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Apologies

I give my talk in (broken) English.

The log structures and the log geometry appearing in

this talk are not at all in current trend....

Content

§1. Log extension of overconvergent isocrystals

§2. An application: Parabolic log convergent isocrystals
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§1. Log extension of overconvergent isocrystals

1.1 Log-∇-modules

K: cdvf of mixed char. (0, p) with residue field k,

OK : ring of integers of K,

| · | : K −→ R≥0: valuation, Γ∗ :=
√

|K|.

K ⊆ L: a complete field w.r.t. a multiplicative norm

extending | · | (denoted also by | · |).
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For a (fine log) rigid analytic space X over L,

a (log-)∇-module (E, ∇) on X :=

a locally free module E of finite rank on X +

integrable (log) connection ∇ : E −→ E ⊗ ω1
X/L.
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Assume X smooth & log. str. on X is defined by

D =
∪r

i=1 Di =
∪r

i=1{ti = 0} an SNCD.

For a log-∇-module (E, ∇) on X, the composite

E
∇→ E ⊗ ω1

X/L ³ E|Didlog ti
∼= E|Di

induces resi ∈ End(E|Di) (residue along Di).

Fact. ∃Pi(x) ∈ L[x] with Pi(resi) = 0.

Exponents of (E, ∇) along Di := the roots of

minimal monic Pi(x) ∈ L[x] with Pi(resi) = 0.
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An interval I ⊆ [0, ∞) is called aligned if any

endpoint of I at which it is closed is contained in Γ∗.

For an aligned interval I, we put

An
L(I) := {x ∈ An,an

L | ∀i, |ti(x)| ∈ I}.

(t1, ..., tn: coordinate) with log structure defined by∪
i{ti = 0}.

For ξ := (ξi)i ∈ Zn
p , we define the log-∇-module

(Mξ, ∇Mξ) on An
L(I) by

(Mξ, ∇Mξ) := (O, d +
∑

i ξidlog ti).
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Definition X: smooth rigid an. space over L,

I: aligned interval, Σ =
∏n

i=1 Σi ⊆ Zn
p .

(1) A log-∇-module (E, ∇) on X × An
L(I) is

Σ-constant iff

(E, ∇) = π∗
1(F, ∇F ) ⊗ π∗

2(Mξ, ∇Mξ)
for some (F, ∇F ) on X, ξ ∈ Σ.

(2) (E, ∇) is Σ-semisimple iff it is a direct sum of

Σ-constant ones.

(3) (E, ∇) is Σ-unipotent iff it is a succesive

extension of Σ-constant ones.
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1.2 Log extension

K: cdvf of mixed char. (0, p) with residue field k,

OK : ring of integers of K,

j : X ↪→ X: open imm. of smooth k-varieties

s.t. (X \ X)red =: Z =
∪r

i=1 Zi is an SNCD.

(; (X, Z): a log scheme)
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Definition Let U ↪→ X affine open.

(1) A charted standard small frame (css frame)

enclosing U is (U, X , {ti}r
i=1), where X is a smooth

lift of U to a p-adic formal scheme over Spf OK ,

Z =
∪

i{ti = 0} is an SNCD on X lifting Z ∩ U .

(2) A charted smooth standard small frame (csss

frame) enclosing U is (U, X , t), where X is a smooth

lift of U to a p-adic formal scheme over Spf OK ,

Z = {t = 0} is a conn. smooth divisor on X lifting

Z ∩ U . (So Z ∩ U = Zi ∩ U for some i)
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(3) A csss frame with generic point enclosing U is

(U, X , t, L), where (U, X , t): csss frame, L: a field

containing Γ(ZK , OZK) (where Z := {t = 0})

which is complete w.t.r. a multiplicative norm | · |
which extends the supremum norm on Γ(ZK , OZK).
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Definition X, X be as above,

(X, X , {ti}i): a css frame enclosing X,

Z :=
∪

i{ti = 0}
; (X K , ZK): associated log rigid an. space

(1) An overconvergent isocrystal on (X, X) is a

∇-module on Uλ = {x ∈ X K | ∀i, |ti(x)| ≥ λ}
for some λ ∈ [0, 1) ∩ Γ∗ satisfying the

‘overconvergent condition’.

(2) A log convergent isocrystal on (X, Z) is a

log-∇-module on (X K , ZK) satisfying the

‘log-convergent condition’.
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Fact. They are independent of the choice of a css

frame.

; They are defined globally.

Isoc†(X, X): the cat. of overconvergent isocrystals

Isoclog(X, Z): the cat. of log convergent isocrystals
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Recall that a ∈ Zp is p-adically non-Liouville if

limn→∞ |n − a|1/n =limn→∞ |n + a|1/n =1.

Example: ∀a ∈ Z(p) is p-adically non-Liouville.

Definition Σ =
∏r

i=1 Σi ⊆ Zr
p is (NID) (resp.

(NLD)) if ∀i, ∀a, b ∈ Σi, a − b is not in Z ̸=0

(resp. is p-adically non-Liouville).
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X ↪→ X, Z as above, U ↪→ X open affine.

(U, X , t, L): a csss frame with generic point

enclosing U , Z = {t = 0}.

E ∈ Isoc†(X, X)

; (EE , ∇E): a ∇-module on

ZK × A1
K [λ, 1) ⊆ Uλ ⊆ X K .

; (EE,L, ∇E,L): a ∇-module on A1
L[λ, 1).
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Definition X ↪→ X, Z as above.

Σ =
∏r

i=1 Σi ⊆ Zr
p an (NID), (NLD) set.

E ∈ Isoc†(X, X) has Σ-semisimple generic

monodromy (Σ-unipotent generic monodromy)

iff ∀U ↪→ X, ∀(U, X , t, L): a csss frame with

generic point, the ∇-module (EE,L, ∇E,L) on

A1
L[λ, 1) is Σ-semisimple (Σ-unipotent).
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Isoc†(X, X)Σ-ss: the cat. of overconv. isocrystals on

(X, X) having Σ-semisimple monodromy.

Isoc†(X, X)Σ: the cat. of overconv. isocrystals on

(X, X) having Σ-unipotent monodromy.

Remark

The above categories depend only on

Σ := ImΣ ⊆ (Zp/Z)r. So we also denote them by

Isoc†(X, X)Σ-ss, Isoc†(X, X)Σ.
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X ↪→ X, Z as above, U ↪→ X open affine.

(U, X , {ti}r
i=1): a css frame enclosing U ,

Zi = {ti = 0}, Z =
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; (ẼE , ∇̃E): a log-∇-module on (X K , ZK).



55

X ↪→ X, Z as above, U ↪→ X open affine.

(U, X , {ti}r
i=1): a css frame enclosing U ,

Zi = {ti = 0}, Z =
∪r

i=1 Zi.

E ∈ Isoclog(X, Z)
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Definition X ↪→ X, Z as above.

Σ =
∏r

i=1 Σi ⊆ Zr
p an (NID), (NLD) set.

E ∈ Isoclog(X, Z) has exponents in Σ (with

semisimple residues)

iff ∀U ↪→ X, ∀(U, X , {ti}r
i=1): a css frame, ∀i,

the exponents along Zi,K of the log-∇-module

(ẼE , ∇̃E) is in Σi (and Pi(resi) = 0 for some

Pi(x) ∈ K[x] without multiple roots).
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i=1): a css frame, ∀i,

the exponents along Zi,K of the log-∇-module

(ẼE , ∇̃E) is in Σi (and Pi(resi) = 0 for some
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Isoclog(X, Z)Σ-ss: the cat. of log conv. isocrystals

on (X, Z) having expontents in Σ with semisimple

residues.

Isoclog(X, Z)Σ: the cat. of log conv. isocrystals on

(X, Z) having expontents in Σ.
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Theorem 1 j : X ↪→ X, Z =
∪r

i=1 Zi as above.

Σ =
∏r

i=1 Σi ⊆ Zr
p an (NID), (NLD) set.

Then ∃ equivalences of categories

j† : Isoclog(X, Z)Σ-ss
=−→ Isoc†(X, X)Σ-ss,

j† : Isoclog(X, Z)Σ
=−→ Isoc†(X, X)Σ.

Remark

• The case Σ = {0}: due to Kedlaya.

• Analogue for semi-stable varieties: di Proietto

(talk in this conference).
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Sketch of proof of the ess. surj. of the second j†:

For simplicity, we assume r = 1 (Z is conn. smooth).

May work locally

; ∃(X, X , t, L) a csss frame with generic point,

Z = {t = 0}.

E ∈ Isoc†(X, X)Σ ;

(ẼE , ∇̃E): ∇-module on Uλ

(EE , ∇E): ∇-module on ZK × A1
K [λ, 1)

(EE,L, ∇E,L): ∇-module on A1
L[λ, 1)
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(ẼE , ∇̃E): ∇-module on Uλ

(EE , ∇E): ∇-module on ZK × A1
K [λ, 1)

(EE,L, ∇E,L): ∇-module on A1
L[λ, 1)



71(EE,L, ∇E,L): Σ-unipotent
∗=⇒ (EE , ∇E): Σ-unipotent

=⇒ (EE , ∇E) extends to a Σ-unipotent

log-∇-module on ZK × A1
K [0, 1).

glue
=⇒ (ẼE , ∇̃E) extends to (X K , ZK).

∗: called ‘generization’ property.

The case r > 1: Take a css frame and extend

(ẼE , ∇̃E) to (X K , ZK) ‘step by step’, by using

property slightly stronger than ∗ in some sense.

(called ‘overconvergent generization’ property)
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Prop. 2 j : X ↪→ X, Z =
∪r

i=1 Zi as above.

Σi =
∏r

j=1 Σi
j ⊆ Zr

p: (NID), (NLD) sets

for i = 1, 2 s.t. ∀j, ∀ξi ∈ Σi
j, ξ1 − ξ2 /∈ Z<0.

Then, for Ei ∈ Isoclog(X, Z)Σi-ss (i = 1, 2),
Hom(E1, E2)

=−→ Hom(j†E1, j†E2).

Proof. Reduce to the local calculation on relative

polydisc.
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Definition j : X ↪→ X, Z =
∪r

i=1 Zi as above.

=⇒ define an inductive system

(O(
∑

i αiZi))α∈Zr in Isoclog(X, Z) by

O(
∑

i αiZi) := the unique object in

Isoclog(X, Z)∏
i{−αi}-ss sent to j†O by j†,

transition: the unique one extending idj†O.

For E ∈ Isoclog(X, Z), put

E(
∑

i αiZi) := E ⊗ O(
∑

i αiZi).
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83§2. An application: Parabolic log convergent isocrystals

K, OK , k: as before, k: perfect,

assume ∃σ : OK −→ OK : lift of Frobenius

X ↪→ X, Z =
∪r

i=1 Zi as before, X: connected.

Crew: ∃ equivalence of categories

RepKσ(π1(X)) =−→ F -Isoc(X)◦,

RepKσ(π1(X)): category of finite dimensional

continuous representations of π1(X) over Kσ.

F -Isoc(X)◦: category of unit-root convergent

F -isocrystals on X.
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Aim. Give tame version of Crew’s equivalence.

2.1 Stacky version

(X, Z) =: (X, M), Nr → Γ(X, M/O×
X

)

; X −→ [Ar
k/Gr

m,k].

For n ∈ N prime to p,

(X, Z)1/n := X ×[Ar
k/Gr

m,k],n [Ar
k/Gr

m,k]

(stack of roots, Cadman, Borne, Iyer-Simpson)

(cf. talk of Vistoli)
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Local description: if X = Spec R, Zi = {ti = 0},

X
(n)

:= Spec R[si]1≤i≤r/(sn
i − ti)1≤i≤r

=⇒ (X, Z)1/n = [X
(n)

/µn].

We can define

Isoc((X, Z)1/n) (F -Isoc((X, Z)1/n)◦):
the category of (unit-root) convergent (F -) isocrystals

on (X, Z)1/n.
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Prop. 3 ∃ an equivalence of categories

RepKσ(πt
1(X)) =→ lim−→

(n,p)=1

F -Isoc((X, Z)
1
n )◦.

Key ingredients

• the restriction of ρ ∈ RepKσ(πt
1(X)) to πt

1(Y )
for some tame covering Y → X factors through

π1(Y
sm

).

(Y : norm. of X in k(Y ), Y
sm ⊆ Y sm. locus.)

• Abhyankar’s lemma.

• Crew’s equivalence.
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2.2 Parabolic version

Definition A parabolic log convergent isocrystal on

(X, Z) is an inductive system (Eα)α∈Zr
(p)

of objects

in Isoclog(X, Z) s.t.

(a) ∀i, ∃ isom. (Eα+ei)α
∼= (Eα(Zi))α

via which the transition map (Eα)α → (Eα+ei)α

is identified with the map (Eα)α → (Eα(Zi))α

induced by O → O(Zi).

(b) ∃n ∈ N, (n, p) = 1 s.t. E[nα]/n
=−→ Eα.
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Definition A unit-root parabolic log convergent

F -isocrystal on (X, Z) is ((Eα)α, Ψ), where

(Eα)α: a parabolic log conv. isocrystal

Ψ : lim−→(F ∗Eα)α → lim−→(Eα)α: isom as ind-objects

s.t. it is unit-root when restricted to X.
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Definition A (unit-root) parabolic log convergent

(F -)isocrystal E on (X, Z) is adjusted if, for

∀U ↪→ X open affine, ∀(U, X , t, L) a csss frame

with generic point, the ind. system of log-∇-modules

(Eα, ∇α)α on A1
L[0, 1) induced by E is isom. to

(⊕µ
j=1(OA1

L[0,1), d − ⌈γj⌉αidlog t))α

for some γj ∈ (−1, 0] ∩ Z(p) (1 ≤ j ≤ µ), where

i: the unique index with U ∩ Zi ̸= ∅,

⌈γj⌉αi
:= the unique elt in (αi − 1, αi]∩(γj + Z).

(transition: multiplication by some power of t.)
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Par-Isoclog(X, Z): the cat. of adjusted parabolic

log conv. isocrystals on (X, Z).

Par-F -Isoclog(X, Z)◦: the cat. of unit-root

adjusted parabolic log conv. F -isocrystals on (X, Z).



109
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log conv. isocrystals on (X, Z).
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adjusted parabolic log conv. F -isocrystals on (X, Z).
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Theorem 4 ∃ equivalences of categories

lim−→
(n,p)=1

Isoc((X, Z)
1
n ) =→ Par-Isoclog(X, Z),

lim−→
(n,p)=1

F -Isoc((X, Z)
1
n )◦ =→

Par-F -Isoclog(X, Z)◦.

Cor. 5 ∃ an equivalence of categories

RepKσ(πt
1(X)) =→ Par-F -Isoclog(X, Z)◦.
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Rough sketch of the proof

Suffices to prove the equivalences

Isoc((X, Z)
1
n ) =→ Isoc†(X, X)( 1

n Z/Z)r -ss,

Par-Isoclog(X, Z) =→ Isoc†(X, X)(Z(p)/Z)r -ss.

The ess. surj. of the first eq: Take covering

X
(n) −→ (X, Z)1/n = [X

(n)
/µn]

and use Theorem 1 for Σ = {0} on X
(n)

.
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The ess. surj. of the second eq: For

α = (αi)i ∈ Zr
(p),

let Σα :=
∏r

i=1(−((αi − 1, αi] ∩ Z(p))).

Eα := the unique object in Isoclog(X, Z)Σα-ss

extending the given object in

Isoc†(X, X)(Z(p)/Z)r -ss. (Theorem 1)

By Prop. 2, (Eα)α forms an inductive system,

and we can check that it is indeed adjusted. Done.
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Thank you very much!


