0$ and so on.

I.3) End of the step

From I.2), $g_{1+}^{\#} \circ \mathbb{R}\underline{\Gamma}_{H_1}^{\dagger}(\mathcal{E})$ is a complex of coherent $\mathcal{D}_{\mathfrak{H}_1^{\#},\mathbb{Q}}^{\dagger}$ -modules which are locally projective $\mathcal{O}_{\mathfrak{H}_1,\mathbb{Q}}$ -modules of finite type satisfying the (*NL*) condition. Then, by ($P_{n-1,r}$), $w_{1+} \circ g_{1+}^{\#} \circ \mathbb{R}\underline{\Gamma}_{H_1}^{\dagger}(\mathcal{E})$ is *r*-overholonomic. Moreover, since $i_{1+}i_1^!w_+(\mathcal{E}) \xrightarrow{\sim} \mathbb{R}\underline{\Gamma}_{H_1}^{\dagger}w_+(\mathcal{E})$,

$$\begin{array}{ccc} w_{1,+} \circ g_{1+}^{\#} \circ \mathbb{R}\underline{\Gamma}_{H_{1}}^{\dagger}(\mathcal{E}) \xrightarrow{\sim} g_{1+} \circ w_{+} \circ \mathbb{R}\underline{\Gamma}_{H_{1}}^{\dagger}(\mathcal{E}) \xrightarrow{\sim} \\ \xrightarrow{\sim} g_{1+} \circ \mathbb{R}\underline{\Gamma}_{H_{1}}^{\dagger} \circ w_{+}(\mathcal{E}) \xrightarrow{\sim} i_{1}^{!}w_{+}(\mathcal{E}). \end{array}$$

Hence $i_1^! w_+(\mathcal{E})$ is *r*-overholonomic and then so is $\mathbb{R} \underline{\Gamma}_{H_1}^{\dagger} w_+(\mathcal{E})$. Symmetrically, we obtain for any $i = 1, \ldots, r$ that $\mathbb{R} \underline{\Gamma}_{H_i}^{\dagger} w_+(\mathcal{E})$ is *r*-overholonomic. This implies that $\mathbb{R} \underline{\Gamma}_{H}^{\dagger} w_+(\mathcal{E})$ is *r*-overholonomic (using Mayer-Vietoris exact triangles and the stability of *r*-overholonomicity by local cohomological functors). Step (II): $(P_{n,r-1}) + (Q_{n,r}) \Rightarrow (R_{n,r})$ for any $n \ge 0$, $r \ge 0$.

Since the case r = 0 is similar, we can suppose $r \ge 1$. It is sufficient to prove:

 $\forall D \subset X \text{ divisor, } \mathbb{D}(\mathcal{E}(^{\dagger}Z \cup D)) \text{ is } (r-1)\text{-overholonomic.}$

1) We come down to the case where $D = \emptyset$: by using de Jong's desingularization theorem, there exist a commutative diagram

such that f is a proper smooth morphism, a_0 is proper, surjective, generically finite and étale, X' is smooth, $Z' := a_0^{-1}(Z \cup D)$ is a strict NCD of X'. We pose $a_0^{\sharp} : (X', Z') \to (X, Z)$.

Then $\mathcal{E}' := \mathbb{R}[\Gamma_{X'}^{\dagger} f^!(\mathcal{E}(^{\dagger}Z \cup D))$ "is associated to $j_{Z'}^{\dagger}a_0^{\sharp*}(E)$ " (this has locally a meaning) as an isocrystal on $X' \setminus Z'$ overconvergent Z'. Moreover, $\mathcal{E}(^{\dagger}Z \cup D)$ is a direct factor of $f_+(\mathcal{E}')$. Since the (r-1)-overholonomicity is stable by f_+ , we reduce to the case where $D = \emptyset$.

2) By applying \mathbb{D} to the exact triangle of localization of $u_+(\mathcal{E})$ with respect to Z, we get:

$$\mathbb{D}(\mathcal{E}(^{\dagger}Z)) \to \mathbb{D} \circ u_{+}(\mathcal{E}) \to \mathbb{D} \circ \mathbb{R}\underline{\Gamma}_{Z}^{\dagger} \circ u_{+}(\mathcal{E}) \to +1.$$

• We have the log-relative duality isomorphism:

$$\mathbb{D} \circ u_+(\mathcal{E}) \xrightarrow{\sim} u_+(\mathcal{E}^{\vee}(-\mathcal{Z})),$$

where $\mathcal{E}^{\vee} = \mathcal{H}om_{\mathcal{O}_{\mathfrak{X},\mathbb{Q}}}(\mathcal{E}, \mathcal{O}_{\mathfrak{X},\mathbb{Q}})$. Since $\mathcal{E}^{\vee}(-\mathcal{Z})$ satisfies the (*NL*) condition, by ($P_{n,r-1}$) this implies that $\mathbb{D} \circ u_+(\mathcal{E})$ is (r-1)-overholonomic.

• By $(Q_{n,r})$, $\mathbb{D} \circ \mathbb{R}\underline{\Gamma}_Z^{\dagger} \circ u_+(\mathcal{E})$ is (r-1)-overholonomic.

a) We have checked:

•
$$(P_{n,r-1}) + (Q_{n,r}) \Rightarrow (R_{n,r})$$
 for any $n \ge 0, r \ge 0$.

•
$$\forall n \geq 1, r \geq -1, (P_{n-1,r}) \Rightarrow (Q_{n,r}).$$

This implies $(P_{n,r-1}) + (P_{n-1,r}) \Rightarrow (Q_{n,r}) + (R_{n,r})$. Using the exact triangle of localisation, we get: $(Q_{n,r}) + (R_{n,r}) \Rightarrow (P_{n,r})$. Then:

$$(P_{n,r-1})+(P_{n-1,r})\Rightarrow (P_{n,r}).$$

b) Since $(P_{0,r})$ and $(P_{n,-1})$ are satisfied, we have finished the proof.

Theorem (Kedlaya's semistable reduction theorem)

Let Y be a smooth irreducible k-variety, X be a partial compactification of Y, $Z := X \setminus Y$, E be an F-isocrystal on Y overconvergent along Z. Then E admits semistable reduction, i.e., there exist

- **(**) a proper, surjective, generically étale morphism $f : X' \to X$,
- ② an open immersion $X' \hookrightarrow \overline{X}'$ into a smooth projective variety over k such that $Z' := f^{-1}(Z) \cup (\overline{X}' \setminus X')$ is a strict normal crossing divisor of \overline{X}'

such that the isocrystal $f^*(E)$ on $Y' := f^{-1}(Y)$ overconvergent along $Z' \cap X'$ is log-extendable on X' (i.e. there exists a log-isocrystal with nilpotent residues convergent on the log-scheme $(X', Z' \cap X')$ whose induced overconvergent isocrystal on Y' is $f^*(E)$).

イロト イポト イヨト イヨト

ъ

Theorem

• We have a equivalence of categories of the form

 $\operatorname{sp}_{(Y,X),+}$: $\operatorname{Isoc}^{\dagger}(Y,X/K) \cong \operatorname{Isoc}^{\dagger\dagger}(Y,X/K),$

where $\operatorname{Isoc}^{\dagger\dagger}(Y, X/K)$ is a category of some arithmetic \mathcal{D} -modules.

• The objects of F-Isoc^{††}(Y, X/K) are overholonomic.

Proof of the second point.

Using Kedlaya's semistable reduction theorem and the stability of overholonomicity under direct image and under extraordinary inverse image we reduce to the case of log-extendable F-isocrystals, which was already checked.

Theorem

Let \mathcal{P} be a separated smooth formal scheme over \mathcal{V} , \mathcal{T} a divisor of P, $\mathcal{E} \in D^{\mathrm{b}}_{\mathrm{coh}}(\mathcal{D}^{\dagger}_{\mathcal{P}}(^{\dagger}\mathcal{T})_{\mathbb{Q}})$. Consider the following assertions:

1 The complex \mathcal{E} is overholonomic;

2 The complex \mathcal{E} is devissable in overconvergent isocrystals. We have always $1 \Rightarrow 2$. The converse is true with Frobenius structures.

Corollary

The overholonomicity with Frobenius structure is stable under tensor products.