Logarithmic extension of overconvergent isocrystals and an application

Atsushi Shiho (University of Tokyo)

22/06/2010, Bordeaux

Apologies

Apologies

I give my talk in (broken) English.

I give my talk in (broken) English.

The log structures and the log geometry appearing in this talk are not at all in current trend.... I give my talk in (broken) English.

The log structures and the log geometry appearing in this talk are not at all in current trend....

Content

 $\S1$. Log extension of overconvergent isocrystals

 $\S 2.$ An application: Parabolic log convergent isocrystals

$\S{1}.$ Log extension of overconvergent isocrystals

1.1 Log- ∇ -modules

$\S1$. Log extension of overconvergent isocrystals

1.1 Log- ∇ -modules

K: cdvf of mixed char. (0,p) with residue field k,

O_K : ring of integers of K,

$|\cdot|: K \longrightarrow \mathbb{R}_{\geq 0}$: valuation, $\Gamma^* := \sqrt{|K|}$.

$\S1$. Log extension of overconvergent isocrystals

1.1 Log- ∇ -modules

K: cdvf of mixed char. (0, p) with residue field k,

 O_K : ring of integers of K,

$$|\cdot|:K\longrightarrow \mathbb{R}_{\geq 0}$$
: valuation, $\Gamma^*:=\sqrt{|K|}.$

 $K \subseteq L$: a complete field w.r.t. a multiplicative norm extending $|\cdot|$ (denoted also by $|\cdot|$).

For a (fine log) rigid analytic space \mathfrak{X} over L,

For a (fine log) rigid analytic space \mathfrak{X} over L, a (log-) ∇ -module (E, ∇) on $\mathfrak{X} :=$ 10

- For a (fine log) rigid analytic space \mathfrak{X} over L,
- a (log-) ∇ -module (E, ∇) on $\mathfrak{X} :=$
- a locally free module E of finite rank on \mathfrak{X} +
- integrable (log) connection $\nabla: E \longrightarrow E \otimes \omega^1_{\mathfrak{X}/L}$.

$$\mathfrak{D} = \bigcup_{i=1}^r \mathfrak{D}_i = \bigcup_{i=1}^r \{t_i = 0\}$$
 an SNCD.

$$\mathfrak{D} = \bigcup_{i=1}^r \mathfrak{D}_i = \bigcup_{i=1}^r \{t_i = 0\}$$
 an SNCD.

For a log- ∇ -module (E, ∇) on \mathfrak{X} , the composite

$$E \xrightarrow{\mathbf{v}} E \otimes \omega^1_{\mathfrak{X}/L} woheadrightarrow E|_{\mathfrak{D}_i} \mathrm{dlog}\, t_i \cong E|_{\mathfrak{D}_i}$$

induces $\operatorname{res}_i \in \operatorname{End}(E|_{\mathfrak{D}_i})$ (residue along \mathfrak{D}_i).

$$\mathfrak{D} = \bigcup_{i=1}^r \mathfrak{D}_i = \bigcup_{i=1}^r \{t_i = 0\}$$
 an SNCD.

For a log- ∇ -module (E, ∇) on \mathfrak{X} , the composite

$$E \xrightarrow{\mathbf{v}} E \otimes \omega^1_{\mathfrak{X}/L} woheadrightarrow E|_{\mathfrak{D}_i} \mathrm{dlog}\, t_i \cong E|_{\mathfrak{D}_i}$$

induces $\operatorname{res}_i \in \operatorname{End}(E|_{\mathfrak{D}_i})$ (residue along \mathfrak{D}_i).

<u>Fact</u>. $\exists P_i(x) \in L[x]$ with $P_i(res_i) = 0$.

$$\mathfrak{D} = \bigcup_{i=1}^r \mathfrak{D}_i = \bigcup_{i=1}^r \{t_i = 0\}$$
 an SNCD.

For a log- ∇ -module (E, ∇) on \mathfrak{X} , the composite

$$E \xrightarrow{\mathbf{v}} E \otimes \omega^1_{\mathfrak{X}/L} \twoheadrightarrow E|_{\mathfrak{D}_i} \mathrm{dlog}\, t_i \cong E|_{\mathfrak{D}_i}$$

- induces $\operatorname{res}_i \in \operatorname{End}(E|_{\mathfrak{D}_i})$ (residue along \mathfrak{D}_i).
- <u>Fact</u>. $\exists P_i(x) \in L[x]$ with $P_i(res_i) = 0$.
- **Exponents** of (E, ∇) along \mathfrak{D}_i := the roots of minimal monic $P_i(x) \in L[x]$ with $P_i(\operatorname{res}_i) = 0$.

An interval $I \subseteq [0, \infty)$ is called aligned if any endpoint of I at which it is closed is contained in Γ^* .

16

An interval $I \subseteq [0, \infty)$ is called aligned if any endpoint of I at which it is closed is contained in Γ^* .

17

For an aligned interval I, we put

$$egin{aligned} A_L^n(I) &:= \{x \in \mathbb{A}_L^{n, ext{an}} \,|\, orall i, |t_i(x)| \in I\}.\ (t_1,...,t_n: ext{ coordinate}) ext{ with log structure defined by}\ igcup_i\{t_i=0\}. \end{aligned}$$

An interval $I \subseteq [0, \infty)$ is called aligned if any endpoint of I at which it is closed is contained in Γ^* .

For an aligned interval I, we put

$$egin{aligned} &A_L^n(I):=\{x\in \mathbb{A}_L^{n, ext{an}}\,|\,orall i,|t_i(x)|\in I\}.\ &(t_1,...,t_n: ext{ coordinate}) ext{ with log structure defined by}\ &igcup_i\{t_i=0\}. \end{aligned}$$

For $\xi:=(\xi_i)_i\in\mathbb{Z}_p^n$, we define the log-abla-module $(M_\xi,
abla_{M_\xi})$ on $A^n_L(I)$ by

$$(M_{\boldsymbol{\xi}},
abla_{M_{\boldsymbol{\xi}}}) := (\mathcal{O}, d + \sum_i \xi_i \operatorname{dlog} t_i).$$

<u>Definition</u> \mathfrak{X} : smooth rigid an. space over L,

I: aligned interval,
$$\Sigma = \prod_{i=1}^n \Sigma_i \subseteq \mathbb{Z}_p^n$$
.

Definition \mathfrak{X} : smooth rigid an. space over L, *I*: aligned interval, $\Sigma = \prod_{i=1}^{n} \Sigma_i \subseteq \mathbb{Z}_n^n$. (1) A log- ∇ -module (E, ∇) on $\mathfrak{X} \times A_L^n(I)$ is Σ -constant iff $(E,
abla) = \pi_1^*(F,
abla_F) \otimes \pi_2^*(M_{\mathcal{E}},
abla_{M_{\mathcal{E}}})$ for some (F, ∇_F) on $\mathfrak{X}, \xi \in \Sigma$.

20

Definition \mathfrak{X} : smooth rigid an. space over L, *I*: aligned interval, $\Sigma = \prod_{i=1}^{n} \Sigma_i \subseteq \mathbb{Z}_n^n$. (1) A log- ∇ -module (E, ∇) on $\mathfrak{X} \times A_L^n(I)$ is Σ -constant iff $(E,
abla) = \pi_1^*(F,
abla_F) \otimes \pi_2^*(M_{\mathcal{E}},
abla_{M_{\mathcal{E}}})$ for some (F, ∇_F) on $\mathfrak{X}, \xi \in \Sigma$. (2) (E, ∇) is Σ -semisimple iff it is a direct sum of Σ -constant ones.

21

Definition \mathfrak{X} : smooth rigid an. space over L, *I*: aligned interval, $\Sigma = \prod_{i=1}^{n} \Sigma_i \subseteq \mathbb{Z}_n^n$. (1) A log- ∇ -module (E, ∇) on $\mathfrak{X} \times A_L^n(I)$ is Σ -constant iff $(E,
abla) = \pi_1^*(F,
abla_F) \otimes \pi_2^*(M_{\mathcal{E}},
abla_{M_{\mathcal{E}}})$ for some (F, ∇_F) on $\mathfrak{X}, \xi \in \Sigma$. (2) (E, ∇) is Σ -semisimple iff it is a direct sum of Σ -constant ones.

(3) (E, ∇) is Σ -unipotent iff it is a succesive extension of Σ -constant ones.

1.2 Log extension

1.2 Log extension

K: cdvf of mixed char. (0,p) with residue field k,

 O_K : ring of integers of K,

1.2 Log extension

K: cdvf of mixed char. (0, p) with residue field k, O_K : ring of integers of K, $j: X \hookrightarrow \overline{X}$: open imm. of smooth k-varieties s.t. $(\overline{X} \setminus X)_{red} =: Z = \bigcup_{i=1}^{r} Z_i$ is an SNCD. $(\rightsquigarrow (X, Z) : a \log scheme)$

Definition

<u>Definition</u> Let $\overline{U} \hookrightarrow \overline{X}$ affine open.

<u>Definition</u> Let $\overline{U} \hookrightarrow \overline{X}$ affine open.

(1) A charted standard small frame (css frame) enclosing \overline{U} is $(\overline{U}, \overline{\mathcal{X}}, \{t_i\}_{i=1}^r)$, where $\overline{\mathcal{X}}$ is a smooth lift of \overline{U} to a *p*-adic formal scheme over Spf O_K , $\mathcal{Z} = \bigcup_i \{t_i = 0\}$ is an SNCD on $\overline{\mathcal{X}}$ lifting $Z \cap \overline{U}$.

<u>Definition</u> Let $\overline{U} \hookrightarrow \overline{X}$ affine open.

(1) A charted standard small frame (css frame) enclosing \overline{U} is $(\overline{U}, \overline{\mathcal{X}}, \{t_i\}_{i=1}^r)$, where $\overline{\mathcal{X}}$ is a smooth lift of \overline{U} to a *p*-adic formal scheme over Spf O_K , $\mathcal{Z} = \bigcup_i \{t_i = 0\}$ is an SNCD on $\overline{\mathcal{X}}$ lifting $Z \cap \overline{U}$.

(2) A charted smooth standard small frame (csss frame) enclosing \overline{U} is $(\overline{U}, \overline{X}, t)$, where \overline{X} is a smooth lift of \overline{U} to a *p*-adic formal scheme over Spf O_K , $\mathcal{Z} = \{t = 0\}$ is a conn. smooth divisor on \overline{X} lifting $Z \cap \overline{U}$. (So $Z \cap \overline{U} = Z_i \cap \overline{U}$ for some *i*)

(3) A csss frame with generic point enclosing \overline{U} is $(\overline{U}, \overline{X}, t, L)$, where $(\overline{U}, \overline{X}, t)$: csss frame, *L*: a field containing $\Gamma(\mathcal{Z}_K, \mathcal{O}_{\mathcal{Z}_K})$ (where $\mathcal{Z} := \{t = 0\}$) which is complete w.t.r. a multiplicative norm $|\cdot|$ which extends the supremum norm on $\Gamma(\mathcal{Z}_K, \mathcal{O}_{\mathcal{Z}_K})$.

30

Definition

$\begin{array}{l} \underline{\text{Definition } X, \overline{X} \text{ be as above,}}\\ (\overline{X}, \overline{\mathcal{X}}, \{t_i\}_i) \text{: a css frame enclosing } \overline{X},\\ \mathcal{Z} := \bigcup_i \{t_i = 0\} \end{array}$

<u>Definition</u> X, \overline{X} be as above,

- $(\overline{X}, \overline{\mathcal{X}}, \{t_i\}_i)$: a css frame enclosing \overline{X} , $\mathcal{Z} := \bigcup_i \{t_i = 0\}$
- $\rightsquigarrow (\overline{\mathcal{X}}_K, \mathcal{Z}_K)$: associated log rigid an. space

Definition X, X be as above, $(\overline{X}, \overline{\mathcal{X}}, \{t_i\}_i)$: a css frame enclosing \overline{X} , $\mathcal{Z} := \bigcup_i \{t_i = 0\}$ $\sim (\mathcal{X}_K, \mathcal{Z}_K)$: associated log rigid an. space (1) An overconvergent isocrystal on (X, X) is a ∇ -module on $\mathfrak{U}_{\lambda} = \{x \in \overline{\mathcal{X}}_{K} \mid \forall i, |t_{i}(x)| \geq \lambda\}$ for some $\lambda \in [0,1) \cap \Gamma^*$ satisfying the 'overconvergent condition'.

34

Definition X, X be as above, $(\overline{X}, \overline{\mathcal{X}}, \{t_i\}_i)$: a css frame enclosing \overline{X} , $\mathcal{Z} := \bigcup_i \{t_i = 0\}$ $\sim (\overline{\mathcal{X}}_K, \mathcal{Z}_K)$: associated log rigid an. space (1) An overconvergent isocrystal on (X, \overline{X}) is a ∇ -module on $\mathfrak{U}_{\lambda} = \{x \in \overline{\mathcal{X}}_{K} | \forall i, |t_{i}(x)| > \lambda\}$ for some $\lambda \in [0,1) \cap \Gamma^*$ satisfying the 'overconvergent condition'.

(2) A log convergent isocrystal on (\overline{X}, Z) is a log- ∇ -module on $(\overline{X}_K, \mathcal{Z}_K)$ satisfying the 'log-convergent condition'.

<u>Fact</u>. They are independent of the choice of a css frame.
<u>Fact</u>. They are independent of the choice of a css frame.

 \rightsquigarrow They are defined globally.

<u>Fact</u>. They are independent of the choice of a css frame.

 \rightsquigarrow They are defined globally.

Isoc[†] (X, \overline{X}) : the cat. of overconvergent isocrystals Isoc^{log} (\overline{X}, Z) : the cat. of log convergent isocrystals

Recall that $a \in \mathbb{Z}_p$ is *p*-adically non-Liouville if $\underline{\lim}_{n\to\infty} |n-a|^{1/n} = \underline{\lim}_{n\to\infty} |n+a|^{1/n} = 1.$

Recall that $a \in \mathbb{Z}_p$ is *p*-adically non-Liouville if $\underline{\lim}_{n\to\infty} |n-a|^{1/n} = \underline{\lim}_{n\to\infty} |n+a|^{1/n} = 1.$ Example: $\forall a \in \mathbb{Z}_{(p)}$ is *p*-adically non-Liouville.

Recall that $a \in \mathbb{Z}_p$ is *p*-adically non-Liouville if $\underline{\lim}_{n\to\infty} |n-a|^{1/n} = \underline{\lim}_{n\to\infty} |n+a|^{1/n} = 1.$ <u>Example</u>: $\forall a \in \mathbb{Z}_{(p)}$ is *p*-adically non-Liouville.

Definition

Recall that $a \in \mathbb{Z}_p$ is *p*-adically non-Liouville if $\underline{\lim}_{n \to \infty} |n - a|^{1/n} = \underline{\lim}_{n \to \infty} |n + a|^{1/n} = 1.$ Example: $\forall a \in \mathbb{Z}_{(p)}$ is *p*-adically non-Liouville. <u>Definition</u> $\Sigma = \prod_{i=1}^{r} \Sigma_i \subseteq \mathbb{Z}_p^r$ is (NID) (resp. (NLD)) if $\forall i, \forall a, b \in \Sigma_i$, a - b is not in $\mathbb{Z}_{\neq 0}$ (resp. is p-adically non-Liouville).

 $X \hookrightarrow \overline{X}, Z$ as above, $\overline{U} \hookrightarrow \overline{X}$ open affine. $(\overline{U}, \overline{\mathcal{X}}, t, L)$: a csss frame with generic point enclosing $\overline{U}, \mathcal{Z} = \{t = 0\}$. $X \hookrightarrow \overline{X}, Z$ as above, $\overline{U} \hookrightarrow \overline{X}$ open affine. $(\overline{U}, \overline{X}, t, L)$: a csss frame with generic point enclosing $\overline{U}, \mathcal{Z} = \{t = 0\}$.

 $\mathcal{E}\in \operatorname{Isoc}^{\dagger}(X,\overline{X})$

 $X \hookrightarrow \overline{X}, Z$ as above, $\overline{U} \hookrightarrow \overline{X}$ open affine. (U, \mathcal{X}, t, L) : a csss frame with generic point enclosing U, $\mathcal{Z} = \{t = 0\}$. $\mathcal{E} \in \operatorname{Isoc}^{\dagger}(X, \overline{X})$ $\rightsquigarrow (E_{\mathcal{E}}, \nabla_{\mathcal{E}})$: a ∇ -module on $\mathcal{Z}_K \times A^1_K[\lambda, 1) \subseteq \mathfrak{U}_\lambda \subseteq \overline{\mathcal{X}}_K.$

 $X \hookrightarrow \overline{X}, Z$ as above, $\overline{U} \hookrightarrow \overline{X}$ open affine. (U, \mathcal{X}, t, L) : a csss frame with generic point enclosing U, $\mathcal{Z} = \{t = 0\}$. $\mathcal{E} \in \operatorname{Isoc}^{\dagger}(X, \overline{X})$ $\rightsquigarrow (E_{\mathcal{E}}, \nabla_{\mathcal{E}})$: a ∇ -module on $\mathcal{Z}_K \times A^1_K[\lambda, 1) \subseteq \mathfrak{U}_\lambda \subseteq \overline{\mathcal{X}}_K.$ $\rightsquigarrow (E_{\mathcal{E},L}, \nabla_{\mathcal{E},L})$: a ∇ -module on $A^1_L[\lambda, 1)$.

$\begin{array}{l} \underline{\text{Definition}} \ X \hookrightarrow \overline{X}, Z \text{ as above.} \\ \Sigma = \prod_{i=1}^r \Sigma_i \subseteq \mathbb{Z}_p^r \text{ an (NID), (NLD) set.} \end{array} \end{array}$

$\begin{array}{l} \underline{\text{Definition}} \ X \hookrightarrow \overline{X}, Z \text{ as above.} \\ \Sigma = \prod_{i=1}^{r} \Sigma_{i} \subseteq \mathbb{Z}_{p}^{r} \text{ an (NID), (NLD) set.} \\ \mathcal{E} \in \operatorname{Isoc}^{\dagger}(X, \overline{X}) \text{ has } \Sigma \text{-semisimple generic} \\ \text{monodromy } (\Sigma \text{-unipotent generic monodromy}) \end{array}$

Definition $X \hookrightarrow \overline{X}, Z$ as above. $\Sigma = \prod_{i=1}^{r} \Sigma_i \subseteq \mathbb{Z}_p^r$ an (NID), (NLD) set. $\mathcal{E} \in \operatorname{Isoc}^{\dagger}(X, \overline{X})$ has Σ -semisimple generic monodromy (Σ -unipotent generic monodromy) iff $\forall \overline{U} \hookrightarrow \overline{X}, \forall (\overline{U}, \overline{\mathcal{X}}, t, L)$: a csss frame with generic point, the ∇ -module $(E_{\mathcal{E},L}, \nabla_{\mathcal{E},L})$ on $A_L^1[\lambda, 1)$ is Σ -semisimple (Σ -unipotent).

Isoc[†] $(X, \overline{X})_{\Sigma$ -ss</sub>: the cat. of overconv. isocrystals on (X, \overline{X}) having Σ -semisimple monodromy.

Isoc[†] $(X, \overline{X})_{\Sigma$ -ss[:] the cat. of overconv. isocrystals on (X, \overline{X}) having Σ -semisimple monodromy.

51

Isoc[†] $(X, \overline{X})_{\Sigma}$: the cat. of overconv. isocrystals on (X, \overline{X}) having Σ -unipotent monodromy.

Isoc[†] $(X, \overline{X})_{\Sigma$ -ss</sub>: the cat. of overconv. isocrystals on (X, \overline{X}) having Σ -semisimple monodromy.

Isoc[†] $(X, \overline{X})_{\Sigma}$: the cat. of overconv. isocrystals on (X, \overline{X}) having Σ -unipotent monodromy.

Remark

The above categories depend only on $\overline{\Sigma} := \operatorname{Im}\Sigma \subseteq (\mathbb{Z}_p/\mathbb{Z})^r$. So we also denote them by $\operatorname{Isoc}^{\dagger}(X, \overline{X})_{\overline{\Sigma}\text{-ss}}$, $\operatorname{Isoc}^{\dagger}(X, \overline{X})_{\overline{\Sigma}}$.

$X \hookrightarrow \overline{X}, Z$ as above, $\overline{U} \hookrightarrow \overline{X}$ open affine. $(\overline{U}, \overline{\mathcal{X}}, \{t_i\}_{i=1}^r)$: a css frame enclosing \overline{U} , $\mathcal{Z}_i = \{t_i = 0\}, \ \mathcal{Z} = \bigcup_{i=1}^r \mathcal{Z}_i$.

$X \hookrightarrow \overline{X}, Z$ as above, $\overline{U} \hookrightarrow \overline{X}$ open affine. $(\overline{U}, \overline{X}, \{t_i\}_{i=1}^r)$: a css frame enclosing \overline{U} , $\mathcal{Z}_i = \{t_i = 0\}, \ \mathcal{Z} = \bigcup_{i=1}^r \mathcal{Z}_i$. $\mathcal{E} \in \operatorname{Isoc}^{\log}(\overline{X}, Z)$

$X \hookrightarrow \overline{X}, Z$ as above, $\overline{U} \hookrightarrow \overline{X}$ open affine. $(\overline{U}, \overline{X}, \{t_i\}_{i=1}^r)$: a css frame enclosing \overline{U} , $\mathcal{Z}_i = \{t_i = 0\}, \ \mathcal{Z} = \bigcup_{i=1}^r \mathcal{Z}_i$. $\mathcal{E} \in \operatorname{Isoc}^{\log}(\overline{X}, Z)$

 $\rightsquigarrow (\widetilde{E}_{\mathcal{E}}, \widetilde{\nabla}_{\mathcal{E}})$: a log- ∇ -module on $(\overline{\mathcal{X}}_K, \mathcal{Z}_K)$.

$\underline{\text{Definition}} \ X \hookrightarrow \overline{X}, Z \text{ as above.} \\ \Sigma = \prod_{i=1}^{r} \Sigma_i \subseteq \mathbb{Z}_p^r \text{ an (NID), (NLD) set.}$

<u>Definition</u> $X \hookrightarrow \overline{X}, Z$ as above. $\Sigma = \prod_{i=1}^{r} \Sigma_i \subseteq \mathbb{Z}_p^r$ an (NID), (NLD) set. $\mathcal{E} \in \operatorname{Isoc}^{\log}(\overline{X}, Z)$ has exponents in Σ (with semisimple residues)

$\begin{array}{l} \underline{\text{Definition}} \ X \hookrightarrow \overline{X}, Z \text{ as above.} \\ \Sigma = \prod_{i=1}^r \Sigma_i \subseteq \mathbb{Z}_p^r \text{ an (NID), (NLD) set.} \end{array} \end{array}$

 $\mathcal{E} \in \operatorname{Isoc}^{\log}(\overline{X}, Z)$ has exponents in Σ (with semisimple residues)

iff $\forall \overline{U} \hookrightarrow \overline{X}, \forall (\overline{U}, \overline{X}, \{t_i\}_{i=1}^r)$: a css frame, $\forall i$, the exponents along $\mathcal{Z}_{i,K}$ of the log- ∇ -module $(\widetilde{E}_{\mathcal{E}}, \widetilde{\nabla}_{\mathcal{E}})$ is in Σ_i (and $P_i(\operatorname{res}_i) = 0$ for some $P_i(x) \in K[x]$ without multiple roots).

Isoc^{log} $(\overline{X}, Z)_{\Sigma$ -ss: the cat. of log conv. isocrystals on (\overline{X}, Z) having expontents in Σ with semisimple residues.

Isoc^{log} $(\overline{X}, Z)_{\Sigma$ -ss: the cat. of log conv. isocrystals on (\overline{X}, Z) having expontents in Σ with semisimple residues.

 $\operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma}$: the cat. of log conv. isocrystals on (\overline{X}, Z) having expontents in Σ .

Theorem 1

$\begin{array}{ll} \underline{\text{Theorem 1}} & j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^r Z_i \text{ as above.} \\ \Sigma = \prod_{i=1}^r \Sigma_i \subseteq \mathbb{Z}_p^r \text{ an (NID), (NLD) set.} \end{array}$

$$\begin{array}{ll} \underline{\text{Theorem 1}} & j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_{i} \text{ as above.} \\ \Sigma = \prod_{i=1}^{r} \Sigma_{i} \subseteq \mathbb{Z}_{p}^{r} \text{ an (NID), (NLD) set.} \\ \\ \overline{\text{Then } \exists \text{ equivalences of categories}} \\ j^{\dagger}: \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma \text{-ss}} \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X, \overline{X})_{\Sigma \text{-ss}}, \\ j^{\dagger}: \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma} \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X, \overline{X})_{\Sigma}. \end{array}$$

$$\begin{array}{ll} \underline{\text{Theorem 1}} & j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_{i} \text{ as above.} \\ \Sigma = \prod_{i=1}^{r} \Sigma_{i} \subseteq \mathbb{Z}_{p}^{r} \text{ an (NID), (NLD) set.} \\ \\ \overline{\text{Then }} \exists \text{ equivalences of categories} \\ j^{\dagger}: \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma \text{-ss}} \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X, \overline{X})_{\Sigma \text{-ss}}, \\ j^{\dagger}: \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma} \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X, \overline{X})_{\Sigma}. \end{array}$$

64

Remark

$$\begin{array}{ll} \underline{\text{Theorem 1}} & j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_{i} \text{ as above.} \\ \Sigma = \prod_{i=1}^{r} \Sigma_{i} \subseteq \mathbb{Z}_{p}^{r} \text{ an (NID), (NLD) set.} \\ \\ \overline{\text{Then }} \exists \text{ equivalences of categories} \\ j^{\dagger}: \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma \text{-ss}} \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X, \overline{X})_{\Sigma \text{-ss}}, \\ j^{\dagger}: \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma} \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X, \overline{X})_{\Sigma}. \end{array}$$

65

Remark

• The case $\Sigma = \{0\}$: due to Kedlaya.

$$\begin{array}{ll} \underline{\text{Theorem 1}} & j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_{i} \text{ as above.} \\ \Sigma = \prod_{i=1}^{r} \Sigma_{i} \subseteq \mathbb{Z}_{p}^{r} \text{ an (NID), (NLD) set.} \\ \\ \overline{\text{Then }} \exists \text{ equivalences of categories} \\ j^{\dagger}: \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma \text{-ss}} \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X, \overline{X})_{\Sigma \text{-ss}}, \\ j^{\dagger}: \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma} \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X, \overline{X})_{\Sigma}. \end{array}$$

Remark

- The case $\Sigma = \{0\}$: due to Kedlaya.
- Analogue for semi-stable varieties: di Proietto (talk in this conference).

Sketch of proof of the ess. surj. of the second j^{\dagger} :

Sketch of proof of the ess. surj. of the second j^{\dagger} :

For simplicity, we assume r = 1 (Z is conn. smooth).

Sketch of proof of the ess. surj. of the second j^{\dagger} :

For simplicity, we assume r = 1 (Z is conn. smooth). May work locally

 $ightarrow \exists (\overline{X}, \overline{\mathcal{X}}, t, L)$ a csss frame with generic point, $\mathcal{Z} = \{t = 0\}.$

Sketch of proof of the ess. surj. of the second j^{\dagger} :

For simplicity, we assume r = 1 (Z is conn. smooth). May work locally

 $\rightsquigarrow \exists (\overline{X}, \overline{\mathcal{X}}, t, L)$ a csss frame with generic point, $\mathcal{Z} = \{t = 0\}.$

$$\mathcal{E}\in \operatorname{Isoc}^{\dagger}(X,\overline{X})_{\Sigma} \rightsquigarrow$$

 $(\widetilde{E}_{\mathcal{E}},\widetilde{\nabla}_{\mathcal{E}})$: ∇ -module on \mathfrak{U}_{λ}

 $(E_{\mathcal{E}},
abla_{\mathcal{E}})$: abla-module on $\mathcal{Z}_K imes A^1_K[\lambda, 1)$

 $(E_{\mathcal{E},L},
abla_{\mathcal{E},L})$: abla-module on $A^1_L[\lambda, 1)$

$(E_{\mathcal{E},L}, \nabla_{\mathcal{E},L})$: Σ -unipotent

$\begin{array}{c} (E_{\mathcal{E},L}, \nabla_{\mathcal{E},L}) : \Sigma \text{-unipotent} \\ \stackrel{*}{\Longrightarrow} (E_{\mathcal{E}}, \nabla_{\mathcal{E}}) : \Sigma \text{-unipotent} \end{array}$
$\begin{array}{l} (E_{\mathcal{E},L},\nabla_{\mathcal{E},L}) \colon \Sigma \text{-unipotent} \\ \stackrel{*}{\Longrightarrow} (E_{\mathcal{E}},\nabla_{\mathcal{E}}) \colon \Sigma \text{-unipotent} \\ \implies (E_{\mathcal{E}},\nabla_{\mathcal{E}}) \text{ extends to a } \Sigma \text{-unipotent} \\ \log \nabla \text{-module on } \mathcal{Z}_{K} \times A^{1}_{K}[0,1). \\ \stackrel{\text{glue}}{\Longrightarrow} (\widetilde{E}_{\mathcal{E}},\widetilde{\nabla}_{\mathcal{E}}) \text{ extends to } (\overline{\mathcal{X}}_{K},\mathcal{Z}_{K}). \end{array}$

 $\begin{array}{l} (E_{\mathcal{E},L},\nabla_{\mathcal{E},L}) \colon \Sigma \text{-unipotent} \\ \stackrel{*}{\Longrightarrow} (E_{\mathcal{E}},\nabla_{\mathcal{E}}) \colon \Sigma \text{-unipotent} \\ \implies (E_{\mathcal{E}},\nabla_{\mathcal{E}}) \text{ extends to a } \Sigma \text{-unipotent} \\ \log \nabla \text{-module on } \mathcal{Z}_{K} \times A^{1}_{K}[0,1). \\ \stackrel{\text{glue}}{\Longrightarrow} (\widetilde{E}_{\mathcal{E}},\widetilde{\nabla}_{\mathcal{E}}) \text{ extends to } (\overline{\mathcal{X}}_{K},\mathcal{Z}_{K}). \end{array}$

*: called 'generization' property.

 $\begin{array}{l} (E_{\mathcal{E},L},\nabla_{\mathcal{E},L}) \colon \Sigma \text{-unipotent} \\ \stackrel{*}{\Longrightarrow} (E_{\mathcal{E}},\nabla_{\mathcal{E}}) \colon \Sigma \text{-unipotent} \\ \implies (E_{\mathcal{E}},\nabla_{\mathcal{E}}) \text{ extends to a } \Sigma \text{-unipotent} \\ \log \nabla \text{-module on } \mathcal{Z}_{K} \times A^{1}_{K}[0,1). \\ \stackrel{\text{glue}}{\Longrightarrow} (\widetilde{E}_{\mathcal{E}},\widetilde{\nabla}_{\mathcal{E}}) \text{ extends to } (\overline{\mathcal{X}}_{K},\mathcal{Z}_{K}). \end{array}$

*: called 'generization' property.

The case r > 1: Take a css frame and extend $(\widetilde{E}_{\mathcal{E}}, \widetilde{\nabla}_{\mathcal{E}})$ to $(\overline{\mathcal{X}}_{K}, \mathcal{Z}_{K})$ 'step by step', by using property slightly stronger than * in some sense.

(called 'overconvergent generization' property)

$\begin{array}{ll} \frac{\operatorname{Prop.}\ 2}{\Sigma^{i}} & j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_{i} \text{ as above.} \\ \overline{\Sigma^{i}} = \prod_{j=1}^{r} \Sigma_{j}^{i} \subseteq \mathbb{Z}_{p}^{r} \colon (\operatorname{NID}), (\operatorname{NLD}) \text{ sets} \\ \text{for } i = 1, 2 \text{ s.t. } \forall j, \forall \xi_{i} \in \Sigma_{j}^{i}, \xi_{1} - \xi_{2} \notin \mathbb{Z}_{<0}. \end{array}$

$$\begin{array}{ll} \underline{\operatorname{Prop.} 2} & j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_{i} \text{ as above.} \\ \overline{\Sigma^{i}} = \prod_{j=1}^{r} \Sigma_{j}^{i} \subseteq \mathbb{Z}_{p}^{r} \colon (\operatorname{NID}), (\operatorname{NLD}) \text{ sets} \\ \text{for } i = 1, 2 \text{ s.t. } \forall j, \forall \xi_{i} \in \Sigma_{j}^{i}, \xi_{1} - \xi_{2} \notin \mathbb{Z}_{<0}. \\ \text{Then, for } \mathcal{E}_{i} \in \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma^{i} \text{-ss}} (i = 1, 2), \\ \operatorname{Hom}(\mathcal{E}_{1}, \mathcal{E}_{2}) \xrightarrow{=} \operatorname{Hom}(j^{\dagger} \mathcal{E}_{1}, j^{\dagger} \mathcal{E}_{2}). \end{array}$$

 $\begin{array}{ll} \displaystyle \frac{\operatorname{Prop.}\ 2}{\Sigma^{i}} & j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_{i} \text{ as above.} \\ \displaystyle \overline{\Sigma^{i}} = \prod_{j=1}^{r} \Sigma_{j}^{i} \subseteq \mathbb{Z}_{p}^{r} \colon (\operatorname{NID}), (\operatorname{NLD}) \text{ sets} \\ \displaystyle \text{for } i = 1, 2 \text{ s.t. } \forall j, \forall \xi_{i} \in \Sigma_{j}^{i}, \xi_{1} - \xi_{2} \notin \mathbb{Z}_{<0}. \\ \displaystyle \text{Then, for } \mathcal{E}_{i} \in \operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma^{i} \text{-ss}} (i = 1, 2), \\ \displaystyle \operatorname{Hom}(\mathcal{E}_{1}, \mathcal{E}_{2}) \stackrel{=}{\longrightarrow} \operatorname{Hom}(j^{\dagger} \mathcal{E}_{1}, j^{\dagger} \mathcal{E}_{2}). \end{array}$

<u>Proof</u>. Reduce to the local calculation on relative polydisc.

<u>Definition</u> $j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_i$ as above.

<u>Definition</u> $j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_i$ as above. \implies define an inductive system $(\mathcal{O}(\sum_i lpha_i Z_i))_{lpha \in \mathbb{Z}^r}$ in $\mathrm{Isoc}^{\mathrm{log}}(\overline{X},Z)$ by $\mathcal{O}(\sum_{i} \alpha_{i} Z_{i}) :=$ the unique object in $\operatorname{Isoc}^{\log}(\overline{X},Z)_{\prod_i \{-\alpha_i\} \operatorname{-ss}}$ sent to $j^{\dagger}\mathcal{O}$ by j^{\dagger} , transition: the unique one extending $id_{i^{\dagger}\mathcal{O}}$.

<u>Definition</u> $j: X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_i$ as above. \implies define an inductive system $(\mathcal{O}(\sum_i lpha_i Z_i))_{lpha \in \mathbb{Z}^r}$ in $\mathrm{Isoc}^{\mathrm{log}}(\overline{X}, Z)$ by $\mathcal{O}(\sum_i \alpha_i Z_i) :=$ the unique object in $\operatorname{Isoc}^{\log}(\overline{X},Z)_{\prod_i \{-\alpha_i\} \operatorname{-ss}}$ sent to $j^{\dagger}\mathcal{O}$ by j^{\dagger} , transition: the unique one extending $id_{j^{\dagger}\mathcal{O}}$. For $\mathcal{E} \in \operatorname{Isoc}^{\log}(\overline{X}, Z)$, put $\mathcal{E}(\sum_i \alpha_i Z_i) := \mathcal{E} \otimes \mathcal{O}(\sum_i \alpha_i Z_i).$

<u>§2. An application: Parabolic log convergent isocrystals 83 </u>

<u>§2. An application: Parabolic log convergent isocrystals ⁸⁴</u>

 K, O_K, k : as before, k: perfect,

assume $\exists \sigma : O_K \longrightarrow O_K$: lift of Frobenius

 $X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_i$ as before, X: connected.

<u>§2. An application: Parabolic log convergent isocrystals</u> 85

 K, O_K, k : as before, k: perfect,

assume $\exists \sigma : O_K \longrightarrow O_K$: lift of Frobenius

 $X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^r Z_i$ as before, X: connected.

<u>Crew</u>: \exists equivalence of categories

 $\operatorname{Rep}_{K^{\sigma}}(\pi_1(X)) \xrightarrow{=} F\operatorname{-Isoc}(X)^{\circ},$

 \S 2. An application: Parabolic log convergent isocrystals ⁸⁶ K, O_K, k : as before, k: perfect, assume $\exists \sigma : O_K \longrightarrow O_K$: lift of Frobenius $X \hookrightarrow \overline{X}, Z = \bigcup_{i=1}^{r} Z_i$ as before, X: connected. **Crew:** \exists equivalence of categories $\operatorname{Rep}_{K^{\sigma}}(\pi_1(X)) \xrightarrow{=} F\operatorname{-Isoc}(X)^{\circ}.$ $\operatorname{Rep}_{K^{\sigma}}(\pi_1(X))$: category of finite dimensional continuous representations of $\pi_1(X)$ over K^{σ} . F-Isoc $(X)^{\circ}$: category of unit-root convergent F-isocrystals on X.

88

2.1 Stacky version

2.1 Stacky version

$$(\overline{X},Z)=:(\overline{X},M)$$
, $\mathbb{N}^r
ightarrow\Gamma(X,M/\mathcal{O}_{\overline{X}}^{ imes})$

2.1 Stacky version

$$egin{aligned} & (\overline{X}, Z) =: (\overline{X}, M), \, \mathbb{N}^r o \Gamma(X, M/\mathcal{O}_{\overline{X}}^{ imes}) \ & & \sim \overline{X} \longrightarrow [\mathbb{A}^r_k/\mathbb{G}^r_{m,k}]. \end{aligned}$$

2.1 Stacky version

$$(\overline{X}, Z) =: (\overline{X}, M), \mathbb{N}^r \to \Gamma(X, M/\mathcal{O}_{\overline{X}}^{\times})$$

 $\sim \overline{X} \longrightarrow [\mathbb{A}_k^r/\mathbb{G}_{m,k}^r].$
For $n \in \mathbb{N}$ prime to p ,
 $(\overline{X}, Z)^{1/n} := \overline{X} \times_{[\mathbb{A}_k^r/\mathbb{G}_{m,k}^r], n} [\mathbb{A}_k^r/\mathbb{G}_{m,k}^r]$
(stack of roots, Cadman, Borne, Iyer-Simpson)

(cf. talk of Vistoli)

Local description: if $\overline{X} = \operatorname{Spec} R, Z_i = \{t_i = 0\},$ $\overline{X}^{(n)} := \operatorname{Spec} R[s_i]_{1 \le i \le r} / (s_i^n - t_i)_{1 \le i \le r}$ $\implies (\overline{X}, Z)^{1/n} = [\overline{X}^{(n)} / \mu_n].$

Local description: if $\overline{X} = \operatorname{Spec} R, Z_i = \{t_i = 0\},\$ $\overline{X}^{(n)} := \operatorname{Spec} R[s_i]_{1 \le i \le r} / (s_i^n - t_i)_{1 \le i \le r}$ $\implies (\overline{X}, Z)^{1/n} = [\overline{X}^{(n)} / \mu_n].$

We can define

 $\operatorname{Isoc}((\overline{X},Z)^{1/n}) \quad (F\operatorname{-Isoc}((\overline{X},Z)^{1/n})^{\circ}):$ the category of (unit-root) convergent (*F*-) isocrystals on $(\overline{X},Z)^{1/n}$.

Prop. 3

_94

Prop. 3 \exists an equivalence of categories

₽5

 $\begin{array}{ccc} \underline{\operatorname{Prop. 3}} & \exists \text{ an equivalence of categories} \\ \overline{\operatorname{Rep}_{K^{\sigma}}}(\pi_1^t(X)) \xrightarrow{\equiv} & \lim_{(n,p)=1} F\operatorname{-Isoc}((\overline{X},Z)^{\frac{1}{n}})^{\circ}. \end{array}$

 $\begin{array}{ll} \underline{\operatorname{Prop.} 3} & \exists \text{ an equivalence of categories} \\ \overline{\operatorname{Rep}_{K^{\sigma}}}(\pi_1^t(X)) \xrightarrow{=} & \varinjlim_{(n,p)=1} F\operatorname{-Isoc}((\overline{X},Z)^{\frac{1}{n}})^{\circ}. \end{array}$

Key ingredients

- the restriction of $\rho \in \operatorname{Rep}_{K^{\sigma}}(\pi_1^t(X))$ to $\pi_1^t(Y)$ for some tame covering $Y \to X$ factors through $\pi_1(\overline{Y}^{\operatorname{sm}})$.
- $(\overline{Y}: ext{ norm. of } \overline{X} ext{ in } k(Y), \ \overline{Y}^{ ext{sm}} \subseteq \overline{Y} ext{ sm. locus.})$
- Abhyankar's lemma.
- Crew's equivalence.

2.2 Parabolic version

2.2 Parabolic version

Definition

<u>Definition</u> A parabolic log convergent isocrystal on (\overline{X}, Z) is an inductive system $(\mathcal{E}_{\alpha})_{\alpha \in \mathbb{Z}_{(p)}^{r}}$ of objects in $\operatorname{Isoc}^{\log}(\overline{X}, Z)$ s.t. <u>Definition</u> A parabolic log convergent isocrystal on (\overline{X}, Z) is an inductive system $(\mathcal{E}_{\alpha})_{\alpha \in \mathbb{Z}_{(p)}^r}$ of objects in $\mathrm{Isoc}^{\log}(\overline{X}, Z)$ s.t.

(a)
$$\forall i, \exists \text{ isom. } (\mathcal{E}_{\alpha+e_i})_{\alpha} \cong (\mathcal{E}_{\alpha}(Z_i))_{\alpha}$$

via which the transition map $(\mathcal{E}_{lpha})_{lpha}
ightarrow (\mathcal{E}_{lpha+e_i})_{lpha}$

is identified with the map $(\mathcal{E}_{\alpha})_{\alpha} \to (\mathcal{E}_{\alpha}(Z_i))_{\alpha}$ induced by $\mathcal{O} \to \mathcal{O}(Z_i)$. <u>Definition</u> A parabolic log convergent isocrystal on (\overline{X}, Z) is an inductive system $(\mathcal{E}_{\alpha})_{\alpha \in \mathbb{Z}_{(p)}^{r}}$ of objects in $\mathrm{Isoc}^{\log}(\overline{X}, Z)$ s.t.

(a)
$$\forall i, \exists \text{ isom. } (\mathcal{E}_{\alpha+e_i})_{\alpha} \cong (\mathcal{E}_{\alpha}(Z_i))_{\alpha}$$

via which the transition map $(\mathcal{E}_{lpha})_{lpha}
ightarrow (\mathcal{E}_{lpha+e_i})_{lpha}$

is identified with the map $(\mathcal{E}_{\alpha})_{\alpha} \to (\mathcal{E}_{\alpha}(Z_i))_{\alpha}$ induced by $\mathcal{O} \to \mathcal{O}(Z_i)$.

(b) $\exists n \in \mathbb{N}, (n,p) = 1 \text{ s.t. } \mathcal{E}_{[n\alpha]/n} \xrightarrow{=} \mathcal{E}_{\alpha}.$

103

Definition

<u>Definition</u> A unit-root parabolic log convergent F-isocrystal on (\overline{X}, Z) is $((\mathcal{E}_{\alpha})_{\alpha}, \Psi)$, where $(\mathcal{E}_{\alpha})_{\alpha}$: a parabolic log conv. isocrystal $\Psi : \varinjlim(F^*\mathcal{E}_{\alpha})_{\alpha} \to \varinjlim(\mathcal{E}_{\alpha})_{\alpha}$: isom as ind-objects s.t. it is unit-root when restricted to X.

Definition

<u>Definition</u> A (unit-root) parabolic log convergent (*F*-)isocrystal \mathcal{E} on (\overline{X}, Z) is adjusted if, for $\forall \overline{U} \hookrightarrow \overline{X}$ open affine, $\forall (\overline{U}, \overline{X}, t, L)$ a csss frame with generic point, the ind. system of log- ∇ -modules $(E_{\alpha}, \nabla_{\alpha})_{\alpha}$ on $A_{L}^{1}[0, 1)$ induced by \mathcal{E} is isom. to

107 Definition A (unit-root) parabolic log convergent (*F*-)isocrystal \mathcal{E} on (\overline{X}, Z) is adjusted if, for $orall \overline{U} \hookrightarrow \overline{X}$ open affine, $orall (\overline{U}, \overline{\mathcal{X}}, t, L)$ a csss frame with generic point, the ind. system of log- ∇ -modules $(E_{\alpha}, \nabla_{\alpha})_{\alpha}$ on $A^{1}_{L}[0, 1)$ induced by \mathcal{E} is isom. to $(\bigoplus_{j=1}^{\mu} (\mathcal{O}_{A_{t}^{1}[0,1)}, d - \lceil \gamma_{j} \rceil_{\alpha_{i}} \mathrm{dlog} t))_{\alpha}$ for some $\gamma_j \in (-1,0] \cap \mathbb{Z}_{(p)}$ $(1 \leq j \leq \mu)$, where *i*: the unique index with $U \cap Z_i \neq \emptyset$, $[\gamma_j]_{\alpha_i} :=$ the unique elt in $(\alpha_i - 1, \alpha_i] \cap (\gamma_j + \mathbb{Z}).$ (transition: multiplication by some power of t.)

Par-Isoc^{log}(\overline{X}, Z): the cat. of adjusted parabolic log conv. isocrystals on (\overline{X}, Z).
Par-Isoc^{log} (\overline{X}, Z) : the cat. of adjusted parabolic log conv. isocrystals on (\overline{X}, Z) .

Par-F-Isoc^{log} $(\overline{X}, Z)^{\circ}$: the cat. of unit-root adjusted parabolic log conv. F-isocrystals on (\overline{X}, Z) .

Theorem 4		
Cor. 5		

<u>Theorem 4</u> \exists equivalences of categories

$$\begin{array}{ll} \underline{\operatorname{Theorem } 4} & \exists \text{ equivalences of categories} \\ & \underset{(n,p)=1}{\lim} \operatorname{Isoc}((\overline{X},Z)^{\frac{1}{n}}) \xrightarrow{=} \operatorname{Par-Isoc}^{\log}(\overline{X},Z), \\ & \underset{(n,p)=1}{\lim} F\operatorname{-Isoc}((\overline{X},Z)^{\frac{1}{n}})^{\circ} \xrightarrow{=} \\ & \operatorname{Par-}F\operatorname{-Isoc}^{\log}(\overline{X},Z)^{\circ}. \end{array}$$

Cor. 5

$$\begin{array}{ll} \underline{\operatorname{Theorem } 4} & \exists \text{ equivalences of categories} \\ & \underset{(n,p)=1}{\varinjlim} & \operatorname{Isoc}((\overline{X},Z)^{\frac{1}{n}}) \xrightarrow{=} \operatorname{Par-Isoc}^{\log}(\overline{X},Z), \\ & \underset{(n,p)=1}{\varinjlim} & F\operatorname{-Isoc}((\overline{X},Z)^{\frac{1}{n}})^{\circ} \xrightarrow{=} \\ & \operatorname{Par-}F\operatorname{-Isoc}^{\log}(\overline{X},Z)^{\circ}. \end{array}$$

<u>Cor. 5</u> \exists an equivalence of categories

$$\begin{array}{ll} \underline{\operatorname{Theorem}} & \exists \text{ equivalences of categories} \\ & \underset{(n,p)=1}{\overset{\underset{(n,p)=1}{\longrightarrow}}{\underset{(n,p)=1}{\overset{\underset{(n,p)=1}{\longrightarrow}}{\underset{(n,p)=1}{\overset{\underset{(x,Z)}{\overset{(x,Z)}{\overset{\underset{(x,Z)}{\overset{(x,Z)}{\overset{\underset{(x,Z)}{\overset{(x,Z)}{\overset{\underset{(x,Z)}{\overset{(x,Z)}{\overset{\underset{(x,Z)}{\overset{($$

 $\underline{\text{Cor. 5}} \quad \exists \text{ an equivalence of categories} \\ \operatorname{Rep}_{K^{\sigma}}(\pi_1^t(X)) \xrightarrow{=} \operatorname{Par-}F\operatorname{-Isoc}^{\log}(\overline{X}, Z)^{\circ}.$

115

Rough sketch of the proof

Rough sketch of the proof

Suffices to prove the equivalences

 $\operatorname{Isoc}((\overline{X},Z)^{\frac{1}{n}}) \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X,\overline{X})_{(\frac{1}{n}\mathbb{Z}/\mathbb{Z})^{r}-\mathrm{ss}},$ $\operatorname{Par-Isoc}^{\log}(\overline{X},Z) \xrightarrow{=} \operatorname{Isoc}^{\dagger}(X,\overline{X})_{(\mathbb{Z}_{(p)}/\mathbb{Z})^{r}-\mathrm{ss}}.$

Rough sketch of the proof

Suffices to prove the equivalences

$$\mathrm{Isoc}((\overline{X},Z)^{rac{1}{n}}) \stackrel{=}{
ightarrow} \mathrm{Isoc}^{\dagger}(X,\overline{X})_{(rac{1}{n}\mathbb{Z}/\mathbb{Z})^{r} ext{-ss}}, \ \mathrm{Par} ext{-Isoc}^{\mathrm{log}}(\overline{X},Z) \stackrel{=}{
ightarrow} \mathrm{Isoc}^{\dagger}(X,\overline{X})_{(\mathbb{Z}_{(p)}/\mathbb{Z})^{r} ext{-ss}}.$$

The ess. surj. of the first eq: Take covering $\overline{X}^{(n)} \longrightarrow (\overline{X}, Z)^{1/n} = [\overline{X}^{(n)}/\mu_n]$ and use Theorem 1 for $\Sigma = \{0\}$ on $\overline{X}^{(n)}$.

The ess. surj. of the second eq: For $lpha=(lpha_i)_i\in\mathbb{Z}^r_{(p)}$, let $\Sigma_{\alpha} := \prod_{i=1}^{r} (-((\alpha_i - 1, \alpha_i] \cap \mathbb{Z}_{(p)})).$ $\mathcal{E}_{\alpha} :=$ the unique object in $\operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma_{\alpha}-ss}$ extending the given object in $\operatorname{Isoc}^{\dagger}(X, \overline{X})_{(\mathbb{Z}_{(p)}/\mathbb{Z})^{r}-\operatorname{ss}}$. (Theorem 1)

The ess. surj. of the second eq: For $lpha=(lpha_i)_i\in\mathbb{Z}^r_{(p)}$, let $\Sigma_{\alpha} := \prod_{i=1}^{r} (-((\alpha_i - 1, \alpha_i] \cap \mathbb{Z}_{(p)})).$ $\mathcal{E}_{\alpha} :=$ the unique object in $\operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma_{\alpha}-\mathrm{ss}}$ extending the given object in $\operatorname{Isoc}^{\dagger}(X,\overline{X})_{(\mathbb{Z}_{(p)}/\mathbb{Z})^{r}-\operatorname{ss}}$. (Theorem 1) By Prop. 2, $(\mathcal{E}_{\alpha})_{\alpha}$ forms an inductive system,

and we can check that it is indeed adjusted.

The ess. surj. of the second eq: For $lpha=(lpha_i)_i\in\mathbb{Z}^r_{(p)}$, let $\Sigma_{\alpha} := \prod_{i=1}^{r} (-((\alpha_i - 1, \alpha_i] \cap \mathbb{Z}_{(p)})).$ $\mathcal{E}_{\alpha} :=$ the unique object in $\operatorname{Isoc}^{\log}(\overline{X}, Z)_{\Sigma_{\alpha}-\mathrm{ss}}$ extending the given object in $\operatorname{Isoc}^{\dagger}(X, \overline{X})_{(\mathbb{Z}_{(p)}/\mathbb{Z})^{r}-\operatorname{ss}}$. (Theorem 1) By Prop. 2, $(\mathcal{E}_{\alpha})_{\alpha}$ forms an inductive system,

and we can check that it is indeed adjusted. Done.

121

Thank you very much!